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Item noise models of recognition assert that interference at retrieval is generated by the words from the 

study list. Context noise models of recognition assert that interference at retrieval is generated by the 

contexts in which the test word has appeared. The authors introduce the bind cue decide model of 

episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the 

item noise and dual-processing approaches to recognition memory. From the item noise perspective, list 

strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of 

the similarity of other words in a list are considered. From the dual~processing perspective, process 

dissociation data on the effects of length, temporal separation of lists, strength, and diagnosticity of 

context are examined. The authors conclude that the context noise approach to recognition is a viable 

alternative to existing approaches. 

Episodic recognition refers to the task of identifying a stimulus as 

having occurred within a particular episode or context. In a typical 

recognition experiment, participants process a study list of words and 

are then presented with a test list containing some old words from the 

study list and some new words, which did not appear. The partici

pant's task is to determine which of the test words were presented at 

study. This basic design can be elaborated in a number of ways by 

including additional study lists and requiring participants to recognize 

words from individual lists or from all of the lists. 

The recent literature on episodic recognition has been domi

nated by the dual-processing approach, especially as it is embod

ied within the process dissociation procedure, and the item noise 

approach, as it is embodied within global matching models. The 

dual-processing approach assumes that recognition involves famil

iarity, which is often assumed to be a context-insensitive automatic 

process, and recollection, a context-sensitive strategic process. The 

item noise approach assumes that recognition involves a single 

context-sensitive process in which noise is generated primarily 

from the other words in the study list. 

Although they address the same recognition phenomena, the dual

processing and item noise approaches have differed markedly both in 

the data sets they have considered and the nature of the models they 

have proposed. The dual-processing approach has focused on manip

ulating study and test trial processing, typically in list discrimination 

designs, whereas the item noise approach has focused on differences 
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in materials (such as word frequency and concreteness), associative 

information, and length and strength manipulations, typically within 

single-list designs. The dual-processing approach has involved the use 

of measurement models designed to estimate the contributions of 

automatic and controlled processing to the recognition decision, 

whereas the item noise approach has postulated process models 

describing specific representations (bindings), cues, and decision 

mechanisms occurring in recognition memory. 

There has been an extensive literature critiquing both ap

proaches (e.g., Clark, 1999; Clark & Gronlund, 1996; Dennis & 

Humphreys, 1998; Dodson & Johnson, 1996; Gruppuso, Lindsay, 

& Kelly, 1997; Humphreys, Pike, Bain, & Tehan, 1989; Mulligan 

& Hirshman, 1997; Ratcliff, Van Zandt, & McKoon, 1995). In this 

article, we draw on these critiques to integrate explanations from 

both approaches into the bind cue decide model of episodic mem

ory (BCDMEM). 

BCDMEM assumes that word recognition is a context noise 

process that involves cuing with a word to retrieve the set of 

contexts in which that word has been encountered. Performance is 

determined primarily by the other contexts in which the word has 

appeared and the degree of overlap between the study context and 

the context that the participant reinstates at test. On logical 

grounds, cuing with the context to retrieve the item and cuing with 

the item to retrieve the context are alternative bases for episodic 

recognition (J. A. Anderson & Bower, 1972; Humphreys, Wiles, & 

Dennis, 1994). I By introducing a context noise model, we provide 

1 The recognition portions of J. A. Anderson and Bower (1972) and BCD

MEM are generally similar. In addition to cuing with the word to retrieve prior 

contexts, both treat words as single nodes and context as a collection of 

abstract features. Furthermore, BCDMEM's Bayesian decision process is 

relatively similar to the feature matching process used by Anderson and 

Bower. However, further developments in the Anderson and Bower frame

work took a different tack. Anderson and Bower (1974) used interpretable 

features (e.g., list tags). Current models arising from this tradition also incor

porate item noise (activation spreads from a list node) as wen as context noise 

(1, R. Anderson. Bothell, Lebiere, & Mantessa. 1998). Inaddition, the BCD
MEM recall model, which is only briefly mentioned in this article, differs 

substantially (e.g., recalled words are represented as a collection of features). 
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a test bed for comparing the strengths and weaknesses of these 

approaches. Furthermore, BCDMEM demonstrates how certain 

important intuitions from the dual-processing perspective can be 

incorporated into a process model. 

In this article, we focus on recognition, but a significant portion 

of the memory modeling literature has focused on the differences 

between recognition and recall. We believe that many of these 

differences can be parsimoniously explained by assuming that 

recognition is a context noise process and recall is an item noise 

process. At various stages throughout the text, we demonstrate the 

utility of this assumption. 

We begip by describing BCDMEM. We then consider the item 

noise and dual-processing approaches in turn, outlining their primary 

assumptions and demonstrating how BCDMEM is able to account for 

data from each approach. BCDMEM makes unique predictions in 

multilist paradigms involving the manipulation of processing and 

temporal similarity. We discuss data from these paradigms and con

clude by discussing the different domains of application of the three 

approaches and directions for further research. 

The BCDMEM 

As the name suggests, there are three critical components of the 

BCDMEM: the binding mechanism, the cues used, and the deci

sion rule. The binding mechanism specifies how elements of an 

episode including words, contexts, and other information are 

bound in episodic memory. The cues are the elements that are used 

to initiate retrieval. Not all of the information available to an 

individuals needs to be used as a cue, so part of the theory involves 

specifying which components are used as cues in a given experi

mental paradigm. Finally, the decision rule takes the results of 

retrieval and outputs the required information in the form of a 

word in recall paradigms or a yes-no decision in recognition 

paradigms. A complete theory of episodic memory must address 

all of these components. However, in explicating the recognition 

model, only the cues and decision mechanism are critical, so in the 

following section we focus on these components. 

The Mechanism 

Figure 1 outlines the components of the architecture of 

BCDMEM relevant to the recognition study trial. Active nodes 

(activation value equals 1) are represented by solid circles, and 

inactive nodes (activation value equals 0) are represented by open 

circles. At the input layer, words are represented as individual 

Output Layer 

nodes (local codes). At the output layer, the study trial context is 

represented as a pattern of activity (distributed code with sparsity 

s and length v). Each node at the input layer is connected through 

associative weights to the output layer. At study, the current word 

is instantiated on the input layer, and the current context pattern is 

instantiated on the output layer. Learning occurs by setting the 

weight connecting an input node to an output node to one with 

probability r (learning rate) whenever the input and output nodes 

are both active. 

. Figure 2 outlines the components relevant to the recognition 

test. Here the word node is reinstated at the input layer, which in 

tum retrieves a composite vector at the output layer. This com

posite contains the contexts with which the word has been asso

ciated. For a target word, the output layer will contain some of the 

study context (the amount depends on the learning rate). Regard

less of whether a word is a target or a distractor, it will have 

appeared in nonstudy contexts, so there will be weights that were 

learned during those episodes. These weights will in tum activate 

nodes at the output layet. The probability that an output unit is 

active in the retrieved context vector, as a result of previous 

learning, is called context noise (p). Because the retrieved context 

vector is a composite of many different study contexts, p is much 

larger than s. Conceptually, the probability p represents the bal

ance between past learning and forgetting. That is, we would 

expect p to monotonically increase with the frequency or number 

of contexts in which a word has been encountered and to mono

tonically decrease as the time from the last encounter increases. 

However, we would not necessarily expect rapid changes in p as a 

function of either frequency or recency (e.g., it might take a period 

of several years without encountering a word before p declines by 

a significant amount). 

The retrieved vector is then compared against the reinstated 

study context vector to determine whether the context vector for 

which the participant is looking has been associated with the 

current test word. There may be components of the study context 

that are retrieved even when a distractor is presented as a conse

quence of the overlap between the study context and the contexts 

in which the distractor has been encountered. Likewise, when a 

target is presented, the output layer may be missing components of 

the study context because they were not learned. As a conse

quence, the retrieved context vector will not be identical to the 

reinstated vector, and errors may arise. 

BCDMEM assumes that the mechanism underpinning recogni

tion decisions approximates the optimal decision rule in a Bayes

ian sense (cf. J. R. Anderson & Milson, 1989; Glanzer & Adams, 

Current Study 
Context 

Input Layer 0000000.000000000000 

Word 

Figure 1. Bind cue decide model of episodic memory at study. 
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Figure 2. Bind cue decide model of episodic memory at test. 

1990; McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997). 

Consequently, the decision can be characterized as the odds ratio 

(Equation 1): 

p(oldJdata) p(old) p(dataJold) 

p(newJdata) = p(new) p(dataJnew) . 
(1) 

The data referred to in the odds expression are the reinstated 

context vector (c) and the retrieved context vector (m). The odds 

ratio depends on how well these vectors match. The word will be 

considered old if the probability that it is old given the data is 

greater than the probability that it is new given the data (i.e., if the 

odds ratio exceeds one). 

In many experiments participants see equal numbers of targets 

and distractors, so it could be assumed that, in the absence of 

specific manipulations of the criterion, P(old) = P(new) = .5, and 

the prior probabilities cancel. In this case, the odds ratio is equal to 

the likelihood ratio, that is, P(dataJold)/P(dataJnew). 

Because both the reinstated context vector and the retrieved 

context vector are binary, there are four types of match (i.e., C; = 1 

and mj = I, C j = 1 and mj = 0, C j = 0 and mj = 1, and C j = 0 and 

mj = 0). The probability of a given sort of match is independent of 

the component in which that match occurs, so the data can be 

summarized by the numbers of matches of each kind. Using the 

convention that the first component is the reinstated context and 

the second component is the retrieved context, let nlJ be the 

number of 11 matches, nlO the number of 10 matches, nOI the 

number of 01 matches, and noo the number of 00 matches (note 

that vector length v = noo + nOI + nlO + nIl): 

P(dataJold) = Il;P(c j & m,Jold) 

= P(c; = 1 & mj = 1 Jold)""p(c; = 0 & mj = oJold)nOO 

P(c; = 0 & m; = 1 Jold)n01p(c; = 1 & mj = oJold)nlO 

= [P(c; = 1 JOld)P(m; = lie. = 1 & old)]nll 

[P(c; = OJold)P(m; = ole. = 0 & old)]nOO 

[P(c; = OJold)P(m; = IJc; = 0 & old)]nOI 

[P(c; = I Jold)P(m; = ole. = 1 & old)]n'O (2) 



BIND CUE DECIDE MODEL OF EPISODIC MEMORY 455 

A similar equation can be written for P(datalnew). 

We can now restate the likelihood ratio in terms of the param

eters of the model that have been introduced to this point. Sparsity 

(s) is the probability that a component of a study context vector is 

equal to one. Learning (r) is the probability that the link between 

a word node and an active context component is learned during 

study. Context noise (p) is the probability that a component of the 

retrieved vector is equal to one because of extra-experimental 

contexts in which the word has been seen. Vector dimensionality 

(v) is the length of the reinstated and retrieved vectors. Substituting 

into the previous equations, we get Equations 3-5. 

P(datalold) = [s(r + p - rp)]nll[(l - s)(l - p)]nOO 

[s(l - r)(l - p)]nlO[(l - s)p]nOI. (3) 

P(datalnew) = [sp]nll[(l - s)(l - p)]nOO 

[s(l - p)]nl0[(l - s)p]nOI. (4) 

Thus, 

P(datalold)/P(datalnew) = [(r + p - rp)/p]nll(1 - r)nlO. (5) 

Note that in this simple version of the model the number of 01 

and 00 matches has no impact on the likelihood ratio, because the 

terms in the numerator and denominator that are raised to these 

powers are the same. Because learning cannot occur when the 

component in the study context vector is zero, the 01 and 00 

matches cannot help to distinguish new and old words. 

As mentioned previously, when there is no specific manipula

tion of the criterion, it is assumed that a word will be called old if 

the probability that it is old given the data is greater than the 

probability that it is new given the data, which is true when the 

likelihood ratio is greater than one. In general, then, as the mean 

likelihood ratio approaches one, from above in the case of targets 

and from below in the case of distractors, we expect performance 

to degrade. We can begin to understand how the preceding like

lihood function simulates performance by looking at how its 

expected value varies as a function of the parameters (note that a 

full exposition would consider the complete likelihood distribu

tion). First, as context noise (p), which represents word frequency, 

approaches one, (r + p - rp)/p approaches one and the expected 

value of nlO approaches zero, so the expected value of P(datalold)/ 

P(datalnew) approaches one. In other words, performance de

creases as word frequency increases. Second, as learning (r) ap

proaches zero, (r + p - rp)/p approaches one and 1 - r 

approaches one, so the expected value of P(datalold)/P(datalnew) 

approaches one. Thus, as study time or number of repetitions 

decreases, so does performance. 

A numerical example. To solidify understanding of the model, 

we now work through three simple numerical examples. First, 

consider the network in Figure 2. In constructing this example, 

vector length was set to 20, sparsity was set to 0.2, context noise 

was set to 0.3, and learning rate was set to 0.75. Four of the 

reinstated context units were active, six of the retrieved context 

units were active, and, for the target, three of the retrieved units 

corresponding to the four units in the reinstated context were 

!lctive. Figure 2 shows the number of matches of each type and the 

likelihood calculation. With these parameters, discrimination is 

very good. The likelihood ratio for the target is 5.2, which is well 

above 1, and hence this word would have been identified as old. 

