
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

2005-11-01 

A Context-sensitive Structural Heuristic for Guided Search Model A Context-sensitive Structural Heuristic for Guided Search Model 

Checking Checking 

Eric G. Mercer 
eric_mercer@byu.edu 

Neha Rungta 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Computer Sciences Commons 

Original Publication Citation Original Publication Citation 
N. Rungta and E. G. Mercer, "A Context-sensitive Structural Heuristic for Guided Search Model 

Checking", in Proceedings of 2th IEEE/ACM International Conference on Automated Software 

Engineering, Long Beach, USA, pages 41-413, November 25. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Mercer, Eric G. and Rungta, Neha, "A Context-sensitive Structural Heuristic for Guided Search Model 
Checking" (2005). Faculty Publications. 344. 
https://scholarsarchive.byu.edu/facpub/344 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/344?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


A Context-sensitive Structural Heuristic for Guided Search
Model Checking

Neha Rungta
Department of Computer Science

Brigham Young University
Provo, Utah 84602

neha@byu.edu

Eric G Mercer
Department of Computer Science

Brigham Young University
Provo, Utah 84602

egm@cs.byu.edu

ABSTRACT
Software verification using model checking often translates
programs into corresponding transition systems that model
the program behavior. As software systems continue to grow
in complexity and size, exhaustively checking a property on
a transition graph becomes difficult. The goal of guided
search heuristics in model checking is to find a counterex-
ample to the property being verified as quickly as possible
in the transition graph. The FSM distance heuristic builds
an interprocedural control flow graph of the program to es-
timate distance to a possible error state. It ignores calling
context and underestimates the true distance to the error.

In this paper we build on the FSM distance heuristic for
guided model checking by using the runtime stack to recon-
struct calling context in procedural calls. We first build a
more accurate static representation of the program by in-
cluding a bounded level of calling context. We then use the
calling context in the runtime stack with the more accurate
control flow graph to estimate the distance to the possi-
ble error state. The heuristic is computed using both the
dynamic and static construction of the program. We eval-
uate the new heuristic on models with concurrency errors.
Experimental results show that for programs with function
calls, the new heuristic better guides the search toward the
error while the traditional FSM distance heuristic degener-
ates into a random search.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

Keywords
Verification, validation, guided search, model checking, struc-
tural heuristics

1. INTRODUCTION

Formal verification is an important component in the vali-
dation process for capitol and safety critical systems. For
example, embedded devices are often capitol critical sys-
tems because they are initially deployed in large quantities.
The growing complexity of software for embedded devices
challenges traditional strategies based on code coverage and
vector simulation. Model checking verifies properties of the
software in its dynamic environment to help prevent the es-
cape of bugs that follow from an overlooked test scenario.
In other words, model checking can reveal subtle violations
of functional properties that would be difficult to reproduce
a priori in vector based testing.

Model checking, intuitively, is a method to systematically
explore behavior in a concurrent system to see if it meets
user specified properties. It is the process of showing that
a state transition graph is a model of a formula describing
a correctness property. Formally, if M is a state transition
graph, s is a state in M , and f is a correctness property,
then M, s |= f denotes that starting at state s, the state
transition graph M is a model of f ; or in other words, the
property f holds in M given s as a starting state. Model
checking is the process by which the relation between M , s,
and f is validated by proof that M, s |= f or counterexample
that M, s 6|= f .

Several techniques for software model checking are actively
being pursued. One approach applies conservative abstrac-
tions to the high-level programming language to reduce the
size and complexity of the state transition graph [18, 2].
This approach is particularly successful in verifying control
intensive code in which conditional expressions do not de-
pend on extensively manipulated data values. Another ap-
proach applies bounded model checking to C programs and
can verify buffer overflows, pointer safety, user defined as-
sertions, and language consistencies [6, 7]. Bounded model
checking uses SAT methods to show the relation between
M , s, and f in the model checking problem. Other ap-
proaches translate the software under test into the formally
defined input language of an existing model checker [26,
27, 3]. Language extensions are sometimes needed to fa-
cilitate the translation since the language semantics are not
always directly supported by the existing framework [19].
The Bandera project for Java uses Bogor that natively sup-
ports threads and memory management in its input lan-
guage [9, 27]. A recent approach uses symbolic execution to
verify properties of algorithms [25]. Counter example guided



abstraction refinement is very effective in managing state
explosion and scales to large systems where data manipula-
tion does not significantly affect control flow. If the system
is largely data flow driven, however, abstraction refinement
begins to break down.

Explicit state model checking directly explores the state
transition graph M . The model checking proof of a prop-
erty f traverses M from the starting state s looking for a
violation. Several approaches exist for explicit state model
checking of software. Java Pathfinder model checks the ac-
tual software using a Java virtual machine [30]. Similar ap-
proaches use simulators and debuggers for other machine ar-
chitectures [20, 21]. These approaches retain a high-fidelity
model of the target execution platform with low-level con-
trol of scheduling decisions. Other approaches work directly
with the machine-code of the program to run at-speed anal-
ysis on the native hardware. Valgrind instruments the ac-
tual machine code [22, 24], and Verisoft runs the code in a
scheduling environment as a process it manages [13]. Test-
ing at speed can boost performance in state generation, and
in the case of code instrumentation, the overhead has been
shown to be acceptable in large programs [29, 23].

