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ABSTRACT

Venue recommendation systems aim to e�ectively rank a list of in-

teresting venues users should visit based on their historical feedback

(e.g. checkins). Such systems are increasingly deployed by Location-

based Social Networks (LBSNs) such as Foursquare and Yelp to

enhance their usefulness to users. Recently, various RNN architec-

tures have been proposed to incorporate contextual information

associated with the users’ sequence of checkins (e.g. time of the

day, location of venues) to e�ectively capture the users’ dynamic

preferences. However, these architectures assume that di�erent

types of contexts have an identical impact on the users’ preferences,

which may not hold in practice. For example, an ordinary context –

such as the time of the day – re�ects the user’s current contextual

preferences, whereas a transition context – such as a time interval

from their last visited venue – indicates a transition e�ect from past

behaviour to future behaviour. To address these challenges, we pro-

pose a novel Contextual Attention Recurrent Architecture (CARA)

that leverages both sequences of feedback and contextual informa-

tion associated with the sequences to capture the users’ dynamic

preferences. Our proposed recurrent architecture consists of two

types of gating mechanisms, namely 1) a contextual attention gate

that controls the in�uence of the ordinary context on the users’ con-

textual preferences and 2) a time- and geo-based gate that controls

the in�uence of the hidden state from the previous checkin based

on the transition context. Thorough experiments on three large

checkin and rating datasets from commercial LBSNs demonstrate

the e�ectiveness of our proposed CARA architecture by signi�-

cantly outperforming many state-of-the-art RNN architectures and

factorisation approaches.

ACM Reference Format:

JaranaManotumruksa and Craig Macdonald, Iadh Ounis. 2018. A Contextual

Attention Recurrent Architecture for Context-Aware Venue Recommenda-

tion. In SIGIR ’18: The 41st International ACM SIGIR Conference on Research

and Development in Information Retrieval, July 8–12, 2018, Ann Arbor, MI,

USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3209978.

3210042

1 INTRODUCTION

Users in Location-Based Social Networks (LBSNs), such as Yelp and

Foursquare, can share their location with their friends by making

checkins at venues (e.g. museums, restaurants and shops) they have

visited, resulting in huge amounts of user check-in data. E�ective
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Figure 1: An illustration of the user’s sequence of checkins,

where each timestamp of the checkin is highlighted in blue,

∆t and ∆д are the time interval and the distance between

checkins at time step τ , respectively (red text).

venue recommendation systems have become an essential applica-

tion for LBSNs that facilitate users �nding interesting venues based

on their historical checkins. Collaborative �ltering techniques such

as Matrix Factorisation (MF) [17] are widely used to recommend

a personalised ranked list of venues to the users. MF-based ap-

proaches typically aim to embed the users’ and venues’ preferences

within latent factors, which are combined with a dot product opera-

tor to estimate the user’s preference for a given venue. Approaches

on MF typically encapsulate contextual information about the user,

which can help to make e�ective recommendations for users with

few historical checkins, known as the cold-start problem [22, 30, 32].

In recent years, various approaches have been proposed to lever-

age Deep Neural Network (DNN) algorithms for recommenda-

tion systems [3, 10, 11, 21, 28, 31]. Among various DNN tech-

niques, the Recurrent Neural Network (RNN) models have been

widely used to extend the MF-based approaches to capture users’

short-term preferences from the users’ sequence of observed feed-

back [1, 21, 26, 28, 31, 37]. Here, the short-term (dynamic) prefer-

ences assume that the next venue visited by a user is in�uenced by

his/her recently visited venues (e.g. users may prefer to visit a bar

directly after dinner at a restaurant).

A common technique to incorporate RNN models (e.g. Long

Short-Term Memory (LSTM) units [13] and Gated Recurrent Units

(GRU) [4]) into MF-based approaches is to feed a sequence of user-

venue interactions/checkins into the recurrent models and use the

hidden state of the recurrent models to represent the users’ dy-

namic preferences [21, 28, 31, 35]. Next, the user’s preference of

a target venue is estimated by calculating the dot product of this

representation of the user’s dynamic preferences (i.e. the output

of the recurrent models) and a latent factor of the target venue.

Although this technique can enhance the e�ectiveness of MF-based

approaches, we argue that directly applying traditional RNN-based

models to capture the users’ dynamic preferences is not e�ective

for Context-Aware Venue Recommendation (CAVR). In particular,
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the traditional RNN models are limited as they can only take the se-

quential order of checkins into account and cannot incorporate the

contextual information associated with the checkins (e.g. timestamp

of a user’s checkin and the geographical location of the checkin).

Indeed, such contexts have been shown to play an important role

in producing e�ective CAVR recommendations [6, 22, 30, 32].

To address the above challenge, various approaches have been

proposed to extend the RNN models to incorporate the contextual

information of observed feedback into various recommendation

settings excepting CAVR [1, 14, 19, 23, 26, 29, 37]. For example, Zhu

et al. [37] proposed an extension of LSTM (TimeLSTM) by intro-

ducing time gates that control the in�uence of the hidden state of a

previous LSTM unit based on the time interval between successive

observed feedbacks. Indeed, they assume that the shorter the time

interval between two successive feedback, the stronger the correla-

tion between these two feedbacks and vice versa. However, their

proposed model was designed for a particular type of contextual

information (i.e. time intervals) and is not �exible to incorporate

other types of context (e.g. distance between venues). We argue

that the time gates proposed by Zhu et al. [37] are not e�ective to

model the sequences of checkins in LBSNs. Figure 1 illustrates the

user’s sequential order of checkins. Let’s consider the time intervals

and distances between three successive checkins cτ−1, cτ and cτ+1.

With Zhu et al.’s time gates, checkin cτ−1 (cτ ) will have a small

impact on checkin cτ (cτ + 1) due to the long time interval between

cτ−1 (cτ ) and cτ (cτ + 1). This is counter-intuitive since checkin cτ
may have a strong impact on checkin cτ+1 due to the geographical

distance between them. For example, a user may decide to visit a

museum near the restaurant they had dinner at the previous day.

Although the time interval from the previous checkin is long (> 24

hours), geographically, the restaurant and museum are close.

Recently, several works (e.g. CGRU [26] and LatentCross [1], for

product and movie recommendation systems, respectively) have

extended traditional RNN architectures for recommendation sys-

tems to incorporate di�erent types of contextual information of

the observed feedback sequences. However, we argue that their

proposed architectures are limited for context-aware venue recom-

mendation in several respects. In Figure 1, we highlight two types

of contextual information associated with sequences of checkins,

namely: the ordinary and transition contexts. The ordinary context

represents the (absolute) timestamp and the geographical position

of the checkin, while the transition context represents the (rela-

tive) time interval and distance between successive checkins. A

disadvantage of the aforementioned RNN architectures is that they

rely on a quantised mapping procedure (i.e. to convert continuous

values of time intervals and distances to discrete features and rep-

resent these transition contexts using low-dimensional embedding

vectors), which may result in a loss of granularity. In addition, their

proposed architectures treat the ordinary and transition contexts

dependently. However, we argue that these contexts in�uence the

user’s dynamic preference di�erently and should be considered

independently. Indeed, the ordinary context re�ects the user’s con-

textual preference on a venue, while the transition context re�ects

the in�uence that one checkin has on its successor.

