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A contiguity-enhanced k-means clustering algorithm for 

unsupervised multispectral image segmentation 

James Theiler and Galen Gisler 

Astrophysics and Radiation Measurements Group, NIS-2 

Nonproliferation and International Security Division, MS-D436 
Los Alamos National Laboratory, Los Alamos, NM 87545 USA 

ABSTRACT 

The recent and continuing construction of multi- and hyper-spectral imagers will provide detailed data cubes with 

information in both the spatial and spectral domain. This data shows great promise for remote sensing applications 

ranging from environmental and agricultural to national security interests. The reduction of this voluminous data to 

useful intermediate forms is necessary both for downlinking all those bits and for interpreting them. Smart on-board 

hardware is required, as well as sophisticated earth-bound processing. 

A segmented image (in which the multispectral data in each pixel is classified into one of a small number of 

categories) is one kind of intermediate form which provides some measure of data compression. Traditional image 

segmentation algorithms treat pixels independently and cluster the pixels according only to their spectral information. 

This neglects the implicit spatial information that is available in the image. 

We will suggest a simple approach - a variant of the standard k-means algorithm - which uses both spatial and 

spectral properties of the image. The segmented image has the property that pixels which are spatially contiguous 

are more likely to be in the same class than are random pairs of pixels. This property naturally comes at some cost 

in terms of the compactness of the clusters in the spectral domain, but we have found that the spatial contiguity and 
spectral compactness properties are nearly “orthogonal,” which means that we can make considerable improvements 

in the one with minimal loss in the other. 

Keywords: algorithm, image segmentation, clustering, k-means 

One might wonder why anyone is interested in such a n  unpromising problem, and whether or not it is 

even possible in principle to  learn anything of value from unlabelled samples. 

- Duda and Hart, Pattern Classification and Scene Analysis, 1973. 

1. INTRODUCTION 

Increasingly, in remote sensing of the earth and of other planets by orbiting satellites, and in observational astronomy, 

image data are acquired simultaneously in several distinct spectral bands. For example, Fig. 1 shows two scenes 
imaged by the Landsat Thematic Mapper in seven spectral bands. The number of spectral bands available on modern 

sensors is growing, and hyperspectral systems can have hundreds or more. The challenges involved in downlinking, 

reducing, analyzing, and interpreting such huge datacubes are considerable. Such datasets are rarely “labelled” with 

information about ground (or sky) truth, because such information is expensive to  acquire, and difficult to register. 
One is led to  ask: what can be learned from the unlabelled data? 

In the context of multispectral imagery, a natural suggestion is to cluster the individual pixels into a small number 

of classes, each representing a different spectral type, and then to segment the image into those classes. The idea is 

that an image segmented by spectral category can be more informative than the image in any one of the individual 

spectral bands. This kind of segmentation is often used for preliminary or exploratory data analysis, because it 
provides a compression of detail, something that is increasingly important as the raw size of multispectral datacubes 

continues to  grow. As well as data compression - both informally so that the human can interpret the information 

without being overwhelmed by it, and more formally so that hardware data storage and bandwidth requirements 
can be reduced - there are other motivations for clustering and segmentation of multispectral imagery. 

{ jt,ggisler)Qlanl. gov. 
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(a) Hatch  (b) Grants 

Figure 1. Two seven-band 151x151 pixel Landsat images, taken of scenes (a) near Hatch, New Mexico; and (b) 

near Grants, New Mexico. The spectral bands for the Landsat images are in the visible and infrared: 0.45-0.53pm, 

0.52-0.60pm, 0.63-0.69pm, 0.76-0.90pm, 1.55-1.75pm, 10.40-12.50pm, and 2.08-2.35pm. The lower resolution at the 

much longer wavelength is evident in the sixth channel. 

0 Combined with a small number of labelled samples, a large quantity of unlabelled samples can provide a way 

to “tune up” an algorithm for predicting the labels. The idea goes back at least two decades,lW3 but good 
practical algorithms are still being de~eloped.~ Castelli and Cover5 have argued that in the limit of many 

unlabelled samples, the labelled samples are “exponentially valuable.” This is good news to remote sensors, 
for it says that a little ground truth can go a long way. 

Clustering is also useful for nonstationary data. If the properties of labelled groups (or, of the sensor which 

is taking the data) change slowly over time, clustering can be used to follow those changes. Schowengerdt‘ 
[pp. 196-2021 for instance notes that the segmented images are less sensitive than the raw data to  atmospheric 
conditions. 