The primary challenge to explicit model checking is man-
aging the size of the transition system. For large software
systems, the computation resources are quickly exhausted
before model checking finishes exploration. One solution to
state explosion is through guided model checking. Guided
model checking focuses on error discovery by using heuris-
tics to prioritize the search of the transition system. The
idea is to discover an error before computation resources
are exhausted. Search priority is determined by heuristics
that rank states in order of interest, with states estimated
to be near errors being explored first. Hamming distance
heuristics use the explicit state representation to estimate
a bit-wise distance between the current state and an error
state [32]. Hamming distance heuristics ignore the struc-
ture of the property being verified as well as the structure
of the system. The structure of the property is accounted
for in [11]. The approach is further refined with Bayesian
reasoning in [28]. These heuristics only consider the state
representation and structure of the property being verified.

Guided search heuristics can be improved by considering
program structure with the property being verified. Heuris-
tics related to Java programs are described in [15]. These
heuristics are particularly interesting because they start to
look more at the actual structure of the Java program in
addition to the property being verified. Program structure
gives insight to how values in the state can be affected rel-
ative to any given property being verified. Heuristics can
refine estimates using knowledge of how and when the pro-
gram manipulates data of interest.

Program structure is central to the finite state machine
(FSM) distance heuristics in [12, 8]. FSM distance heuris-
tics extract from the actual program a set of communicating
finite state machines that represent the control flow of the
program. The distance estimate is based on the current
position of the program in its finite state machine represen-
tation and a location of where an error is checked for by the
program in the same representation. The heuristic estimate

is the length of the shortest path between these two points
in the FSM representation.

The FSM distance heuristic is not context sensitive; this
means that it ignores the calling context of functions. Ig-
noring the calling context in function calls causes the heuris-
tic to underestimate the actual distance to the error state.
In the worst case, a guided search using the FSM distance
heuristic degenerates into a random search of the transi-
tion system. Adding context sensitivity to the FSM dis-
tance heuristic, as done in this paper, reduces the number
of states explored before error discovery in guided search
model checking over its context free counter part. In designs
where the FSM distance heuristic is effective, we expect our
new algorithm that considers calling context to out perform
the original context-free heuristic in terms of states explored
before error discovery.

In this paper, we present an algorithm that reconstructs
calling context using the runtime stack in the concrete state
with an augmented control flow graph to estimate FSM dis-
tance to an error state. Intuitively, the new algorithm uses
the runtime stack to determine return points from function
calls. In programs where the same function is invoked from
several different call points, if call frames exist in the run-
time stack for the invocations, then the heuristic correctly
computes the return point from the call frames in comput-
ing the FSM distance heuristic. It does this until it runs
out of call frames or arrives at the scope of the error lo-
cation. If it runs out of call frames, it uses an augmented
interprocedural control flow graph to estimate the remain-
ing distance between the current program location and an
error location. The new heuristic more accurately estimates
the distance between the current program point and a point
in the program where an error can be detected by using the
call context to remove the false paths in the FSM repre-
sentation. The better estimation improves error discovery.
This is shown with a series of benchmark examples where
the new heuristic visits fewer states before finding an error.

2. FSM DISTANCE HEURISTIC
The FSM distance heuristic builds a static representation of
the program that depicts its flow of execution and structure.
There are many ways to abstractly represent program flow
and structure. Edelkamp and Mehler in [12] use a parti-
tioning function to map object code into blocks. They use
a target function to generate connecting edges between the
blocks. This graph is identical in structure and function
to an interprocedural control flow graph (ICFG). Hence we
will refer to the graph in [12] as an ICFG. An ICFG has a
control flow graph (CFG) for each of its procedures. These
CFGs are connected at call sites and return points. Similar
to the definition of the partition function in [12], we use the
term basic block loosely to be either a maximal or non maxi-
mal sequence of instructions that can be entered only at the
first instruction and exited only from the last instruction.
For all of the examples in this paper, we treat each single
instruction as a basic block for simplicity.

Definition 1. A Control flow graph (CFG) is a directed
graph G = (V, E). Vertices (V) are the basic blocks in a
given procedure. The edges (E) represent possible flow of



08: rts

01: ldx #1
02: call foo
03: add x,1
04: call foo
05: check for error

foo:
06: pshx
07: pulx

main: foo

05

04

03

02

01

07

08

06

main

error

(a) (b)

Figure 1: A simple example (a) A program that calls
foo twice and checks for error (b) The control flow
graph indexed on PC value

execution between the vertices. Each CFG has begin and
end vertices. All the vertices in the CFG are reachable from
begin and have a path to end [1].

Definition 2. We define an Interprocedural Control Flow
Graph (ICFG) to be similar to the ones defined in [5, 17].
There are four special vertices defined in an ICFG: entry,
exit, call, and return. The entry and exit vertices corre-
spond to the begin and end vertices in the individual CFGs
for each procedure in the system. The call vertices repre-
sents the call sites where procedures are invoked, and return
vertices are the return points where execution resumes after
a procedure completes. As we traverse the individual CFGs
for each procedure, an edge is added from call vertices to
the corresponding entry vertices of the CFGs for the named
procedures in the call sites. Similarly, edges are added from
the exit vertices in the CFGs back to the return vertices
created by the call sites. Note that edges are created from
a given CFG’s exit vertex to every return vertex created by
a call to that CFG. There is no information in the ICFG
to distinguish which call site invoked the procedure, while
inside the procedure.

The assembly instructions of a simple C program with two
function calls from main to foo is shown in Figure 1(a).
Figure 1(b) is the ICFG for the program. For convenience,
we label the nodes in the ICFG with the program counter
(PC) values from the corresponding locations indicated to
the left of the program. We assume these PC values to
be unique labels for each line of the source program. The
vertices labeled with 02 and 04 refer to instructions in the
CFG of main that call the procedure foo. Similarly, the
vertices labeled by 03 and 05 are the return points in the
CFG for main created by the call sites. Vertices 01 and 06
are entry vertices to the procedures, and vertex 08 is the exit
vertex for procedure foo. Only a portion of the procedure
main is shown in Figure 1(a) for brevity. The procedure foo

is called twice from procedure main.