To address these challenges, we propose a Contextual Attention

Recurrent Architecture (CARA) that leverages the sequential of

users’ checkins to model the users’ dynamic preferences. In partic-

ular, our contributions are summarised below:

• We propose a Contextual Attention Recurrent Architecture

(CARA) that independently incorporates di�erent types of

contextual information to model the users’ dynamic prefer-

ence for CAVR. Our proposed recurrent architecture di�ers

from the recently proposed CGRU [26] and LatentCross [1]

architectures in three aspects: (1) CARA includes gating

mechanisms that control the in�uence of the hidden states

between recurrent units, (2) CARA supports both discrete

and continuous inputs and (3) CARA treats di�erent types of

context di�erently, In contrast, both CGRU and LatentCross

do not support these features.

• Within the CARA architecture, we propose two gating mech-

anisms: a Contextual Attention Gate (CAG) and a Time- and

Spatial-based Gate (TSG). The CAG controls the in�uence

of context and previous visited venues, while TSG controls

the in�uence of the hidden state of the previous RNN unit

based on time interval and geographical distances between

two successive checkins. Note that our proposed TSG di�ers

from the time gates in TimeGRU [37] as we can incorporate

multiple types of context, whereas TimeGRU supports only

the time intervals. To the best of our knowledge, this work

is the �rst that incorporates geographical information into

an RNN architecture for CAVR.

• We conduct comprehensive experiments on 2 large-scale real-

world datasets, from Brightkite and Foursquare, to demon-

strate the e�ectiveness of our proposed CARA architecture

for CAVR by comparing with state-of-the-art venue recom-

mendation approaches. The experimental results demon-

strate that CARA consistently and signi�cantly outperforms

various existing strong RNN models.

This paper is structured as follows: Section 2 provides a back-

ground in the literature on CAVR, as well as recent trends in apply-

ing Deep Neural Networks to recommendation systems; Section 3

details speci�c existing RNN-based recommendation architectures

from the literature, and highlights 5 limitations in these approaches;

Section 4 details our proposed CARA architecture that addresses

all 5 limitations; Experimental setup and results are provided in

Sections 5 & 6, respectively. Concluding remarks follow in Section 7.

2 BACKGROUND

Context-Aware Venue Recommendation (CAVR). Collaborative

Filtering (CF) techniques such as Matrix Factorisation (MF) [17],

Factorisation Machines [24] and Bayesian Personalised Ranking

(BPR) [25] have been widely used in recommendation systems.

Such factorisation-based approaches assume that users who have

visited similar venues share similar preferences, and hence are

likely to visit similar venues in the future. Previous works on venue

recommendation have shown that the contextual information asso-

ciated with the users’ observed feedback (time of the day, location)

play an important role to enhance the e�ectiveness of CAVR as

well as to alleviate the cold-start problem [6, 7, 22, 30, 32, 34, 36].

For example, Yao et al. [30] extended the traditional MF-based ap-

proach by exploiting a high-order tensor instead of a traditional

user-venue matrix to model multi-dimensional contextual infor-

mation. Manotumruksa et al. [22] and Yuan et al. [32] extended

BPR to incorporate the geographical location of venues to alleviate

the cold-start problem by sampling negative venues based on an



assumption that users prefer nearby venues over distant ones. Zhao

et al. [36] proposed Spatial-TEmporaL LAtent Ranking (STELLAR),

which recommends a list of venues based on the user’s context such

as time and recent checkins.

Deep Neural Network Recommendation Systems. With the impres-

sive successes of Deep Neural Network (DNN) models in domains

such as speech recognition, computer vision and natural language

processing (e.g. [9, 15, 33]), various approaches (e.g. [3, 10, 11, 18,

19, 21, 31]) have been proposed to exploit DNN models for recom-

mendation systems. For example, He et al. [11] and Cheng et al. [3]

proposed to exploit Multi Layer Perceptron (MLP) models to cap-

ture the complex structure of user-item interactions. An advantage

of such MLP-based models is their ability to capture the user’s com-

plex structure using a DNN architecture and a non-linear function

such as sigmoid. Liu et al. [18], Liu et al. [19] and Manotumruksa et

al. [21] all exploited Recurrent Neural Networks (RNNs) to model

the sequential order of the users’ observed feedback. Due to the

complex and overwhelming parameters of DNNmodels, such DNN-

based CF approaches are prone to over�tting. Several empirical

studies [10, 11, 27] have demonstrated that the use of generalised

distillation techniques, such as dropout & regularisation, as well

as pooling techniques can alleviate the over�tting problems inher-

ent to DNN-based models. However, while the previous attempts

mentioned above mainly focus on how to exploit DNN models to

enhance the quality of recommendations, few attempts have fo-

cused on how to extend such DNN models to address particular

challenges in recommendation systems. In this work, we propose

to extend the traditional RNN architecture to incorporate the con-

textual information for CAVR. The next section describes the most

recent work extensions of RNN for recommendation systems.

3 RECURRENT NEURAL NETWORK MODELS
FOR RECOMMENDATION SYSTEMS

We �rst formalise the problem statement. Then, we brie�y describe

the MF-based approaches that exploit RNN models to model the

sequential order of users’ feedback (Section 3.2) and state-of-the-

art recurrent architectures that take contextual information into

account (Section 3.3). Note that these recurrent architectures were

not originally proposed for CAVR but are su�ciently �exible to

be applied to this task. For simplicity, we explain their proposed

architectures in the context of venue recommendation and use

a Gated Recurrent Unit (GRU) architecture [4] to explain their

proposed architectures. Finally, Section 3.4 summarises the elicited

limitations of these MF-based and RNN-based approaches. Later,

in Section 4, we describe our proposed recurrent architecture that

addresses these limitations.

3.1 Problem Statement

The task of context-aware venue recommendation is to generate a

ranked list of venues that a user might visit given his/her preferred

context and historical feedback (e.g. previously visited venues from

checkin data). Let ci, j,t ∈ C denote a user i ∈ U who has checked-

in into venue j ∈ V at timestamp t . Note that ci, j,t = 0 means

user i has not made a checkin at venue j at time t . LetV+i denote

the list of venues that the user i has previously visited, sorted by

time and let Si denote the set of sequence of checkins (e.g. Si =

{[c1], [c1, c2], [c1, c2, c3]}). si,t =
{
c = (i, j, t̀) ∈ C | t̀ < t

}
⊂ Si de-

notes the sequence of checkins of user i up to time t . We use sτ
i,t

to denote the τ -th checkin in the sequence. tτ denotes the times-

tamp of τ -th checkin. latj , lnдj are the latitude and longitude of

checkin/venue j.

