KSC TR 51-2, Vol. III, Part 2 July 1980
(NASA-CR-163122) A CONTINUATION OF BASE-LINE STYDIES FOR ENVIRONMENTALLY HONITORI NG SPACE TRANSPORATION SYSTEMS AT JOHN F. KENNEDY SPACE CENTER. VOLUME 3. PAPT 2: (Uaiversity of Central floridal

A Continuation of Base-Line Studies for Environmentally Monitoring Space Transportation Systems at John F. Kennedy Space Center

Ichthyological Studies: Sailfin Molly Reproduction Study

VOLUME III: PART 2
 OF THE
 FINAL REPORT
 TO THE
 NATIONAL AERUNAUTICS AND SPACE ADMINISTHATIUN JOHN F. KENNEDY SPACE CENTER
 A CONTINUATIUN OF BASE-LINE STUDIES FOR ENVIRONMENTALLY MUNITORING SPACE TRANSPORTATION SYSTEMS (STS) AI JOHN F. KENNEDY SPACE CENTER

 CONTEACT NO. NAS $10-8986$

 CONTEACT NO. NAS $10-8986$
 VOLUME III UF IV: PART 2 - IChThiYOLOGICAL STUUIES, Sailfin Molly Reproduction Study
 PRINCIPAL INVESTIGATOR: F. F. SNELSUN, Jr.

Augist 17, 1979

UNIVERSITY OF CENTRAL FLORIDA
?. U. BOX 25000
URLANDO, FLORIDA 32816

BIOMEDICAL OFFICE BIOSCIENCE OPERATIUNS CODE MD-B
JOHN F. KENNEUY SPACE CENTER NASA

PREFACE

This document is part of a University of Central Florida contract report, "A Continuation of Base-Line Studies for Environuentally Monitoring Space Transportation Systems at John F. Kennedy Space Center."
The entire report consists of four volumes and an executive sumary, all identified as KSC TR 51-2; NASA CR 163122:
Volume 1: Terrestrial Community Analysis
Volume II: Chemical Studies of Rainfall and Soil Analysis
Volume III: Part I--Ichthyological Studies, Ichthyological Survey of Layoonal Waters; Part II--Ichthyoloyical Studies, Sailfin Molly Reproduction Study
Volune IV: Part 1--Threatened and Endangered Species of the Kennedy Space Center: Marine Turtle Studies; Part II--ihreatened and Endangered Species of the Kennedy Space Center: Threatened and Endangered birds and Other Threatened and Endangered Forms

Executive Summary

table of contents

PAGE
Sailfin Molly Reproduction Study Introduction 1
Species Synopsis 2
Methods, Materials and Study Area 3
Study Ared Description 4
Study Sites. 5
Station 1 - VABI. 5
Station 2 - TOWY. 7
Station 3 - BCHRD 7
Methods. 8
Fish Sampling 8
Environmental Measurements 11
Water Temperature. 11
Monthly Water Temperature. 11
Salinity 11
Water Level Change 11
Turbidity. 12
Dissolved Oxygen 12
Ortho-phosphate. 12
Nitrate-Nitroyen 12
Phytoplankton Chlorophyll 12
Periphyton Chlorophyll 12
Labordtory Methods 13
Specimen Examination and Handling. 13
Sex Determination. 13
Reproductive Condition 14
Counting and Staying Embryos 14
Counting Unfertilized Eggs and Abnormal Embryos. 15
Measuring. 16
Data Handling. 16
Results 17
Molly Reproauction 17
Length of Reproductive Season 17
Frequency of Pregnancy. 17
Size of Reproducing Females 19
Brood Size. 24
Size Specific Fecundity 24
Replacement Index 31
Environi.iental Analysis 34
Discussion. 40
Summary 45
Conclusions 47
Acknowl edgements. 48
Literdure Cited. 49
Appendix Tables 53
1 Summary and comparison of some environmental features of three sailfin molly study sites on Merritt Island, Florida 9
2 The reproductive record of pregnant female mollies from Novenber samples. 20
3 Monthly rainfall (in cm.) measured at Kennedy Space Center, Florida, during the period 1973 through 1978. The 10 -year average is based on the years 1968 through 1977. Data pro- yided by NOAA - National Weather Service 40
4 Mean monthly air temperatures (${ }^{\circ} \mathrm{C}$) measured at Kennedy Space Center, Florida (0 \& C Building) during the period January, 1973 to August, 1978. The 12-year mean is for the period April, 1965 to December, 1977. Data provided by NOAA - National Weather Service. 41

FIGURE

PAGE
1 Map of Merritt Island and vicinity, Brevard County, Florida showing the locations of three study sites used in the sailfin molly reproduction study6

2 The percentage of adult females pregnant in monthly samples of the sailfin molly (Poecilia latipinna) from three study sites. Females were considered adult if they exceeded 21.9 mm SL at VABI and TOWY, and 23.9 mm SL at BCHRD.18

3 The mean length (mm SL) of pregnant females and the mean brood size for monthly samples of the sailfin molly (Poecilia latipinna) from the VABI study site.21

4 The mean length (mmSL) of pregnant females and the mean brood size for monthly samples of the sailfin molly (Poecilia latipinna) from the TOWY study site 22

5 The mean length (mm SL) of pregnant females and the mean brood size for monthly samples of the sailfin molly (Poecilia latipinna) from the BCHRD study site. 23

6 Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the VABI study site in 1977. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant ($p=0.05$) are not shown. See Appendix Table 98 for statistical details 25

7 Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the rowy study site in 1977. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant ($p=0.05$) are not shown. See Appendix Table 98 for statistical details. 26

8 Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the BCHRD study site in 1977. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant ($p=0.05$) are not shown. See Appendix Table 98 for statistical details 27
? Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the VABI study site in 1978. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant ($p=0.05$) are not shown. See Appendix Table 99 for statistical details. 28

LIST OF FIGURES

(Cont inued)

FIGURE

10 Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the TOWY study site in 1978. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant ($p=0.05$) are not shown. See Appendix Tabie 99 for statistical details). . . . 29

11 Least-squares linear regression lines for brood size on female length calculated from monthly samples of the saiifin molly (Poecilia latipinna) collected at the BCHRD study site in 1978. Lines based on a monthly sample size of less than 10 or where the regressin: was not statistically significant ($p=0.05$) are not shown. See Appendix Table 99 for statistical details. 30

12 Least-squares linear regression lines for monthly and pooled samples of the sailfin molly (Poecilia latipinna) collected at three study sites in 1977. See Appendix TabTe 100 for statistical details. 32

13 Least-squares linear regression lines for monthly and pooled samples of the sailfin molly (Poecilia latipinna) collected at three study sites in 1977. See Appendix Table 101 for statistical details. 33

14 Replacement index for monthly samples of the sailfin molly (Poecilia latipinna) from three study sites.35

15 Graph of average median surface water temperature, salinity, and water level measured monthly at the VABI sailfin molly study site, October, 1976 to December, 1978. Sal inity was measured at the time of fish sampling. The highest water level measured was recorded as zero, and other monthly readings are recorded as cm below zero. The average median water temperature was for the 15-day period preceding the monthly fish sample. Breaks in the graph lines represent missing observations. 36

16 Graph of average median surface water temperature, salinity, and water level measured monthly at the TOWY sailfin molly study site, October, 1976 to December, 1978. Salinity was measured at the time of fish sampling. The highest water level measured was recorded as zero, and other monthly readings are recorded as cm below zero. The average median water temperature was for the 15 -day period preceding the monthly fish sample. Breaks in the graph lines represent missing observations. 37

LIST Of FIGURES (Continued)

FIGURE

 PAGE17 Graph of average median surface water temperature, salinity, and water level measured monthly at the BCHRD sailfin molly study site, October, 1976 to December, 1978. Sal inity was measured at the time of fish sampling. The highest water level measured was recorded as zero, and other monthly readings are recorded as cm below zero. The average median water temperature was for the 15-day period preceding the monthly fish sample. Breaks in the graph lines represent missing observations. The circled dot is the median water temperature for September, 1978. 38

SAILFIN MOLLY REPRODUCTION STUDY

Introduction

In recent years, ecologists have emphasized that deleterious changes in the environunent of ain organism do not always result in overt responses such as mortality or mass exodus from an affected area. In many cases, the organism responds in more subtle ways, through changes in behavior patterns, physiological mechanisms, demographic parameters, or niche requirements. Such subtle changes might go unnoticed by the casual observer, but may have iosidious consequences for the species in the long term.

Certainly, one of the best studied and most infamous examples of the matter in question deals with the recent world-wide decline in populations of many species of raptorial and fish-eating birds (see Stickel, 1973, for a review). The accumulation of residues of DDT and other persistent chlorinated hydrocarbon compounds in the environments seems to have relatively little overt effect on these birds once they are fledged. As free-living predators, however, they ingest these compounds in their food, and the concentration of residues in the adult often is sufficient to cause insidious alterations in the physiological process (primarily calcium metabolism) of egg shell formation, resulting in a shell much thinner than normal. When the adult bird attempts to incubate its eggs, the thin egg shells are often broken by the weight of the parent, and the embryos die. The consequence of this phenomenon, and possible related changes in nesting behavior, is a dranatic reduction in the frequency of successful fledging in many populations.

There currently is great interest in developing techniques to detect, monitor, and assay the sublethal responses of organisms to environmental alteration. A few examples from fishes will illustrate recent trends. Foster et al. (1966) studied how the behavior of the flagfish, Jordanella floridae, Was liodified by sublethal concentrations of alkylbenzene sulfonate (ABS), a constituent of "hard" detergents. They demonstrated a fundamental change in feeding behavior after as little as four days exposure. Later, they found a dramatic suppression of egg production with (calculated) concentrations of ABS as low as 11.5 ppin in static aquarium bioassays (Foster et al., 1969).

The extrene toxicity of the insecticide Dieldrin to aquatic organisms has been widely recorded. Harrington and Bidlingmayer (195is) documented the devastating effect of an derial Dieldrin treatment on fishes and invertebrates in a Florida salt marsh. More recently, chronic effects of very low Dieldrin concentrations have become evident. Lane and Livingston (1970) demonstrated total mortality in Poecilia latipinna from Uieldrin treatments of 12 and 6 ppb. Over half of their experimental fish survived treatments of 1.5 and 0.75 ppb, but the growth and reproduction of the survivors was affected adversely. Cairns and Scheier (1964) reported that the sunfish Lepomis gibbosus, exposed to 1.7 ppb Vieldrin for 12 weeks, had higher oxygen consumption and poorer swimming ability than control fish.

Finai y, the sublethal effects of heavy metals on fishes have received considerable attention in recent years. For example, Brungs (1969) exposed fathead minnows (Pimephales pronielas) to sublethal concentrations of zinc. He showed that the various test concentrations had no effect on growth, survival,
or maturation, but almost totally inhibited reproduction. Spawning frequency was greatly reduced, and the number of eggs laid per female was dramatically lower in those fish exposed to zinc. Benoit and Holcombe (1978) later showed that zinc severely reduced egg adhesiveness and increased the fragility of the chorion membrane, both factors contributing to unsuccessful reproduction.