The likelihood ratio for the distractor is 0.04, which is well 

below 1, and so this word would have been correctly classified 

as new. 

Now consider the effect of increasing the context noise to 0.6 

(modeling an increase in the frequency of the word; see Figure 3). 

Twelve of the retrieved context vector units were active, and the 

target likelihood was 5.06, whereas the distractor likelihood 

was 0.84. Thus, the target and distractor were still correctly clas

sified, but the matching values were closer to one. Noise in the 

match is more likely to generate a false alarm or a miss. Note also 

that the nil and nlO matches are equal in the original target and the 

high-frequency distractor, yet in the first case the model responds 

yes, whereas in the second case the model responds no. These 

response changes occur as a consequence of the change in the ratio 

of the probabilities that nil matches will occur. For example, the 

ratio of the probability that an nil match will occur given a target 

to the probability that it will occur given a distractor is (r + p -

rp )/p. These ratios of probabilities are referred to as the weighting 

of the matches. In the original case the weighting of the nll 

matches was 2.75, whereas in the high-frequency case the weight

ing was only 1.5. The model relied on this change in the weighting 

to correctly classify the words. However, note the effect that the 

change in context noise had on the nOl and noo matches. These 

changes allowed the estimation of the different weighting 

parameters. 

Finally, consider the effect of decreasing the amount of learning 

to 0.5 (see Figure 4). In terms of the number of matches, the 

distractor did not change. However, for the target, one of the 11 

matches became a 10 match. The resultant likelihood ratios 

were 1.18 for the target and 0.27 for the distractor. Again, dis

criminability was reduced. 

Adding the contextual reinstatement parameter. In the deriva

tions just outlined, it was assumed that the ability to retrieve or 

otherwise reconstruct the study context at test (contextual rein

statement) is perfect. The context used at test is identical to that 

used at study. It seems more likely, however, that as a consequence 

of factors such as delay, features of the original context vectors 

will be lost. (Note that, in future instantiations of the model, it may 

be necessary to consider the possibility that spurious features will 

arise during the reinstatement process. We have chosen to include 

only the loss of units at this stage for mathematical simplicity.) The 

contextual reinstatement parameter (d) is the probability that a unit 

that was a one in the study context will be a zero in the reinstated 

context. The likelihood ratio can be rederived taking into account 

contextual reinstatement: 

P(c; & m;!old)/P(c; & milnew) 

= {[I - s + d(l - r)s]/[l - s + ds]}n00(1 - r)nlO 

{[P(1 - s) + d(r + p - rp)s]/[p(1 - s) + dps]}nOI 

[(r+ p - rp)/p]nll, (6) 

where c' is the reinstated context vector (i.e., the original context 

vector minus the ones that have been lost in the process of 

reinstatement; see Appendix A for the derivation). 

In this version of the model, the 00 and 01 matches do not cancel 

because a zero in the reinstated context does not preclude learning 
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Figure 3. Numerical example showing the effect of increasing context noise. 

at study. However, if d is set to zero, indicating that reinstatement 

is perfect, the likelihood ratio reduces to that previously derived, 

and the 00 and 01 matches cancel. 

About the parameters. In Bayesian models of this kind, the 

parameters play two different roles. First, they describe the encod

ing and retrieval processes of the model. For instance, the learning 

rate parameter affects the probability that an association between 

an input node and an output node will be learned at study. Second, 

they affect the decision mechanism. In the first case, there is no 

problem. The parameters of the model are related to parameters of 

the physical system. In the second case, however, the decision 

mechanism, which may well be physically distinct from the stor

age system, must have access to estimates of these parameters. 

That is, it must be capable of calculating the ratios of the proba

bilities that each type of match will occur. In this case, it becomes 

important to ask how the decision mechanism is able to derive or 

learn the parameters to calculate the ratios. 

First, it should be noted that the sparsity and vector length 

parameters are not affected by experimental manipulations. The 

sparsity parameter was set to 2%, and the same value was used in 

ali of the simulations. Preliminary investigations showed that a 

vector dimensionality between 200 and 1,000 provides hit rates 

and false alarm rates in the appropriate ranges for recognition 

memory experiments. A length of 200 was used in the initial 

simulations and was extended to 1,000 when the overlap between 

vectors had to be manipulated. 

Second, except in the case of context noise, the setting of the 

decision parameters requires processes of the same kind as those 

involved in the setting of a criterion in the global matching models. 

It is commonly assumed that participants are capable of altering 

criteria as a consequence of instructions or when the proportion of 

old and new words changes (Buchner, Erdfelder, & Vaterrodt

Pliinnecke, 1995). Parameters such as learning (r) and contextual 

reinstatement (d) that refer to the entire list could be set on a 

similar basis. Note that when within-list manipulations of learning 

rate are simulated, an average value is used in the decision rule. It 

is not necessary for the strength to be estimated on a word-by-word 

basis. 

Over a large number of experimental manipulations, increases in 

hit rates are accompanied by decreases in false alarm rates. This 

pattern of results is called the mirror effect, and it has been argued 

that such a pattern is ubiquitous in recognition memory (Glanzer & 
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Figure 4. Numerical example showing the effect of decreasing learning. 

Adams, 1990; Glanzer & Bowles, 1976; McClelland & Chappell, 

1998). This ubiquity provides much of the motivation behind 

Bayesian models such as attention-likelihood theory (Glanzer & 

Adams, 1990), BCDMEM, retrieving effectively from memory 

(REM; Shiffrin & Steyvers, 1997), and the model of McClelland 

and Chappell (M&C model; 1998), because the mirror effect 

follows directly from the decision mechanisms. By contrast, in 

global matching models, a yes-no criterion is introduced as a 

completely free parameter, and mirroring occurs as a consequence 

of the fitting process but is not a necessary consequence of the 

decision mechanism. 

Unlike the learning and contextual reinstatement parameters, the 

context noise parameter cannot be set on a list-wide basis, because 

effects of word frequency persist even when mixed lists are used 

(Glanzer & Adams, '1990). Furthermore, as the earlier numerical 

example demonstrated, mirroring as a function of context noise 

depends on the use of the appropriate context noise parameter in 

the decision mechanism. However, the context noise parameter 

can be approximated directly from the information available in the 

retrieved and reinstated context vectors. Consider the noo matches 

(Equations 7-9): 

P(C; = 0 & m; = Olold) = P(c; = 0 & mj = Olnew) (7) 

= (l - s)(l - p). 

Now, 

noo = vP(c; = 0 & m; = Olold) = v(l - s)(l - p). (8) 

Thus, 

p = I - noof[v(l - s)]. (9) 

Because v and s are fixed parameters, the system can, in principle, 

estimate context noise from the information available in a match 

on a word-by-word basis. That the requisite information is avail

able directly from the retrieved vectors makes it plausible that a 

low-level mechanism could be constructed to extract the context 

noise parameter automatically. 

Context and Its Reinstatement 

In a model such as BCDMEM, in which context plays a pivotal 

role, it is important to outline what information the context vectors 
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might represent. Our contention is that at least two distinct forms 

of context, processing and temporal, are critical to episodic 

recognition. 

Our concept of processing context is generally similar to the 

dual-processing concept that is used in the recollection process. 

That is, processing context is descriptive of the actions used during 

processing. Was the task to count the number of vowels in the 

word, to solve an anagram, or to make a rating in regard to 

pleasantness? Several studies have demonstrated that the diagnos

ticity of the study task is important in list discrimination (Dodson 

& Johnson, 1996; Gruppuso et aI., 1997; Mulligan & Eirshman, 

1997), suggesting that type of processing is a critical component of 

the context representation. However, our features are subsymbolic 

(Smolensky, 1988; they do not have any interpretation or meaning 

in their own right), whereas the output of the recollection process 

appears to be meaningful or symbolic. 

In addition, the features in the reinstated context must be rep

resentative of the types of features that could be retrieved for an 

old word, not features that are specific to a particular old word. 

One way this could occur is if the system "knows" that features in 

one part of the context vector are likely to be active if the word was 

read and other features are likely to be active if the word was 

heard. Another, not necessarily exclusive possibility is that context 

is closely linked to participants' representation of the task they are 

to perform during the study session. If participants are to remain on 

task during study, they must have an invariant representation of the 

task. In addition, they may have representations of components of 

the task, such as the operation of the buttons in a pleasantness

rating task. Processing context may include a summary of the 

instructions about the task provided by the experimenter or a task 

description established by the participant in response to those 

instructions. 

Temporal context is a time-varying type of context. In 

BCDMEM, we assume that a form of contextual drift occurs (cf. 

Howard & Kahana, 1998, 1999). As time progresses, new features 

become active, and old features become inactive. Consequently, 

the overlap between temporal context vectors representing two 

lists will be greater if the lists occur closer in time. BCDMEM also 

assumes that temporal context can change from the start to the end 

of a list, providing a basis for discrimination (in contrast with 

REM, in which context is assumed to be constant for the duration 

of the list; Shiffrin & Steyvers, 1997). Allowing context to change 

on this time scale permits an explanation of paradigms such as that 

of Hall (1996, Experiment 2). Hall (1996) used a list discrimina

tion design, but instead of being required to discriminate two 

separate lists, participants were required to discriminate list halves. 

That is, they were required to say "yes" to words from the second 

half of the list and "no" to words from the first half. Because 

participants were unaware of the length of the list at study, it was 

not possible for them to identify which half they were working 

with at that time. Nevertheless, participants were capable of mak

ing list half discriminations. We assume that Hall's participants 

were using an end of list context. A strong match to the end of list 

context would indicate that the word appeared in the second half. 

A weak match would indicate that it appeared in the first half. 

Howard and Kahana (1999) have proposed an explanation for 

rapid within-list context changes that is very compatible with 

BCDMEM. They assume that as each study word is presented, it 

is used to retrieve the previous contexts associated with that word. 

The retrieved contexts are then incorporated into the evolving list 

context. With this assumption, they were able to model the serial 

position of the first word recalled in free recall. With the additional 

assumption that each test word is used to retrieve its associated 

context, they could also model the lag function relating the serial 

position of the kth word recalled to the serial position of the k -

1 st word recalled. 

Having distinguished between processing and temporal forms of 

context, we are now in a somewhat better position to consider the 

question of how participants have some understanding about the 

nature of the to-be-retrieved information. The first observation to 

make is that when the test is administered shortly after the study 

list, it may not be necessary to reinstate context at all. The 

representation of processing and temporal contexts that has been 

associated with each study word may remain active and may be 

used directly in the comparison operation. Under these circum

stances, we would expect the processing context to have remained 

stable during the presentation of the list, so the processing context 

used for comparison will be very similar to that present when the 

word was studied. Temporal context, however, may have drifted 

from the start to the end of the list (especially with long lists or 

multiple lists). Consequently, we anticipate that effects of length 

and lag will be pronounced when the test immediately follows 

study. 

However, when there is a substantial delay filled with distract

ing activity between study and test, reinstatement of context will 

be necessary. Typically, test instructions refer to the nature of 

processing conducted at study. For instance, participants might be 

asked to say yes to the words that they rated for pleasantness. In 

this case, they could reconstruct the context from instructions in 

essentially the same fashion in which they originally established 

the processing.context. Reinstating temporal context or a process

ing context not included in the test instructions would require 

memory retrieval. Just as we assume that the presentation of list 

words involves the formation of a word-to-context association, we 

also assume that presentation of study instructions involves the 

formation of an instructions-to-context association. Using aspects 

of the instructions as a cue, participants may retrieve the context 

vector in the same fashion that they retrieve any other memory. 

Once retrieved, the context vector would be available for compar

ison against the context vectors retrieved for list and nonlist words. 

We also anticipate that, under some conditions, the reinstated 

context vector encompasses a combination of study context vec

tors. For instance, in the inclusion condition of a dual-list design, 

we might expect that the participant would form a reinstated 

context that incorporates the context vectors from both lists. In 

BCDMEM, we model the experiment-wide context by taking the 

bitwise odds ratio of the contexts for each study list. That is, the 

experiment-wide context will contain a one whenever either of the 

two study list contexts contains a one in that position in the vector. 

The resulting reinstated context will contain more ones (i.e., be 

more diffuse) than either of the study list contexts, and diffuseness 

will increase if the lists are separated in time (so that the amount 

of overlap decreases). 

Local Codes and Item Novelty 

The majority of recognition experiments involve well-known 

words as stimuli. In BCDMEM, it is assumed that the high amount 
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of learning that is likely to have occurred with these items will 

have the effect of orthogonalizing their representations within the 

episodic binding system (cf. McClelland, McNaughton, & 

O'Reilly, 1995). We model this through our assumption that each 

word activates a different input node (a local code) even if those 

words are synonyms, antonyms, associates, or category members 

or if they are physically similar. 

The exception to this rule arises with morphemic relatives, 

which we assume have sufficiently similar representations that 

they may be captured by the same node in the binding mechanism. 

This assumption provides a relatively straightforward explanation 

for the thresholdlike effects with morphemic relatives reported by 

Hintzman, Curran, and Oppy (1992). That is, aside from some 

minor effects due to the probabilistic learning mechanism, we 

would not expect repeated presentations of a target word to in

crease the probability of falsely recognizing a morphemic relative. 