3.2 Recurrent-based Factorisation Approaches

Factorisation-based approaches aim to approximate matrix C by

�nding a decomposition of C into latent factors. For example, the

predictions by an approach based on aMatrix Factorisation (MF) [17]

are generally obtained from a dot product of latent factors of users

U ∈ R |U |×d and venues V ∈ R |V |×d where d is the number

of latent dimensions (i.e. ĉi, j = ϕuTi ϕvj ), and ϕui and ϕvj are

the latent factors of user i and venue j, respectively. Various ap-

proaches [21, 28, 31, 35] have been proposed to extend MF by ex-

ploiting Recurrent Neural Network (RNN) models to capture the

user’s dynamic preferences from the sequence of user’s checkins. In

particular, given the sequence of a user’s checkins Si,t , the output of

a RNN model, hτ , is used to represent a user’s dynamic preferences

and modify the MF-based approaches as follows:

ĉi, j = (ϕui + hτ )
Tϕvj (1)

However, the operation that combines latent factors (ϕui ,ϕvj ) and

hidden state hτ need not be limited to the dot product and sum-

mation. Previous works [10, 11, 21] have shown that using either

element-wise product or concatenation operators between the la-

tent factors and hidden state hτ , with a non-linear function such

as a sigmoid function, are more e�ective than the simple dot prod-

uct operation in capturing the complex structure of user-venue

interactions. In this paper, we argue that the current RNN-based

factorisation approaches [21, 28, 31, 35] that exploit traditional

RNN models to capture the users’ dynamic preferences are not

e�ective, because they only consider the sequence of previously

visited venues and ignore the contextual information associated

with the checkins (Limitation 1).

3.3 Gating Mechanisms of Recurrent Models

In this section, we discuss extensions of traditional RNN models

proposed in previous works [1, 4, 26, 37]. Traditional RNN models

usually su�er from the vanishing gradient problem when the mod-

els are trained from long sequences of observed checkins [4, 13].

Recurrent units such as Long-Short Term Memory (LSTM) [13] and

Gated Recurrent Unit (GRU) [4] are extensions of traditional RNN

models that use gating mechanisms to control the in�uence of a

hidden state of previous step, hτ−1.

3.3.1 Gated Recurrent Units. To alleviate the gradient problem,

Chung et al. [4] proposed a variant of RNNmodels, Gated Recurrent

Units (GRU), which consists of gating mechanisms that control the

in�uence of the hidden state of previous unit hτ−1 in the current

unit at time step τ . Indeed, GRU can learn to ignore the previous

units if necessary, whereas traditional RNN models cannot. In par-

ticular, given the user’s sequence of checkins si,t and the user’s

dynamic preference at time step τ , the hidden state, hτ , is estimated

using the gating mechanisms, which are de�ned as:

[zτ , rτ ] = σ (Wϕvτj + Rhτ−1 + b) (2)

h̃τ = tanh(Wϕvτj + R(rτ ⊙ hτ−1)) (3)



hτ = (1 − zτ )hτ−1 + zτ h̃τ (4)

where zτ , rτ are update and reset gates, respectively. h̃τ is a can-

didate hidden state, ϕvτ
j
is the latent factor of the venue j that user

i visited at time step τ (i.e. sτ
i,t

). σ () and tanh() are the sigmoid and

hyperbolic tangent functions, respectively. R is a recurrent connec-

tion weight matrix that captures sequential signals between every

two adjacent hidden states hτ and hτ−1, using ⊙, which denotes the

element-wise product. Finally,W ,b are, respectively, the transition

matrix between the latent factors of venues, and the corresponding

bias. We note that θr = {W ,R,b} denotes the set of parameters of

the GRU units. The advantage of GRU over the traditional RNN

models is the ability to control the in�uence of the hidden state of

previous step hτ−1 based on the reset and update gates zτ , rτ as

well as the candidate hidden state h̃τ (see Equation (4)).

From now on, we explain the recurrent architectures proposed

in recent works [1, 26, 37] in terms of the GRU architecture, due to

its relative simplicity (i.e. less parameters compared to LSTM). It is

of note that none of these architectures were originally proposed

for CAVR but are su�ciently �exible to be applied to the CAVR task.

However, for reasons of uniformity, we explain all of the following

approaches in terms of the CAVR task, thereby replacing item with

venue, etc.

3.3.2 TimeGRU. While the GRU architecture can alleviate the

vanishing gradient problem, it cannot leverage contextual informa-

tion associated with the checkins. Zhu et al. [37] proposed to extend

the GRU units to incorporate the time interval (i.e. the transition

contexts) between successive checkins 1. The left box of Figure 2

illustrate their proposed GRU units. In particular, they modify the

candidate hidden state h̃τ (Equation (3)) with their proposed time

gate Tτ , which is de�ned as:

Tτ = σt (Wϕvτj + σ (∆tτWt ) + b (5)

h̃τ = tanh(Wϕvτj + R(rτ ⊙ Tτ ⊙ hτ−1) + b) (6)

where ∆tτ = tτ − tτ−1 is the time interval between checkins sτ
i,t

and sτ−1
i,t

. tτ captures the correlation between the current venue

vτ
j
and the time interval ∆tτ . Then, the time gateTτ is used to con-

trol the in�uence of previous hidden state hτ−1 in Equation (6). In

particular, the previous hidden state hτ−1 is not only controlled by

the reset gate rτ but also by their proposed time gate Tτ . We argue

that there are two limitations that arise. First, TimeGRU can only

incorporate the transition context (i.e. the time intervals between

successive checkins, ∆tτ ) but not the current context of the user,

(i.e. the ordinary context, such as the time of the day when the user

makes a checkin) (Limitation 2). Second, their proposed time gate

is not su�ciently �exible to incorporate di�erent types of transi-

tion context associated with the checkins such as the geographical

distance between two successive checkins (Limitation 3).