The overall objective of this study was to learn as much as possible about the reproduction of field populations of a test fish in the KSC area. These data would constitute a "before" baseline on reproductive performance in the selected species. By monitoring reproduction during and after the initidtion of space shuttle operations, it was hoped, it would be possible to compare "after" reproductive patterns in order to iuentify any subtle delerterious environmental changes.

The sailfin molly, poecilia latipinna, was selected as the "test" species for several reasons. (1) Snelson (1976) showed that this species was abundant on Merritt Island and distributed in all types of habitats and, thus, was "representative" of the Island's rather depauparate fish fauna. (2) Although not nuch was known about the details of reproduction in the species (Hubbs, 1964; Snelson, 1976), it is a member of the wel-studied family Poeciliidae. (3) Because of its small size, abundance, ease of capture, and adaptability to the laboratory, the species was convenient to work with logistically. (4) Finally, the live-bearing habit makes it possible to gather nuch more detailed information on reproduction of the molly than would be possible for an oviparious species.

Species Synopsis

The sailfin molly, Poecilia latipinna, is a member of the fish family Poecilidae. The species is distributed in coastal environwents almost continuously from South Carolina to the Yucatan Penisula of Mexico (Rosen and Bailey, 1963). It is a small fish, rarely exceedi'y three inches in total length. It inhabits a variety of fresh and brackish water environments, but is most characteristic of shallow, low-salinity ditches and marshes, where it often is abundant.
P. latipinna feeds primarily on detritus and periphytic algae, and does not often take animal food (Harrington ina Harrington, 1961). The ret oductive Diology of the species is similar to other generalized members of the family (Anloroso, 1960; Rosen and Bailey, 1963; Thibault and Schultz, 1978). Females outnumber males in the adult populations, but the sex ratio among neonates is approximately one-to-one (Snelson and Wetherington, in press). Males have the anal fin highly modified and transformed into an intronittent organ, the gonopodium, to effect insemination of the female. Once inseminated, a fefilde can store sperm for several months, producing several successive broods from one mating. The sperm are stored in specialized parts of the ovary, where they are nurtured (jalabert and Billard, 1969).

As a clutch of eggs matures, they are fertilized and undergo developmient in their follicles. In some species the developing embryo is heavily dependent on the maternal system for sufficient nutrients to complete development. In other species, including p. latipinna, all or most of the energy required for complete embryological development is present in the egg yolk, and the
elibryo probably depends on the maternal system only for gas, waste, and ion exchange. Deoending on the species and environmental conditions, einbryological development may take from 20-50 days, with mean interbrood intervals for P. latipinna ranging from 26-36 days (Snelson, 1976). Young are born in an advanced stage of development and are given no parental care after parturition. Under favorable environnental conditions, a second clutch of eggs begins to mature inmediately after parturition. At maturity they are fertilized and embryological development proceeds.

Brood size is positively correlated with female size, both within a species and between species. Small mosquitofish (Gambusia affinis) and sailfin mollies often have broods of less than five and occasionally may produce only one or two young. Large individuals of the two species may have broods of over 300 and 100 young, respectively (Krumholz, 1948 for G. affinis; personal observaticns for $\underline{P}_{\text {. latipinna). }}$

The only major studies on the field reproduction of P. latipinna are llubbs (1964) and Sheinbaum (1979). Other aspects of the $\bar{r} e p$ roductive and population biology of this species have been treated by Baird (1968, 1974), Grier (1973), Simanek (1978), and Snelson and Wetherington (in press).

Methods, Materials and Study Area

Study Area Description

A detailed description of the aquatic habitats on Merritt Island was given by Snelson (1976), and a summary is presented here.

Merritt Island originally was bordered along most of its western and northwestern shore by extensive brackish-water Spartina marsh. On the interior of the Island there probably were few permanent bodies of fresh surface water. Although ephemeral runoff creeks and flooded catchment basins way have formed during rainy periods, they would have coristituted relativeis unirioortant fish habitats.

Two events drastically altered the natural aquatic ecology on Merritt Island. The first was the cons+ruction in 1958 of earthen dikes (levees) around nearly the entire periphery of the Island, converting Spartina and mangrove marsh into a series of shallow "mosquito-control" impoundments (Provost, 1959, 1973). The second major alteration was the digging of borrow pits and ditches to provide fill for the construction of roads, and later, the installations for NASA's Kennedy Space Center in the early 1960's. These borrow areas and ditches created periianent surface reservoirs of water on the interior of Merritt Island. In addition, road and other construction altered the natural courses of sone existing waterways.

The salinity of the ditches, ponds, and impoundments on Merritt Island varies considerably, ranging from nearly fresh to levels in excess of 30 ppt , depending on location, water source, and man's activities (see later). The nature and amount of dquatic vegetation varies according to salinity. In low Salinity waters, Chara, Najas, Ru, ic; Ceratophyllum, and Utricularia are characteristic subberyed aquatic plint s , and usually are abundant. Sagittaria, Typha, and Ludwigia art haracteristic maryinal emergents. At higher sali:ities, submerged vegetation is less abundant, usually confined to
limited stands of Chard, Najas, and Kuppid. Typical eneryent plants are various species of Spartina and salt tolerant varieties of Tyoha. In some areas, "salt grasses" such as Distichlis and Paspalum may forn mats that encroach varying distances out into the water. Manyrove trees typically line the banks and dikes around brackish ditches and impoundments. In high salinity impoundments, submerged aquatic plants are limited or absent, particularly in areas where bottom sediments are flocculent and unconsolidated. In extreme cases, the only vegetation in an impoundment may be scattered clumps of Spartina bakeri, apparently remnants persisting from the marsh that existed prior to impoundment.

The most characteristic feature of the aquatic habitats on Merritt Island is their great variability in physico-chemical features. Because all the waters are shallow, temperatures fluctuate dramatically, both on a daily and annual cycle. Winter temperatures drop low enough to cal'se occasional hypothermal mortality (Snelson and Bradley, 1978), and oi en reach $35^{\circ} \mathrm{C}$ at the surface in summer. Furthermore, because there is a pronounced annual pattern of rainfall in central florida, aquatic habitats on Merritt Island usually undergo a dramatic flooding-dessication cycle. Water levels nomally are highest in fall and early winter, at the end of the rainy season. During the dry spring period, water levels drop quickly, usually reaching low stages between April and June. In early summer, the initiation of the rainy period and lian's associated activities (see below) again cause water levels to rise. Many other physical, chemical, and biological features of the aquatic environments fluctuate dramatically, some (e.g., dissolved oxygen) in a pattern associated wit's temperature and water level, and othe:s (e.g., turbidity) seemingly independently.

The most dranatic on-going influence of man's activities on Merritt Island's aquatic habitats is a vigorous mosquito-abatement program carried out by an agency of the county government (Provost, 1959, 1973). Among the several activities of the mosquito control agency, the most dramatic for fish ecology is "pumping". In order to inhibit the breeding of salt-marsh mosquitoes (Aedes taeniorhynchus, A. sollicitans) on exposed bottom sediments, it is desirable to maintain a rathạ high and constant water level in impoundments during the breeding season. Depending on rainfall, temperature, and other conditions, the impoundments and ditches reach most severe dessication between April and June. Some time during this period, usually coinciding with initiation of heavy summer rains, mosquito control personnel pump vast. quantities of water frofl bays and channels directly connected with the Indian Kiver lagoon system into the impoundments. This pumping is effected by means of both portable and permanently-installed diesel pumps. The water level in the inpoundments increases abruptly, often reaching maximal levels within a few days. Lagoon water typically is of much higher salinity than the impoundments, so a dranatic increase in salinity results. Turbidity also increases substantidlly during pumping, and impoundment waters may remain "cloudy" for weeks after pumping ceases.

Pumping took place at VABI between May 16 and 25, 1977 and again between August 30 and September 3 of that year. VABI was not pumped during 1978. Puniping did not take place at either of the other two study area during the time of our study.

Overall, the aquatic habitats on Merritt Island are harsh environments for most fishes. Snelson (1976) listed only 35 fish species inhabiting the fresh and brackish waters on the interior of Merritt Island. The most characteristic groups were the fanilies Poecilitidae and Cyprinodontidae, both notoriously hardy and tolerant groups.

Study Sites

The terms of the contract proposal sta:e that two field populations of mollies would be sampled monthly for reproduccive analysis. Because of prior experience (Snelson, 1976), we planned for the possibility that unforeseen circumstances could terminate study at a locality and, therefore, initiated this study using three, rather than two, study areas.

The following criteria were considered important in choosing study areas: (1) they should be within the security perimeter; (2) they should provide contrasting environnents; (3) at least one of the sites should be relatively free from man-induced variations; (4) they should be readily accessible; (5) large populations of mollies should be present; and (6) the areas should be large enough and contain sufficient deep water to insure that the molly population would be able to survive through the annual low water period of later winter and spring. In addition, it was considered desirable, but not mandatory, to locate one study station near Launch Complex 39A or 39B, in case launch operations should prove to have an adverse effect on the study species.

It was determined early that one study site would be the "VAB Impoundment" used during previous studies (Snelson, 1976). It was felt that this station was acceptable by all selection criteria, and it had the additional advantage of providing continuity in the investigations. An extensive field survey was conducted during October, 1976, to locate additional study stations. Two study populations which met most or all criteria eventually were selectod. The geographic locations of the three study areas are shown in Figure 1. . ey are described below.

Station 1 - VAB Impoundment (VABI). This is the samie site studied for three years during our earlier grant phase and designated as the "VAB Impoundment" (Snelson, 1976). This long, finger-like impoundment, deignated on some maps as T-37, is located on the northeast side of the State Road 3, immediately northwest of the Banana Creek bridge (T22S, R37E, Sec. 7 and T22S, R36E, Sec. 12). Its center lies approximately 1.0 kilometer northwest of the Vehicle Assembly Building (VAB). The impoundment is bordered on its southeastern tip by the Banana Creek dike, along its southwestern border by S.R. 3, and along its northeastern side by an elevated railroad bed. The northwestern end is not diked. Estimated surface area is 30 acres. This impoundment appears to commuiticate freely with the adjacent impoundment northeast of the railroad dike, through an open water-level control cuivert.

The water depth is shallow, averaging less than one-half meter over most of the impoundment. Deep water is confined to dredged areas. One such hole, circular in outline, is in the center of the impoundment. A small dredged ditch and several sinall holes are located along the southwest side, adjacent to S.R. 3. The major dredged area is the dike-side canal along the northeast edge of the impoundment adjacent to the elevated railroad bed. Under normal conditions, these deeper areas average 2-2.5 m.

Figure 1. Map of Merritt Island and vicinity, Brevard County, Florida, showing the locations of three study sites used in the sailfin molly reproduction study.