The FSM distance is defined as the minimal number of op-
erations required to reach a goal state from the current state
[12].The FSM distance heuristic maps the current state of
the program onto a vertex in the ICFG during the guided
search. It calculates the length of the shortest path to the
error state from the current vertex in the ICFG. It returns
this length as the heuristic estimate to guide the search [12].
For example, if the current state of the program is at PC
value 06 in the search, then the corresponding location in
the ICFG is at vertex 06. The minimum number of steps
required to reach the error location at vertex 05 from ver-
tex 06 is the FSM distance. In this example, the shortest
path from vertex 06 to 05 in the ICFG is along the path
06 → 07 → 08 → 05, and it has a length of 4. This is the re-
ported value of the FSM distance heuristic from the current
state.

The return address on a runtime stack, which is present in
the current state of the search, indicates the true call site
for a procedure. The FSM distance heuristic as defined in
[12] does not consider this in computing the length of the
shortest path to the error state. This is part of the calling
context that the heuristic ignores in its computation. For
our example in Figure 1, when the search is in the function
foo, the return address on the runtime stack can be either
03 or 05 for each of the call sites in main. If the actual
call site is from line 02 in the program, then the return
address is 03; thus, the FSM heuristic computes the shortest
path between the current state and the error using a false
path and underestimates the true length. For this example,
consider the calling context from line 02, the true distance
is computed along the path 06 → 07 → 08 → 03 → 04 →
06 → 07 → 08 → 05. This gives an estimate of 8 transitions
needed to reach an error state.

Another problem in the FSM distance heuristic relates to in-
direct jumps and indirect procedure calls. Whenever there
is a block containing an indirect jump or procedure call, the
ICFG contains an edge from the block to every other block
that it might reach whenever the target address cannot be
statically resolved. This creates a multitude of edges that
introduce false paths to error states with very short lengths.
To mitigate the impact of these edges, we assume indirect
jumps only target entries in defined jump tables, and we as-
sume indirect procedures calls only target valid entry points
in procedures. As mentioned earlier, any targets that can be
statically resolved are statically resolved. Finally, we do not
consider exceptional control flow mechanisms such as inter-
rupts in this work aside from normal scheduling operations
for thread and process management. This means we do not
consider in the ICFG the possibility of getting to the error
state through an interrupt routine since interrupts can oc-
cur at any point in the program and return to any point in
the program. Statically we cannot resolve where interrupts
take place or return flow of execution; this induces us to
take the most conservative approach and assume the above.
This introduces many false shortest paths to the error state
and degrades the performance of the heuristic.

The FSM heuristic [12] is admissible and consistent. A
heuristic function h(v) is said to be admissible on (G, Γ) iff
h(v) ≤ h′(v) for every v ∈ G. G is a directed graph, and Γ is
the set of possible error states; while h is the estimated cost,



and h′ is the true cost. A heuristic function h(v) is said to be
consistent (or monotone) on G iff, for any pair of vertices v′

and v, the triangle inequality holds: h(v′) ≤ k(v′, v) + h(v)
[10]. Here k(v, v′) is the distance of the shortest path be-
tween v and v′. Since the heuristic is admissible when it
is posed with a non-deterministic choice, it picks the most
conservative approach even if its not viable. As seen earlier,
this leads to an underapproximation of the estimate of dis-
tance to the error. In building the ICFG, the FSM heuristic
discards a lot of useful calling context information. We ad-
dress this problem in two parts. First we are going to find a
new representation for the program with a bounded calling
context. Second we are going to present an extended FSM
heuristic that takes the runtime information on the stack of
the concrete state and computes the heuristic on the new
representation.

3. IMPROVING ERROR DISCOVERY
An interprocedural inlined flow graph (IIFG) is defined in
[16] to preserve the syntactic-semantic relationship in an
ICFG. In an IIFG all the procedures are inlined at their call
sites to build a full context of the procedure call sequence.
This graph overcomes the inadequacies of the ICFG used
in the FSM distance heuristic as shown in the previous sec-
tion because it is fully context sensitive. An FSM distance
heuristic computed on an IIFG graph is closer to actual
distance between the current state of the search and an er-
ror in terms of the number of transitions needed to reach
that state. There are, however, two obstacles to building
an IIFG. The first difficulty is that graphs for recursive pro-
grams are infinite. The second difficulty is that the size of
the IIFG can be prohibitive in big non-recursive programs
that possess a high degree of nested function calls. These
two obstacles can be mitigated by not statically construct-
ing, but dynamically reconstructing, the IIFG from the cur-
rent state of the search. In other words, we use the context
information in the runtime stack of the running process to
build a partial IIFG. Note, in talking about the runtime
stack, we do not mean the runtime stack of model checking
process, but the runtime stack of the program (software ar-
tifact) in which the model checker is searching for an error
state. To dynamically reconstruct the IIFG, we first stati-
cally build an ICFG with bounded calling context, and we
then traverse it by unwinding the call frames in the runtime
stack.

3.1 Augmented Interprocedural Control Flow
Graph

An augmented ICFG (AICFG) gives an accurate representa-
tion of the calling context in procedure calls up to a bounded
stack depth of size k as specified by the user. If k is set to be
0, then we end up with a regular ICFG. If k is set to infin-
ity, then we end up with a full IIFG. Our heuristic balances
computation resources in static construction of the AICFG
with accuracy in its heuristic estimate of the FSM distance.