3.3.3 Context-aware GRU architectures. To address Limitation

2, Smirnova and Vasile [26] proposed a Contextual RNN architec-

ture that can incorporate both the transition and ordinary context

1Although Zhu et al. [37] used the LSTM architecture to explain their proposed re-
current units, they claimed that their proposed architecture is su�ciently �exible to
apply to a GRU architecture.

of observed checkins2. Their contributions were two fold: context-

dependent venue representations and contextual GRU units. As

shown in the second box in Figure 2, they proposed a concatenation

integration function to model context-dependent venue representa-

tions. In particular, at a given time step τ , the input of the GRU unit

is the concatenation of the latent factors of the ordinary and tran-

sition contexts as well as the latent factors of the venue. Since both

the ordinary and transition contexts for the time dimension are

continuous values (e.g. the timestamp tτ , time interval ∆tτ and ge-

ographical distance ∆дτ ), previous works [1, 14, 26, 36] have relied

on mapping approaches to represent such context. For example, the

ordinary context such as timestamp tτ can be split into discrete fea-

tures - month, hour of the day and day of theweek. Next, 12, 24 and 7

bits are used to represent the month, hour and day, respectively, and

convert the binary code into a unique decimal digit as a timestamp

id. Similarly, the transition context - e.g. as the time interval ∆tτ

can be quantised as the time interval id using the following function

ind(∆tτ ) = ⌈∆t
τ

δT
⌉, where δT is a 1-hour interval. This technique

can be similarly applied to quantise the geographical distance ∆дτ .

Then, the timestamp tτ , the time interval ∆tτ and the geograph-

ical distance ∆дτ can be represented as latent factors of time, time

interval and distance, ϕtτ ,ϕ∆tτ ,ϕ∆дτ ∈ Rd , respectively.

Next, Smirnova and Vasile [26] extended the transition matrix

W of the GRU unit to be context-dependent, thereby aiming to

capture the users’ dynamic contextual preferences. In particular,

they introduce the contextual matrix U , to condition the transition

matrixW of a GRU unit as follows:

zτ = σ (Wxτ ⊙ Uuxc
τ ) + Ruhτ−1

rτ = σ (Wxτ ⊙ Urxc
τ ) + Rrhτ−1

h̃τ = σ (Wxτ + Rh (rτ ⊙ hτ−1) ⊙ Uhxc
τ )

(7)

where xτ = [ϕvτ
j
;ϕtτ ;ϕ∆tτ ;ϕ∆дτ ] and xcτ = [ϕtτ ;ϕ∆tτ ;ϕ∆дτ ]

are their proposed context-dependent venue and context represen-

tations, respectively. Recently, building upon Smirnova and Vasile’s

work [26], Beutel et al. [1] explored various approaches to e�ectively

incorporate the latent factors of context xcτ into RNNmodels. They

proposed LatentCross, a technique that incorporates contextual in-

formation in the GRU, by performing an element-wise product of

the latent factors of context xcτ with the model’s hidden states hτ .

The third box in Figure 2 illustrates how LatentCross works. The

inputs of the GRU unit are the concatenation of all latent factors xτ

(black line) and the concatenation of latent factors of context xcτ

(red line). In particular, they modify Equation (4) with the latent

factors of context, xcτ , as follows:

hτ = (1 + xcτ ) ⊙ [(1 − zτ )hτ−1 + zτ h̃τ ] (8)

Note that both CGRU and LatentCross are the most recent works

that explore various techniques to incorporate context into recur-

rent models. However, we argue that there are two limitations in

their proposed GRU architectures. First, their proposed architec-

tures treat the ordinary and transition context similarly. We argue

that di�erent types of context might in�uence the user’s dynamic

preferences di�erently (Limitation 4). For example, the ordinary

2Although proposed and evaluated in the context of e-commerce item recommendation,
recall that we explain this approach in the context of venue recommendation.



Figure 2: Diagrams of existing recurrent architectures and our proposedContextual AttentionRecurrent Architecture (CARA).

context should in�uence the user’s contextual preference on a cur-

rent visited venue, while the transition context should in�uence

the correlation between the current and previously visited venues.

Second, there is a loss of granularity from the quantisation mapping

functions used to represent the transition context (Limitation 5).

3.4 Summary of Limitations

To conclude, in the above analysis, we have identi�ed �ve limita-

tions of RNN-based models from the literature [1, 26, 28, 31, 37]:

Limitation 1: There is an inherent disadvantage in the traditional

RNN models that model the user’s sequential order of checkins

by leveraging only the sequence of previously visited venues and

ignoring the context associated with the checkins.

Limitation 2: The GRU architecture for which this limitation ap-

plies (TimeGRU [26]) can only incorporate transition contexts.

Limitation 3: The time gating mechanism proposed by Zhu et

al. [37] is not su�ciently �exible to incorporate di�erent types of

context.

Limitation 4: GRU architectures for which this limitation applies

(CGRU [26] and LatentCross [1]) treat the ordinary and transition

context similarly.

Limitation 5: There is an inherent disadvantage in the GRU archi-

tectures (CGRU [26] and LatentCross [1]) that rely on the quantised

mapping procedures to represent the transition context.

Next, we describe our proposed Contextual Attention Recurrent

Architecture (CARA), which addresses all of the elicited limitations.

4 CONTEXTUAL ATTENTION RECURRENT
ARCHITECTURE (CARA)

We propose a novel Contextual Attention Recurrent Architecture

(CARA) for context-aware venue recommendation that e�ectively

incorporates di�erent types of contextual information from sequen-

tial feedback to model users’ short-term preferences (Section 4.2).

The proposed recurrent architecture consists of two types of gat-

ing mechanisms: namely Contextual Attention Gate (CAG) as well

as Temporal and Spatial Gates (TSG), which are described in Sec-

tion 4.2 and Section 4.3, respectively. In particular, our proposed

recurrent architecture with contextual gates aims to address all

Limitation 1-5. Later, in Section 6, we evaluate the e�ectiveness

of our proposed recurrent architecture in comparison with various

state-of-the-art context-aware RNN models.

4.1 Proposed Recurrent Architecture for
Context-aware Venue Recommendation

Our proposed CARA architecture is illustrated in the rightmost box

of Figure 2. The architecture consists of 4 layers: namely input, em-

bedding, recurrent and output layers. In particular, CARA aims to

generate the ranked-list of venues that a user might prefer to visit at

time t based on the sequences of checkins su,t . To address Limita-

tion 1, in the input layer, at time step τ , given a user i , venue j and

time tτ , we compute the time interval and geographical distance

between the given venue j and venue k previously visited at time

step τ − 1, as ∆tτ = tτ − tτ−1 and ∆дτ = dist(latj , lnдj , latk , lnдk ),

respectively. dist() is the Haversine distance function. In the embed-

ding layer, the latent factors of the user ϕui ∈ U , venue ϕvτ
i
∈ Q

and time ϕtτ ∈ M are generated. θe = {U ,V ,M} denotes the set of

parameters of the embedding layer. Note that we only consider the

time of checkins as the ordinary context but our proposed architec-

ture is �exible to support multiple types of ordinary context (e.g.

current weather of the day).