Shallow areas, exposed curing parts of the year, are vegetated heavily with a variety of aquatic or semi-aquatic plants such as Spartina (cord grass): Distichlis, and Paspalum (salt grasses). Deeper areas, particularly where the bottom is relatively firm, support mats of Chara (musk grass) that become thick at certain times of year. Dredge holes with excessively flocculent bottom sediments usually are not invaded by plants. Except for a few mangrove trees growing near the southeast end, the perimeter of the impoundment is relatively free from overhanging vegetation.

During periods of severe low water, Brevard Mosquito Control District personnel position a portable, diesel-powered pump on the dike between Banana Creek and the impoundment, and pump turbid, high-salinity water from the Creek into the impoundment. Salinity and turbidity of water in the impoundment increase drastically as water levels rise.

Station 2 - Tow-way Ditch (TOWY). To accomodate the activities of the upcoming space shuttle program, a runway-landing strip was constructed west of and parallel to S.R. 3, north of Banana Creek. A tow-way, extending from the runway to the $V A B$, provides a route by which the reusable orbiter transported to the VAB complex for refurbishing. During construction of the tow-way, several mosquito control impoundments were disrupted. Impoundment $\mathrm{T}-18$ was most drastically affected. It was split approximately in half, and the majority of its eastern end was drained or eliminated.

Our TOWY study station is in the disrupted eastern end of old impoundment T-18 (T22S, R36E, Sec. 12). It is an approximately triangular-shaped area, bordered by S.R. 3 on the northeast, by the shuttle tow-way on the south, and by a dike on the northwest. Its center is approximately 2 km west by northwest of the VAB. The surface area is 7-10 acres during normal water stages. Shallow narsh areas less than one-half meter deep are relatively limited, confined primarily to one spot. Deep water is relatively extensive in the long canal adjacent to the tow-way and in a small dredged hole in the northeast corner of the area. The shallow zones never dried completely during this study, and always maintained open communication with the ditch, even during extreme low water.

Shallow ar.d exposed areas are densely vegetated with a variety of aquatic and semiaquatic plants such as Spartina (cord grass), Distichlis, and Paspalum (salt grasses). The portion which usually is submerged, particularly where the muck bnttom is firm, supports a dense growth of Chara (musk grass) and Najas. The dredged hole in the northeast corner has a deep, organic bottom sediment and supports no vegetation. During the second year of study, plants characteristic of standing fresh water became prevalent along the canal, particularly duckweed (Lemna) and cattail (Typha). There are a few scattered patches of mangrove located along the south side, and the dike on the northwest side supports a moderate stand of Spartina. Otherwise, the perimeter of the area is relatively free of overhanging veyetation.

Station 3 - Beach Road Impoundment (BCHRD). This study station is located immediately west of Beach Road, and lies less than 0.4 km from the ocean (T21S, R37E, Sec. 28). Its center is approximately 4 km northwest of the intersection of Beach Roat and Saturn Parkway, and 0.8 km north of launch complex 398. It is bordered by Beach Road on the east and by a series of narrow dikes over the remainder of its periphery.

The sampling area consists of two shallow borrow ponds which represent only a small section of an extensive network of interconnected ponds that drain the region adjacent to LC 398. The finger-like basins comprising the station lie parallel, about 15 meters apart, in a southeast-northwest orientation. The eastern basin is the smaller, with an estimated surface area of five acres. The larger western basin has an estimated surface area of ten acres. The two ponds are separated physically along most of their length by a low-elevation bridge of land. They are interconnected at their northern ends by 3 narrow ditch. A canal approximately 5 meters wide and 30 meters long extends eastward from the southeastern corner of the larger pond, toward the road.

Water depth averages less than one-half meter. Deep water is confined to dredged areas. These consist of the aforementioned ditches and dike-side canals that skirt the entire station, except for a short segment of the northeast corner of the smaller basin. The deeper areas have an average depth of 1.5 to 2.0 meters.

The salinity is higher at this station than at any other study area. Considering the proximity of the ocean, superficial salt deposits and/or sea water intrusion are likely.

The station is nearly free of rooted aquatic vegetation. Aquatic plants, including those tolerant of moderate salinities, have not established themselves well over the soft bottom. The substantial turbidity also may act as a deterrent to submerged plant growth. In marginal zones and in scattered open water areas where the bottom is firm, characteristic plants are Chara and Ruppia (widgeon grass). The station's perimeter is bordered by an extensive stand of mangrove, but little of it overhangs or grows in the water. The entire area apparently was rechannelized and rediked a short time before initiation of the study, and gives the impression of recent disturbance.

Table l summarizes and compares major quantitative and qualitative physical, chemical, and biological parameters of the three study sites.

Methods
Fish Sampling
Each study area was surveyed carefully and 12 permanent sampling sites were selected. These sites were marked with pieces of PVC pipe approximately 20 cm in length and designated by number. An attempt was made to include all microhabitat types. Since approximately 300 mollies per station per month were required to yield an adequate size subsample of adult females, it usually was not necessary to take fish samples from all twelve sites. Therefore, one site was selected at random and sampled. If the appropriate number of fish was not caught, a second site was selected at random and sampled. This procedure was continued until approximately 300 mollies were collected. If this quantity was not obtained from all twelve possible sites, repetitive sampling became necessary. This was accomplished by repeating the above procedure.

Sampling began in October, 1976 and continued through December, 1978. Fish samples usually were taken during the first week of every month.
Table ${ }^{1 .}$.
Summary and comparison of some environnental fe on lierritt Island, Florida. . 7.0 -38.0
17.6

23.5
20.1
21.8

72

$0.73-23.00$
5.00

$1.5-9.2$
4.9
$7.3-9.4$
8.4
1.0
$0.000-0.261$
0.066
$0.000-0.277$
0.089

$$
\text { Table } 1 .
$$

TOWY	BCHRD
0.411-10.908	0.788-13.831
2.886	4.976
$0.0010-0.0143$	0.0006-0.0101
0.0044	0.0026
Abundant	Scarce to absent
About same as VABI, and probably close to figures in Table 3.	Less than both VABI and TUWY.
Minor; deep-water refugia relatively extensive.	Very severe; deepwater refugia very limited.
Like VABI.	Probably plytoplankton, detritus
No	No