0 For remote detection and characterization of gaseous plumes or land-based targets, the ground scene ceases 

to be the signal of interest, and becomes instead the clutter. Clustering may provide a way of reducing this 
background clutter, because the within-class variance of a segmented image can be much smaller than the 

overall variance of the image as a whole. The issues of clustering and pixel mixing are somewhat at odds with 

each other, but a recent paper by Stocker and Schaum7 points to one approach for combining them. 

Our interest here is in “partitional” clusterings - these are single partitions of the data into disjoint classes. 

Hierarchical clusterings provide a “tree” of classes; the data is divided into clusters, those clusters are divided into 
subclusters, and so on. fizzy clusterings are single partitions of the data, but individual data points can be partial 

members of different classes. 

2. SPATIO-SPECTRAL CLUSTERING 

Standard cluster algorithms treat the objects they are clustering independently. Applied to multispectral data cubes, 
these algorithms (and many multispectral analysis methods) treat the pixels as if they were independent. This 

ignores spatial aspects, such as texture and contiguity, which for image data can potentially be very informative. If 
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one wants to take into account this spatial information, one must either alter the data representation so that each 

pixel is extended to include information about its neighbors, or else one must modify the algorithms themselves. 

If one includes spatial information in the data representation, then one can use the old algorithms. A very general 
(and very expensive) way to account for the relationships of neighboring pixels is to embed the all the neighboring 

pixels into components of the pixel of interest. For instance, if we consider a 3 x 3 neighborhood of a 7-channel 

Landsat image, then the dimension of each enhanced pixel is 3 x 3 x 7 = 63. Standard algorithms can then in 

principle be applied to these 63-dimensional objects, but usually dimension reduction techniques, such as principal 

components analysis, will be needed to reduce the dimensionality as a preprocessing step. Although this approach 

is in principal more general, it can in practice be more limiting because the rapid increase in dimensionality with 

neighborhood size constrains the neighborhood to be small. A more directed approach is to limit the number of 

added components by deciding beforehand what kind of spatial relationships to include. Texture-specific features, 

for instance, can be specified with convolutions of the image with spatial filtem8 

On the other hand, it is also possible to modify the algorithms themselves, and continue to work on the data 
in its original lower-dimensional representation. This is the approach that we take in our “contiguity-enhanced” 

clustering algorithm because the information we desire from a neighboring pixel (namely, which class it belongs to) 

is not available from the image data itself. 

3. OBJECTIVE MEASURES OF CLUSTER QUALITY 

Formally, a clustering is a partition of a discrete set of objects into a smaller discrete set of classes. A “good” 

clustering is one where objects in the same class are more or less alike, and objects in different classes are in some 

sense different. It is important to make a distinction between clustering that seeks to  distinguish qualitatively 

different types (ash versus birch), even without labelling those types, and clustering that segregates quantitative 

features (tall and thin versus short and fat). While the ambitious first goal often stands out as a kind of holy grail for 

clustering algorithms, the more pedestrian second goal can still be quite useful in a number of practical situations. 

These goals are not mutually exclusive, but they are in our view different. With the first goal in mind, one 
implicitly assumes that the data have some underlying multimodal structure; if not, then it is “invalid” to be 

clustering the data at all. Indeed, Jain and Dubesg devote an entire chapter of their book to  various measures of 
cluster validity. When the goal is to identify qualitatively distinct types, then it is also important to determine the 
“correct” number of such types. Our approach in this paper, however, is more oriented toward the second goal. 

We seek measures to quantify “how good” a clustering is without attempting to judge whether it is “good enough.” 
And we will generally take the number K of clusters as an input parameter to be specified by the user instead of an 

output value determined by the algorithm. We will only briefly comment on reasons for preferring some values of K 
over others. 

3.1. Notation 

0 Let k index the clusters, and 
0 Let K be the total number of clusters. 
0 Let i index the samples (the “pixels” in this case), so that we can 
0 Let xi be the data in the i’th sample. Note that in general, xi  is a vector-valued quantity. 

0 Let k ( i )  denote the cluster to which xi belongs. 
0 Let I k  denote the set of i’s which belong to the k’th cluster. 