This lack of increase in the probability of recognition occurs 

because the probability of being captured by a node is controlled 

by the similarity of the representations, which is not changed 

during study. However, we would expect that frequency judgments 

would increase monotonically with the number of presentations, 

given that the lure was falsely recognized. 

With words that the participant has not previously encountered, 

we expect that the local code assumption will be inadequate. First, 

some novel words (e.g., nonsense words) have an obvious com

ponent structure. With these stimuli, a participant could encode the 

word by selecting a subset of its letters. With partial encodings, it 

is possible that a distractor that is similar to a target (it overlaps in 

letters) will be encoded identically. Such a process could explain 

the high false alarm rate Postman (1951) found with nonsense 

words. 

Second, in some situations words may be recognized not because a 

node in the binding mechanism has been associated with a context but 

because a lexical representation for that word exists. For example, 

Maddox and Estes (1997) used a three-phase design to investigate the 

recognition of digit and letter trigrams and pronounceable nonwords. 

In the first, or familiarization, phase, the words were presented a 

varying number of times. The second and third phases were the 

conventional study and test phases of a recognition experiment. Mad

dox and Estes found that previous familiarization increased both the 

hit rate and the false alarm rate. These changes in hits and false alarms 

resulted in the ability to discriminate between words that had and had 

not been present remaining the same or decreasing. Chalmers and 

Humphreys (1998) also used a three-phase design with very-Iow

frequency words, which would have been nonsense words to the vast 

majority of their participants. During the familiarization phase, these 

words were trained either with or without their definitions. When they 

were trained without their definitions, Maddox and Estes's (1997) 

finding of a decrease in ability to discriminate was replicated. How

ever, for words trained with their definitions, there was an increased 

ability to discriminate. 

Chalmers and Humphreys (1998) then looked at the effect of 

familiarization on recency and frequency judgments. One week 

after the familiarization phase, participants received two study lists 

separated by 24 hr with a test shortly after the second study list. 

From the perspective of the participants, words were studied once 

or three times on the previous day or once or three times on the 

present day. The differential effect on frequency and recency 

judgments of training with and without the definitions can be seen 

most readily in judgments for words studied on the present day. 

With frequency judgments, previous familiarization increased 

the probability that participants would judge that the present 

day's words had occurred three times. This held for both words 

studied with their definitions and words studied without their 

definitions. In contrast, with recency judgments, the present 

day's words were judged more accurately when the previous 

familiarization had involved the word's definition and less 

accurately when it had not involved the word's definition. In 

addition, with words trained without their definitions, previous 

familiarization decreased the probability that a word would be 

judged as having occurred on the present day. Chalmers and 

Humphreys (1998) concluded that participants were more ca

pable of forming an episodic memory if words had been trained 

with their definitions. However, in the absence of. episodic 

memory, they assumed that participants used information about 

the existence of a representation differentially in making fre

quency and recency judgments. 

In summary, when recognition involves novel stimuli or stimuli 

that are encoded in a componential fashion, an assumption of local 

codes is unlikely to be justified. In BCDMEM, however, we are 

attempting to capture recognition performance with well-learned 

word stimuli. 

We have now described the components of BCDMEM. What 

remains is to determine how it accounts for important data from 

both the item noise approach and the dual-processing approach. 

We start with the item noise approach. 

BCDMEM and the Item Noise Approach 

Item noise models assume that an image, trace, or association is 

laid down at each study opportunity and that the recognition 

decision is based on the matches of the current word against the 

images of the words in the list (see Figure 5). Typically, new 

words match weakly with all of the study words, whereas old 

words match the other words weakly and their own image strongly. 

Consequently, the overall match for old words will tend to be 

higher than that for new words, and a criterion can be set above 

which the participant says yes and below which the participant 

says no. Because the other words from the list enter into the match, 

they generate most of the noise, and consequently item noise 

models are sensitive to manipulations of the other words in the list. 

The prime examples of the item noise approach are the global 

matching models, including search of associative memory (SAM; 

Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1981), the 

Test Item @ Study Item i = 

Test Item @ Study Item 2 = 

Test Item @ Study Item N = 

Test Item @ Pre-experimentai Memories = 

Match i 

+ 
Match 2 

+ 

+ 
MatchN 

+ 
Pre-experimentai Match 

Global Match 

Figure 5. The general item noise framework. The 181 symbol denotes the 

matching operation (e.g., dot product in the matrix model). 
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theory of distributed associative memory (TODAM; Murdock, 

1982), the composite holographic associative recall model (Eich, 

1982), the matrix model (Humphreys, Bain, & Pike, 1989; Pike, 

1984), and Minerva II (Hintzman, 1984). Although these models 

differ in many respects (see Clark & Gronlund, 1996, for a re

view), their basic mechanisms involve summing the matches of 

cue and list images. More recently, a series of models have 

emerged that are able to account for data that were problematic for 

the global matching models. This class of models is based on a 

Bayesian conception of the recognition process and includes REM 

(Shiffrin & Steyvers, 1997) and the M&C model (McClelland & 

Chappell, 1998). Whereas M&C is a pure item noise model, REM 

includes both item noise and context noise features. However, in 

applications to date, the item noise aspects of REM have been 

emphasiz~d. 

For our purposes, there are three important attributes of the item 

noise models. First, they assume that, for the most part, recognition 

involves a single context-sensitive process. Second, this process is 

assumed to be subsymbolic. Third, REM and M&C assume that 

memory processes are optimized to the environment (cf. J. R. 

Anderson & Milson, 1989) and involve a Bayesian decision pro

cess. BCDMEM also involves a Bayesian subsymbolic, context

sensitive mechanism. 

In this section, we demonstrate how BCDMEM can account for 

data that are important within the item noise approach. These data 

include the mirror effect for word frequency and concreteness and 

the null list strength effect. We also consider two challenges to 

BCDMEM and other context noise models posed by list length 

effects and the effects of word similarity. 

List Strength and List Length 

Critical to understanding whether recognition involves interfer

ence from the other words in a list or the other contexts in which 

the word has appeared is the effect that manipulating some words 

on a list has on the other words. Item noise accounts, such as the 

global matching models, predict that strengthening other words or 

adding new words will hurt performance because the variance of 

the matching strength will increase (Clark & Gronlund, 1996). In 

contrast, a model in which interference is generated by the other 

contexts in which the word has been seen does not predict either a 

list strength or a list length effect. As long as there is no overlap 

in the binding layer of the representations of the two words (this 

occurs in BCDMEM through the use of local representations), 

strengthening the association of another word to the study context 

does not affect the memory retrieved to a completely different 

word. Similarly, adding another word to the list does not affect the 

match of a completely different word. 

A number of studies have demonstrated the lack of a list 

strength effect (Murnane & Shiffrin, 1991; Ratcliff, Clark, & 

Shiffrin, 1990). Whereas distributed composite models such as 

TODAM (in its original formulation) and the matrix model have 

had great difficulty accommodating this finding (see Murdock & 

Kahana, 1993a, 1993b; Orht & Gronlund, 1999; Shiffrin, Ratcliff, 

Murnane, & Nobel, 1993), it is possible to adjust local models such 

as SAM to predict no list strength effect by assuming that increas

ing strength also decreases similarity to other words (differentia

tion; Shiffrin, Ratcliff, & Clark, 1990). However, the adjustment 

requires a delicate balancing of similarity and strength parameters. 

More recent models such as REM (Shiffrin & Steyvers, 1997) and 

M&C (McClelland & Chappell, 1998) suggest that episodic word 

representations are initially similar and that strengthening involves 

filling in the features of the representation. The more features a 

representation has, the greater the opportunity for it to differ from 

other words. Such a mechanism provides a more principled expla

nation for why strength and similarity might be related in the 

appropriate fashion. 

Whereas the revised versions of SAM, REM, and M&C are 

capable of producing a null list strength effect, they all propose 

that item noise is responsible for a length effect in recognition. The 

effect of length in recognition memory would appear to be one of 

the most established results in the memory literature. However, 

there are a number of variables closely associated with length that 

are also candidate explanations. No study has controlled for all of 

these variables, and most studies have left more than one 

uncontrolled. 

The first candidate is retention interval. Clearly, if study list 

length is manipulated and the test is presented immediately after 

the list, then the average retention interval will be longer for the 

long list. Attempts to control for retention interval can be divided 

into those involving a retroactive design and those involving a 

proactive design. In the retroactive design, study-test lag is 

equated by filling the period after presentation of the study list 

with filler activity and comparing only the initial words in the long 

list with those in the short list. Using this design, Schulman (1974) 

found no effect of length in a forced choice test. Bowles and 

Glanzer (1983) also used the retroactive design. They did not 

analyze the retroactive length effect separately, but the mean size 

of the effect (proportion correct) was small (.033). In addition, in 

the third experiment of Murnane and Shiffrin (1991), in which a 

yes-no recognition test was used, the effect of length was not 

significant. In contrast to previous work, Gronlund and Elam 

(1994) did find significant effects using a retroactive design. 

Differences in d' values were 0.31 and 0.65 in their first and 

second experiments, respectively (a possible explanation is offered 

below). 

In the proactive design, the time to the test from the end of the 

short and long lists is equated and testing occurs only on the final 

words in the long list. The effects of length in these conditions 

have typically been somewhat larger. In Bowles and Glanzer's 

(1983) study, the mean size of the effect (proportion correct) was 

.068. The overall effect of length when retroactive and proactive 

results were combined was significant, most probably driven by 

the proactive results. Similarly, Underwood (1978) used a forced 

choice test and found a significant effect of length of approxi

mately the same magnitude. Orht and Gronlund (1999) found a 

much larger effect (0.95 on a d' scale). Underwood, citing the 

stability of word difficulty across list lengths and the lack of 

cumulative proactive interference results in other recognition par

adigms, argued against direct proactive interference as the locus of 

the effect. 

As a second candidate, Underwood (1978) suggested that the 

length effect in the proactive design might be a consequence of 

participants losing attention as they process the final words in the 

long list. In Bowles and Glanzer's (1983) study, the long list 

contained 240 words. In the Underwood (1978) study, the longest 

list contained 80 words, and in Ohrt and Gronlund's (1999) study, 

the long list contained 82 words. In all three cases, words were 
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presented for a 1.5-s to 2.0-s interval under intentional learning 

instructions, but with no specific processing requirements and no 

way of ensuring that attention was maintained. Under these con

ditions, it seems plausible that attentionallapses could playa role, 

especially in the Ohrt and Gronlund (1999) study, in which par~ 

ticipants were involved in four 50-min sessions. 

A third candidate explanation is displaced rehearsals. In the 

retroactive design, participants may choose to spend part of the 

period between study and test rehearsing the items. To the extent 

that this occurs, it will favor the short list, because there is more 

time to rehearse and because in the long list the rehearsal is likely 

to be spread between the early (tested) and late (untested) items. 

Note that both experiments of Gronlund and Elam (1994) involved 

intentional conditions, which increased the likelihood of rehearsal 

of the short list. 
A fourth candidate for the locus of the length effect is the 

contextual reinstatement process. In our earlier discussion of the 

reinstatement of context, we suggested that when the test occurs 

soon after study, participants may not reinstate a context at all. 

They may use the existing temporal context. In Gronlund and 

Elam's (1994) experiment, only 9 s of filler activity followed the 

long lists. Under these conditions, it is possible that the partici

pants used an end of list context (note that this is the assumption 

made by Howard & Kahana, 1998, 1999, in modeling the serial 

position of the first word recalled in a free recall paradigm). 

Performance on the long list was measured on the first words in the 

list (because of the retroactive design). Consequently, the end of 

list context may not have been a good match for the context of 

words early in the list. In contrast, 69-70 s of filler activity 

followed the short lists, making it more likely that participants 

would be required to reinstate context. The reinstated context 

might have represented either a start of list context or a processing 

context. Both of these contexts might be expected to match better 

than the end of list context in the case of the long list, so perfor

mance would be better in the short list than the long. Furthermore, 

Dennis and Humphreys (1998) showed that by assuming that long 

lists compromised the reinstatement process and allowing the 

contextual reinstatement parameter (d) to vary between the short 

and long lists, the data set from Murnane and Shiffrin (1991, 

Experiment 3) can be modeled by BCDMEM. 

A more diagnostic approach, however, is to ask whether there is 

still a list length effect when retention interval, attention, rehearsal, 

and contextual reinstatement controls are used. Item noise ac

counts propose that the length effect fQr both recognition and recall 

is a direct consequence of the other words in the list. If the list 

length effect is very small in recognition, then these models must 

predict that it will also be very small in recall. In contrast, 

BCDMEM can handle a very small effect in recognition and a 

much larger effect in recall because it cues with the word in 

recognition and the context in recall. 