Formally, an AICFG is an ICFG, G = {V, E}, with vertices
that not only label a specific location in the control flow
graph, but also as many as k return location depending on
calling context in the runtime stack. Vertices are thus iden-
tified by PC values and a calling context less than or equal
to k.

Algorithm: make AICFG(abstract State sa)
1: /∗ V:={},E:={},G:={V,E} ∗/
2: if sa ∈ V then
3: return
4: V := V ∪ {sa}
5: for each s′a ∈ abs(succ(abs−1(sa))) do
6: make AICFG(s′a)
7: E := E ∪ (sa, s′a)

Figure 2: Pseudo Code to build an Interprocedural
Control Flow Graph

An AICFG for a graph is created from a depth-first traver-
sal of the program that includes k slots for return addresses
in the runtime stack. An algorithm for this is shown in Fig-
ure 2. The function abs

−1 in the algorithm takes a vertex
in the AICFG and maps onto a set of real states that might
be encountered in the guided search of the program. Its
dual function, abs, maps a real state from the guided search
onto a single vertex in the AICFG by abstracting away any
information other than the PC value and the top k return
addresses in the runtime stack. The succ function generates
the successors of a set of states. These states are real states
that might be encountered in executing the program on its
native hardware. Note that the algorithm considers the suc-
cessors of abstract states in a depth-first manner. All the
visited vertices are marked in a hash table. If a successor
s′a is already contained in the hash table, either a cycle ex-
its in the actual IIFG of the program or the calling context
is greater than the bounded depth k used in the AICFG
construction..

For the purposes of this paper we are going to pick k = 1 to
simplify the examples; although, this is not a requirement
of our algorithm. An AICFG for the simple example pre-
sented in Figure 1(a) is shown in Figure 3. The function
foo is now inlined in the graph due to the added informa-
tion in the AICFG vertices. The first vertex 〈01, (init)〉 has
the PC value 01 and indicates that there have been no func-
tion calls. Now when foo is called at PC 02, the first vertex
in foo is 〈06, RA : 03〉. This vertex has context sensitive
information that it is part of the procedure foo which was
called from 〈02, (init)〉 and will return to 〈03, (init)〉. While
model checking the program, if the PC value in the current
state of the search is 06 and the return address on top of
the stack is 03, then we can find the corresponding abstract
state, 〈06, RA : 03〉, in the AICFG using the abs function.
The FSM distance heuristic now gives an estimate of 8 steps
to the error. This is the true distance to the error in this
example. Let us consider a slightly more complicated ex-
ample where this approach fails due to the bounded calling
context.

The extended example shown in Figure 4(b) has two levels
of function calls, x → f → g and y → f → g. The procedure
f is still inlined in the graph, but procedure g is at depth 2,
which is greater than the specified bound of k = 1, it is not
inlined in the graph, as seen in Figure 4(a). While model
checking, if the current state is in procedure g, the heuristic
is faces the same non-deterministic choice, as it does on the
ICFG. To retain admissibility, it picks the most conservative



(init)

main

04

03

RA:03 RA:03 RA:03
08

06 07

08

08

0706
foo

foo

(init)

(init)

(init)

(init) RA:05 RA:05 RA:05

02

01

05

Figure 3: Augmented Interprocedural Control Flow
graph for the simple example in Figure 1(b)

path. This creates the same problem of underestimation, as
seen on the ICFG. Also, for a recursive program if we are
at a recursive depth greater than k, the underestimation
problem persists. To overcome this, we are going to use an
extended FSM heuristic that uses the calling context found
in the current state of the search to dynamically reconstruct
a portion of the IIFG.

The Extended FSM algorithm takes the runtime stack and
unrolls it incrementally to compute the heuristic which simu-
lates partially constructing the IIFG. From the state where
the stack is fully unrolled, it computes the FSM distance
to an error on the AICFG to give a better estimate of the
distance to the error. The algorithm to compute the ex-
tended FSM heuristic is presented in Figure 5. In this fig-
ure distance is a set of possible estimates to the error state.
The variable d is a counter that keeps track of the heuristic
estimate. The example presented in Figure 4 will be used
to demonstrate the algorithm.

3.2 Extended FSM Distance Heuristic
The function aicfgState in Figure 5 generates abstract states
based on the PC value and the return addresses in the
runtime stack of the current state in the guided search.
Figure 6(a) visualizes the strategy for extracting the ab-
stract states. For k = 1 the first abstract state consists of
the PC value and the return address on top of the stack
〈09, RA : 08〉. This indicates when a return statement (rts)
is encountered in the current subroutine, it will transfer flow
of execution to a location in the program where the PC is
08. The next return address on the runtime stack points to
the preceeding call site of the program. On the next rts

instruction, the control will jump to location 04 in the pro-
gram. Hence the next abstract state is 〈08, RA : 04〉. This
process keeps repeating till the stack is exhausted and the
last abstract state 〈02, (init)〉 is generated. The algorithm in
Figure 5 uses a Worklist to store these abstract states (line
3). In general terms, for an arbitrary k bound the abstract
state looks at k entries on the stack.