Next, the latent factors of venue ϕvτ
j
, the latent factors of the

given time ϕtτ and the contextual transition features ∆дτ and ∆tτ

are passed to the recurrent layer. The output of the recurrent layer

is the hidden state of the recurrent unit at time step τ , hτ , which is

de�ned as follows:

hτ = f (ϕvτj ,ϕt
τ
,∆tτ ,∆дτ ;θr ) (9)

where θr = {W ,R,U ,b} denotes the set of parameters of the recur-

rent layer. More details on the recurrent units in the recurrent layer

that generates the hidden state hτ are described in Section 4.2 and

Section 4.3 (Equations (13) - (18)). Finally, in the output layer, we es-

timate the preference of user i on venue j at timestamp t as follows:

ĉi, j,t = ϕuTi hτ (10)

where hτ ∈ Rd is the hidden state of the recurrent layer. Previous

works [1, 26, 37] have followed the pointwise paradigm, by using

the softmax function to estimate the probability distribution over

all venues given the hidden state hτ and update the parameter

based on the cross entropy loss (i.e. classi�cation loss). However,

others have shown that pairwise ranking losses result in more e�ec-

tive learning than those based on classi�cation loss [2, 20–22, 25].

Therefore, we apply the pairwise Bayesian Personalised Ranking

(BPR) [25] to learn the parameters Θ = {θe ,θr }, as follows:

J(Θ) =
∑

i ∈U

∑

si,t ∈Si

∑

(i, j,t )∈si,t

∑

k ∈V−si,t

log(σ (ĉi, j,t − ĉi,k,t )) (11)



Figure 3: Our proposed Contextual Attention Recurrent Ar-

chitecture (CARA). The Rectangle symbols indicate inputs

of the unit, a red-dashed rectangle symbol indicates the out-

put of the unit and the circle symbols are the units’ gates.

4.2 Contextual Attention Gate (CAG)

We now describe how we extend the traditional Gated Recurrent

Unit (GRU) to incorporate the ordinary context associated with the

observed checkins in order to address Limitation 2. In particular,

we further describe how to calculate the hidden state hτ in Equa-

tion (9). Inspired by [8], we propose the Contextual Attention Gate

(CAG), α ∈ Rd , which controls the in�uences of the latent factor

of time δtτ at each state as follows:

ατ = σ (Wα,hhτ−1 +Wα,tϕt
τ
+ bα ) (12)

The attention gate ατ (red circle in Figure 3) aims to capture the

correlation between the latent factor ϕtτ at current step τ and the

hidden state hτ−1 of previous step. Our proposed attention gate

aims to capture the in�uence of the user’s dynamic preferences

hτ−1 on the current context tτ . Then, we modify Equations (2)-(4)

with the attention gate ατ as follows:

[zτ , rτ ] = σ (Wϕvτj + Rhτ−1 +W (ατ ⊙ ϕtτ ) + b) (13)

h̃τ = tanh(Wϕvτj + R(rτ ⊙ hτ−1) +W (ατ ⊙ ϕtτ ) + b) (14)

hτ = (1 + (1 − ατ ) ⊙ ϕtτ ) ⊙ [(1 − zτ )hτ−1 + zτ h̃τ ] (15)

Unlike previous works [1, 26] that combine the latent factors of the

venues and time using the concatenation operation, i.e. [vτ ;ϕtτ ]

(see Section 3.3.3), we argue that these two latent factors should

be treated independently. Ideally, the ordinary context associated

with checkins represents the user’s contextual preferences abotu

the venue, while the latent factors of the venues represent charac-

teristics of the venues. Indeed, we can include the ordinary context,

e.g. the latent factor of time ϕtτ , into the GRU units in two ways:

namely at the beginning and the end of the GRU unit. Cui et al. [5]

described the inclusion of context features before the GRU unit

as pre-fusion (blue box in Figure 3), and the inclusion of context

features after the GRU unit as post-fusion (yellow box in Figure 3).

In particular, by including the latent factor of time tτ through pre-

fusion (Equations (13) & (14), tτ will a�ect the update of the hidden

state of the current GRU unit though the update and reset gates

zτ , rτ as well as the candidate hidden state h̃τ . However, by includ-

ing the latent factor of time ϕtτ through post-fusion (Equation (15)),

tτ have more e�ect on the hidden state hτ , the output of the GRU

unit, and hence a�ects the next hidden state of next step hτ + 1.

Our proposed attention gate ατ controls the in�uence of the latent

factor of time tτ on pre- and post- fusion. In particular, to address

Limitation 4, our proposed CARA architecture uses a CAG gate

to model the ordinary context and use TSG gates to model the

transition context, which is described in the next section.

4.3 Time-and Spatial-based Gates (TSG)

In the previous section, we explained how to extend the GRU units

to incorporate the ordinary context associated with observed check-

ins. As mentioned in Section 1, to e�ectively model the users’ se-

quential order of checkins, we need to take the transition context

into account. In this section, we describe how to extend the GRU

units to incorporate the transition context such as the time inter-

vals and the geographical distances between successive checkins.

The green-dashed boxes and purple circle in Figure 3 illustrate our

proposed Time- and Spatial-based Gates (TSG). To address Limita-

tions 3 & 5, inspired by the time gates proposed Zhu et al. [37], we

propose to extend their time gate to incorporate the geographical

distance between two checkins, ∆дτ , as follows:

Tτ = σt (Wtxϕv
τ
+ σ (∆tτWt ) + bt ) (16)

Gτ = σt (Wдxϕv
τ
+ σ (∆дτWд + bд)) (17)

where ∆tτ and ∆дτ are time interval and distances between check-

ins cτ and cτ−1, respectively. Note that unlike previous works [1, 18,

19, 26], our proposed TSG gates support using continuous values

for a transition context, hence they do not rely on the quantised

mapping procedure to represent a transition context. Then, we pro-

pose to combine these two gates using the element-wise product

TGτ = Tτ ⊙ Gτ and modify Equation (14) as follows:

h̃τ = tanh(Wϕvτj + R(rτ ⊙TGτ ⊙ hτ−1) +W (ατ ⊙ ϕtτ ) + b) (18)

The TGτ gate and the reset gate rτ together control the in�uence

of the hidden state of previous step hτ−1. Unlike the time gate pro-

posed by Zhu et al. [37], theTGτ gate takes both the time intervals

and the geographical distance of two successive checkins into ac-

count. Hence, even if the time interval between two checkins is

long, the in�uence of the hidden state hτ−1 may not be decreased

if the distance between the two checkins is short, based on the

assumption we mentioned in Section 1. Later in Section 6, we com-

pare the e�ectiveness of our proposed TSG gate in comparison with

the time gate approach proposed by Zhu et al. [37].

5 EXPERIMENTAL SETUP

In this section, we evaluate the e�ectiveness of our proposed Con-

textual Attention Recurrent Architecture (CARA) in comparison

with state-of-the-art recurrent models. In particular, to address

Limitations 1 - 5, we address the following research questions:

RQ1 Can we enhance the e�ectiveness of traditional recurrent ar-

chitecture by leveraging the ordinary and transition contexts

associated with the sequence of checkins?