List Length Experiment 1. First, to eliminate effects of reten

tion interval, we followed previous research and used both the 

proactive and retroactive conditions, allowing comparisons to be 

made across blocks equated for study-test lag. Second, to decrease 
the effect of attention, we interspersed puzzle activity between 

study blocks. The short lists contained 24 words each, and the long 

list contained three blocks of 24 words with 3 min of puzzle 
activity between each block. In this way, participants were re

quired to maintain concentration on each study block for the same 

amount of time, regardless of whether that block appeared in a 

short or a long list. In addition, a pleasantness-rating task was used 

during study. Using a task that requires an explicit response 

encourages the participant to maintain effort throughout the entire 

list. Third, the facts that the filler task was much more interesting 

than the study task and that study was· incidental should have 

discouraged rehearsal. Finally, three different mechanisms were 

used to decrease the effect of contextual reinstatement. Having the 

puzzle activity dispersed between the study blocks means that 

participants were required to reinstate the puzzle context through

out the experiment. This was particularly the case because they 

were engaged in the same puzzle throughout, so any planning or 

goal information they may have generated in a previous block 

could be used to their advantage. To the extent that the puzzle 

activity formed part of the context during study, it should have 

served to keep context constant and to facilitate reinstatement. In 

addition, a distinctive encoding task (pleasantness rating) was 

used. We anticipated that ~n encoding task of this nature would 

focus participants on processing-based forms of context rather than 

temporal-based forms of context, which are more likely to be 

affected by length. Furthermore, an 8-min filled retention interval 

was included at the end of study. If participants used residual 

temporal context information for a reinstated context vector, then 

one might expect a context-driven length effect. After 8 min of 

puzzle activity, however, the residual context information should 

have deteriorated and should have been much less useful. Under 

these circumstances, we would expect participants to rely primar

ily on the processing-based forms of context. 

The experimental details are presented in Appendix B. Partici

pants were assigned to one of three conditions: short list at start of 

study period (n = 30), short list at end of study period (n = 30), 

and long (n = 42). Participants in the long condition were tested 

on words from both ends of the list to ensure that they were 

focusing on the entire list. Consequently, for the long list, the false 

alarm rates for the start and end of the study period were neces

sarily identical. Figure 6 shows the hit rates and false alarm rates 

and their 95% confidence intervals. 

When the appropriate controls were in place, there was no 

significant list length effect, and these data suggest that if the effect 

did exist, it was very small. In the retroactive design, which has 

typically shown no effect, our largest difference between either the 

hit rates or the false alarm rates was 0.025. In the proactive design, 

which has shown small effects in previous studies, our largest 

difference was 0.023. The small size of the differences in the 

proactive design suggests that Underwood's (1978) contention that 

attention underpins the length effect in this case may well be 

correct. Furthermore, it seems that by breaking the list into three 

blocks and including puzzle activity between the blocks, we suc

cessfully controlled attention. Note that we also failed to find an 

effect of lag on recognition performance, suggesting that we were 

successful as well in focusing participants on the processing com

ponents of the context as opposed to the temporal aspects. 

Because we used three separated blocks, it is likely that our 
participants established somewhat different contexts for the three 

blocks. However, we do not think that this could have helped the 
participants in the long condition, because the test list contained 

words from both Block 1 and Block 3. Nevertheless, we decided to 
eliminate this possibility in a second experiment by presenting all 

blocks as part of a single list. We were also concerned with the 
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Figure 6. List Length Experiment 1. A: Hit rates. B: False alarm rates. 

Bars represent 95% confidence intervals. 

relatively high level of performance. To reduce the level of per

formance and to increase the generality of our findings, we decided 

to use both high-frequency and low-frequency words. In addition, 

we included a list strength condition because it is the contrast 

between a null list strength effect and a positive list length effect 

that has caused so much difficulty for the global matching models. 

List Length Experimer-t 2. In contrast to the previous experi

ment, a within-subject design was used in which participants took 

part in all three conditions (short, mixed, and long) during a single 

experimental session (counterbalanced for order). In the short 

condition (AB), participants were presented with two blocks of 20 

words without a break. In the long condition (ABCD), participants 

were presented with four blocks of 20 words without a break. In 

the mixed condition (ABBB), participants were presented with 

four blocks of 20 words in which the second block was repeated 

three times. In all cases, the retroactive'design was used. Note that 

this structure provides good control over potential rehearsal be

cause in all three lists participants received two blocks before any 

differences occurred. However, Block A was the critical test. To 

influence the results, participants would have had to differentially 

rehearse Block A items after having seen an intervening block. 

Puzzle activity followed all conditions to equate study-test lag. 

Half of the participants received lists of high-frequency words, and 

half received lists of low-frequency words. Additional experimen

tal details are provided in Appendix C. 

Figure 7 shows the results for high- and low-frequency words, 

including 95% confidence intervals on the critical comparisons. 

Note that there seems to have been a criterion shift for Block A and 

new items in the mixed list, most probably as a consequence of the 

stronger items that appeared in that list. For this reason, we do not 

make direct comparisons of the hit rates and false alarm rates in the 

mixed condition. However, we can compare the hits and false 

alarm rates for the short and long conditions. There were no 

significant differences in any of the cases. For the high-frequency 

words, the difference in the hit rates was 0.023, and the difference 

in the false alarm rates was 0.020. For the low-frequency words, 

the difference in hit rates was 0.019, and the difference in false 

alarm rates was 0.028. 

Furthermore, if we consider the hit rate minus the false alarm 

rate (which is equivalent to the interaction term in an analysis of 

variance on the yes probabilities), we also see small differences. 

For the high-frequency words the largest of these differences was 

between the mixed and the long words (0.026), and for the low

frequency words the largest difference was between the long and 
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Figure 7. List Length Experiment 2. A: Hit rates, false alarm rates, and 

hits minus false alarms (H-FA) for high-frequency words. B: Hit rates, 

false alarm rates, and H-FA for low-frequency words. Bars represent 95% 

confidence intervals for the comparison of interest (see text). 
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the short lists (0.009). These differences were nonsignificant. 

Note, however, that the design was sufficiently powerful to show 

a significant low-frequency advantage in regard to hits minus false 

alanns, FO, 46) = 5.14, MSE = 0.343, p = .028, even though 

frequency was a between-subjects variable. 

Two experiments showed no significant effects of length, and all 

differences were very small. Our results are consistent with many 

previous results, but they are inconsistent with others. We have 

provided a variety of possible explanations for these discrepancies, 

including lag, inattention, displaced rehearsals, and failures of 

contextual reinstatement. However, additional research is required 

to determine which if any of these explanations is correct. 

In themselves, the failures to find list length effects do not pose 

a difficulty for item noise models. A small list length effect can 

always be accommodated by assuming very low levels of word 

similarity or high levels of interference from previous lists. How

ever, we expect that item noise models will find it very difficult to 

simultaneously fit list length effects in recall and recognition. For 

example, Ohrt and Gronlund (1999) have shown that it is not 

possible to fit a model such as SAM to recognition and recall list 

length data without the introduction of a substantial number of 

additional assumptions. We think that it will be even more difficult 

with the very small list length effects that we are finding. 

In addition, it has been known for some time that cumulative 

proactive interference paradigms have very different effects on 

recall-like and recognition-like tasks (Postman & Keppel, 1977). 

In such designs, participants learn a list and are tested on it 48 hr 

later. They then learn a second list that is also tested after a 48-hr 

delay, and so on for subsequent lists. The increasingly large 

interference effects that are found in recall are simply not revealed 

in recognition-like tasks such as verbal discrimination. 

This differential susceptibility to cumulative proactive interfer

ence between recall and recognition is understandable if the inter

ference effects are list length effects. That is, after a retention 

interval of 48 hr, the reinstated context should be a degraded or 

noisy version of the study context. This will hurt both recall and 

recognition, regardless of whether there is a source of proactive 

interference. However, if there is a source of proactive interfer

ence, cuing with the degraded context in recall will activate inter

fering words as well as target words. However, cuing with the 

word in recognition will not activate the words in the interfering 

lists. Thus, our failure to find a list length effect in recognition is 

compatible with previous failures to find cumulative proactive 

interference effects in recognition paradigms and is evidence in 

favor of our assertion that recognition is a context noise process, 

whereas recall is an item noise process. 

Word Frequency Effect 

In single-word recognition, words of low normative frequency 

are recognized better than high-frequency words. Furthermore, 

performance is worse for both high-frequency targets and high

frequency distractors (the mirror effect; Glanzer & Bowles, 1976). 

Similarly, if participants are given a forced choice recognition test 

(i.e., they are presented with two alternatives and asked to indicate 

which was on the list), they perform better on low-frequency 

words. In addition, the forced choice design allows the comparison 

of high- and low-frequency targets and high- and low-frequency 

distractors. Typically, high-frequency distractors are chosen over 

low-frequency distractors, and low-frequency targets are chosen 

over high-frequency targets (Glanzer & Bowles, 1976). 

Glanzer, Adams, Iverson, and Kim (993) have argued that the 

standard deviations of low-frequency and high-frequency distribu

tions also fall in a specific order. Although it is not possible to 

observe the standard deviations directly, it is possible to observe 

the slope of a receiver operating characteristic plotted on z score 

axes (zROC) to determine the ratio of the standard deviations of 

two distributions (Green & Swets, 1966). ROC curves are con

structed by plotting hit rates against false alann rates across a 

number of levels of bias. Typically, bias is altered by varying the 

probability of the yes response, providing differential rewards, or 

requiring participants to use a rating scale for the confidence of 

their judgment (Green & Swets, 1966). Assuming normality of the 

old and new strength distributions and by taking the z scores of the 

hit rates and false alann rates, a zROC curve can be calculated. The 

intercept of the zROC curve is the d' statistic, and the slope is the 

ratio of the standard deviations of the new and old distributions. 

Glanzer et al. (1993) have shown that s(Iow frequency oldlhigh 

frequency new) < s(Iow frequency oldllow frequency new) < 
s(high frequency old/high frequency new) < s(high frequency 

oldllow frequency new), where s(AIB) is the slope of the zROC 

curve when A is plotted against B. When the assumptions of signal 

detection theory hold, these results imply that the standard devia

tion of the high-frequency new distribution is less than that of the 

low-frequency new distribution and that the standard deviation of 

the high-frequency old distribution is less than that of the low

frequency old distribution. 

BCDMEM provides a straightforward account of the word 

frequency data in recognition. Low-frequency words will not be 

associated with as many contexts as high-frequency words. There

fore, low-frequency words will produce less interference, leading 

to better performance. Whereas the nature of cuing in BCDMEM 

compels the low-frequency advantage, it is the decision rule that 

determines the mirror effect. As outlined in the discussion of the 

BCDMEM mechanism, as the context noise (p) parameter in

creases, the distractor distribution approaches one from below and 

the target distribution approaches one from above. 

In this section, we focus on word frequency data from Glanzer 

and Adams (1990) demonstrating the mirror effect and the order

ing of zROC slopes? In a series of five experiments, participants 

were given a study list on which they performed lexical decision. 

Words were presented either auditorially or visually under either 

intentional or incidental learning conditions. The study list was 

followed by a recognition test. For each test word, participants 

indicated whether they thought it was old and then made a confi

dence rating. 

Although there was substantial variability depending on the 

learning conditions, the pattern of results for both the probability 

of a yes response (i.e., hits and false alanns) and the slope ratio 

was consistent across all five experiments. For simulation pur

poses, we have chosen to model the averaged data (see Figure 8). 

2 Dennis and Humphreys (1998) also reported simulations of word 

frequency. The results reported here, however, are based on the average 

data across five experiments rather than on a single experiment and have 

been extended to consider the ordering of zROC slopes. 
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In simulating the data, a single parameter was estimated for 

amount of learning (r) and degree of contextual reinstatement (d). 

The context noise parameter (p) was varied for the low-frequency 

and high-frequency words. Context noise (p) incorporates the 

number of other contexts in which the word has been seen and the 

amount of learning in those contexts. As a first approximation, we 

expect it to increase with word frequency. However, including 

additional contexts is likely to affect the context noise more than 

repeating a word within the same context (because the greater the 

number of contexts, the more likely it is that one of them will 

resemble the current context). Therefore, the number of different 

contexts in which a word appears may be a more sensitive measure 

of context noise (because the context representations are sparse 

and chosen independently). Because the correlation between the 

number of contexts in which a word has appeared (operationalized 

as the number of articles in which it appeared in the 1994 editions 

of the Sydney Morning Herald; Dennis, 1995) and its frequency is 

very high (? = .95; Dennis, 1995), we assume that word fre

quency reflects context noise under most conditions. In addition, 

five criteria were used to allow the estimation of zROC slopes. One 

was set at 1.0, which is the normative figure, whereas the other 

four were optimized. Figure 8A shows the model's fit of the hit 

and false alarm rates plotted on the same graph as the original data 

(using the normative criterion). The parameters of the fit were as 

follows: learning rate, r = .602; contextual reinstatement, d = 

0.590; and context noise, p(low) = .094 and p(high) = .336. 

Figure 8B shows the fit for the zROC slopes (the criteria were 

0.007,0.556, 1.0,2.975, and 3.965). 

The fit for both the hit and false alarm rates and the zROC slopes 

was good. For the hit and false alarm rates, the maximum absolute 

difference was 0.002 and the data-to-model correlation was .999. 

For the zROC slopes, the maximum absolute difference was 0.015, 

and the model-to-data correlation was .999. BCDMEM is capable 

of accounting for the mirror effect for word frequency and the 

slopes of the zROC distributions. 