The algorithm iterates through the Worklist till it is empty.
During each iteration, an abstract state (sa) is removed
from the Worklist (line 5). For each abstract state the
function return statement returns another abstract state
(srts) that corresponds to the return statement of the pro-

07: call gmain

x f g

fy

RA:04
0901: call x

(init) RA:02
03: call f

05: call f
(error)

07: call g

RA:06

RA:08

RA:08
0a: rts

08: rts
RA:02
04: rts

(init)
02: call y

error
(init)

RA:04

06: rts
(error) RA:06

08: rts

(a)

05: call f
06: rts

09: xyz
g:

0a: rts

main:
01: call x
02: call y
error

f:
07: call g
08: rts

x:
03: call f
04: rts

y:

(b)

Figure 4: An extended example (a) An ICFG for
a program with nested functions (b) Program with
nested functions

Algorithm: Extended FSM(state S)
1: /∗ d := 0 ∗/
2: /∗ distance := {} ∗/
3: Worklist := aicfgState(S)
4: while (Worklist) do
5: Remove sa from Worklist
6: srts := returnStatement(sa)
7: if error postdominates(sa) then
8: x := d + FSM(sa, err)
9: distance := distance ∪ x

10: break
11: else if in Scope error(sa) then
12: x := d + FSM(sa, err)
13: distance := distance ∪ x
14: d := d + FSM(sa, srts) + 1
15: return min(distance)

Figure 5: Pseudo Code for the Improved ICFG Al-
gorithm



09

ssa0 sa2 a3s

RA:02

RA:04

RA:08

RA:08
08

RA:04
04

RA:02
02

(init)

PC:09

a1

(a)

check error

return

beq

prologue
foo

epilogue

(b)

Figure 6: Understanding the Improved ICFG Algo-
rithm (a) Abstract states generated from the run-
time stack (b) Control flow of a subroutine with an
error

cedure containing sa (line 6). The abstract states represent-
ing the return statements of procedures are marked stat-
ically while building the AICFG. For the abstract state,
〈09, RA : 08〉, which is in procedure g the corresponding
srts is 〈0a, RA : 08〉.

The first condition in the algorithm checks whether the error
postdominates sa or not (line 7). In essence, it is checking
if all paths from sa to srts pass through the error state. If
it does, there is no need to iterate through the rest of the
abstract states. We compute the FSM distance from sa to
the error state, add to it to the heuristic counter (line 8), and
append it to the set of possible estimates (line 9). We break
from our iteration (line 10) and return the lowest estimate
in the set distance (line 15).

A second check is performed to see if the error is in scope
of the current procedure. If there exists a path from sa to
the error which does not include srts, then the error is said
to be in scope. Consider the simple flow diagram in Fig-
ure 6(b), the error is control dependent on a conditional
branch. Based on which branch is taken we can either
branch to the error vertex or jump to the epilogue of the
function. In such a case we need to consider two options.
Either the error can be reached in the current procedure,
or unrolling the loop discovers a shorter path to the error.
If the error is in scope, we take the shortest FSM distance
amongst paths from sa to the error that precludes the re-
turn statement, add it to the heuristic counter (line 12), and
append this heuristic value to the set of possible estimates
to the error (line 13).

Finally, if the error does not postdominate sa, then we com-
pute the FSM distance from sa to srts, add 1 to this value, to
account from the outgoing edge from srts to the return ver-
tex, and then increment the heuristic counter by this value
(line 14). After we finish iterating through the Worklist, we
return the smallest member of the distance set.

Let us consider a concrete example of how the algorithm
works. Given the extended example Figure 4(b), let the
current state be represented by the left side of Figure 6(a).
Based on the abstract states generated for the current state
the first sa is 〈09, RA : 08〉, and the corresponding srts is
〈0a, RA : 08〉. There is no error in this procedure, the two
checks on postdominance and scoping fails. The FSM dis-
tance between sa and srts is 1, we add an additional 1 to it
for the outgoing egde to the return vertex, so the value of d is
set to 2. The next abstract state processed is 〈08, RA : 04〉.
The sa and the srts are the same in this case. So the FSM
distance will be 0 but we will add 1 to d to account for the
outgoing edge from the exit point. The value of d is now
3. The above is process is repeated till we get to the last
abstract vertex 〈02, (init)〉 and d is 4 at this point. The
error now postdominates the sa. The FSM distance from
〈02, (init)〉 to the error is 7. This value is added to the ex-
isting d and appended to the distance set. At this point we
break out of the loop, since it is the last vertex in the Work-
list. For this particular example, the distance set just has a
single element,so we return that element. For this particular
example the estimate is 11, which is also the true distance
to the error.

To calculate the heuristic estimate for a concurrent program
with multiple processes, the FSM distance heuristic pre-
sented in [12] sums the distance from the current PC value to
the error state for every process. We calculate the heuristic
estimate based on what property of the concurrent program
is being verified. A mutex violation occurs if two or more
threads are in the critical section. The heuristic estimate for
a mutex violation is the sum of distances in two processes
which have the shortest paths to the critical section com-
pared to other processes. Now consider the property which
is a check to see if any of the processes reach a certain lo-
cation in the program, like an assert statement. In such
a case the heuristic estimate is the smallest distance in the
set of estimated distances from the current location to the
desired location for each process. Another useful property
checked in concurrent programs is whether two or more pro-
cesses are deadlocked. In this case we take the summation
of the distances form the current state to the error state.
For a deadlock condition of two processes in a three process
system the sum of the two shortest distances from the set of
estimated distances for all threads is returned as the heuris-
tic estimate. And if we are looking at a deadlock state for all
processes then we take the the summation of distances from
the current state to the error state for all threads. This is
also the default property specified in a concurrent program
if the user does not specify any specific property.