RQ2 Is it important to model ordinary and transition contexts sep-

arately?

RQ3 Does the use of the absolute continuous values of the transition

context preserve the in�uence of successive checkins?

Furthermore, as discussed in Section 3.4, no previous work has

proposed a gatingmechanism that can incorporate multiple types of



Table 1: Statistics of the three used datasets.

Brightkite Foursquare Yelp

Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

transition contexts such as time-base context and the geographical

information of venues. Hence, our �nal research question:

RQ4 Can our proposed Time- and Spatial-based Gates (TSG) that

leverages multiple types of transition contexts (i.e. the time

intervals and geographical distances between successive check-

ins) enhance the e�ectiveness of traditional recurrent units in

capturing the user’s dynamic preferences?

5.1 Datasets & Measures

We conduct experiments using three publicly available large-scale

LBSN checkin datasets. In particular, to show the generalisation

of our proposed architecture across multiple LBSN platforms and

sources of feedback evidence, we use two checkin datasets from

Brightkite3 and Foursquare4, and a rating dataset from Yelp5. We fol-

low the common practice from previousworks [11, 21, 25] to remove

venues with less than 10 checkins. Table 1 summarises the statistics

of the �ltered datasets. To evaluate the e�ectiveness of our proposed

CARA architecture and following previous works [11, 21, 25], we

adopt a leave-one-out evaluation methodology: for each user, we se-

lect their most recent checkin as a ground truth and randomly select

100 venues that they have not visited before as the testing set, where

the remaining checkins are used as the training set. The context-

aware venue recommendation task is thus to rank those 101 venues

for each user given their preferred context (i.e. time), aiming to rank

highest the recent, ground truth checkin. We conduct two separate

experiments, namely: Normal Users (those with ≥ 10 checkins) and

Cold-start Users (< 10 checkins) to evaluate the e�ectiveness of our

proposed CARA architecture in the general and cold-start settings.

Recommendation e�ectiveness is measured in terms of Hit Ratio

(HR) and Normalized Discounted Cumulative Gain (NDCG) on the

ranked lists of venues – as applied in previous literature [11, 21, 31].

In particular, HR considers the ranking nature of the task, by taking

into account the rank(s) of the venues that each user has previously

visited/rated in the produced ranking, while NDCG goes further by

considering the checkin frequency/rating value of the user as the

graded relevance label. Finally, signi�cance tests use a paired t-test.

5.2 Baselines

We compare our proposed Contextual Attention Recurrent Archi-

tecture (CARA) with various baselines, which can be categorised as

the state-of-the-art RNN architectures and other factorisation-based

approaches. As mentioned before that some approaches and frame-

works may not be originally proposed for CAVR but are su�ciently

�exible to be applied to this task without any disadvantages. We

implement all baselines and our proposed approach using Keras6,

3https://snap.stanford.edu/data/
4https://archive.org/details/201309_foursquare_dataset_umn
5https://www.yelp.com/dataset_challenge
6https://github.com/fchollet/keras

a deep learning framework built on top of Theano7. Our imple-

mentations are released as open source8. The choice of recurrent

models is �xed to the GRU units proposed by Zhang et al. [4]. Ta-

ble 2 distinguishes various baselines into di�erent aspects as well

as indicate their limitations mentioned in Section 3.4. The summary

of the baselines are described below:

5.2.1 Recurrent Neural Network Architectures.

RNN. A traditional recurrent architecture proposed by Zhang

et al. [35] that only takes the sequence of venues into account and

ignores any contextual information associated with the checkins,

used by [21, 28, 31] (see Section 3.3.1).

STGRU. A Spatial and Temporal recurrent model proposed by

Liu et al. [19] that incorporates the transition context (i.e. the time

intervals and distance between checkins) (see Section 2).

CAGRU. An extension of STGRU proposed by Liu et al. [18],

which can incorporate both the ordinary and transition contexts

(see Section 2).

TimeGRU. An extension of the GRU architecture that includes

the time gate to incorporate the time interval between successive

checkins. It was proposed by Zhu et al. [37] (see Section 3.3.2).

CGRU. An extension of the GRU architecture that can incorpo-

rate multiple types of context. It was proposed by Smirnova and

Vasile [26] (see Section 3.3.3).

LatentCross. An extension of CGRU that supports pre and post

fusion inputs. It was proposed by Beute et al. [1] (see Section 3.3.3).

5.2.2 Factorisation Approaches.

MF. The traditional matrix factorisation proposed by Koren et

al. [17] that aims to accurately predict the users’ checkin on the

unvisited venues.

BPR. The classical pairwise ranking approach, coupled with ma-

trix factorisation for user-venue checkin prediction, proposed by

Rendle et al. [25].

GeoBPR. An extension of BPR that incorporate geographical

location of venues to sample negative venues that are far away

from the user’s previous visits. It was proposed by Yuan et al. [32].

STELLAR. A Spatial-TEmporaL LAtent Ranking framework for

CAVR that aims to recommend the list of venues based on the user’s

preferred time and last successive visits. It was proposed by Zhao

et al. [36]. Note that this is the only context-aware framework that

does not rely on the RNN-based approaches to model the users’

sequential order of checkins.

NeuMF. A Neural Matrix Factorisation framework9, proposed by

He et al. [11], which exploits Multi-Level Perceptron (MLP) models

to capture the complex structure of user-item interactions.

DRCF. ADeep Recurrent Collaborative Filtering framework, pro-

posed by Manotumruksa et al. [21], which extends NeuMF [11] to

exploit the traditional RNN to model the sequential order of users’

checkins. DRCF consists of two components, with each component

7http://deeplearning.net/software/theano
8https://github.com/feay1234/CARA
9https://github.com/hexiangnan/neural_collaborative_�ltering

https://snap.stanford.edu/data/
https://archive.org/details/201309_foursquare_dataset_umn
https://www.yelp.com/dataset_challenge
https://github.com/fchollet/keras
http://deeplearning.net/software/theano
https://github.com/feay1234/CARA
https://github.com/hexiangnan/neural_collaborative_filtering


Table 2: Summary of factorisation-based approaches and Gated Recurrent Unit architectures.

Factorisation Approaches Recurrent Neural Network Architectures

MF [17] BPR [25] GeoBPR [32] STELLAR [36] NeuMF [11] DRCF [21] RNN [35] STGRU [19] CAGRU [18] TimeGRU [37] CGRU [26] LatentCross [1] CARA

Neural networks × × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sequential-based × × × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Context-aware × × only geo ✓ × × × ✓ ✓ only time ✓ ✓ ✓

Ordinary/Transition × × × ✓ × × × only transition ✓ only transition ✓ ✓ ✓

Special gates × × × × × × × × × ✓ × × ✓

Limitations - - - - - - 1-5 2-5 2,4,5 4,5 4,5 4,5 -

having its own recurrent layer. Hence, to permit a fair compari-

son, we only compare CARA with its best-performing component,

GMRF, which uses an element-wise product to combine the latent

factors and the hidden units of the RNN model [21, Section 4.2]).