0 Let nk be the number of elements in I k ;  i.e., the number of samples in the k’th cluster, and 

0 Let N = Ck nk be the total number of samples. 

0 Let Ck = 
0 Let c = Ck nkck/N = xi C k ( i ) / N  be the center of the entire data set. 

xi /nk  be the center of the k’th cluster, and 

3.2. External and Internal measures 

An external measure of cluster quality compares the clustering obtained using the data xi  with external information 

(such as ground truth). For instance, xi  might measure radiance in a number of spectral bands, and the categories of 
interest might be different kinds of land use (urban, desert, cultivated, etc.), different species of dominant vegetation, 
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etc. Choosing a good external measure of cluster quality is obviously application-dependent, and in practice boils 

down to comparing the similarity of two clusterings: one from remotely sensed data and one from ground truth. 

Since the clusters are by definition unlabelled, the similarity measure should not depend on such labels - in other 

words, there is no a priori way to “match up” the clusters from the different clusterings. If the number K of clusters 

is even moderately large, the [K(K  - 1)/2]! possible combinations rules out trying them all. We have employed an 
approach suggested by by Rand,lo which is O ( N 2 ) .  This is also expensive, but it at least avoids the combinatorial 

explosion. Basically, all sample pairs (xi, zj) are considered. For a given sample pair, and for a given clustering, the 
two members of the pair are either in the same cluster or are in different clusters. If the pair members are in the 

same cluster for both clusterings, or if the pair members are in different clusters for both clusterings, then a running 

sum is incremented. This sum is divided by the total number of sample pairs to produce a measure of similarity that 

varies from 0 to 1, with identical clusterings achieving a similarity of 1. 

But for remotely sensed data, it is usually difficult to obtain this kind of external information registered on a pixel- 

by-pixel basis. Therefore, we ask for internal measures of cluster quality. Jain and Dubesg speak of these internal 

measures in the context of cluster validity, but we are not really concerned with whether or not our clusterings are 

“valid” in some absolute sense; instead, we are interested in comparing the relative “value” of clusterings. 

The first and main such measure is the compactness of the individual clusters. One wants items within the same 

category to be as nearly identical as possible. A natural measure of (non)compactness is the average within-cluster 

variance. For a single cluster, the variance is given by 

and averaging over the K clusters gives 

K N 

k = l  i= 1 

It is useful to normalize this value by the overall variance V, = (xi - c ) ~ / N  of the data to obtain the normalized 

mean squared error: 

This value varies from zero to one, with smaller values indicating better (Le., more compact) clusterings. 

For a fixed number K of clusters, this measure of compactness provides a reasonable, objective, and (more or 
less) application-independent way to compare the quality of different clusterings. But one can always reduce the 

within-cluster variance by increasing K ,  all the way to the extreme limit where each sample is its own cluster. One 

can speak of an optimal clustering at a fixed K ,  but the compactness measure cannot by itself identify an optimal K .  

A related, but more complicated measure, suggested by Coggins and Jaiqs defines the isolation of a single 
cluster as the ratio of the distance to  the nearest cluster, divided by the the (rms) average radius of the cluster - 
this is a kind of “number of sigmas” to the nearest cluster: 

A large value suggests a compact well-isolated cluster. This measure was used to characterize texture-based image 

segmentations, and the authors reported an empirically determined threshold of 1.70, below which a cluster was not 

considered well-isolated. 

For clustering that is used in image segmentation, there is also a premium - albeit a secondary one, compared 

to compactness - on contiguity. It is generally preferred that adjacent pixels be in the same category. There is an 
implicit assumption here that what we are looking at on the ground has a spatial decorrelation length that is much 
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larger than a pixel's field of view. We define the (dis)contiguity at a single pixel as the fraction of its neighbors that 

are not in the same class: 

Number of adjacent pixels j for which k ( i )  # k ( j )  

Number of adjacent pixels 
Di = (5) 

The number of neighboring pixels for a two-dimensional image is either eight or four, depending on whether diagonal 

neighbors are included. We have found better performance when the diagonal neighbors are used, so our results are 

all based on eight neighboring pixels. The (dis)contiguity of a cluster is given by 

i E I k  

and finally the global measure of (dis)contiguity for the clustering is 

(7) 

K N 

D = nkDk/N = DilN.  

This value D varies from zero to one, with smaller values again indicating better (in this case, more contiguous) 

clusterings. 

k = l  i=l 

4. K-MEANS ALGORITHM 

There are several variants of the k-means clustering algorithm, but most variants involve an iterative scheme that 

operates over a fixed number of clusters, while attempting to satisfy the following properties: 

1. Each class has a center which is the mean position of all the samples in that class. 

2. Each sample is in the class whose center it is closest to. 

One usually starts with an initial clustering,ll and then loops through the samples, reassigning each to the cluster 
whose center it is closest to, and then recomputes the center locations. The algorithm continues until no more samples 

are reassigned. At that point, both properties will be satisfied, though the obtained clustering is not necessarily (or 

usually) the only partition of the data that satisfies these two properties. 