The extended FSM distance algorithm can be used on any
flow graph. It will accurately dynamically reconstruct a part
of the IIFG on both, an ICFG, and an AICFG. Now the
question becomes: why do we need an AICFG? The ex-
tended FSM distance algorithm is limited by the information
on the runtime stack. It can simulate construction only part
of the IIFG based on the return addresses on the runtime
stack. Once the call stack is fully unrolled, the heuristic esti-
mate is dependent on the accuracy of the control-flow repre-
sentation. Consider the example Figure 4(b), the extended
heuristic generates the IIFG uptil the vertex 〈02, (init)〉.
From this vertex to the error, the FSM distance is computed



and added to the estimate. Suppose there was another pro-
cedure baz which was called twice after vertex 〈02, (init)〉
and before the error. On the ICFG, the return from baz
will have two outgoing edges and while calculating the FSM
distance, the most conservative path will be picked. This
will lead to the same underestimation we encountered ear-
lier. If we compute the heuristic on an AICFG, depending
on our value of k, we will get a better estimate of the dis-
tance to the error.

To make this algorithm efficient, and not recompute the
heuristic with the same stack values, we mark certain ver-
tices in the graph. For the current and abstract state values
shown in Figure 6(a), we calculate the heuristic value of 11
in Figure 4(a). Now if we change the PC from 09 to 0a, and
retain the same return addresses on the stack on the left side
of Figure 6(a). Among the abstract states on the right side
of Figure 4(a), only sa0 will change to 〈0a, RA : 08〉. In such
a case we do calculate the whole heuristic estimate again.
In the abstract states in Figure 4(a), which represent the
return points of a procedure, we will add a table of heuristic
estimates mapped to particular stack values. These states
are annotated based on the contents of the runtime stack.
The srts for procedure g is marked (08, 04, 02 := 10). The
srts for procedure f, 〈08, RA : 04〉 is marked (04, 02 := 9).
In the extended FSM algorithm before unrolling the runtime
stack further at any abstract return vertex (srts), an addi-
tional check is performed. The annotated table entries in
the abstract return vertices are compared against the run-
time stack values. If a match is found, then the algorithm
increments the heuristic estimate by the distance marked in
the table entry and terminates. For example, if the values
on the runtime stack are (04, 02) and we encounter a srts

vertex marked (04, 02 := 9), we simply add 9 to the heuris-
tic estimate and terminate. By simply marking the srts, the
size of the AICFG does not increase, and it is a good spot
to check for corresponding stack values.

The extended FSM distance heuristic is admissible and con-
sistent. The AICFG is a more refined representation of the
program based on the depth of the calling context. Hence
the proof for admissiblity and consistent follows the one pre-
sented in [12]. The infeasible paths in the AICFG encoun-
tered after the unrolling of the stack will always underes-
timate the distance to the error and this does not violate
admissiblity.

4. RESULTS
To measure the improvement in the heuristic estimate we
compare the extended FSM distance heuristic to the reg-
ular FSM distance heuristic. We also compare it to other
exhaustive searches like BFS and DFS. The Hamming dis-
tance performs poorly with respect to the FSM distance so it
is omitted in this comparison [12]. Tests were performed on
a set of benchmarks developed for the gnu debugger based
model checker Estes [21]. The set of benchmarks consist
of models with concurrency errors. This heuristic can be
implemented in any model checker where it is possible to
derive a control flow representation of the program being
model checked.

The results from a Pentium III 1.8 Ghz processor with 1 GB
of RAM are shown in Table 1 and Table 2. These were run

on Estes, with a 6.1.1 version of the gnu debugger, using the
m68hc11 backend simulator. In Table 1 we show the total
number of states enumerated before finding the error state.
In Table 2 we measure total wall clock time from the start
of the program till the error state is found. We measure this
using the UNIX utility time.

The extended FSM heuristic outperforms the regular FSM
heuristic by generating fewer number of states in our bench-
marks. An initial improvement is seen in the reduction of
states generated by the removal of false edges caused by indi-
rect jumps and subroutine calls. A more significant decrease
in the number of states generated is achieved by implement-
ing the extended FSM distance heuristic. In some cases the
extended FSM heuristic is faster in finding the error in terms
of total time taken to find the error. There is an overhead of
building the AICFG, extracting the runtime stack, dynam-
ically reconstructing the IIFG, and computing the heuristic
on it. This causes the total running time to increase in some
of the models. For all testing purposes the bound of k was
chosen to be 1 in the AICFG.

In the Hyman model there are not too many procedure calls.
By just resolving indirect jumps a priori the number of
states generated reduced to 1500 and the implementation
of the extended FSM distance heuristic caused this num-
ber to drop to 881. The next few models are based on the
dining philosphers problem which is often used in bench-
marking guided search heuristics for model checking. Fig-
ure 7 demonstrates the call structure of the basic program
used. The different versions of dining philosphers have a
varying degree of non-determinism and different numbers of
threads. When a thread is created it keeps iterating through
the dining function, where it makes function calls to sleep,
getleftfork, checkfordeadlock, and getrightfork. If all
the philosophers hold a single left fork, none of them will
release their fork until they get a right fork. This leads
to a state of starvation. This is defined as the error state
for the model. The Naive Dining-Phil always wants to eat
and sleep. In Dining-Phil the philosophers make a non-
deterministic choice whether they want to sleep, eat, or
release forks. The Moody Dining-Phil in addition to the
choices of Dining-Phil decide the length of time they want
to sleep. As demonstrated earlier in the regular ICFG, the
calling context is missing in the representation. The multiple
function calls in the program add a lot of non-deterministic
branches to the graph. This causes the FSM distance to
heuristic underestimate. In three of the benchmark exam-
ples, the FSM distance heuristic takes the maximum number
of states to find the error. In the Naive Dining-Phil3 FSM
distance heuristic generates 1.25 times more states than the
BFS. This goes to show that for some models the FSM dis-
tance generates into a random search.