	VABI
Phytoplankton Chlorophyll (mg/m ${ }^{3}$) range mean	$\begin{aligned} & 0.000-21.528 \\ & 3.357 \end{aligned}$
```Periphyton Chlorophyll (mg/cm range mean```	$\begin{aligned} & 0.0002-0.0082 \\ & 0.0017 \end{aligned}$
Submerged Vegetation	Abundant
Rainfall	About same as TOWY, and probably close to figures in Table 3.
Impact of Dessication	Severe; deep-water refugia relatively limited.
Production Base	Probably periphytic algae, macro-algae, and rooted vascular plants.
Impacted by Pumping	Yes

The standard collecting gear employed was a "common sense" minnow seine 3.7 m long, 1.2 m deep, with a 4.5 mm bar mesh. Seining was quantified by timing. One seiner or an assistant operated a stop watch. The watch was started when a seine haul began and stopped when the forward progress of the haul ceased. After each seine haul every specimen was preserved in a solution of $10-15$ percent formalin. Each site collection was assigned to a separate container, and the time auration was recorded.

## Environmental Measurements

The following parameters of the aquatic environment at each study station were measured in the field, concurrently with fish sampling. In each case, we tried to utilize a technique combining simplicity, reliability, and appropriate sensitivity, as suggested by Strickland and Parsons (1972) and EPA (1974).

Water Temperature. Water temperature was determined at each site from which a fish sample was taken. It was measured approximately half-way between the water surface and bottom, using a shaded stem thermometer calibrated in degrees cent.grade.

Monthly Water Temperature. Surface water tempeature was continously recorded at each study site by a submersible thermograph (Ryan Industries Model G). These instruments were suspended from and shaded by wood and styrofoam floats. A continous temperature record was scribed on a 15 day chart by a stylus responding to temperature changes. The clock motor was battery driven. The chart was calibrated in degrees Fahrenheit ( ${ }^{\circ} \mathrm{F}$ ) which was converted to degrees Centigrade $\left({ }^{\circ} \mathrm{C}\right)$. From the charts, we determined the temperature characteristics of the 30 -day period preceding the fish sample day.

Salinity. Surface salinity was determined in the field, using either an American Optical Company optical refractometer or a Yellow Springs Instrument Model 33 battery-powered, salinity-conductivity-temperature meter.

Water Level Cl:ange. A water level monitoring gauge consisted of a piece of white PVC pipe approximately three meters in length. The pipe was marked with shallow saw cuts at two cm intevals along its entire length, and was permanently lodged in the substrate at one of the deepest spots in each study basin. The distance between the uppermost mark at the top of the pipe and the water surface was recorded monthly, to the nearest cin.

The following chemical water parameters were determined monthly from water samples taken either concurrently with, the day before, on the day following taking of fish samples. Water samples were taken from the deepest area at each station, using a Kemmerer water sampler. The sampler was operated from a canoe or small boat to prevent disturbance of the bottom sediment. Usually, one 2.3 liter Nalgene bottle and two 300 ml BOD bottles of water were collected from each station. Water samples were kept on ice and in darkness and returned immediately to the laboratory for analysis.

Turbidity. Turbidity was measured with a formazin-standardized Hach Model 2100A turbidineter. Results were expressed in NTU's (Nephelometric Turbidity Units). NTV's are directly comparable to previously reported FTU's (Formazin Turbidity Units) and JTU's (Jackson Turbidity Units).

Dissolved Oxygen. Dissolved oxygen was determined from sample water in BOO bottles, using a Yellow Springs Instrument Mudel 51A oxygen meter and stirring probe. The instrument was calibrated before each use by a Winkler titration determination of dissrlved uxygen in one of a matched pair of samples. Results were expressed in parts per million (ppa).
pH. pH was determined using an Orion Model 399A pH meter, calibrated using a stock buffer solution of pH 7.00 .

Ortho-phosphate. Ortho-phosphate concentration in a water sample was determined by using the phospho-molybdate standard method (Strickland and Parsons, 1972). Absorbance of the test solution was read with a spectrophotometer (Beckman Model 26 or American Optical Spectronic Model 88) at 800 nanometers, and concentration was calculated in mg/liter fron predetermined standard curves.

Nitrate-Nitrogen. Nitrate level was evaluated in water samples by using the brucine sulfate method (EPA, 1974). Absorbance of the test solution at 410 nanometers was determined spectrophotonetrically, and the concentration in mg/liter was calculated using a previously determined standard curve.

The standing crop of phytoplankton and periphyton was determined by chlorophyll analysis, and these measures were used as indicators of habitat productivity.

Phytoplankton Chlorophyll. A liter sample of water was filtered through a Gelman glass filter, and the chlorophyll pigments of the trapped phytoplankton were extracted with acetone. The extracts were held in dark refrigeration for 24 hours and then read in a spectrophotometer at 665, and 630 nanometers. Concentrations of chlorphyll $a, b$, and $c$ were determined by using the Richards and Thompson equations (Strickland and Parsons, 1972). Results were expressed in $\mathrm{mg} / \mathrm{m}^{3}$.

Periphyton Chlorophyll. The standing crop of periphyton grown on a standard substrate was detemined at each locality. Floats constructed of wood and styrofoam were anchored in place in deep water at each station. From each float, four pieces of nominal 1/4" aiameter braided nylon rope, approximately 45 cm long, were suspended down into the water. The ropes provided an attachwent surface for the growth of algae. the ropes were left in place for the approximately 30 -day period preceding the date of fish sampling. At the tine of sampling, the ropes were removed, their precise lengths were measured, and they were transported to the laboratory in plastic bottles.

Quantification of the attached plant matter was made by the extraction and lieasurement of chlorophyll pignents as described above under phytoplankton. Results were expressed in $\mathrm{mg} / \mathrm{cm}^{2} /$ day.

## Laboratory Methods.

Specimen Examination and Handling. All fishes collected in the field were preserved in $10-15$ percent formal in and returned to the laboratory for examination. The samples were sorted and identified to species, and all individuals were counted and recorded.

Fron the moliies sampled at each station, a subsample of 150 adult females ( 218 mm standard length) was removed as follows. The sample was placed in a large bucket containing alcohol. The fluid was swirled and mixed by hand agitation until the specimens appeared to be randomly mixe: ill the fluid medium. A small tea strainer then was dipped into the bucket, catching 20 to 30 specimens each dip. This process was continued, with constant agitation, until the number desired in the subsample had been removed. These fish were used for reproductive analysis. The lower size limit of 18 mm was chosen because previous work (Snelson, 1976) had shown 18 mm to be the minimum size at which females become sexually mature.

Sex Detemination. As in all poeciliids, mature male $P$. latipinna have the first several rays of the anal fin elaborately transforned into an intromittent oryan, the gonopodium (Cummings, 1943). We classified males as mature when the gonopodium was judged to be fully differentiated on the basis of three features: (1) fleshy palp (also called hood or prepuce) along anterior (ventral) margin of ray three enlarged and pendulous; (2) fin rays clear and translucent as opposed to cloudy and opaque; and (3) terminal hook of ray three and retrorse claw of ray five well formed and clearly projecting beyond surrounding cutis (terminoloyy of Rosen and Gordon, 1953). In addition, large mature males usually could be readily identified externally by other secondary sexual features, especially body shape, fin size and shape, and color pattern (see Hoese and Moore, 1977, for color photograph). Inmature males often could be identified externally on the basis of incipient elongation and modification of the anal fin rays.

Fish without gonopodial development were sexed by direct examination of the gonad. Gravid or pregnant females were identified by the prosence of eggs or embryos in the enlarged ovary, even though they usually could be recognized without dissection by their bulging abdomens. The testis of imnature males is unpaired and elongated, appearing as a white, ribbon-like organ attached along the posterior-dorsal midline of the peritoneal cavity.

The immature ovary and testis were easily distinguished in the smallest specimens examined, about 15 mm standard iength (SL). In a fish this size the testis is thin and almost transparent. It can be destroyed easily or overlooked in carelessly dissected specimens. The peritoneum covering the testis is devoid of melanophores, and the organ appears to have a homogeneous texture. The ovary, in contrast, is a relatively large, conspicuous organ, even in very small fish. The shape usually is distinctive, cylindrical to bluntly oval and tapering abruptly pesteriorly to the narrow oviduct. Uwing to the presence of primary oocytes, the ovary appears yranular in texture under high magnification; and the investing perituneum contains numerous melanophores.

Reproductive Condition. Females were assigned to one of four reproductive conditions: (1) with undeveloped ovaries, (2) with developing ova, (3) with mature ova, or (4) pregnant. Conditions 1 and 2 were readily determined from the in situ ovary. The undeveloped ovary contained only whitish, unenlarged ova. Developing ova, on the other hand, were noticeably enlarged and at least slightiy golden or yellowish, indicating that yolk formation had begun. Usually there were several eggs in the ovary in a similar developmental stage. However, the presence of a single developing ovum was sufficient to classify the female in this class. When in situ examination revealed an ovary containing enbryos or greatly enlarged eggs, the organ was excised. The ovary was teased apart on the microscope stage and each individual egg was removed from its follicle and examined. If embryos were present on the eggs, the female was classified as preynant. Usually, several embryos in a similar stage of development were present, but the presence of a single embryo was sufficient to classify the female as pregnant. If the eggs had reached the maximum size but no embryos were visible, they were considered mature.

In using this classification, one occasionally must make the troublesome decision as to whether ova are in late stages of development (stage 2 above) or whether they are mature (stage 3). This decision was based on size of ova. Although eggs were not measured , he experienced worker developed a good "feel" for the maximum size attaned by a mature eyg. In addition, all eggs in a biature clutch are similar in size. Eggs late in development but not fully mature are smaller than mature eggs, and there usually is a substantial amount of size variability between eggs in the same clutch. It should be pointed out that mature eggs, as classified here, could be either unfertilized or fertilized. There is a period, probably lasting about 48 hours after fertilization, during which embryonic develooment proceeds but would not be recognizable under the dissecting microscope (Hopper, 1943; Tavolga, 1949).

Counting and Staging of Embryos. Each mature egc was counted and the total clutch was recorded. When embryos were present, each was counted and the average stage of development for the clutch was determined. Embryos were assigned to stages 1, 2, or 3, corresponding to early, intermediate, or advanced phases of development. There is no published study on the detailed embryological development of $\underline{P}$. latipinna, so our stages were determined arbitrarily after surveying the entire continuum of enbryonic development. Stage 1 begins when an embryo first becomes clearly recognizable. Stage 1 terminates at that point in development when a few melanophores are present on the top of the head and on the anterior part of the back. The caudal fin rays are not clearly developed, and there is no pigment on the tail. Stage 2 begins when pigment is well developed on the head, down the aidline of the back (usually in two parallel rows of melanophores), and down the sides of the caudal peduncle. The caudal rays are clearly formed, and a few black flecks of pigment are present on the fin. Stage 2 ends when the embryo has pignent well-developed on all areas of the body. The pigment, however, is present as uniformly scattered melanophores showing no pattern, especially on the head dorsum and posteriorly on the sides of the body. Stage 3 begins when pigment begins to urganize into a pattern characteristic of free-living young. This is first noticeable on the head dorsum and on the sides of the body as melanophores tend to organize along the margins of scales.

We have assumed that the development of the sailfin molly is similar to that of Xiphophorus maculatus (Hooper, 1943; Tavolga and Rugh, 1947; Tavolga, 1949). On this basis, we estimate that stage l lasts about 5.2 days, stage 2 about 5.7 days, and stage 3 about 5.5 days.