The term k-means is attributed (by Gowda12) to MacQueen,13 whose first implementation involved only a single 

pass through the data. One of the earliest iterative implementations is attributed (by MacQueen14) to Forgy,l5 

though in that implementation (as well as some more recent ones16), the cluster centers were not recomputed until 
after a full pass through the data. But in fact it is straightforward (and computationally inexpensive) to  recompute 

the centers each time a point is moved. Specifically, upon moving the point xi from cluster j over to cluster I C ,  one 

updates according to: 

cj t (njcj - x i ) / ( n j  - 1) 

c k  t (nkck -k xi)/('% -k 1) 

nj t nj - 1 

nk 4- n k + 1  

Recomputing centers on the fly also has the advantage that it prevents the formation of empty clusters. 

The general effect of these moves is to produce more compact clusters. In fact, each time a point is reassigned to 

a new cluster, the overall (non)compactness measure V ,  as defined by the average within-cluster variance in Eq. (2), 

is reduced. In general, reassigning a point from the cluster j to cluster k leads to a change 

2 (xi - C j )  . nk 2 n j  

nj - 1 
A V = -  (xi - ck) 

nk + 1 

where the variables nk, C k ,  nj,  and cj correspond to their values before the point is actually moved. Note that this 
expression takes into account the fact that the centers change when a point is moved from one cluster to another. 
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Although moving a point to a cluster with a nearer center necessarily decreases V ,  it is also possible to decrease 

V with a move to a cluster whose center (before the move) is not the nearest. If we take as our goal to minimize 

the within-cluster variance (instead of the less stringent goal to satisfy the above two criteria), then it makes sense 

to use AV < 0 as the condition for making a move. Spath17 calls this approach the “exchange” method, and the 

simpler rule that moves points to the nearest cluster center the “minimal distance” method. In both cases, every 

move reduces the within-cluster variance V ,  so the algorithm is “greedy” and subject to trapping in local minima; 

but on the other hand, there is no danger that the algorithm will get into an “infinite loop” moving the same point 

back and forth between clusters. 

Note that although the computation of V is in general an O ( N )  process, AV is computed in 0(1)  time.18 And 
although the computation of cluster centers from scratch is an O(nk) process, the recomputation after adding or 

deleting a point is O(1). Thus, although the k-means algorithm minimizes a global criterion, the computations at 

each step are local. 

for speeding up the 
k-means algorithm by setting up a “safe” radius around each cluster center. This radius is half the distance to 
the nearest cluster center.lg If a point is within the safe radius, then it should not be moved, and one can avoid 

computing the K distances that are normally required to decide whether or not to move it. This can in principle 

be a real time saver, because after the first few iterations, most points have settled into their final clusters. We 

found that this approach did provide some speedup when the number of clusters K was small, but every time a 

point is moved from one cluster to another, two of the cluster centers change, and one has to recompute all of the 
cluster-cluster distances in order to obtain the new safe radii. On the other hand, if the k-means were implemented 

so that it recomputed centers only after a full pass through the data, and if the clusters are reasonably well isolated, 

then considerable speedup should be possible. 

Our implementation also included (as an option) a trick suggested by Montolio et  

In our implementation, the number K of clusters is fixed. Much of the effort in the development of k-means-style 

clustering algorithms has been aimed at discovering good heuristics for choosing this K.  The k-means algorithm is 
often the “inner loop” of such algorithms for which splitting and merging of clusters are permitted operations as 
well as moving samples from cluster to ~ 1 ~ s t e r . ~ ~ * ~ ~ - ~ ~  We remark that many algorithms which adaptively infer the 

appropriate K from the data still require an input variable which serves essentially the same purpose: a distance 

threshold, for instance, or a “vigilance” parameter.23 

4.1. Contig-k-means 

Although the k-means algorithm was originally designed to  minimize the average within-cluster variance of a clus- 

tering, it is often not difficult to modify the algorithm so that it optimizes other conditions. This kind of extension 
is especially useful if moving a point from one cluster to another leads to a change in the new global criterion which 

can be computed locally in O(1) time. 