5.3 Recommendation Parameter Setup

Following [11, 21], we set the dimension of the latent factors d and

hidden layers hτ of our proposed CARA architecture and all of the

RNN-based approaches to be identical: d = 10 across both datasets.

Following He et al. [11], we randomly initialise all embeddings and

recurrent layers’ parameters,θr ,θe ,θh , with a Gaussian distribution

(with a mean of 0 and standard deviation of 0.01) and apply the mini-

batch Adam optimiser [16] to optimise those parameters, which

yields faster convergence than SGD and automatically adjusts the

learning rate for each iteration. We initially set the learning rate to

0.00110 and set the batch size to 256. As the impact of the recurrent

parameters such as the size of the hidden state, have been explored

in previous work [11, 12, 27], we omit varying the size of the hidden

layers and the dimension of the latent factors in this work. Indeed,

larger sizes of hidden layers and dimensions may cause over�tting

and degrade the generalisation of the models [11, 12, 27].

6 EXPERIMENTAL RESULTS

Table 3 reports the e�ectiveness of various state-of-the-art GRU rec-

ommendation architectures, in terms of HR@10 and NDCG@10 on

the three used datasets. Similarly, Table 4 reports the performance

of our proposed CARA architecture in comparison with various

factorisation approaches (as described in Section 5.2.2). Both ta-

bles contain two groups of rows, which report the e�ectiveness of

various approaches under the Normal Users and Cold-Start Users

experiments, respectively.

Firstly, on inspection of our reimplementations of the state-of-

the-art GRU baselines in Table 3, we note that the relative venue rec-

ommendation quality of the baselines on the three datasets in terms

of both HR and NDCG are consistent with the results reported for

the various baselines in the corresponding literature [1, 18, 19, 26,

35, 37]. For instance, the extensions of the GRU architecture that in-

corporate the contextual information (LatentCross, CGRU, CAGRU,

STGRU and TimeGRU) outperforms RNN across three datasets. Sim-

ilarly, among the factorisation baselines in Table 4, we also observe

the relative improvements of GeoBPR, STELLAR, NeuMF and DRCF

compared to MF and BPR across the three datasets. While previous

works (e.g. [1, 11, 26, 37]) used di�erent datasets, our reimplemen-

tations of their approaches obtain similar relative improvements.

Comparing CARA with various GRU architectures in Table 3 on

the Normal Users experiment, we observe that CARA consistently

and signi�cantly outperforms all the GRU baselines, for HR and

NDCG, across all datasets. In particular, CARA improves NDCG

by 5.47-8.93% and 2.42-10.50% over the recently proposed GRU

10The default learning rate setting of the Adam optimiser in Keras.

Table 3: Performance in terms of HR@10 and NDCG@10

between various approaches. The best performing result is

highlighted in bold; − and ∗ denote a signi�cant di�erence

compared to the best performing result, according to the

paired t-test for p < 0.05 and p < 0.01, respectively.

Brightkite Foursquare Yelp

Model HR NDCG HR NCDG HR NDCG

Normal Users

RNN 0.6657* 0.4407* 0.8302* 0.5762* 0.4164* 0.2146*

TimeGRU 0.7005* 0.4816* 0.8570* 0.6167* 0.4342* 0.2240*

STGRU 0.6888* 0.5493* 0.8496* 0.6865* 0.4254* 0.2365*

CAGRU 0.7180* 0.5545* 0.8498* 0.6474* 0.3799* 0.1989*

CGRU 0.6969* 0.5659* 0.8592* 0.6985* 0.5194* 0.3005*

LatentCross 0.7063* 0.5727* 0.8616* 0.6964* 0.5210* 0.2991*

CARA 0.7385 0.6040 0.8851 0.7154 0.5587 0.3272

Cold-Start Users

RNN 0.6959* 0.4550* 0.8247 0.5260* 0.2420* 0.4540*

TimeGRU 0.7314* 0.5071* 0.8182 0.5788* 0.2398* 0.4592*

STGRU 0.7081* 0.5686* 0.7273* 0.5722* 0.2543* 0.4404*

CAGRU 0.7628 0.6035* 0.8377 0.6353 0.2205* 0.4055*

CGRU 0.7054* 0.5788* 0.7662* 0.5996- 0.3325* 0.5524*

LatentCross 0.7108* 0.5811* 0.8052* 0.6600 0.3223* 0.5398*

CARA 0.7648 0.622 0.8636 0.6505 0.3493 0.5748

architectures CAGRU, CGRU and LatentCross, for the Brightkite

and Foursquare checkin datasets, respectively. These results imply

that our proposed CARA architecture with Contextual Attention

Gate (CAG) and Time-and Spatial-based Gate (TSG) is more e�ec-

tive than the state-of-the-art GRU architectures in modelling the

sequences of users’ checkins. Within the second groups of rows

in Table 3, we further analyse the e�ectiveness of our proposed

CARA architecture by comparing with the GRU baselines in the

Cold-Start Users experiment. Similar to the results observed from

the Normal Users experiment, CARA consistently and signi�cantly

outperforms all GRU baselines across three datasets in terms of HR

and NDCG, except for NDCG on the Foursquare dataset, where La-

tentCross is statistically indistinguishable from CARA (di�erence in

HR < 1.5%). Next, we note that unlike the Brightkite and Foursquare

checkin datasets, the Yelp dataset consists of only user-venue rat-

ings, and hence the sequential properties of visits to venues cannot

be observed. Consequently, on both normal and cold-start user ex-

periments, the performances of several GRU baselines (TimeGRU,

STGRU and CAGRU) that consider the contextual information of

the ratings are as e�ective as the RNN baseline that only considers

the sequence of the user’s ratings. In contrast, our proposed CARA

architecture, which controls the in�uence of previous ratings based

on both the time interval and geographical distance, is still the most

e�ective across the di�erent types of datasets. Overall, in response

to research question RQ1, we �nd that our proposed CARA archi-

tecture, which leverages the sequences of users’ checkins as well as

the ordinary and transition contexts associated with the checkins,

is e�ective for CAVR for both normal and cold-start users.



Table 4: As per Table 3; comparison between our proposed

CARA architecture and various factorisation baselines.