Since the molly does not normally superfetate (Turner, 1940a; Scrimshaw, 1944a), all embryos in a brood are in approximately the same stage of development. However, the exact timing of fertilization may vary by as much as 48 hours among eggs in a single brood (Hooper, 1943; Tavolga, 1949). Consequently, all embryos in a brood are never of identical age, and there are occasi-ns when part of a brood will be in late phases of one stage (e.g. late stage 1) while other brood-mates are in early phases of the succeeding stage (e.g. early stage 2). In such cases, all embryos were recorded as being in that stage represented with greatest frequency in the clutch.

Counting Unfertilized Eggs and Abnormal Embryos. If a single stage I embryo was observed among a clutch of eggs, all eggs present were enumerated as stage 1 embryos, whecher or not an embryo was visible on every egg. The assumption was that all eggs in a clutch were fertilized if one embryo was clearly evident. If fertilization time varies by as much as 48 hours within a clutch, the oldest zygotes might be visible embryos whereas youngest zygotes still could be in indiscernible stages of development (Hopper, 1943). In most cases, even in very early stage 1, several embryos can be discerned within a clutch.

After a brood passes into stage 2 development or beyond, it occasionally is apparent that a few eggs within a clutch never were fertilized or, if fertilized, ceased development before a recognizable embryo was produced. Such eggs have a milky yellow color, often bear discolored spots, and usually are atypically hard and brittle. They were recorded as "unfertilized eggs" among a developing brood in stage 2 or 3.

Hubbs (1964) defined a condition of "partial pregnancy" among the Texas populations he studied. Partially pregnant females were those that carried broods in which a significant (unspecified) number of the eggs were unfertilized. Hubbs attributed partial pregnancy to relatively low male frequencies resulting in infrequent inseminations and females consequently depleting stored sperm. We have observed no such conditions, and only rarely have encountered broods with more than one or two unfertilized eggs. We do not, therefore, recognize partial pregnancy.

In addition, abnormal embryos usually are easily distinguished from normal broodmates by the time stage 2 development is reached. Abnormal embryos exhibit any one of several anomalies, but usually are immediately evident to the practiced observer. They usually are smaller than their broodmates, and are in earlier stages of development. The embryo often is discolored; the head or eyes often are misshapen or atypically formed; pigment is poorly developed or appears in atypical locations; the caudal half of the body may be unusually shortened, and the caudal fin may not form; the spine may be abnormally flexed; often the embryo appears to be buried within its yolk rather than lying aro'nd its periphery. Abnormal embryos were counted and recorded when they occurred in stage 2 or 3 broods.

Measuring. All specinens were measured to the nearest 0.1 nm standard length (SL) with vernier dial calipers according to the procedures of Hubbs and Lagler (1958). Total length (TL) occasionally was recorded. It was measured from the tip of the lower jaw (mouth closed) to the tip of the longest caudal fin rays on a steel millimeter rule mounted on a plexiglass holder in the fashion of a standard fish measuring board. Total length was read to the nearest 0.5 nm .

Data Handling. Data were stored, retrieved, and analyzed by computer. The data coding formats and procedures are detailed el sewhere (Snelson, 1977a). Data analysis used standard statistical procedures, combining "canned" software of SAS and SPSS and prograins written specifically for the molly study.

The "replacement index", calculated from each monthly sample from each locality was derived as follows:

$$
\text { RI }=\frac{1 / 2 \text { total normal embryos }}{\text { total adult feinales }}
$$

Une-half of the embryos was used because it is apparent that the sex ratio at birth in these populations is very near ne-to-one (Snel son and Wetherington, in press,. Thus, half of the embryos in each monthly sample are assumed to be females. for VABI and TOWY, any female greater than 21.9 mm SL was considered an adult; at BCHRD, the size for adulthood was greater than 23.9 mm SL.

Comparisons among regression lines for brood size on fenale length were based on Bartlett's test for homogeneity for variances, followed by covariance analysis and, when required, the Student-Newnan-Keuls test for multiple comparisons among slopes and intercepts (Zar, 1974). When using untransformed data, Bartlett's test always revealed heterogeneity among the variances in any given set of lines. In addition, plots of residuals revealed that the variance around the lines generally increased as the independent variable (female length) increased. In order to remove these objectionable features, various transformations were applied to the data. In the final comparison, no transformation consistently resulted in any greater improvement than simple logio transformation of the dependent variable (brood size). The log transformation virtually eliminated the tendency of the variance to increase with increasing female size. In all cases, this transformation also significantly reduced heteroscedasticity amoing the lines, but in no case was complete homoscedasticity achieved as measured by the Bartlett's F-test ( $p<0.05$ ). One peculiar feature of the log transformaion is that the procedure tends to make slopes more unifonn and intercepts more dissimilar, virtually opposite the pattern in the untransformed data. In this report, the linear graph lines shown are computed from the untransformed data, but all statistical interpretations and tests were based on the transformed data. The significance level used was $p<0.05$.

## Results

## Molly Reproduction

The basic data from the molly reproduction study is summarized in Appendix Tables i-26.

## Length of Reproductive Season.

The first month of study, October 1976, was the last month of reproduction for 1976. In both 1977 and 1978, reproduction had begun by early April. No fish were pregnant in early March samples. However, the high frequency of pregnancy in some of the April samples (Figure 2), for example 61 percent at BCHRD in April 1978, suggests that active reproduction began in some cases in middle to late March. In all cases, pregnant females in the April samples carried broods in the earliest phases of development, stage 1 or, rarely, stage 2. This is additional confirmation that actual reproduction had begun only a few days prior to the sampling date in April. There is only one exceptional instance when a central Florida population is known to have initiated reproduction prior to April. Snelson (1976) reported that his RRCD population, from a ditch on the western side of Merritt Island near the junction of State Roads 402 and 406 , began reproduction in February, 1974.

The end of the reproductive season was somewhat more variable; but, in general, successful reproduction terminated in middle to late October. In 1976, there were no pregnant fish in the early Novenber samples at VABI or TOWY. At BCHRD, 4 of 92 adult females ( $4 \%$ ) were pregnant. In 1977, early November samples at VABI and TOilY contained no pregnant fish. In early November 1977 at BCHRD, 7 of 156 adult females were pregnant. In 1978, the November sample at TOWY contained no pregnant females. At VABI and BCHRD, a very few females in the early November, 1978 sample were pregnant ( 3 percent and 2 percent, respectively). All carried broods in late stages of development. Snelson (1976, 1977a) al so noted the cessation of successful reproduction in October.

The few females that protract reproduction into November may be relatively unsuccessful at producing viable progeny (Table 2). In several cases all the gametes carried by a female were either abnormal embryos or unfertilized eggs.

F`equency of Pregnancy.
The percent of adult females pregnant in each monthly sample is shown graphically in Figure 2, and the basic data are given in Appendix Table 87. Since only one month of reproduction was included in the 1976 study, only the data for 1977 and 1978 are shown.

In 1977, the frequency of pregnancy curves showed similar trends for all three sites, with $\mathrm{s}_{\mathrm{F}}$ ing or early summer peaks, a middle summer depression, and a late summer or fall peak. The first peak occurred in May (TONY, BCIIRD) or June (VABI). Actually, the peak in May at BCHRD was only 18 percent with 22 of 122 adult iemales pregnant. Pregnancy percentages at BCHRD were less than 20 percent until September in 1977. The
$\square-\infty$ BCHRD
$0 \cdots \cdots$ TOWY
$\triangle-\triangle$ VABI

Figure 2．The percentage of adult females pregnant in monthly san wine sailfin finlly

」NロNのヨyd Sヨา＊Wヨ」 17กOV \％
mid-summer slump in pregnancy occurred in July at VABI and BCilliD, and in both June and July at TOWY. At all three sites, reproduction recovered dramatically after the mid-sununer period, and peaked again in August and Septenber (TOWY), September and October (BCHRD) or October alone (VABI).

In 1978, the general trends of the 1977 curves were repeated at TOWY and BCHRD. At TOWY, peak pregnancy percentages occured in June ar: 1 August, with only a modest depression in July when 31 percent of the adult females were pregriant. At BCHRD, there was a dramatic surge of reproduction in early spring (April and May), a near-cessation of reproduction in July (2 percent), and a dramatic recovery in September and October.

The pattern of pregnancy percentages at VABI in 1978 was atypical. Reproduction dropped from 30 percent in April to 17 percent in May, the low f: • the season, and then gradually climbed to reach a peak in September.
size of Reproducing Females
Mollies at BCHRD reached a larger size than at TOWY and VABI, and the mean size of pregnant females was much larger (Appendix Tables 88-95). The mollies at TOWY and VABI were sirilar in size; and during 1977, the distributions of mean sizes for reproducing females nearly were identical. For 1978, reproducing females at TOWY were somewhat larger than in 1977, and were considerably larger than those at VABI (Figures 3-5).

The mean size of pregnent females relates both to the maximum size attained and to the size at which reproduction begins. At VABI and TOWY, reproduction normally began at about 22 mm SL. (Appendix Tables 94-9j). For both sites over the two years of study, only 5 of 1,213 pregnant females were smalier than 22 mm SL. At BCHRD, females generally were slightly larger, 24 mm SL or greater, when they began to reproduce. Of the 558 pregnant females examined from $B C H R D$, only 3 were smaller than 24 mm SL.

In 1976 and 1977, pregnant females at VABI and TOWY rarely exceeded 40 mm SL, whereas females at BCHRD were as large as 50 mm SL . In 1978, the distribution at VABI and BCHRD essentially was unchanged, but at TOWY there were a small number of pregnant femiles between 40 and 48 mri SL.

During the 1977 season, the trends in nean size of pregnant females were similar at all three sites. The first females to begin reproduction in April were the largest of the overwintering females. The mean dropped in May as small overwinteriac females became pregnant. As the overwintering females grew, the meai. size of pregnant females increased, peaking in June or July. The mean size declined abruptly again in the late summer or fall (August or September). This apparently was due to a rambination of dying-off of large females from the population and recruitment of small females, born in April and May, into the breeding population.

For 1978, the trends for mean size of pr zgnant females were unlike the 1977 trends. At BCHRD and TOWY, the 1978 trends are nearly

Table 2
The reproductive record of pregnant female mollies from November samples.

Locality-Date	$\begin{aligned} & \boldsymbol{q} \\ & \text { SL } \end{aligned}$	Brood Stage	Nomal   Emin: yos	Abnormal Embryos	Unfertilized Eggs
VABI					
9 Nov, 1978	27.8	3	1	2	1
	32.2	3	5	0	1
	32.5	3	3	3	0
	33.9	2	12	0	0
BCHRD					
1 Hov, 1976	25.6	2	3	0	0
	33.7	2	3	0	0
	36.3	2	11	0	0
	43.9	2	31	0	0
5 Nov, 1977	19.0	2	4	1	0
	33.1	-	0	5	0
	33.8	-	0	2	5
	34.8	-	0	3	1
	35.6	2	8	7	0
	37.2	2	6	0	1
	40.7	2	0	11	3
	42.1	3	10	1	0
9 : $\mathrm{Sov}, 1978$	36.7	3	7	0	1
	42.3	3	5	4	0
	45.0	2	20	0	0
	45.8	3	25	1	0




Figure 5. The mean length (mm SL) of pregnant females and the mean brood size for monthly
samples of the sailfin molly (Poecilia latipinna) from the BCHRD study site.
identical. ikan size was virtually unchanged from April to June, increased abruptly in July, and gradually declined through October. At VABI in 1978, the mean size of pregnant females followed an erratic trend.

It is noteworthy that in every case; the mean size of pregnant females peaked during the mid-sumer depression in pregnancy percentages. In every case, the few females that continue to reproduce during the midsummer slump are large in size. Small females, nomally sexually active, cease reproduction during the slump period.

## Brood Size.

Over the two years of study, brood sizes ranged fion a minimum $G_{1}$. t. 3 a maximum of 54. The largest brood sizes discoverad at the three sites were as follows: VABI, a 38.8 mm SL female with 47 embryos, coliected June, 1978; TOWY, a 39.4 mm SL female with 41 embryos, collected Arril, 1978; BCHRD, a 41.6 mm SL female with 54 embryos, collefted June, 1977. Mean brood sizes were generally similar at VABI and TOWY, generally in the range of 5-15. At BCHRD, brood sizes were substantially larger, generally in the range of 12-26 (Figures 3-5; Appendix Table 96).