Estes is very flexible in terms of fine grain control of thread
scheduling. For the philosophers with two threads, it is al-
lowed to preempt at assembly level instructions anywhere in
the dining and the sleep functions. The Dining-Phil2 and
Moody Dining-Phil2 have a greater branching factor in the
transition graph, and a higher degree of non-determinism.
The extended FSM distance heuristic generates five times
fewer states than its closest competitor in these examples.
Generating fewer states mostly compensates for the over-



Table 1: Number of states generated before finding the error state

Breadth First Search Depth First Search FSM distance Extended FSM distance
Hyman 3,550 5,944 2,715 881
Naive Dining-Phil2 19,013 8,066 22,701 3,155
Dining-Phil2 48,068 33,523 87,974 6,535
Moody Dining-Phil2 87,974 33,523 86,139 6,535
Naive Dining-Phil3 485,648 382,359 608,595 369,328
Naive Dining-Phil3 (branch points) 18,281 10,667 12,674 9,341
Dining-Phil3 (branch points) 77,777 75,947 40,327 34,328
Moody Dining-Phil3 (branch points) 118,979 68,233 51,163 40,749

Table 2: Time taken to find the error state

Breadth First Search Depth First Search FSM distance Extended FSM distance
Hyman 1.70s 2.89s 1.33s 1.28s
Naive Dining-Phil2 7.33s 2.02s 13.38s 3.56s
Dining-Phil2 20.56s 10.52s 53.65s 6.95s
Moody Dining-Phil2 40.62s 10.09s 51.42s 7.01s
Naive Dining-Phil3 3m23s 1m48s 5m52s 9m43s
Naive Dining-Phil3 (branch points) 9.45s 2.93s 8.69s 14.62s
Dining-Phil3 (branch points) 37.88s 22.58s 26.81s 52.60s
Moody Dining-Phil3 (branch points) 59.44s 20.33s 34.83s 1m3s

Æ”

new_thread

dining

dining

sleep
left_fork

check_error

right_fork

release_forks

main

sleep
left_fork

check_error

right_fork

release_forks

rand

rand

rand

rand

rand

rand

rand

rand

Figure 7: Call structure of a dining philospher’s pro-
gram

head incurred. In these examples the new heuristic has the
lowest wall clock time in finding the error. We expect a
more noticeable runtime improvement in larger models. As
the number of threads increases, preempting at every as-
sembly level instruction is not possible due to state space
explosion. The model is changed so that preemption can
take place only at branch points to other procedures instead
of every assembly instruction. This decreases the level of
non-determinism and lowers the average branching factor
in the transition graph. Even in the examples with sparse
transitions graphs (Dining-Phil3 and Moody Dining-Phil3
with branch points) the extended FSM distance heuristic
enumerates the fewest states to find the error.

5. CONCLUSIONS

In this paper we present an extended FSM distance heuristic
to improve the estimate of the distance to the error. Our
technique consists of two parts. First, we refine the control
flow representation to include context sensitive information
until a certain bound. Second, we extend the FSM distance
heuristic to dynamically prune the infeasible paths in the
control flow representation by using the information on the
runtime stack. This resulted in a better estimate of the
distance to the error for a set of benchmark examples.

Our experimental results show that the extended FSM dis-
tance heuristic finds the error in fewer states compared to
FSM distance heuristic and exhaustive searches. It also
shows that the structure of the model is key to the success of
the heuristic. The only overhead of using the new heuristic
is the time it takes to build the static abstraction of the pro-
gram and to unwind the stack in the search stack. In some
models, this time is insignificant, while in others, it takes
longer than other search techniques. The memory used to
build and store the static control flow representation of the
program is negligible. The extended FSM distance heuristic
does the best in models with densely connected transition
graphs. This shows the importance of structural heuristics,
and how they can make error discovery tractable for some
models.

In future work, we are considering the pruning of infeasible
paths arising from dead variables, or based on propagation
of constant values in the current state of the search. There
has been work done in removing infeasible paths in [4] and
[31] which is of some interest. The interprocedural infeasi-
ble path analysis in [4] removes infeasible paths statically. It
based on the theory that branch correlation gives rise to in-
feasible paths. When the backwards infeasible path analysis



reaches either a read instruction or an entry point of the pro-
cedure, it cannot statically resolve the feasibility of the path.
We can first prune the infeasible paths statically and then
at read statements, and at beginning of procedures, perform
the infeasible path analysis again during model checking. By
combining static and dynamic analysis, we hope to prune a
lot of infeasible paths in the program. This can lead to a
better estimate of the distance to the error. We also need
to combine property based heuristics with structural heuris-
tics. For example, if a certain variable is part of the property
being verified, then we can check how far we need to go be-
fore its value is changed. This can be used in tandem with
the structural heuristic which gives us the distance between
two points.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

principles, techniques, and tools. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[2] T. Ball and S. Rajamani. The SLAM toolkit. In
G. Berry, H. Comon, and A. Finkel, editors, 13th
Annual Conference on Computer Aided Verification
(CAV 2001), volume 2102 of Lecture Notes in
Computer Science, pages 260–264, Paris, France, July
2001. Springer-Verlag.

[3] T. Ball and S. K. Rajamani. Bebop: A symbolic
model checker for boolean programs. In K. Havelund,
J. Penix, and W. Visser, editors, 7th International
SPIN Workshop, volume 1885 of Lecture Notes in
Computer Science, pages 113–130. Springer, August
2000.