The contig-k-means algorithm is such an algorithm. The idea, an early version of which was briefly described in 

Ref. 24, is to  minimize a linear combination of (non)compactness and (dis)contiguity. This requires that the user 
specify a parameter X to define the relative importance of these two properties. Now, the goal is to minimize 

E = AD + (1 - X)V*. 

Since the (dis)contiguity D can be expressed as a sum of (dis)contiguities at each pixel, the effect on D of moving 

a point from cluster j to cluster k is easy to compute. Basically, one computes Di before and after the move; the 
difference is divided by N and then multiplied by two (to account for the changes in contiguity at neighboring pixels) 
to produce A D .  

5. ILLUSTRATION ON LANDSAT DATA 

We used the multispectral Landsat images shown in Fig. 1 to illustrate and compare k-means and contig-k-means 
clustering. We specified K = 4 clusters, and for a range of values of the contiguity weight A, applied the contig- 
k-means iterations until a stable clustering was achieved. Fig. 2 illustrates some of the segmentations that were 

found. These segmentations were generated by first clustering the data with X = 0, and then using that clustering 

as an initial condition for X = 0.1, and so on for increasing A. This was found to produce better clusterings (smaller 

I Proc SPIE 3159 (1997) 61 



. .  
values of the criterion in Eq. (13)) than those generated by a fixed X from a random’l starting condition. However, 
this approach did not work well for large A, where trapping in local minima becomes a real problem. This is most 

obvious for the case X = 1, where contiguity is to be optimized with complete disregard for the spectral properties. 

The optimal clustering here has all pixels in one cluster, giving D = 0 and V* = 1. 

The most notable feature of contig-k-means clustering is that we can make considerable gains in the contiguity 

of a clustering with virtually no loss to the compactness (up to a point). This is illustrated in Fig. 3. A simple 

alternative to contig-k-means for producing contiguity-enhanced clusterings is to spatially smooth the clusterings. 

Schowengerdt6 [pp. 187-1901 describes several approaches for this. Perhaps the simplest, attributed to Goldberg et  
~ l . , , ~  is to do a majority-rule smoothing of the clustering itself. The dashed lines in Fig. 3 illustrate the effect of 

successive smoothings with a 3 x 3 kernel. Again, one trades compactness for contiguity, though one has less control 

over how much of each is traded, and in general pays a higher cost in compactness for the same benefit in contiguity 

than one does for the contig-k-means algorithm. On the other hand, the simple smoothing algorithm performed 

better in the large X x 1 regime, generating clusterings with much lower (dis)contiguity, though at the expense of 

much greater (non)compactness. If one were interested in this regime, further improvements would be possible by 

using the smoothed clusterings as initial conditions to the contig-k-means algorithm. 

6. CLUSTERING AS DATA COMPRESSION 

We have spoken of an image segmentation as a compression of information. We will make that statement more 

quantitative in this section, and treat the clustering quite literally as a data compression scheme. All the information 

in a pixel’s multichannel spectrum is collapsed down to a single category label, essentially providing a vector- 
quantized c o m p r e ~ s i o n . ~ ~ * ~ ~  From this point of view, it makes sense to monitor the entropy of a clustering. For a 

general partition with fraction pk of samples in the k’th cluster, the ordinary Shannon entropy (in bits) is given by 

s = - Ck Pk 1% Pk, or 

(14) 1 
N 

[ i=l 

s = log, N - (l/N) C l o g ,  n k ( i )  . 

This describes the average number of bits per pixel required to specify which class each of the pixels is in. 

Consider an image with d spectral channels, and b bits of precision in each channel. The image will nominally 

contain bd bits of information for each pixel. 

Suppose we cluster the data into K distinct clusters, and for each pixel, instead of storing the full bd bits, store 

only the name of the cluster. If S is the entropy of the clustering, then we’ll need an average of S bits per pixel to 

indicate which cluster a pixel belongs to. This is (lossy) compression of bd - S bits per pixel. 

If we also store the residual distance from pixel data values to the the cluster center, then we can achieve lossless 

compression. Or, if we store appropriately quantized residuals, we can obtain compression with an adjustable degree 
of loss. In the lossless case, we write V as the mean within-cluster variance of the clustering, and V, as the variance 
of the full data set, so is the average linear compression factor, and dlog, is the number of fewer 

bits per pixel in the residual data compared to the original data. Thus we’ll need an average of bd - $ log,(V,/V) 
bits to  describe the residual distances to the same b bits of precision as in the original image. 