Reder et al. (in press) have also proposed that the larger number 

of previous contexts associated with high-frequency words is 

responsible for the lower hit rate with these words. This is the case 

because activation is spread from the item to the contexts associ

ated with that item in proportion to the total number of associated 

contexts. However, this model also spreads activation from the 

context node to the list items, so it will predict a list length effect 

and possibly a list strength effect. 

Concreteness is another word characteristic that has been 

shown to mirror, and we would like to suggest that the basis of 

this effect is the same as that for the word frequency effect. 

Participants may be better able to recognize concrete words 

than abstract words (Glanzer & Adams, 1990) because concrete 

words appear in fewer contexts. We found that the number of 

contexts in which a word had appeared (taken from the Sydney 

Morning Herald database; Dennis, 1995) was correlated nega

tively (- .26) with concreteness ratings (taken from the Medical 

Research Council Psycholinguistic Database [Coltheart, 1981]). 

Furthermore, when word frequency and concreteness were used 

to predict number of contexts in a regression analysis, there was 

a significant advantage to adding concreteness (p < .0001). 

Consequently, even when word frequency is controlled (as in 

Glanzer & Adams, 1990), BCDMEM will still predict a con

crete advantage. 

Similarity Effects 

Item noise models of recognition predict that participants will be 

more likely to produce a false alarm to a lure that is similar to one 

of the study words. In item noise models, overlap between the test 

word and a study word produces a strong match, making it more 

likely that the global match will exceed the criterion. A number of 

studies have demonstrated substantial "false memory" effects 

(Brainerd, Reyna, & Mojardin, 1999; Deese, 1959; Postman, 1951; 

Roediger & McDermott, 1995; Shiffrin, Huber, & Marinelli, 

1995). By contrast, in other studies the effect has been substan

tially smaller and somewhat unreliable (Anisfeld & Knapp, 1968; 

Grossman & Eagle, 1970; MacLeod & Nelson, 1976; Mandler, 
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Pearlstone, & Koopmans, 1969; Underwood & Humphreys, 1979). 

This wide variation suggests that something more than sheer 

similarity is involved. 

One possibility is that participants implicitly produce associates 

of the study words (implicit associative responses). At test, when 

the associate is presented, it is "as if' it had appeared on the list, 

and hence the participant is more likely to say yes. Such a mech

anism is more probable in paradigms in which the related words 

are presented in a blocked fashion so that participants are aware of 

the categorical nature of the list and can encode the nature of that 

relationship (e.g., they may implicitly generate category labels or 

other category members). Deese (1959) and Roediger and McDer

mott (1995) used such paradigms, and it is these paradigms that 

typically show large false memory effects. 

In addition, Anisfield and Knapp (1968) reported that the false 

recognition effect was directional. That is, if A elicits B in free 

association but B does not elicit A, studying A increases the 

probability of falsely recognizing B, but studying B does not 

increase the probability of falsely recognizing A. This directional

ity is difficult to reconcile with a similarity mechanism as used in 

item noise models. 

An alternative explanation of the false memory effect is that 

participants may adjust their criteria for accepting members of a 

category that they know appeared on the list. Miller and Wolford 

(1999) assessed this possibility using lists similar to those of 

Roediger and McDermott (1995) that included some prototype 

items. They found that there was a criterion shift but no impact on 

d' values, a result inconsistent with an item noise account. 

Shiffrin et al. (1995) recognized the possibility that study trial 

encoding or a criterion shift could be responsible for certain false 

recognition effects and took steps to reduce the possibility that 

their participants would become aware of the categories used in the 

study list. They used materials similar to those used by Deese 

(1959) and Roediger and McDermott (1995) but embedded them 

in a long list in which the instances of any given category were 

widely spaced. In this design, false alarms to nonpresented cate

gory instances and prototypes (the word associated with each 

member of the category) also increased substantially with the 

number of category exemplars studied. However, Shiffrin et al. 

(1995) did not include a control condition to determine whether the 

categorical nature of the lists influenced the false alarm rate of 

related lures. 

Dewhurst and Anderson (1999), however, did use such a con

trol. They had participants study lists containing categories of one, 

four, and eight words distributed throughout the study list. In the 

control condition, instead of different category exemplars being 

presented, the same item was repeated multiple times (one, four, or 

eight). Consequently, in the control condition, there was no cate

gorical structure for participants to extract. For the related lures for 

categories of length one, item noise models predict no difference 

as a function of the categorical structure of the remainder of the 

list. However, Dewhurst and Anderson (1999) found an increase in 

false alarm rate in the categorized list despite an overall criterion 

shift in the opposite direction. This result provides strong evidence 

that the categorical nature of the list (even in lists in which 

categories are distributed throughout) induces participants to re

spond on the basis of category membership in a way that is 

inconsistent with an item noise approach. 

Dewhurst and Anderson's (1999) Study was not designed to 

examine the impact of the categorical nature of the list and, as a 

consequence, did not counterbalance the related and unrelated 

lures. Similarly, other studies have compared false alarms to words 

that have a special characteristic (e.g., they are synonyms) and 

control words that do not have that special characteristic (e.g., 

Brainerd et aI., 1999). In these designs, no matter how carefully the 

control words have been matched on relevant dimensions (e.g., 

frequency), there is always the possibility that word differences are 

inflating the false alarm rate of the experimental words and gen

erating an artifactual false memory effect. 

The effects of word similarity on false alarm rates clearly pose 

a problem for BCDMEM and other context noise models. How

ever, most of the time when there is a single synonym, antonym, 

category label, or associate of a recognition lure in the target list, 

the effects are quite small. On those occasions when a large effect 

has been found, it may be attributable to implicit associative 

responses or category-based criterion shifts or to the use of im

perfectly matched control lures. Further research, including re

search on discriminating between internally generated words and 

list words as a function of study modality, is required. 

BCDMEM and the Dual-Processing Approach 

As outlined earlier, the dual-processing approach proposes that 

episodic recognition involves two independent processes. The 

familiarity process is context insensitive and automatic, whereas 

the recollection process is context sensitive and strategic. To assess 

the contributions of familiarity and recollection to the recognition 

decision, Jacoby (1991) introduced the process dissociation pro

cedure. In a typical application of the process dissociation proce

dure, participants study two lists and are asked to make one of two 

recognition decisions at test (Jacoby, 1991). In the inclusion con

dition, they are required to respond yes if the word was present in 

either of the two lists. In the exclusion condition, they are required 

to respond yes only if the word appeared in the target list (either 

List 1 or List 2). Yonelinas (1994) had participants perform just the 

second task (i.e., saying yes only if the word appeared in the target 

list). The inclusion probability was defined as the probability that 

a participant said yes to a word from the target list. The exclusion 

probability was defined as the probability that a participant said 

yes to a word from the nontarget list. Under the dual-processing 

logic, the nonstrategic familiarity process is assumed to lead to a 

yes response in both the inclusion and exclusion conditions, 

whereas the strategic recollection process is assumed to allow the 

rejection of words in the exclusion condition. When the process 

dissociation procedure is used, estimates of the contributions of 

familiarity and recollection can be made (Jacoby, 1991; Yonelinas, 

1994). 

For our purposes, there are three important attributes of the 

dual-processing approach. First, the dual-processing approach has 

emphasized the way in which a participant has been instructed to 

process the words within a list as a source of discriminating 

information and not purely as a determinant of the strength or 
depth of processing (see also the source monitoring framework of 

Johnson, Hashtroudi, & Lindsay, 1993). For instance, Jacoby 
(1991, Experiment 3) required participants to either read or form 

anagrams with the words from the.first list and listen to the words 

from the second list. As a consequence, any information that was 
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retained about the nature of the task that a participant was required 

to complete with the word could be used to distinguish the list in 

which it appeared. Within BCDMEM, we call this information 

"processing context" (see the Context and Its Reinstatement sec

tion) and assume that it is associated with the word at study in the 

same way in which other forms of context are stored. 

Second, within multilist paradigms, in which a participant 

knows that if a word was present in one list, it was not present in 

another list, successful recollection can allow the participant to 

exclude or discou~t a word. For instance, in Jacoby's (1991) 

design, a strong match to an "anagram" reinstated context vector 

could be used to reject the word. Because the second list did not 

involve solving anagrams and participants are unlikely to have 

solved an anagram for a given word before the experiment, the 

match between the retrieved context to a word that had been solved 

as an anagram and a reinstated anagram context would provide 

good evidence that the word appeared in the first list. Discounting 

(though not necessarily through recollection) is necessary for 

understanding multilist paradigms, and, in the application of 

BCDMEM to Jacoby's (1991) data, we assume that participants 

match against an experiment-wide context to eliminate new words 

and then an anagram-read context to eliminate List 1 words. 

Third, the dual-processing approach has emphasized the use of 

a retrieved context in making a decision as to whether the to-be

recognized item occurred in the experiment or in a particular list 

(see also Johnson et aI., 1993). This is common ground with 

context noise models, although the dual-processing approach and 

the source monitoring framework use the retrieved context in a 

symbolic inference process, whereas BCDMEM uses a subsym

bolic inference process. Furthermore, neither the dual-processing 

approach nor the source monitoring framework is committed to the 

hypothesis that the previous contexts in which a word has occurred 

are significant sources of noise. 

We now turn our attention to the modeling of process dissoci

ation data using BCDMEM. Ratcliff et al. (1995) have demon

strated that the data of Yonelinas (1994) in which list length was 

manipulated require only a single-process model. We begin by 

showing how BCDMEM accounts for these data using the decision 

rule alone and then demonstrate that the same is true of data on 

temporal separation (Hall, 1996). When strength and type of study 

task are manipulated, it becomes necessary to use discounting. In 

the subsequent section, we first report data in which strength was 

manipulated and show how BCDMEM can account for the results 

through discounting. Then we model data from Jacoby (1991) on 

the effect of manipulating the study task. 

List Length and the Process Dissociation Procedure 

Y onelinas (1994, Experiment 1) presented data showing the 

effect of list length (confounded with study-test lag). Each partic

ipant completed six sessions and each session involved eight 

study-test blocks. Each block contained two study lists followed 

by two test lists. The study lists were either both short (10 words) 

or both long (30 words). In the first recognition test, participants 

were to respond yes to List 1 words only. In the second recognition 

test, they were to respond yes to List 2 words only. Each test list 

contained List I, List 2, and new words. Inclusion words were 

those for which the target list at test was the list in which they were 

presented. Exclusion words were those for which the target list at 

test was the opposite from that in which they were presented. 

Figure 9 shows the data obtained. 

To apply BCDMEM to these results, we could assume that 

participants use an end of list context when they are asked to say 

yes to List 2 words and a reinstated List 1 context when they are 

asked to say yes to List 1 words. The alternative is to assume that 

both the List 1 and List 2 contexts are reinstated. The data provided 

did not allow us to distinguish between these two alternatives (i.e., 

separate results were not provided for List 1 and List 2). In 

addition, Y onelinas' s participants knew that they had to differen

tiate between lists, and they were well practiced. We thus assume 

that his participants established separate representations for the 

List 1 and List 2 contexts and that, on the test, they reinstated the 

appropriate context. This is essentially the assumption that Yoneli

nas (1994) made about why his participants could perform the task 

in the absence of a differential processing task. We included an 

additional parameter representing the overlap (0) between the 

List 1 and List 2 study contexts. The overlap parameter represents 

the probability that a given component is a one in both study 

contexts. If the two contexts were being formed independently, the 

overlap parameter would equal the square of the sparsity parameter 

(.022 = .0004). Obtained values of the overlap parameter that are 

lager than this value indicate that the contexts for the two lists are 

more similar than would be expected by chance either because 

they occur close to each other in time or because they describe 

similar processing operations. This parameter was used in the 

construction of the contexts for List 1 and List 2? 

Figure 9 shows the fit of the model to the data. The parameters 

of the fit were as follows: learning rate, r = .259; context noise, 

p = .089; context overlap, 0 = .003; and contextual reinstatement, 

d(long) = 0.608 and d(short) = 0.337. The maximum absolute 

difference was 0.025, and the correlation was .99. 

Temporal Separation and the Process Dissociation 

Procedure 

In Y onelinas' s (1994) experiment reported in the previous 

section, the participants were well practiced. Under these con

ditions, it is conceivable that the list context was essentially a 

label (J. A. Anderson & Bower, 1974). To examine the effect of 

temporal context in a situation in which participants were less 

likely to label the two lists, Hall (1996) varied the temporal 

separation between the lists among unpracticed participants. In 

the after lists condition, participants studied List 1 and then 

List 2 and spent 8 min solving a puzzle task before being tested. 

In the between lists condition, the sequence was List I, puzzle, 

task List 2, test. Jacoby's (1991) version of the process disso

ciation procedure was used with inclusion instructions that 

covered both lists and exclusion instructions that targeted 

List 2. The critical words were those from List I, and the design 

3 To construct context vectors of sparsity s that overlapped to different 

degrees, Cl was chosen first by setting each component to one with 

probability s. Next, the components of Cl that would be involved in the 

overlap were chosen from the components of Cl that were set to one with 

probability ols (where s is sparsity). To complete C2, those compo

nents that were not equal to one in Cl were set to one with probability 

(s - 0)/(1 - s). 
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Figure 9. Fit of the bind cue decide model of episodic memory to data of 

Yonelinas (1994, Experiment 1). 

controlled for the recency of these words. In both study lists, 

participants were asked to make pleasantness ratings. 