[4] R. Bodik, R. Gupta, and M. L. Soffa. Refining data
flow information using infeasible paths. SIGSOFT
Softw. Eng. Notes, 22(6):361–377, 1997.

[5] D. Callahan. The program summary graph and
flow-sensitive interprocedual data flow analysis. In
PLDI ’88: Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and
Implementation, pages 47–56, New York, NY, USA,
1988. ACM Press.

[6] E. Clarke and D. Kroening. Hardware verification
using ANSI-C programs as a reference. In Proceedings
of ASP-DAC 2003, pages 308–311, Yokohama City,
Japan, January 2003. IEEE Computer Society Press.

[7] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In K. Jensen and
A. Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science,
pages 168–176, Barcelona, Spain, April 2004. Springer.

[8] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. The
right algorithm at the right time: Comparing data
flow analysis algorithms for finite state verification. In
International Conference on Software Engineering,
pages 37–46, 2001.

[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Păsăreanu, R. Zheng, and H. Zheng. Bandera:
extracting finite-state models from java source code.
In International Conference on Software Engineering,
pages 439–448, 2000.

[10] R. Dechter and J. Pearl. Generalized best-first search
strategies and the optimality af a*. J. ACM,
32(3):505–536, 1985.

[11] S. Edelkamp, A. Lluch-Lafuente, and S. Leue.
Directed explicit model checking with HSF-SPIN. In
8th International SPIN Workshop on Model Checking
Software, number 2057 in Lecture Notes in Computer
Science. Springer-Verlag, 2001.

[12] S. Edelkamp and T. Mehler. Byte code distance
heuristics and trail direction for model checking java
programs. In Workshop on Model Checking and
Artificial Intelligence (MoChArt), 2003.

[13] P. Godefroid. Software model checking: The VeriSoft
approach. Technical report, Bell Laboratories, Lucent
Technologies, 2003.

[14] S. Graf and L. Mounier, editors. Model Checking
Software: 11th International SPIN Workshop, volume
2989 of Lecture Notes in Computer Science,
Barcelona, Spain, April 2004. Springer.

[15] A. Groce and W. Visser. Model checking java
programs using structural heuristics. In 2002 ACM
SIGSOFT International symposium on software
testing and analysis, 2002.

[16] M. J. Harrold, G. Rothermel, and S. Sinha.
Computation of interprocedural control dependence.
In 1998 ACM SIGSOFT International symposium on
software testing and analysis, 1998.

[17] M. J. Harrold and M. L. Soffa. Efficient computation
of interprocedural definition-use chains. ACM Trans.
Program. Lang. Syst., 16(2):175–204, 1994.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, , and
G. Sutre. Software verification with Blast. In T. Ball
and S. Rajamani, editors, Proceedings of the Tenth
International Workshop on Model Checking of
Software (SPIN), volume 2648 of Lecture Notes in
Computer Science, pages 235–239, Portland, OR, May
2003.

[19] G. J. Holzmann and R. Joshi. Model-driven software
verification. In Graf and Mounier [14], pages 76–91.

[20] T. Mehler and S. Edelkamp. Directed error detection
in C++ with the assembley-level model checker
StEAM. In Graf and Mounier [14], pages 39–56.

[21] E. G. Mercer and M. Jones. Model checking machine
code with the gnu debugger. In 12th International
SPIN Workshop, San Fancisco, USA, August 2005.
Springer.

[22] N. Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, Computer Laboratory,
University of Cambridge, United Kingdom, Sept. 2004.



[23] N. Nethercote and J. Fitzhardinge. Bounds-checking
entire programs without recompiling. In Informal
Proceedings of the Second Workshop on Semantics,
Program Analysis, and Computing Environments for
Memory Management (SPACE 2004), Venice, Italy,
Jan. 2004.

[24] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In O. Sokolosky and
M. Viswanathan, editors, Proceedings of the Third
Workshop on Runtime Verification (RV’03),
volume 89 of Electronic Notes in Theoretical
Computer Science, pages 1–23, Boulder, CO, USA,
July 2003. Elsivier.

[25] C. Pasareanu and W. Visser. Verification of Java
programs using symbolic execution and invariant
generation. In Graf and Mounier [14], pages 164–181.

[26] J. Penix, W. Visser, C. Pasaranu, E. Engstrom,
A. Larson, and N. Weininger. Verifying time
partitioning in the DEOS scheduling kernel. In 22nd
International Conference on Software Engineering
(ICSE00), pages 488–497, Limerick, Ireland, June
2000. ACM.

[27] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An
extensible and highly-modular model checking
framework. ACM SIGSOFT Software Engineering
Notes, 28(5):267–276, September 2003.

[28] K. Seppi, M. Jones, and P. Lamborn. Guided model
checking with a bayesian meta-heuristic. Fundamenta
Informatica, To Appear, 2005.

[29] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In
Proceedings of the USENIX’05 Annual Technical
Conference, Anaheim, California, USA, Apr. 2005.

[30] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering Journal, 10(2), April 2003.

[31] J. Whaley and M. S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In Proceedings of the ACM
SIGPLAN 2004 conference on Programming language
design and implementation, pages 131–144. ACM
Press, 2004.

[32] C. Yang and D. Dill. Validation with guided search of
the state space. In 35th Design Automation
Conference (DAC98), pages 599–604, 1998.


	A Context-sensitive Structural Heuristic for Guided Search Model Checking
	Original Publication Citation
	BYU ScholarsArchive Citation

	tmp.1409849408.pdf.U2vuo