There is a general positive correlation between female size and brood size; i.e., larger females have larger broods (see details later under Size Specific Fecundity). Thus, it is not surprising that the curves for mean pregnant female size and mean brood size track one another rather closely. Thus the temporal and spatial differences in mean brood sizes must be interpreted in light of mean fenale sizes. Appendix Table 97 shows that when a comparable size class of females is compared, many of the dramatic differences between months and between sites disappear.

## Size Specific Fecundity

The linear regression relationships for brood size on female length in monthly samples taken at the three study sites are shown in Figures 6-8 (1977) and 9-11 (1978). Statistical data for these graph lines are given in Appendix Tables 98 and 99. For months where the regression was not significant ( $p>0.05$ ) and/or the number of pregnant females was less than 10 , the regression line was not graphed.

Covariance analysis was performed on the monthly regressions from a given site in one year, using a logio transformation of brood size to reduce heterogeneity of variances among the lines (see Methods and Materials). In all six year-station comparisons, the f-test was highly significant ( $p<0.01$ ), indicating that there were significant differences among the monthly regressions. The monthly regressions then were subjected to a Newman-Keuls multiple comparison test for direct comparison of slopes and intercepts to determine which lines were significantly divergent. This test successfully identified divergent lines in all cases except the BCHRD, 1977 and BCHRD, 1978 data sets. Although the covariance f-test was highly significant in both cases, indicating significant variability among the monthly lines, the idewnan-Keuls procedure failed to identify which lines were divergent. Although somewhat

Figure 6. Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the VABI study statistical details.

Figure 7. Least-squares linear regression lines for brood size on female lenyth calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the TOWY study
 statistical details.


[^0]


[^1]
Figure 11. Least-squares linear regression lines for brood size on female lengch calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the BCHRD study site in 1978. Lines based on a monthly sampie size of less than 10 or where the regression was not statistically significant $(p=0.05)$ are not shown. See Appendix Table 99 for
statistical details.
unusual, this problem is not extraordinary. It results from the fact that the F-test is a much more "powerful" procedure than the Newnan-Keuls test (Zar, 1974).

After applying the Newman-Keuls test, the monthly regressions showing no significant differences among themselves were pooled and a common regression was calculated. Significantly divergent lines were graphed independently. For the BCHRD, 1977 and BCHRD, 1978 data sets, there was no alternative but to pool all the monthly lines into one, even though covariance analysis had revealed significant differences among the lines. The results of these procedures are shown in Figures 12 and 13 and Appendix Tables 100 and 101.

It is noteworthy that the reyression lines for monthly samples can vary significantly. Size specific fecundity is not a stable relationship, but can vary both spatially and temporally. This means that sizespecific fecundity is a third and potentially powerful mechanism for adjusting reproductive output.

The monthly pattern of variability in regression lines followed no regular trend but often was associated with the pattern of variation of replacement index (RI) (Figure 14). For example, the June and October, 1977 peaks in RI at VABI corresponded to the two steepest regression lines (Figure 6). Likewise, the dramatic April and May, 1978 peak in RI at BCHRD coincided with steep slopes for those two monthly regressions (Figure 11). However, there are some cases (e.g., September and October, 1978 at BCHRD) where RI peaks were not associated with unusual sizespecific fecundity (Figure 11). Furthermore, in some cases, outstanding regression lines, such as June, 1978 at VABI (Figure 9) and June, 1977 at BCHRD (Figure 8) were associated with low to moderate performance in RT (Figure 14). Finally, there was no clear pattern of seasonality in the regressions. Either high or low-slope regression lines were likely to occur at any time during the reproductive season.

Pooling the monthly regression lines and comparing among years, the most noteworthy observation is that at TOWY and BCHRD, the overall regressions for the two years are nearly identical, whereas, at VABI, the 1977 line has a much higher slope than the 1778 line (Figures 12 and 13). Only the month of June, 1978 approached the steepness of the pooled 1977 regressions.

## Replacement Index

The replacement index is a single number generated from sach monthly data set that reflects, in a static sense, the reproductive output of the population. Since it is influenced by the interaction of preynancy percentages, size distribution of pregnant females, and size-specific fecundity, different reproductive strategies could result in similar index values. This needs to be kept in mind when evaluating replacenent index.

In all ihree study stations, replacenent index exhibited spring or early summer peaks, mid-summer slumps, and late summer or fall peaks in reproductive output during the 1977 season (Figure 14). At VABI,

Figure 13. Least-squares linear regrassion lines for monthly and pooled samples of the sailfin molly (Poecilia latipinna) collected at three study sites in 1973. See Appendix Table 101 for statist a details.
reproduction was modest in April, May, August, and September, and was dramatically elevated in June and October. The uune peak coincides with a peak in pregnancy percentage, a high size-specific fecundity relationship, and a high (but not maximal) mean pregnant female size. The October peak coincides with a high size-specific fecundity relationship, and a large mean pregnant female size.

At TOWY in 1977, the peaks in replacement index were very modest, and fell in May and August. The mid-summer slump was about equally expressed in June and July. Despite a high pregnancy percentage in May, the replacement index was a modest 2.1, since the mean pregnant female size ana the size-specific fecundity relationship were not very large. In August, the replacement index (2.2) was nearly identical to ilay. However, it was achieved through a moderate pregnancy percentage, a large mean size of pregnant females, but size specific fecundity relationship nearly identical to May.

At BCHRD in 1977, the replacement index reached a very modest "peak" in May and June, was minimal in July, and peaked dramatically in September. In May a replacement index value of 1.2 was achieved with a modest pregnancy percentage, a modest size-specific fecundity relationship, and a very low mean pregnant female size. In June the value of 1.3 was achieved despite the dramatically high size specific fecundity and moderately high mean pregnant female size. Both of these features were counteracted by a low pregnancy percentage. The September peak in replacement corresponded to a dramatic peak in pregnancy percentage and a high size-specific fecundity, but a low mean pregnant female size.

In the 1978 data, general trends in the replacement index curve are less consistent. At BCHRD, there is a dramatic April-May peak, an equally dramatic July slump, and a second peak in September-October. At VABI, there , ere May and October low-points, and modest replacement through the remainder of the year, with an unspectacular "peak" in September. At TOWY, there is a hint of llay-June and August peaks, with a slight depression in July, and a gradual linear decline in September and October.

## Environmental Analysis

The data for the physical, chemical, and biological parameters measured at each molly study site are presented in Appendix Tables 102-116 and are summarized in Table 1. Temperature, salinity, and water depth are displayed graphically in Figures 15-17.

The 1977 year had much less rainfall than 1978, especially during the winter and early spring (Table 3). The data are incomplete for 1978 (due to the termination of data collection by the weather service); but from January through May of 1977, 19.25 cm was recorded; whereas 33.19 cm was recorded in 1978. The ten-year average for those four months is 25.37 cin. Thus, the winter and spring of 1977 was a little drier than average, and the same period in 1978 was much wetter than average.

In 1977, water levels reached their lowest point in early May at all three sites, and there was a partial recovery in June. After June, water


Figure 15. Graph of average median surface water temperature, salinity, and water level measured monthly at the VABI sailfin molly study site, October, 1976 to December, 1978. Salinity was measured at the time of fish sampling. The highest water level measured was recorded as zero, and other monthly readings are recorded as cm below zero. The average median water temperature was for the 15 -day period preceding the monthly fish sample.
Breaks in the graph lines represent missing observations.



Table 3
Monthly rainfall (in cm.) measured at Kennedy Space Center, Florida, during the period 1973-1978. The 10 -year average is based on the years 1968-1977. Data provided by NOAA National Weather Service.

levels generally continued to rise throughout the remainder of the reproductive season. in 1978, levels also were lowest in May, but dessication was not nearly so severe as in 1977. At all three sites, water levels rose back to "nomal" levels in June, 1978, and generally remained high throughout the remainder of the 1978 reproductive season.

Water temperatures followed a predictable annual pattern and generally were similar at all three sites. Lowest water temperatures are reached during the period from mid-Decenber to mid-February. Average water temperatures of around $30^{\circ} \mathrm{C}$ or higher were maintained through the mid-summer period, from mid-May to mid-September, depending on site. Unfortunate mechanical problems with the recording thermographs resulted in many missing data points, and detailed comparisons between sites cannot be drawn. It does appear that BCHRD was the warmest site in 1977, and that VABI and TOWY had similar tenperature regimes during the sumner of 1978.

## Discussion

Of the several physical, chemical and biological parameters measured during this study, quantitative and qualitative evaluation suggests that two, temperature and water level, are of major significance in explaining the patterns of reproduction observed.

Water temperature, especially in conjunction with photoperiod, has been shown to be a dominant factor controlling the initiation of reproduction, both in fishes in general (de Vlaming, 1972) and in P. latipinna in particular (Grier, 1973). The effect of high temperatures on reproduction of the sailfin molly was first noted by Snelson (1976) and is confirmed herein and by two fortuitous laboratory experiments. P. latipinna ceases to repruduce at some temperature between $32^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. Laboratory fish held at $31^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$ in two separate experiments reproduced and grew nomally. Mollies held at $35^{\circ} \mathrm{C}$ grew at a very reduced rate, ceased to reproduce completely, and exhibited unusually high mortality.

The stress temperature of $35^{\circ} \mathrm{C}$ and above was recorded regularly at all three study sites during mid-summer mori'hs. The temperature lines in Figures 15-17 show the average daily median surface temperature. Reference to Appendix Tables $102-116$ shows that average daily maximum temperatures nearly always exceeded $32^{\circ} \mathrm{C}$ in mid-summer. In order to achieve average maxima ranging from $32-35^{\circ} \mathrm{C}$, many readings above this range were included, some as high as $39^{\circ} \mathrm{C}$.

The determination of a specific surface water temperature at one spot in a large habitat clearly does not reflect precisely the temperature regime that a free-ranging fish is exposed to. Temperatures vary in a inicro scale throughout a body of water. The response of many fish species in laboratory thermal gradient experiments demonstrates conclusively that fish are capable of discriminating between temperatures and selecting comfortable ranges (Murray, 1971).

In this context, water temperatures probably interact in a complex fashion with other variables to produce stressful conditions. In the three molly study areas, the most important interaction appears to be with water
0








depth. When water stages are high, habitat space is increased, often dramatically, by the flooding of extensive areas. During high water, conjitions for mollies appear to be optimized in three respects. (1) There is a greater opportunity for the fish to avoid extreme temperatures (high or low) because of the greater range of temperatures available between exposed water vs shaded water, shallow water vs deep water, and surface zone vs bottom zone. (2) In addition, the expanded habitat space under flooded conditions should reduce densities of fish and moderate the effects of competition and potentia'ly stressful social interactions among individuals. We are just beginning to understand the influence of social factors on poecillid reproductive systems (Baird, 1968, 1974; Borowsky, 1973; Martin, 1975; Sohn, 1977). (3) Finally, food resources for mollies are increased dramatically under high water conditions. Mollies primarily are "herbivores", feeding on a combination of periphyton, detritus, and algae, with the rare inclusion of some animal matter (Harrington and Harrington, 1961). Flooding promotes the production and availability of the primary food sources of P. latipinna. Numerous studies have shown the importance that food resources play in the control of fish reproduction (e.g., Hester, 1964; Bagenal, 1969; Wooton, 1973).