Figure 10 shows the results. Whereas the inclusion results for 

the List 1 words differed very little as a function of List 2 

placement (.825 vs .. 865), the exclusion probability of the List 1 

words was much lower when the lists were separated by the filled 

interval than when they followed each other (.365 vs .. 590). 

To model the manipulation of interlist interval in BCDMEM, we 

allowed the overlap parameter to change. Recall from the previous 

section that the overlap parameter is the probability that a compo

nent is a one in the context vectors of both lists in the process 

dissociation paradigm. Placing the filled 8-min interval between 

the lists should lead to a lower value of this parameter (Le., a 

decrease in the similarity of the List 1 and List 2 context vectors). 

Bias may also have played a role in Hall's (1996) results. All of 

the exclusion probabilities were below the corresponding inclusion 

probabilities, suggesting the use of a more stringent bias in exclu

sion (cf. Buchner et aI., 1995). In the exposition of the BCDMEM 

likelihood ratio, we argued that prior odds could be eliminated on 

the basis that, in most experiments, the probability of an old word 

is equal to the probability of a new word. The probability that a 

word will invoke a yes response is higher under inclusion instruc

tions than in exclusion. In Hall's (1996) experiment, the actual 

probabilities of words to which participants should respond yes 

were .66 in the inclusion case and .33 in the exclusion case. 

Although it is unclear how accurate participants might be in regard 

to estimating prior odds, the results suggest that these odds play a 

role. Rather than add two new free parameters to model the prior 

odds, we chose to set the exclusion probability to .33 and allow the 

inclusion probability to be optimized. Figure 10 shows the fits to 

the data for the between lists interval (Panel A) and the after lists 

interval (Panel B). The parameters of the fit were as follows: 

inclusion prior, .909; learning rate, r = .354; context noise, p = 

.160; context overlap, o(between) = .001 and o(after) = .015; and 

contextual reinstatement, d = 0.337. The maximum absolute dif

ference was 0.056, and the correlation between the model and the 

data was .993. Therefore, BCDMEM seems to have captured the 

effect of temporal separation. 

One caveat is that the estimated value of the inclusion prior 

parameter (.909) appears to be high considering that the prior odds 

in the inclusion condition were .66. However, a lower value could 

have been obtained if we had allowed both priors to vary, and it is 

unclear how accurately the participants may have been able to 

estimate the priors given that they were exposed to only a single 

test list. 

Strength and the Process Dissociation Procedure 

Strength, as measured by either number of repetitions or study 

time, is an important variable to distinguish between process 

accounts of data obtained with the process dissociation procedure. 

SAM (and the other global matching models) predicts that increas

ing strength on the words from the to-be-excluded list will make 

them less likely to be excluded (Mulligan & Hirshman, 1997; 
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Ratcliff et aI., 1995), provided it is not possible to manipulate the 

criterion between the strength conditions. In Jacoby's (1991) Ex

periment 3, however, the strong words (i.e., anagram words) were 

excluded more successfully than the weak words (i.e., read words). 

For this reason, the single-process global matching accounts are 

not sufficient (Ratcliff et aI., 1995), although they could be aug

mented with a discounting rule to account for the data. 

However, in the experiments that have been conducted to date, 

strength has been manipulated by a change in study task. It may be, 

however, that manipulating the study task (i.e., anagram solving 

vs. reading) introduces both qualitative and quantitative changes in 

the memory of the word. For instance, the memory for a word for 

which the participant solved an anagram may be both stronger and 

more unique than that for a read word. 

In the current experiment (see Appendix D for experimental 

details), strength was manipulated by presenting words either one 

or four times to determine the effect independent of a study task 

difference. In addition, Yonelinas's (1994) process dissociation 

design was used, in which either the first or the second list was 

identified as the to-be-recognized list. Inclusion words were those 

from the to-be-recognized list, whereas exclusion words were 

those from the other list. 

The result of prime interest is whether participants are able to 

use List 1 and List 2 context cues with equal efficiency. Figure 11 

shows the probability of a yes response in the exclusion condition 

as a function of presentation list and number of presentations. 

When a word is presented in List 1 (i.e., we ask participants to say 

yes if they believe that it appeared in List 2), the probability of a 

yes response rises with the number of presentations. Additional 

strength makes it more difficult to correctly exclude the word. In 

contrast, when a word is presented in List 2, the probability of 

incorrectly saying yes in the exclusion condition decreases as a 

function of number of presentations. The bars in Figure 11 are the 

95% confidence intervals for these two within-subject compari

sons considered separately. 

These results suggest that participants use an experiment-wide 

context cue and a List 2 context cue but not a List 1 context cue. 

Repeating a word increases the strength of the experiment context 

association, increasing the probability of a yes response. When 

List 1 is the target list, the List 2 context cue is used to try to 

eliminate List 2 intrusions. Consequently, the probability of saying 

yes to a List 2 word decreases with strength. However, the same 

process does not seem to occur for List 1 words. Participants may 
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Figure 11. Process dissociation strength data: Probability of a yes re

sponse with exclusion instructions as a function of presentation list and 

number of presentations. 

find it difficult to reinstate the List 1 context when there is no 

difference in the study task between List 1 and List 2. 

To simulate these results in BCDMEM, it was assumed that 

participants compare the retrieved vector against an experiment

wide reinstated context vector. This vector was taken to be the 

bitwise odds ratio of the context vectors representing List 1 and 

List 2. The model responds no if the likelihood ratio is below the 

criterion eliminating new words. For words that are above the 

criterion (Le., words that the system believes did occur in one of 

the lists), a second comparison is made against the reinstated List 2 

context vector. When the target list is List 2, an above criterion 

likelihood ratio leads to a yes response. If the target list is List 1, 

discounting is used. An above criterion likelihood ratio leads to a 

no response. Figure 12 shows the fit of the model to the data. The 

parameters for this fit were as follows: experiment context prior 

probability, .770; Target List 1 prior probability, .046; Target 

List 2 prior probability, .767; learning rates, r(strong) = .686 and 

r(weak) = .555; context noise, p = .452; context overlap, 0 = 

.009; and contextual reinstatement, d = 0.542. The maximum 

absolute difference was 0.046, and the correlation of the data with 

the model was .993. The model shows the interaction of strength 

and target list outlined earlier. 

Study Task Discriminability and the Process Dissociation 

Procedure 

In the preceding three sections, the nature of the study task was 

the same in both lists. The differences between the List 1 and List 2 

context vectors under these conditions are expected to be a con

sequence of the passage of time and words rather than the nature 

of the processing task. In Jacoby's (1991) original experiment, 

however, study task was manipulated between lists. The first list 

contained words that were solved as anagrams and words that were 

read, whereas the second list involved words that were heard. 

Figure 13 shows the results for Jacoby (1991). 

There is an important difference between the strength results 

reported in the previous section and the Jacoby case. In the 

previous section, the crossover pattern was seen only when the 

to-be-recognized list was List 1. It did not occur when the to-be

recognized list was List 2. This was explained by assuming that 

participants were unable to reinstate a List 1 context. In the Jacoby 

study, however, the to-be-recognized list was always List 2, yet the 

crossover pattern was obtained. The difference may reside in the 

nature of the study tasks. In Jacoby's design, the first list involved 

an anagram context, which is likely to be distinctive and easy to 

reinstate. 

In modeling Jacoby's data, we assumed (as in the preceding 

section) that participants start by making an experiment-wide 

.judgment about whether the word appeared in either list (using an 
experiment-wide context vector) in both inclusion and exclusion. 

In exclusion, however, we assumed that participants. can and do 

reinstate a List 1 context, using this to exclude words from List 1 

through discounting. 

Figure 13 shows that, by applying these assumptions, we can fit 

the data. The parameters of the fit were as follows: list-wide prior, 
.557; List 1 prior, .073; learning rates, r(anagram), .983, r(read), 

.416, r(heard), .775; context noise, p = .365; context overlap, 0 = 

.0100; and contextual reinstatement, d = 0.832. The maximum 
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Figure 12. Fit of the bind cue decide model of episodic memory to 

process dissociation strength data outlined in Figure II. M = model. 

absolute difference was 0.045, and the correlation of the data and 

the model fit was .992. 

In summary, BCDMEM is able to capture data from the process 

dissociation procedure (e.g., effects of length and type of process

ing). The key theoretical contribution is the emphasis on the 

reinstatement of context. BCDMEM argues that participants have 

substantial control over the nature of the context(s) against which 

they compare the retrieved context vector and that the context 

vector that they reinstate depends on the circumstances. When 

study tasks distinguish the study lists from previous lists and the 

study lists from each other, participants will reinstate a context 

vector based on this information. When the study task is not 

distinctive, participants revert to temporal context (and possibly 

only the most.recent context). They may be capable of organizing 

contextual representations hierarchically, forming experiment

wide and list-wide contexts, and they seem capable of using 

matching information to discount words that appeared in other 

contexts. Understanding the ability to reconstruct context and the 

strategies by which it is used will be an important objective for 

further research, and the process dissociation procedure provides 

an empirical mechanism with which to proceed. In the next sec

tion, we outline two studies that demonstrate the productivity of 

the approach. 

Multiple List Designs With Manipulations of 
• Processing and Temporal Similarity 

The BCDMEM decision rule involves comparing the retrieved 

context vector representing the contexts in which a test word has 

appeared against a reinstated context vector representing the con

texts for which the participant is looking. Multilist designs allow 

the manipulation of both of these representations and hence pro

vide critical tests of the context noise approach. 

BCDMEM predicts that perfonpance wiII decline if the diffuse

ness of either the reinstated or the retrieved context increases. For 

instance, if a word appears in multiple contexts that overlap with 

the reinstated cOiltext, it should be difficult to exclude. To test this 

prediction, we used a three-list paradigm (see Appendix E for 

additional experimental details). The lists were presented in im

mediate succession, and we manipulated the processing require

ments so that List I and List 3 had a processing component in 

common, and List 2 and List 3 had another processing component 

in common. The words in List I were read and rated for pleasant

ness, the words in List 2 were heard and typed (the typed letters 

were not displayed on the screen), and the wor~s in List 3 were 

heard and rated for pleasantness. Here participants were asked to 

say yes to List 3 and no to List I, List 2, and new words. They were 

correctly informed that if a word appeared in either List I or List 2, 

it did not appear in List 3. The instructions also reminded the 

participants as to how the words in Lists I, 2, and 3 had been 

processed. The critical manipulation involved the presentations of 

words in List I and List 2. Words appeared once in List I, once in 

List 2, twice in List I, twice in List 2, or once in List 1 and once 

in List 2. The retrieved context for words that occurred once in 

List I and once in List 2 should be more diffuse than for words in 

the other conditions. That is, for these words, the retrieved context 

would contain the shared component between List 1 and List 3, the 

shared component between List 2 and List 3, and the unique 

components in List 1 and List 2. In contrast, a word presented 

exclusively in List 1 or exclu'sively in List 2 would contain only 

the shared component between that list and List 3 along with the 

unique component. We present the results from two experiments 

that differed only in the post-List 3 retention interval. We also 

included an inclusion condition in which participants were askep 

to say yes to List I, List 2, and List 3 words and no to new words. 

Because the pattern of results was basically the same in the two 

experiments, we report the combined results. , 

In Figure 14, we provide the probability of yes responses to new 

words, the average of the words presented once in List I or once 

in List 2, the average of the words presented twice in List 1 or 

twice in List 2, words presented once in List I and once in List 2, 

and words presented once in List 3. We also provide the 95% 

confidence intervals for the words presented once, twice, and once 

in both Lists I and 2. 
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Figure 14. Diffuseness of retrieved context. Bars represent 95% confi

dence intervals for the comparisons of interest (see text). 

The results for the inclusion conditions conform to what we 

would expect to be everyone's a priori predictions. Participants 

were capable. of discriminating between old and new words, and 

the probability of saying yes to repeated words was higher than the 

probability of saying yes to nonrepeated words. In addition, the 

probability of saying yes to once-presented List 3 words fell 

between the probabilities of saying yes to once-presented and 

twice-presented words from the earlier lists. 

The results for the exclusion conditions probably violate some a 

priori expectations. They were, however, in accordance with the 

predictions of BCDM~M . When a word was repeated twice in the 

same to-be-excluded list, it did not increase the probability that it 

would be falsely identified as a List 3 word. This may have 

occurred because within-list repetitions enhanced the ability to 

discount or reject words from a to-be-excluded list. In contrast, the 

repetition of a word across two different lists did increase the 

probability that it would be falsely identified as a List 3 word. So 

the fact that participants were looking for a heard word that was 

rated for pleasantness increased the false alarm rate for the words 

that appeared in the first two lists because they were both heard 

and rated for pleasantness, albeit in different lists (as BCDMEM 

predicts). 