Brightkite Foursquare Yelp

Model HR NDCG HR NDCG HR NDCG

Normal Users

MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*

BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4992* 0.2691*

GeoBPR 0.7339 0.4672* 0.8216* 0.5395* 0.5570 0.3020*

STELLAR 0.7267* 0.5635* 0.8751* 0.6984* 0.5356* 0.2969*

NueMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4927* 0.2734*

DRCF 0.7363 0.5670* 0.8805 0.6814* 0.5209* 0.2890*

CARA 0.7385 0.6040 0.8851 0.7154 0.5587 0.3272

Cold-Start Users

MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*

BPR 0.7519 0.4907* 0.7792- 0.4961* 0.5273* 0.2946*

GeoBPR 0.8093 0.5262* 0.8312 0.5486* 0.5802 0.3202*

STELLAR 0.7406* 0.5580* 0.8052- 0.6007- 0.5537* 0.3147*

NueMF 0.7160* 0.5894* 0.7922- 0.6227 0.5102* 0.2956*

DRCF 0.7409* 0.5618* 0.8442 0.6542 0.5399* 0.3083*

CARA 0.7648- 0.6220 0.8636 0.6505 0.5748 0.3493

In addressing research questions RQ2 and RQ4, we compare

CARA with GRU architectures that consider both the ordinary

and transition context (CAGRU, CGRU and LatentCross). Note that

these GRU baselines treat the ordinary and transition context simi-

larly and rely on the quantised mapping procedures to represent

the contexts. However, as mentioned in Section 3.3.3, we argue

that di�erent types of context might in�uence the user’s dynamic

preferences di�erently. In addition, using the mapping procedure

to convert the continuous values of the transition context can lead

to a loss in granularity. From the results in Table 3, we observe that

our proposed CARA architecture that leverages the absolute contin-

uous values of the transition context (i.e. the time interval ∆tτ and

the geographical distance ∆дτ – see Section 4.3) is more e�ective

than the CAGRU, CGRU and LatentCross baselines in capturing

the transition e�ects between successive checkins. In particular,

our proposed Contextual Attention Gate (CAG) enables the CARA

architecture to treat the ordinary and transition separately, while

these GRU baselines do not do so.

Next, we compare our proposed CARA architecture with the

state-of-the-art factorisation approaches. From the �rst group of

rows in Table 4, we observe that CARA consistently and signif-

icantly outperforms all the factorisation baselines across three

datasets in terms of HR and NDCG. In particular, comparing with

STELLAR, the state-of-the-art CAVR that considers both the con-

textual information and the sequences of users’ checkins, CARA

obtains 7.19% and 10.21% improvements in terms of NDCG for

Brightkite and Yelp datasets, respectively. In addition, comparing

with DRCF, the recent DNN framework that exploits RNN models

to capture the users’ dynamic preferences, our proposed CARA ar-

chitecture signi�cantly outperforms DRCF by 6.53%, 5% and 13.22%

in terms of NDCG for Brightkite, Foursquare and Yelp datasets,

respectively. Furthermore, we also observe that CARA signi�cantly

outperforms STELLAR and DRCF by 10-13% in terms of NDCG for

the Brightkite and Yelp datasets.We also highlight that GeoBPR uses

an advanced geo-based negative sampling technique [32], while

CARA uses traditional negative sampling, similar to BPR. CARA is

as e�ective as GeoBPR in terms of HR on Brightkite and Yelp (i.e. no

signi�cant di�erences are observed), while using a less advanced

sampling technique. We underline that CARA can be adapted to

use GeoBPR’s negative sampling, which we leave to future work.

We further investigate the e�ectiveness of our proposed CARA

architecture and the GRU baselines under di�erent settings. In par-

ticular, Figure 4 presents the performances on the Brightkite and

Yelp datasets11 – in terms of HR@10 and NDCG@10 – of various

GRU architectures, by considering the users with particular time

intervals ∆t (hours) and geographical distances ∆д (km) between

their last checkin and ground-truth checkin. Regarding the e�ec-

tiveness of CARA, we observe that CARA consistently outperforms

all GRU baselines in terms of HR and NDCG, while CARA outper-

forms the GRU baselines in term of NCDG for the Brightkite dataset.

In particular, with respect to research question RQ4, CARA consis-

tently outperforms TimeGRU in terms of HR and NDCG across the

Brightkite and Yelp datasets. These results imply that our proposed

CARA architecture, which consists of Time- and Spatial-basedGates

(TSG), is more e�ective than TimeGRU, the GRU baseline that con-

siders only the time intervals. Therefore, by considering both the

time interval and the geographical distance between two succes-

sive checkins, CARA can generate better recommendations than

TimeGRU. Next, to address research question RQ3, we compare

CARA with CGRU and LatentCross, the GRU baselines that rely

on the quantised mapping procedures to represent the transition

contexts (Limitation 4), on the Yelp and Brightkite datasets11. The

results from Figure 4 demonstrate that our proposed CARA archi-

tecture, which supports the continuous values of the transition

contexts, outperforms CGRU and LatentCross on both settings (i.e.

�xed geographical distances ∆д = 1 km and ∆д = 5 km).

Furthermore, Figure 4 demonstrates that the e�ectiveness of all

approaches for the Brightkite dataset decreases as the time intervals

between two successive checkins increases because users are less

likely to be in�uenced by venues they visited long time ago. More-

over, the experimental results using a �xed geographical distance

of ∆д = 1 km on both datasets demonstrate the ability of CARA in

capturing the users’ dynamic preferences (as discussed in Section 1).

In particular, even when the time interval between two checkins

is long (e.g. more than 864 hours) but the geographical distances

are small, CARA still outperforms all baselines, demonstrating the

value of learning using nearby checkins as well as recent checkins.

7 CONCLUSIONS
In this paper, we proposed a novel Contextual Attention Recurrent

Architecture (CARA) for Context-Aware Venue Recommendation

(CAVR), positioned within �ve elicited limitations with respect to

the state-of-the-art GRU architectures that adapt GRU units. In

particular, our proposed architecture consists of two gating mecha-

nisms: namely 1) the Contextual Attention Gate (CAG) that con-

trols the in�uence of the ordinary and transition contexts on the

users’ dynamic preferences and 2) the Time-and Spatial-based Gates

(TSG) that control the in�uence of the hidden state of previous GRU

units based on the time intervals and geographical distances be-

tween successive checkins. Our comprehensive experiments on

three large-scale datasets from the Brightkite, Foursquare and Yelp

commercial LBSNs demonstrate the signi�cant improvements of

our proposed CARA architecture for CAVR in comparison with

11While Figure 4 only shows results for Brightkite and Yelp, the results for Foursquare
– omitted for lack of space – are consistent.



Figure 4: Performance between our proposed CARA architecture and various GRU architectures on the Brightkite and Yelp

datasets by varying the time interval ∆t in term of hours with the �xed values of the geographical distances ∆д (1 and 5 km).

various state-of-the-art GRU architectures, as well as various recent

factorisation approaches, in both normal and cold-start settings.

Indeed, signi�cantly CARA improves NDCG by 5-13% over the

recent DRCF framework [21] across the three datasets. For future

work, we plan to extend the CARA architecture to incorporate ad-

ditional information such as the social relationships between users

to further improve the quality of recommendation for CAVR.
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