Much of the variation in molly reproduction observed in this study and in earlier work (Snelson, 1976) can be interpreted as a result of the interplay between temperature and habitat volume.

The interaction between temperature and water depth probably explains the annual pattern of spring and fall reproductive peaks, with a depression of reproduction in mid-summer. This pattern was observed in 5 out of 6 cases in this study (Figure 14) and in 2 out of 4 cases by Snel son (1976).

Although reproduction normally began in April, only the largest overwintering females reproduced in the first month. In May and Jurie, the full size range of adult females reproduced. During those months, median water temperatures were in the middle to upper 20's C and water levels either were at their lowest or recently had increased abruptly, due to heavy June rains or pumping. Low water conditions in the spring may not greatly stress the mollies for two reasons. First, water temperatures are low and optimal for reproduction, not complicating the crowded conditions and adding to the possibility of dissolved oxygen stress. Secondly, the level of reproductive output in the spring and early summer months may not be determined by food availability at that time. Although low water and crowded conditions would be expected to increase competition for food, the fertility and fecundity exhibited in spring months may be more dependent on energy reserves accumulated during the winter than on food resources immediately available.

The mid-summer depression in reproduction ranged from slight to dramatic in 5 of the 6 cases reported herein, and in 2 of the 4 cases reported by Snelson (1976). The depression normally was most severe in July, but occasionally was expressed as early as June or as late as August (Figure 14). The period of lowest reproduction coincided with the period of maxi, un temperatures. Even though the mollies may have some ability to avoid extreme temperatures, it is likely that many fish may be inadvertently "trapped" in areas where temperatures exceed $32^{\circ} \mathrm{C}$, especially during the day. The effect of high temperatures would be most dramatic in low water conditions, where the few remaining bodies of water may be shallow and uniformly heated from surface to bottom. Even if water levels were high during the reproductive
slump, the depressed reproduction might be a consequence of low water levels a month or two prior, when resource imitations resulted in subsequent reduction in fecundity or fertility. It is significant that mean size of pregnant females goes up dramatically during the peak of the summer slump; i.e., only large females continue to bear young during the period of minimum reproduction.

A late summer or fall peak in reproduction was expressed weakly to strongly in all 6 instances recorded herein, and in 2 of the 4 cases reported by Snel son (1976). The peak occurred in August, September, or October. A late-season peak as early as August or September is not easy to resolve in terms of an interaction between temperature and water level. Temperatures usually remain at summer-time high levels through the middle of September. Perhaps the fact that water levels are characteristically high in late summer and fall is significant, permitting fish to avoid stressful temperatures. It is noteworthy that August "peaks" all are minimal. Dramatic late-season peaks all occured in September and/or October, after water temperatures had begun to drop. In all cases, the fall peak(s) in replacement index is correlated with peak(s) in pregnancy percent. This reflects that the late-season peak is associated with resumption of reproduction by those individuals inhibited during the mid-summer depression, not by any dramatic shift in size-specific fecundity or size of the reproducing fish.

To a corisiderable degree, the differences in reproductive performance between sites and between years can be explained by the temperature-water level hypothesis. Following the record-breaking cold winter of 1976-77 (Table 4), the spring of 1977 was unusually dry (Table 3), causing water levels to fall rapidly to extremely low levels. Because of the differences in basic configuration, low water conditions have a dramatic impact on VABI and BCHRD, especially the latter. Both sites have extensive surface area where depths are .2 to .5 m in depth under nomal conditions. When water levels drop, all the fish from these extensive "flats" are crowded into a few remaining deep holes and ditches. At TOWY, by contrast, lowered water levels have minimum impact. This site has only one shallow marginal "flats" zone connected to a very long, deep ditch, "U-shaped" in cross section. Lowered water levels cause the marginal shallow area to become more shallow, but the zone never dried completely during our study, even in May, 1977. Thus this area never became unavailable as fish habitat, even if some fish did vacate the area because of its extreme shallowness. Those fishes that were forced from the shallow zones moved into the deep adjacent ditch, whose surface area was not noticeably reduced during low-water conditions. As a result of basin configuration, TOWY is a more stable habitat than VABI or BCHRD, and fish are less likely to be stressed by over-crowding, competition, heat, or low dissolved oxygen concentrations during dry periods.

The winter of 1977-78 was colder than average (Table 4), but was not nearly as severe as the preceding winter. In addition, the winter and spring of 1978 were very wet, compared to 1977 (Table 3). As a result of reduced springt ime dessication, the water levels remained higher at all three sites in 1978. At TOWY, there was virtually no change in available habitat in 1978. At VABI and BCHRD, there was noticeable habitat restriction, but it lasted only about 30 days. VABI was pumped immediately after the May dessication period in 1977, causing water levels to rebound quickly. With this exception, the water levels at TOWY and BCHRD rose to normal levels by June in 1978, and
they remained high during the entire summer. In contrast, the water levels at both sites remained relatively low through mid-summer in 1977, and did not reach normal levels until September. This difference is related to rainfall. In 1977, only 41.43 cm fell at KSC between June and September, whereas in 1978 the value was 70.46 cm (Table 3).

In keeping with the more stable nature of the habitat, the $r$ productive output at TOWY was much less variable, compared to the other two sites, both in 1977 and 1978. There were no dramatic peaks. Although reproduction was depressed noticeably in June and July of 1977, there was only a very minor depression in 1978. Finally, a higher water level through the summer of 1978 seems to have resulted in generally higher levels of reproduction in 1978 than in 1977 (Figure 14). At VABI and BCHRD in 1977, both populations had minimal reproduction in July, recovered slightly higher in August, and then displayed a dramatic fall peak in October (VABI), or September and October (BCHRD). The two sites, however, differed conspicuously in the spring pattern of reproduction in 1977. At VABI, there was a dramatic peak in June, but there was no noteworthy spring peak in BCHRD (Figure 14).

In 1978, VABI had a much more uniform level of reproductive output than in 1977. There was a depressed period in May, but generally moderate reproduction continued throughout the sumner, with a small peak in September. (Figure 14). At BCHRD, the 1978 replacement index curve shows much more exaggerated variation than in 1977. There was a dramatic April-May peak (not present in 1977), followed by a virtual cessation of reproduction in July, and a second peak period in September and October (Figure 18).

This analysis leaves many questions unanswered, and raises many new questions concerning the causes of variation between sites and between years. For example, what causes differences in the level of reproductive output at comparable times, such as at BCHRD in the spring of 1977 and the spring of 1978 (Figure 14)? Why was overall replacement index ${ }^{+}$TOWY higher in 1978 than 1977 while at VABI the reverse occured? Finally, why should reproduction at a relatively stable, favorable site such as TOWY not achieve uniformly high levels approaching the peaks demonstrated at VABI and BCHRD? The answers to these and other questions require additional research and a more extensive period of field monitoring.

The objective of this study was to learn as much as possible about reproduction in a representative fish species characteristic of the waters around Kennedy Space Center. The data gathered would constitute a "before" baseline on reproductive performance in the selected fish. By continuing to monitor reproduction during and after the initiation of space shuttle operations, it was hoped, it might be possible to identify subletha? environmental changes adversely affecting normal reproduction in the species. Altered reproductive performance could constitute an early warning of subtle environmental changes that eventually might prove detrimental for the fish community as a whole.

The sailfin molly (Poecilia latipinna) was chosen as the test species because it is widespread and abundant on Merritt Island. Furthermore, because of its livebearing habit, it is relatively easy to collect detailed data on reproduction of this fish.

Populations of sailfin mollies in three contrasting habitats were sampled inonthly from October, 1976 to December, 1978. Preserved females were autopsied, and details of their reproductive itatus were recorded. Various physical, chemical, and biological habitat parameters were measured monthly at each study station.

The najor features of reproduction in the sailfin molly were similar in the tnree study populations. The reproductive season extended from April to October. Females become sexually mature at 22-24 mn standard length. The number of young in a brood was correlated positively with female size, and the sex ratio at birth was approximately $1: 1$.

Beyond these genera, ities, the details of reproductive output varied anong the three populations studied, and alsc varied from month-to-month and between the two years of study. Overall reproductive output was measured by a replacement index. Replacement index was influenced by three major aspects of a population's reproductive strategy: (1) the percentage of adult females that were pregnant, (2) the size distribution of the pregnant females, and (3) the size-specific fecundity. Similar replacement index values could be achieved by different combinations of responses in these three measures of reproductive performance.

The three study populations exhibited similar monthly trends for replacement index in 1977. In general, all three sites exhibited spring or early sumner peaks, mid-sumner depressions, and late summer or fall peaks in reproductive output. In 1978, the general trends in replacement index were less consistent. At the BCHRD site, spring and fall reproductive peaks persisted. At the VABI and TOWY siter, replacement was rather modest and uniform throughout the 1978 season, without dramatic peaks.

The temporal and spatial variation in reproductive performance reported in this study can be explained in part by variations in important environmental conditions. Fluctuations in water temperature and/or habitat availability resulted in conditions for repruduction that varied fron optimal to detrimental.

Laboratory experiments have shown that $P$. latipinna ceases to reproduce when water temperatures exceed $32^{\circ} \mathrm{C}$. Surface water temperatures grea'er than 32 C were recorded regularly at the three study areas during summer months. This temperature factor may be partially responsible for the mid-sumner depression in reproduction that was so conspicuous in 1977.

Rainfall in the Kennedy Space Center area usually is heavy from midsummer through late fall, and minimal from late winter until early summer. As a consequence, the impounded waters on Merritt Island undergo drastic desiccation in spring and early summer, and the shallow, marsh-like habitats of the sailfin molly shrink dramatically. During this period the fish may be stressed due to crowding and competition for food. During late summer and fall, heavy rains cause water levels to rise, and mollies again are free to expand their habitat into newly flooded areas. Populations are less dense, and food availability is increased. However, during summer, the populations are exposed to very high water temperatures.

Spring peaks in reproduction, when evident, occurred during low water periods. However, spring water temperatures were optimal for reproduction, so the fish were not thermally stressed. The crowding of mollies into permanent waters in the spring $n_{i} i g h t$ not adversely affect reproduction if the level of spring reproduction is controlled by overwinter environmental conditions, rather than by spring-time conditions (e.g., food availability).

The period of depressed reproduction ir mid-summer occasionaily coincided with low-water conditions as well as elevated ter.jeratures. In most cases, however, a slump was evident even though water levels had begun to rise to "normal" levels. This suggests that even under conditions of expanded habitat availability, the fish could not always escape the limiting effects of high temperatures. The fall peak in reproduction typically was the most dramatic. It usually occurred in either September or October, when water levels were high and temperatures had begun to mioderate.