The preceding desigp involved manipulating the content of the 

retrieved context vector. Multilist designs also allow the manipu

lation of what the participant is looking for, that is, the reinstated 

context vector. In an unpublished study conducted by Kerry 

Chalmers, the diffuseness of the reinstated context was manipu

lated. Participants first completed a familiarization session on a set 

of very-low-frequency words. In the familiarization session, words 

were presented with their definitions six times (see Chalmers & 

Humphreys, 1998, for details about a set of very similar experi

ments). One week after the familiarization session, participants 

returned for a series of study-test sessions. In each case, half of the 

study words had b~en previously familiarized, and half were 

unfamiliarized. Similarly, half of the distractors on the test had 

been familiarized, and half were unfamiliarized. In the immediate 

test condition, the List 2 and List 3 words were presented as a 

single study list, and the test immediately followed the presenta

tion of the last List 3 word. In the delayed test condition, the List 2 

and List 3 words were also presented as a single study list, but the 

test was delayed for 24 hr. In the mixed condition, after studying 

the List 2 words, the participants were asked to return the next day. 

When they returned, they studied the List 3 words and were then 

given the test for both the List 2 and List 3 words. The test 

instructions informed the participants that they should say yes to 

words present at study regardless of whether or not they had also been 

present during the familiarization phase. Participants were told that 

words could occur both during familiarization and at study. 

In interpreting these results, we assume that participants in the 

immediate condition can either reinstate a relatively precise study 

context or simply use the end-of-list context. In either case, we 

expect that the context they use or reinstate will not overlap much 

with the context of the familiarization phase. The result will be a 

relatively low false alarm rate for the words not present at study 

but present at familiarization . In the delayed condition, it will be 

necessary to reinstate the previous day's study context. This rein

statement should be relatively difficult. As a result, we expect that 

the context in the delayed condition should have more overlap with 

the context of the familiarization phase, and there should be an 

increase in the false alarm rate. This prediction, however, is 

relatively uninteresting. A more interesting prediction concerns the 

false alarm rates in the mixed and delayed conditions. Many 

models predict that the false alarm rate in the mixed condition will 

fall between those for the immediate and the delayed conditions. In 

contrast, BCDMEM assumes that the reinstated context in the 

mixed condition is more diffuse than the contexts in the other two 

conditions because it must specify words that appeared on 2 

different days. Consequently, BCDMEM predicts that the false 

alarm rate will be highest in the mixed condition. 

These predictions were supported. The hit rates and false alarm rates, 

. along with the 95% confidence intervals for the familiarized words 

are shown in Figure 15. Most important, the false alarm rate for the 
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mixed condition was the highest of the three and certainly higher 

than the midpoint of the immediate and the delayed conditions. 

General Discussion 

The three approaches we have considered-item noise, dual 

processing, and context noise-each have their natural domains of 

application. The domain of the item noise models is the single-list 

paradigm in which list length, list strength, or word similarity is 

manipulated. The domain of the dual-processing approach is the 

two-list inclusion-exclusion paradigm with the introduction of a 

study or test manipulation such as time pressure. BCDMEM's 

domain is the multiple-list paradigm in which temporal or pro

cessing similarity is manipulated. Within their respective domains, 

all three approaches provide reasonably parsimonious explana

tions. Outside their domains, the explanations can be considerably 

less parsimonious. 

BCDMEM is no exception. It provides relatively parsimonious 

explanations for the effects of word frequency on recognition, the 

effects of manipulating the diffuseness of the reinstated and re

trieved contexts, the null list strength effect, the finding that in 

some situations there is also a null list length effect, the lack of 

cumulative proactive interference in recognition, and the thresh

oldlike behavior involved in recognizing morphemic relatives. It 

also provides an explanation, in common with the other Bayesian 

models, for the ubiquity of the mirror effect. However, although 

we think that similarity effects and the significant list length 

effects that have been reported in the literature can be explained by 

a variety of processes, BCDMEM clearly does not provide a 

parsimonious explanation for these findings. In addition, the ap

plication of BCDMEM to the process dissociation procedure re

quired a variety of post hoc decisions about what contexts were 

being reinstated. 

At this time, however, BCDMEM is the only model to clearly 

address all three domains. Furthermore, the number of parameters 

has been determined primarily by the complexity of the domains 

and is not excessive in comparison with other models. Direct 

comparisons of the number of parameters across models are some

~hat difficult, because different parameters tend to play more or 

less central roles in each model. BCDMEM has five main param

eters: vector length, sparsity, learning rate, context noise, and 

contextual reinstatement. Of these, only learning rate, context 

noise, and contextual reinstatement are optimized in simulations. 

In addition, a prior probability parameter is added when partici

pants manipulate the criterion, and a contextual overlap parameter 

is added for dual-list paradigms. In contrast, REM.5 has three main 

parameters: vector length, learning rate, and the parameter gov

erning feature generation. In addition, there are parameters for the 

number of storage attempts when words are superimposed, the 

ratio of features in the context and the word, the activation thresh

old over which a word is included in the activated set, and the rate 

of contextual drift. Furthermore, parameters will be required when 

the criterion is manipulated through instructions and when dual-list 

paradigms are considered. It would seem, then, that BCDMEM is 

at least as economical in regard to parameters as item noise 

alternatives. A more meaningful criterion, however, is how tightly 

model parameters are tied to experimental manipulations. 

BCDMEM does well in this regard. Only vector length and spar-

sity are not directly related to experimental variables, and neither 

of these parameters is optimized. 

BCDMEM makes commitments on five crucial issues that con

trast it against existing models of episodic recognition: (a) the 

content of context, (b) the role of discounting or dual processes in 

recognition, (c) the use of a subsymbolic inference process, (d) the 

use of a decision rule that approximates a likelihood calculation, 

and (e) the emphasis on context noise. Each of these issues is 

addressed in the following discussion. 

Content of Context 

BCDMEM postulates that there are at least two forms of con

text, processing and temporal. This emphasis on two forms appears 

to be relatively unique and stems from the fact that the model is 

designed to account for data from both the item noise and dual

processing domains. The item noise approach, with its interest in 

single-list designs and the other items in the list, has emphasized 

either an abstract form of context or a temporal context (Gillund & 

Shiffrin, 1984; Ratcliff et al., 1995). To extend the model to the 

dual-processing domain in which words are commonly processed 

in different ways within the same study-test cycle, it was neces

sary to expand the idea of context to include information about the 

task set for the participant. 

Postulating two types of context does not, by itself, increase 

the explanatory power of a theory. That is, we already know 

that participants can discriminate between two lists. Postulating 

that this ability results from a hypothetical entity (context) that 

changes between List 1 and List 2 does not add to the basic 

observation. It is only when the postulated entity enters into 

new predictions and other explanations that a real advance has 

been made. We believe that BCDMEM fares well in this regard. 

Our examination of the number of contexts in which words 

occur and manipulations of the diffuseness of retrieved and 

reinstated contexts are steps toward providing the concept of 

context with genuine explanatory power. 

Discounting or Dual Processes 

There are no viable single-factor models of recognition, and 

BCDMEM is no exception. In fitting the data from the process 

dissociation procedure, we reinstated two different contexts. Fur

thermore, at times we used discounting to reject words that ap

peared in other lists. Thus, the information being used to reject the 

items from one of the lists was different than the information being 

used to accept the items from the other list. Within the BCDMEM 

framework, two types of information, but not two fundamentally 

different retrieval processes, are used 'see the next section). 

Subsymbolic Inference 

The distinction between the symbolic and sub symbolic levels of 

description becomes important in evaluating the alternative deci

sion mechanisms that can be used when we cue with the word for 

contexts in which that word has appeared. In BCDMEM, the 

retrieved vector is a composite of the context vectors associated 

with the word. With the decision mechanism we use, there is no 

need to resolve the conflict between the competing associations 

before the retrieved information can drive the inferential process. 
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That is, the retrieved vector has no meaning in its own right; it is 

meaningful only when it is compared with the reinstated vector. 

The alternative is that the competition is resolved or the noise is 

eliminated so that the retrieval process can produce symbolic 

information such as a concept, a word, or a significant feature 

(Clark, 1999). The retrieved information is then used to make an 

inference about the occurrence of the test word in the study list 

(i.e., "I remember solving an anagram for this word and I solved 

anagrams at study, and so this word must have been in the study 

list"). 

A postretrieval symbolic inference process is certainly compat

ible with introspection and the reports from participants. In addi

tion, there are a substantial number of experimental findings that 

can parsimoniously be explained if, on some occasions, partici

pants retrieve symbolic information that is then used to make an 

inference about whether an item was present in an experiment or 

list (for reviews, see Clark & Gronlund, 1996; Humphreys & Bain, 

1983; Mandler, 1980). However, the sub symbolic inferential pro

cess in BCDMEM is a powerful computational tool. It produces a 

finely graded source of information, whereas the retrieval of sym

bolic information will be less finely graded. It also allows weak 

information to be used in a sensible way, whereas the failure to 

retrieve symbolic information may provide little direction to ac

tion. Most important, it allows participants to use information 

about what they expect to remember (e.g., a word that was read or 

a word that was heard) early rather than late in the inferential 

process. 

A subsymbolic inferential process may also be compatible with 

much of the introspective evidence. That is, the lack of meaning in 

the retrieved context vector, with meaning being supplied only by 

the match with the reinstated context vector, seems compatible 

with an undifferentiated feeling of familiarity. In this case, how

ever, it is a feeling of familiarity that is specific to the memory that 

the participant is expecting. That is, if participants are attempting 

to identify words that were read, then read words will tend to be 

more familiar than heard words. However, if they are attempting to 

identify words that they heard, then heard words will be more 

familiar than read words. In addition, it is a simple step to assume 

that at times the process that is used to retrieve the context vector 

continues until symbolic information becomes available. Such 

information could increase confidence in the correctness of a 

response, and in some circumstances (e.g., when it can be used to 

reject a distractor) it would increase sensitivity. 

Approximating a Likelihood Calculation 

The ubiquitous nature of the mirror effect suggests that the 

memory system is using both evidence that a word appeared in the 

study episode and evidence that it did not appear to calculate 

something akin to a likelihood ratio. Furthermore, several current 

models, including BCDMEM, propose rules that are optimal in a 

Bayesian sense, given their architectural constraints, and it seems 

that optimality will provide a useful soft constraint on future 

models. 

Context Noise Versus Item Noise 

The item noise approach provides compelling explanations for 

the list length effect and for word similarity effects on false 

recognitions. In our opinion, its main weakness is closely linked to 

this strength. That is, by assuming that both recall and recognition 

are item noise processes, it is compelled to treat them as being 

highly similar. There have always been some problems with this 

assumption. For example, word frequency has different effects in 

recall and recognition, and this has posed a challenge to the item 

noise models (see Gillund & Shiffrin, 1984). It is also known that 

recall and recognition respond very differently to cumulative pro

active interference (Postman & Keppel, 1977). 

However, the first major challenge for this approach came with 

Ratcliff et aI.' s (1990) finding of a null list strength effect. This 

finding caused severe problems for the global matching models 

that used composite memories. Furthermore, although SAM could 

be altered to accommodate this finding, the result was certainly an 

increase in complexity. In fact, it was not until new models (REM 

and M&C) were introduced that a relatively parsimonious expla

nation for the null list strength effect was available. We have now 

conducted two studies in which we could have found a list length 

effect. None of the comparisons approached significance, and all 

of the effects were quite small. This finding is a significant 

problem for the item noise approach because to model such small 

effects it is necessary to assume very low levels of item similarity, 

making it difficult to simultaneously fit list length effects in recall 

and recognition. 

With respect to the effect of word similarity on false recogni

tions, the problem faced by the item noise models is the large 

variability found in false recognitions. Until this variation can be 

explained, it will be difficult to determine whether false recogni

tions provide substantial support for the item noise account or 

whether they can be more adequately explained by the variety of 

mechanisms we have discussed. 

Conclusion 

The primary purpose of this article has been to create a modem 

version of a context noise model that can provide a counterpoint to 

the well-developed item noise and dual-processing approaches. 

BCDMEM provides an adequate fit to most of the standard data on 

which the item noise models have been validated. More important, 

this exercise has resulted in the identification of areas that require 

additional research effort. The existing literature does not give us 

an adequate picture of the magnitude of the list length effect or the 

increment in the false alarm rate produced by the study of a 

"similar" word. In addition, we need studies, especially modeling 

studies, comparing list length effects in recognition and recall. We 

also need to closely examine the possibility that false alarm rates 

for similar items are produced when the lure is generated at study 

or when the criterion .changes on a categorical basis. 

As we indicated earlier, REM has both item noise and context 

noise features, although to date the item noise features have been 

emphasized. Although coming from a different tradition, the mod

els proposed by J. R. Anderson, Bothell, Lebiere, and Mantessa 

(1998) and Reder et al. (in press) also have both item noise and 

context noise features. Similarly, it would be possible to incorpo

rate some item noise into BCDMEM by using a distributed instead 

of a local representation in the binding layer. However, we chose 

to present a pure context noise model to focus attention on whether 

recognition is primarily an item noise or context noise process. 

Although additional research on list length and similarity effects 
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will be required to resolve this issue, we believe that context noise 

must be considered a viable alternative to the dominant item noise 

account. 
In developing BCDMEM, we borrowed aspects from the dual

processing and source monitoring approaches. All three ap

proaches share the use of a retrieved context and an emphasis on 

the importance of how the words in an experiment are processed. 