There will also be bdK bits of overhead for the whole image. In the limit of large image size, however, this will 

be negligible. This (lossless) compression scheme will therefore save us 

d 
B = log,(V,/V) - s 

L 

bits per pixel. The two terms in this expression represent a tradeoff between two competing desires. First, we want 
to make the average cluster size V as small as possible. Smaller residuals require fewer bits. But we also want to 
make the entropy S as small as possible. The solid lines in Fig. 4 show how this expression for B varies with number 

K of clusters, using ordinary k-means clustering on the Hatch and Grants data. Increasing K makes for smaller 

residuals V, but larger entropy S. The tradeoff favors large K ,  but the gain at large K is marginal. This suggests a 
criterion for choosing an appropriate K that makes no assumptions about underlying structure of the data. A literal 
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(a) Hatch (b) Grants 

(c) Hatch, X = 0.5 (d) Grants, X = 0.5 

Figure 2. The top panels (a,b) show ordinary k-means clusterings (A = 0) of the Landsat images shown in Fig. 1 

into K = 4 distinct clusters. The bottom panels (c,d) show contig-k-means clusterings with X = 0.5. The spatial 
contiguity is visibly enhanced. For the Hatch image (a,c), the (dis)contiguity measure decreased from 0.22 to 0.12, 

while the compactness changed by eight percent. The Sk statistic introduced by Coggins and Jain changed from 2.02 

to 1.94; the Rand similarity statistic for clusterings (a) and (c) was 0.842. The numbers are similar for the Grants 
image (b,d): the (dis)contiguity again almost halved, going from 0.19 to 0.10, and the compactness again changed 

by only eight percent; the average Sk went from 2.04 to 1.96, and the similarity index was 0.912. 
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Figure 3. Plot of (dis)contiguity versus (non)compactness for clusterings generated for the multispectral data shown 

in Fig. 1: (a) Hatch; (b) Grants. The squares are from the contig-k-means algorithm using values of X ranging from 

0 (top, leftmost square) to 1.0 in steps of 0.1. Increasing values of X led to clusters with smaller values for the 

(dis)contiguity and larger values for (non)compactness. For small values of A, we can make considerable gains in the 

contiguity with little loss to the compactness. These curves trace out a kind of boundary below and to the left of 

which we do not expect any clusterings. The dotted lines correspond to smoothings of the X = 0 clustering. The 

filled circles correspond to repeated application of a 3 x 3 kernel, and the open circles correspond to single application 

of kernels of size 3 x 3, 5 x 5, 7 x 7, etc.  
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Figure 4. Plot of the number of bits per pixel that a lossless compression scheme would save as a function of 

the number K of clusters, based on (a) the Hatch image, and (b) the Grants image. The solid lines are based 

on ordinary k-means clustering with X = 0. The dashed lines were obtained using a modification of k-means that 

explicitly maximizes the expression for bits per pixel of compression in Eq. (15). The dotted lines use contig-k-means 

with X = 0.5. 

I Proc SPIE 3159 (1997) 9 1  



. .  
optimization of K would have to consider the overhead bits as well ask the effect of further compression, lossy or 

otherwise. 

It is also possible to directly optimize the compression in Eq. (15) in a manner similar to that used by the contig- 

k-means algorithm to optimize the criterion in Eq. (13). To do this, we need to write a local expression for the effect 

on the global variable B due to moving a point from cluster j to cluster k. 

d dAV 
AB = -AlOg,(V,/V) - A S  = -- - A S  

2 2v 

where AV is given in Eq. (12), and A S  can be derived from Eq. (14): 

1 

N 
A S  = -- [(nj - 1) log,(nj - 1) - nj log, nj + ( n k  + 1) log,(nk + 1) - nk log, n k ]  

The results of this algorithm are shown as dashed lines in Fig. 4. There is a slight improvement, but (in contrast to 

the case with contig-k-means) not a substantial one. 

Note also that the flavor of this argument provides a more tangible justification for enhancing the “contiguity” of 

a clustering; a clustering with a high degree of contiguity can even more efficiently be compressed. The dotted lines 

in Fig. 4 show that using a contig-k-means clustering reduces the bits per pixel that the clustering method saves, but 

this may be made up for by a spatial compression stage that exploited the extra contiguity. Run-length encoding, 
for instance, should provide considerable compression for a highly contiguous segmented image. 

If this kind of compression is going to take place on-board, then the clustering algorithms will have to take 

advantage of specialized h a r d ~ a r e ~ ~ > , ~  and/or parallel p ro~ess ing .~’>~~ 
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