In addition, BCDMEM and the dual-processing approach share the 

use of discounting. Moreover, we made heavy use of the process 

dissociation procedure developed within the dual-processing ap

proach. However, BCDMEM's success in addressing a wide range 

of data from both the item noise and dual-processing domains 

highlights the limitations of the dual-processing approach as it is 

currently instantiated. Unless the dual-processing approach incor

porates at least some rudimentary ideas about bindings, cues, and 

decisions, there will be large amounts of data to which it cannot be 

applied. For example, a finding that there was a list length effect 

in recall but not in recognition would be extremely important 

because it would help to explain the differential susceptibility to 

proactive interference and the intuitive feeling that recognition was 

simpler than recall. However, such a finding now appears to be 

beyond the purview of the dual-processing approach. 
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Appendix A 

Adding the Contextual Reinstatement Parameter to the Decision Rule 

In this appendix, we outline how the contextual reinstatement parameter 

can be added to the expression for the likelihood ratio. The contextual 

reinstatement parameter is the probability that an element of the context 

that was a one at study is a zero in the reinstated context. 

P(c; = 1 & m, = Olold)/P(c; = I & m; = Olnew) = (l - r). (A6) 

p(c; = 0 & mi = Iiold) 

Let c be the study context and c' the reconstructed study context. Let m 

be the retrieved memory vector, p the context noise parameter, r the 

learning parameter, s the sparsity, d the contextual reinstatement parameter, 

and njk the number of components in which c; = j and m i = k. 

P(c; = 0 & mi = Olold) 

= p[(c; = 0 & m; = 0 & C; = 0) 1\ (c; = 0 & mi = 0 & C; = I)lold] 

= P(c; = 0 & m; = 0 & C; = Olold) + P(c; = 0 & m; = 0 & C; = Iiold) 

= P(c; = 0 & m; = Olc; = 0 & old)P(c; = 0lold) 

+ P(c; = 0 & m; = ole; = I & old)P(c; = Iiold) 

= (l - p)(1 - s) + d(1 - r)(l - p)s. 

P(c; = 0 & m; = Olnew) 

= P(c; = 0 & m; = olc; = 0 & new)P(c; = Olnew) 

+ P(c; = 0 & m; = olc; = I & new)P(c; = Iinew) 

= (l - p)(l - s) + dO - p)s. 

P(c; = 0 & m; = Olold)IP(c; = 0 & m; = Olnew) 

= [I - s + d(1 - r)s]/(l - s + ds). 

P(c; = I & rn; = Olold) 

= P(c; = I & m; = ole; = 0 & old)P(c; = Olold) 

+ P(c; = I & m; = ole. = I & old)P(c; = Iiold) 

= (l - d)(l - r)(l - p)s. 

P(c; = I & m, = Olnew) 

= P(c; = I & m; = olc, = 0 & new)P(c; = Olnew) 

+ P(c; = I & m; = ole. = 1 & new)P(c, = Iinew) 

= (l - d)(l - p)s. 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

= P(c; = 0 & m, = lie; = 0 & old)P(c, = Olold) 

+ P(c; = 0 & m, = lie. = I & old)P(c, = Iiold) 

= p(l - s) + d(r + p - rp)s. 

P(c;= 0 & m, = Iinew) 

= P(c;= 0 & m, = lie; = 0 & new)P(c; = 0lnew) 

+ P(c; = 0 & m, = lie; = I & new)P(c; = Iinew) 

= p(l - s) + dps. 

p(c;=O&m;= Ilold)/P(c;=O&m,= Iinew) 

= [PO - s) + d(r + p - rp)s]/[P(l - s) + dps). 

p(c; = I & m; = Iiold) 

= P(c; = I & m; = Ilc, = 0 & old)P(c, = Olold) 

+ P(c; = I & m; = Ilc, = 1 & old)P(c, = Iiold) 

= (I - d)(r + p - rp)s. 

P(c;= 1 & mi 

=llnew)=P(c;= I & m, = Ilc, = 0 & new)P(c; = Olnew) 

+ P(c;= I & m; = lICi = I & new)P(c, = Iinew) 

= (l - d)ps. 

p(c;= I &m;= Ilold)/P(c;= I &m;= Iinew) 

=(r + p - rp)/p. 

p(c; & milold)/P(c; & milnew) 

={[1-s + d(l - r)s]/(l - s + ds)}nOO(l - r)nOo 

{[P(l - s) + d(r + p - rp)s]/[p(l - s) + dpS)j"°' 

[(r + p _ rp)/p]nll. 

(Appendixes continue) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(AI2) 

(AI3) 
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Appendix B 

List Length Experiment 1 

Method and Design 

Participants 

One hundred two undergraduate students from the University of Queens

land participated in the experiment for course credit. A 2 X 2 design was 

used. The variables were length of list (short [24 words) or long [72 

words)) and study-test lag (start of study session [990 s) or end of study 

session [480 s)). Length of list was a between-subjects variable. Study-test 

lag was a within-subject variable for the long lists and a between-subjects 

variable for the short lists. Thirty participants were allocated to each of the 

short conditions, and 42 were allocated to the long condition. 

Stimuli 

The study words were five-letter words chosen from the Sydney Morning 

Herald word database (Dennis, 1995) and fell in the range of 20-50 

occurrences per million. Items were assigned to conditions randomly on a 

per-participant basis. 

Procedure 

Each condition involved a series of puzzle and rating tasks followed 

by an unanticipated recognition test. Both the puzzle task and the rating 

task were explained to participants before they began the first list so 

that no breaks would be necessary between tasks. The puzzle involved 

rearranging tiles to form a geometric pattern. The rating task involved 

scoring the pleasantness of a word on a 6-point scale. At the start 

of each rating block, participants were given a 3-s warning period to 

orient to the rating task. Each word was presented for 3 s, and partic

ipants were instructed that should they miss a word, they should just 

continue with the next word. Each rating block required the scoring 

of 24 words. 

Table B 1 shows the order and durations of the tasks. As outlined in the 

main text, puzzle activity was interspersed in the short list conditions to 

equate study-test lag for either the early words in the long list or the late 

words. Furthermore, all study blocks were of equal size and were separated 

by at least 3 min of puzzle activity. 

All test blocks contained 20 old words and 20 new words. In the short 

lists, the old words were the final 20 words of the study list. The first 4 

words were discarded to avoid any difficulties participants may have 

experienced in orienting to the rating task. In the long lists, 10 old words 

were drawn from the final 20 positions of the first study block and 10 were 

drawn from the final 20 positions of the last study block. The design was 

constructed in this way so that participants would be forced to recognize 

items from the entire study session (i.e., all three lists) rather than isolating 

the specific study block from which their words were drawn. The test was 

self-paced. 

Results 

See the main text for a description of the results. 

Table BI 

Timing of Component Tasks 

Long list Short list at start Short list at end 

Puzzle (180 s) Puzzle (180 s) 
Rate 24 words (75 s) Rate 24 words (75 s) 
Puzzle (180 s) Puzzle (690 s) 
Rate 24 words (75 s) 
Puzzle (180 s) Puzzle (990 s) 
Rate 24 words (75 s) Rate 24 words (75 s) 
Puzzle (480 s) Puzzle (480 s) 
Test Blocks 1 and 3 Test Block 1 Test Block 1 

Appendix C 

List Length Experiment 2 

Method and Design 

Participants 

Forty-eight undergraduate students from the University of Queensland 

participated in the experiment for course credit. A 3 X 2 design was used. 

The variables were list type (short [40 words], mixed [40 unique words 

and 80 presentations), or long [80 words]) and word frequency (high or 

low). List type was a within-subject variable (counterbalanced for order). 

Word frequency was a between-subjects variable. 

Stimuli 

The study words were five-letter words chosen from the Sydney Morning 

Herald word database (Dennis, 1995). High-frequency words fell in the 

range of 100-200 occurrences per million, whereas low-freque!lcy words 

were below 4 occurrences per million. Items were assigned to conditions 

randomly on a per-participant basis. 

Procedure 

Each condition involved a series of puzzle and rating tasks followed by 

an intentional recognition test. Both the puzzle task and the rating task were 

explained to participants before they began the first list so that no breaks 

would be necessary between tasks. The puzzle involved rearranging tiles to 

form a geometric pattern. The rating task involved scoring the pleasantness 

of a word on a 6-point scale. Each word was presented for 3 s, and 

participants were instructed that should they miss a word, they should just 

continue with the next word. 

In the short condition (AB), participants were presented with two blocks 

of 20 words without a break. In the long condition (ABeD), participants 

were presented with four blocks of 20 words. In the mixed condition 
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(ABBB), participants were presented with four blocks of 20 words in 

which the second block was repeated three times. In all cases, the retro

active design was used. In the short condition, 360 s of puzzle activity 

followed the last study word; in both the long condition and the list strength 

condition, 240 s of puzzle activity followed the presentation of the last 

word to equate for lag. Half of the participants received lists of high

frequency words, and half received lists of low-frequency words. The test 

list consisted of 20 Block 1 words, 20 Block 2 words, and 40 new words 

and was self-paced. 

Results 

See the main text for a description of the results. 

Appendix D 

Participants 

Strength and the Process Dissociation Procedure 

Method and Design tions. A second block was constructed with the same methodology to 

increase the number of observations per cell. 

Thirty undergraduate students from the University of Queensland par

ticipated in the experiment for course credit. A 3 X 3 X 2 factorial design 

was used. The variables were number of presentations in List 1 (0, 1, or 4), 

number of presentations in List 2 (0, 1, or 4), and the list that was cued 

(List 1 or List 2). All variables were within-subject variables. 

Procedure 

Each of the two blocks consisted of the presentation of two study lists 

followed by two test lists. In the study lists, participants were asked to rate 

each word for pleasantness on a 5-point scale in which 1 indicated that the 

word was very unpleasant, 3 indicated neutrality, and 5 indicated that the 

word was very pleasant. Each study list contained 44 unique words and 110 

presentations, and participants had 3 s to make their decision. A 5-min 

distractor activity that involved solving a sliding geometric puzzle was 

interposed between each of the study and test lists. 

Stimuli 

The study words were five-letter words chosen from the Sydney Morning 

Herald word database (Dennis, 1995) and fell in the range of 5-10 

occurrences per million. Six words were assigned randomly in each of the 

study presentations. Three of these words were tested under instructions 

cuing for List 1, whereas the other three were tested with List 2 instruc-

One of the tests involved cuing for List I, and the other involved cuing 

for List 2. The order in which the tests were conducted was counterbal

anced. Participants were told that the words they were about to see occurred 

Table DI 

Numbers of Words and Presentations Used 

List I List 2 
Presentations 

Number of words Repetitions Presentations Number of words Repetitions Presentations in each test 

0 0 0 0 0 
22 I 22 0 0 
22 4 88 0 0 
0 0 0 22 1 
0 0 0 22 4 

Table D2 

Mean Probability of Yes Response as a Function of Presentation List, 

Number of Presentations, and Instructions 

Inclusion 

0 11 
0 11 
0 11 

22 11 
88 11 

Exclusion 

I presentation 4 presentations 1 presentation 4 presentations 

Presentation list M SE M SE M SE M SE 

List 1 .677 .020 .807 .019 .565 .025 .631 .029 

List 2 .708 .023 .825 .031 .446 .028 .347 .036 

Note. The false alarm rate when List 1 was cued was 0.207 (SE = 0.041), and the rate for List 2 was 0.174 
(SE = 0.041). There was no significant difference between these rates, F(l, 47) = 2.07, MSE = 0.0127, p = 

.157. Recall that the experiment involved the Yonelinas (1994) procedure, so the inclusion rate was the 
probability that participants responded "old" to words from the target list. The exclusion rate was the probability 
that participants responded "old" to words from the nontarget list. 

(Appendixes continue) 
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either not at all or on one list and not the other. They were to respond yes only 

if they saw the word on the cued list. The recognition tests were self-paced. 

There were 55 words on each test list. Table 01 outlines the different types of 

words that were tested and the numbers of presentations. 

Results 

Table 02 shows the means for all cells. See the main text for a 

description of the results. 

Appendix E 

Diffuseness of Retrieved Context 

Method 

Participants 

All participants were undergraduate students from the University of 

Queensland who took part in the· experiment for course credit. The first 

experiment involved 23 participants in each of the two conditions (inclu

sion and exclusion), and the second experiment involved 25 participants in 

each of the same two conditions. 

Stimuli 

The study words were five-letter words chosen from the Sydney Morning 

Herald word database (Dennis, 1995) and fell in the range of 100-800 

occurrences per million. 

Procedure and Design 

The design involved three study lists presented in immediate succession, 

followed by a recognition test. Different rating tasks were used for each 

list, and these tasks were self-paced. Of the 32 List I words, 8 were 

presented once, 8 were presented twice, and 8 were presented once in List I 

and then repeated in List 2. Of the 32 List 2 words, 8 were presented 

once, 8 were presented twice, and 8 were repeated from List I. All 40 List 3 

words were presented once in that list only. The test list contained 88 words 

in total: 8 new words, 8 words presented once in List I, 8 words presented 

twice in List I, 8 words presented once in List 2, 8 words presented twice 

in List 2, 8 words presented once in List 1 and once in List 2, and 40 words 

presented once in List 3. The test words were presented one at a time, and 

the participant had to make a yes-no response using the computer mouse 

before the next test word was presented. 

Results 

See the main text for a description of the results. 
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