Because ui differences in basin configurations, the three study sites were not subject to the same degree of desiccation. In general, TOWY was the most stable study site. Its surface volume did not decrease dramatically as water levels fell, and there was a large, deep ditch system that constituted a more-than-adequate refugium during stressful periods. At VABI and BCHRD, especially the latter, low water conditions resulted in severe loss of habitat, and fishes were crowded into small pockets of permanent water.

These differences in the three sites are partly reflected in the pattern of reproduction. Dramatic peaks and valleys in replacement index were most conspicuous at BCHRD and VABI, the two most variable sites. At TOWY, more stable environmental conditions generally resulted in more stable reproductive performance throughout the season. These differences also were reflected in the comparison of 1977 and 1978 reproductive trends. Less rainfall in 1977 resulted in much more severe desiccation conditions than in 1978. At VABI, the less stressful conditions in 1978 resulted in much more uniform reproductive output than in 1977.

The ability to utilize reproductive performance of the sailfin molly to biomonitor environmental conditions is dependent upon the ability to differentiate between changes in reproduction caused by unnatural perturbations and
those that are part of the natural response of the fish to varied ecological conditioris. This study has shown that there is a vast amount of temporal and spatial variation in reproductive performance of the sailfin molly under "normal" conditions. Not only did each study population behave differently, there were dramotic differences between the two reproductive seasons. Furthermore, the observed patterns of variation may represent only a small part, of the variability that could be exhibited unier other environnental circumstances. Although the observed spatial and temporal variation is partly in accurdance with a hypothesis invoiving water temperature and habitat coriditions, there is no convenient way to test directly this idea. Furthemore, sonve of the observed variation is not easily explained in the context of this hypothesis.

As a result of these limitations, reproductive performance of the sailfin molly could be utilized in the context of environmental "mitoring only in a very general way. It would be impossible to differentiate between natural and unnatural factors as the cause for site-to-site, month-to-month, or year-to-year variation in percont pregnancy, size of pregnant females, or size-specific fecundity.

## Conclusions

(1) Keproductive output in the sailfin molly responds in a sensitive way to changes in environmental cunditions.
(2) The three populations studied varied in reproductive performance in different ways, to different degrees, and at different times.
(3) At least some of the variability in reproductive performance seems to be related to varying invironmental factors, especially water temperature and habitat availability. However, much variation in reproductive output is not explained by this hypothesis.
(4) Reproductive performance in the sailfin molly is not a suitable tool for evaluating sublethal changes in enviromental quality. At the present level of understanding, it would be impossible to distinyuish variations caused by natural environmental fluctuations and those ir.uced by man-made perturbations.

## Acknowl edgments

I owe special thanks to the many students and technicians who have assisted in all facets of this project: Ken Bradley, Richard Byles, Tim Clabaugh, John Galluzzo, Helen Large, Larry Neebe, Jane Provancha, Bruce Stanley, Boyd Thompson, Jim Truner, Jeff Wetherington, and Sherry Williams. The data handling, management, and analysis was handled primarily by Jeff Wetherington, with assistarice from Bruce Stanley and Philip Thompson. Jim Turner, Helen Larfe, Jane Provancha, and Jeff Wetherington examined the bulk of the 20,000 $(+)$ mollies utilized in this investigation. Helen Large drew all the graphs and Don Schmitz assisted with art work. Rosalie Creamer served as secretary and Mary Ann Johnston served as administrative assistant for the project. Special thanks to Ralph Gunter and Drs. ic 'ie Ellis, David Vickers, and Jack Stout for helping with various administrative and contract problems. Ur. Vickers nas been especially encouraging, and has granted special favors on more than one occasion.

Mr. Jack Salmela, Brevard Mosquito Control District, kept me advised of pumping activities, and discussed with me his substantial knowledge of Merritt Island natural history. The administration and staff of the iterritt Island National Wildife Refuge have provided cooperation, logistic and material support and many additional favors during the course of this work. I acknowledge especially Robert Yoder, Stephen Vehrs, and Dr. James Baker. The Fish and Wildlife Service, Florida Game and Freshwater Fish Commission, and Florida Department of Natural Resources have granted the permits necessary to conduct this work.

Finally, I acknowledge financial support from NASA's John F. Kennedy Space Center for the support of this and earlier work on P. latipinna (Snelson, 1976). Drs. Paul Buchanan and William Knott and Mr. William Lee have acted as NASA's liaisons and have helped solve a variety of problems. Mr. Lee p. ovided substantial encouragenent by taking a special interest in the molly work.

Amoroso, E. C. 1960. Viviparity in fishes. Symp. Zool. Soc. London 1:153:-181.

Bagenal, T. B. 1969. The relationship between food supply and fecundity in brown trout, Salmo trutta. J. Fish Biol. 1:167:182.

Baird, R. C. 1968. Aggressive behavior and social organization in Mollienesia latipinna (LeSueur). Texas J. Sci. 20: 157-176.

Baird, R. C. 1974. Aspects of social behavior in Poecilia latipinna (LaSueur). Rev. Biol. Trop. 21:399-416.

Benoit, D. A. and G. W. Holcombe. 1978. Toxic Effects of zinc on fathead minnows (Pimephales promelas) in soft water. J. Fish Biol. 13:701-708.

Borowsky, R. L. 1973. Social control of adult size in males of Xiphophorus variatus. Nature 245:332-335.

Brungs, H. A. 1969. Chronic toxicity of zinc to the fathead minnow, Pimephales promelas Rafinesque. Trans. Amer. Fish. Soc. 98(2):272-279.

Cairns, J., Jr. and A. Scheier. 1964. The effect upon the pumpkinseed sunfish, Lepomis gibbosus (Linn.), of chronic exposure to lethal and sublethal concentrations of dieldrin. Not. Natur., Acad. Natur. Sci. Phila. No. 370:1-10.

Cummings, J. B. 1943. Morphogenesis of the gonopodiun in Mollienisia latipinna. J. Worphology 73:1-17.
de Vlaming, V. L. 1972. Environmental control of teleost reproductive cycles: a brief review. J. Fish Biol. 4:131-140.

EPA. 1974. Methods for chemical analysis of water and wastes. EPA-625-/6-74-003. U.S. Environ. Protect. Agency, Off. Tech. Transfer, Wash , D.C., 298 pp.

Foster, N. R., J. Cairns, Jr., and R. L. Kaesler. 1969. The flagfish, Jordanella floridae, as a laboratory animal for behavioral bioassay studies. Proc. Acad. Natur. Sci. Philadelphia 121(5):129-152.

Foster, N. R., A. Scheier, and J. Cairns, Jr. 1966. Effects of ABS on feeding behavior of flagfish, Jordanella foridae. Trans. Amer. Fish. Soc. 95(1):109-110.

Grier, H. J. 1973. Reproduction in the teleost Poecilia latipinna, an ultrastructural and photoperiod investigation. Ph.D. dissertation, Univ. South Fla., Tampa, 180 pp.

Harrington, R. W., Jr. and W. L. Bidlingmayer. 1958. Effects of dieldrin on fishes and invertebrates of a salt marsh. J. Wildlife Management 22(1):76-82.

Harrington, R. W., Jr. and E. S. Harrington. 1961. Food selection among fishes invading a high subtropical salt marsh: from onset of flooding through the progress of a mosquito brood. Ecology 42(4):646-666.

Hester, F. W. 1964. Effects of food supply on fecundity in the female guppy Lebistes reticulatus (Peters). J. Fish Res. Bd. Canada 21:757-764.

Hoese, H. D. and R. H. Moore. 1977. Fishes of the Gulf of Mexico. Texas A \& M Univ. Press, College Station, Texas.

Hopper, A. F., Jr. 1943. The early embryology of Platypoecilus maculatus. Copeia 1943(4):218-224.

Hubbs, C. 1964. Interactions between a bisexual fish species and its gynogenetic sexual parasite. Bull. Texas Mem. Mus. 8:1-72.

Hubbs, C. L. and K. F. Lagler. 1958. Fishes of the Great Lakes region, rev. ed. Bull. Cranbrook Inst. Sci. No. 26, 213 pp.

Jalabert, B. and R. Billard. 1969. Etude ultrastructurale du site de conservation des spermatozoides dans l'ovaire de Poecilia reticulata (Poisson Teleosteen). Ann. Biol. Anim. Bioch. Biophys. 9(2):273-280.

Krumholz, L. A. 1948. Reproduction in the western mosquito fish, Gambusia affinis affinis (Baird \& Girard), and its use in mosquito control. -col. Monogr. 18(1):1-43.

Lane, E. C. and R. J. Livingston. 1970. Some acute and chronic effects of dieldrin on the sailfin molly, Poecilia latipinna. Trans. Amer. Fish. Soc. 99(3):489-495.

Martin, R. C. 1975. Sexual and aggressive behavior, density and social structure in a natural population of mosquitofish, Gambusia affinis holbrooki. Copeia 1975:445-454.

Murray, R. W. 1971. Temperature Receptors, pp. 121-134. In W. S. Hoar and D. J. Randall (eds.), Fish Physiology, Vol. 5, Sensory Systems and Electric Organs. Academic Press, New York, N.Y.

Provost, M. W. 1959. Impounding salt marshes for mosquito control and its efferts on bird life. Florida Natur. 32:163-170.

Provost, M. W. 1973. Salt marsh management in Florida. Ann. Proc., Conf. on Ecological Animal Control by Habitat Management, Vol. 5, not paginated.

Rosen, D. E. and R. M. Bailey. 1963. The poeciliid fishes (Cyprinodontiformes); their structure, zoogeography, and systematics. Bull. Amer. Mus. Natur. Hist. 126(1):1-176.

Rosen, D. E. and M. Gordon. 1953. Functional anatomy and evolution of male genitalia in poeciliid fishes. Zoologica 38:1-46.

Scrimshaw, N. S. 1944. Superfetation in poeciliid fishes. Copeia 1944(3):180-183.

Sheinbaum, Steven. 1979. Reproductive cycles, sex ratios, brood sizes and adult sizes of estuarine and freshwater populations of the sailfin molly Pcacilia latipinna (LeSueur), in the Tampa Bay area. M.A. Thesis, Univ. Sout fla., Tampa, 64 pp.

Simanek, D. E. 1978. Genetic variability and population structure of Poecilia latipinna. Nature 276:612-614.

Snelson, F. F., Jr. 1976. A study of a diverse coastal ecosystem on the Atlaritic coast of Florida: Ichtyological Studies, Vols. I and II. Final Grant Report, Grant NGR-10-019-004. NASA, Kennedy Space Center, FL.; 19 Feb., 1976.

Snelson, F. F., Jr. 1977. Ichthyological Studies, pp. 245-349. In: D. H. Vickers, et al. Semi-Annual Report: A continuation of base-Tine studies for environmentally monitoring space transportation systems (STS) at John F. Kennedy Space Center. NASA Contract No. NAS10-8986; 11 January, 1977.

Snelson, F. F., Jr. and W. K. Bradley, Jr. 1978. Mortality of fishes due to cold on the east coast of Florida, January, 1977. Fla. Sci. 41(1):1-12.

Snelson, F. F., Jr. and J. D. Wetherington. 1980. Sex ratio in the sailfin molly, Poecilia latipinna. Evolution, in press.

Sohn, J. J. 1977. Socially induced inhibition of genetically determined maturation in platyfish, Xiphophorus maculatus. Science 195:199-201.

Stickel, L. F. 1973. Pesticide residues in birds and mammals, pp. 254-312 In: C. A. Edwards (ed.), Environmental pollution by pesticides. Plenum Press, New York, N.Y.

Strickland, J. D. H. and T. R. Parsons. 1972. A practical handbook of seawater analysis. Fish. Res. Bd. Canada Bull. $167,310 \mathrm{pp}$.

Tavolga, W. N. 1949. Embryonic development of the platyfish (Platypoecilus), the swordtail (Xiphophorus), and their hybrid. Bull. Amer. Mus. Natur. Hist. 94(4):165-229.

Tavolga, W. N. and R. Rugh. 1947. Development of the platyfish, Platypoecilus maculatus. Zoologica 32:1-15.

Thibault, R. E. and R. J. Schultz. 1978. Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution 32(2):320-333.

Turner, C. L. 1940. Superfetation in viviparous cyprinodont fishes. Copeia 1940(2):38-91.

Woonton, R. J. 1973. The effect of size of food ration on egg production in the female three-spined stickleback, Gasterosteus aculeatus L. J. Fish. Biol. 5:89-96.

Zar, J. Ho 1974. Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, N. J., 620 pp.

APPENDIX TABLES
Summary of reproductive data for female Poecilia latipinna from Station l; collection
date 19 October 1976; field number PLRS $76-6$. Values in parentheses in the column
labeled mean number of embryos per brood are not means but are single observations.
Embryo









Table 2.
Summary of reproducti : data for female Poecilia latipinna from Station 1;
collection date 1 November 1976, field number PLRS 76-10.
Summary of reprodu:tive data for femsle Poecilia latipima fram Station 1; ollection
date 3 December 1976; fieli number PLRS-76-19.



$\stackrel{8}{8}$
F
HiN $\boldsymbol{H} \mathrm{m} 0 \mathrm{~m} \mathrm{~m}$
156응
Mature
Ova
$\mathbf{N} \quad(\%)$
${ }_{2}^{\infty}$ -
응
이 $\hat{0}$ 의 응 으 응

$$
0
$$

Table 3.
Size Group

$$
\begin{aligned}
& \text { Developing } \\
& \text { Ova } \\
& \mathrm{N} \quad(\%) \\
& \hline
\end{aligned}
$$

$$
\frac{N}{0} \quad(\%)
$$

(0)

Total
Nanpreg.
$\mathrm{N} \quad(\mathrm{z})$

o
इ

$$
\bar{\varrho} \bar{\varrho} \bar{\varrho}
$$

$$
\bar{\sigma}
$$ㅇचif ※゙N$\stackrel{0}{7}$


Sumary of reproductive data for female Poecilia latipinna fram Station 1; collection
date 5 January 1977; field number PLRS-77-26.


$$
\begin{aligned}
& \begin{array}{l}
\text { Size Group } \\
\text { nm SL }
\end{array} \\
& \hline 18-19 \\
& 20-21 \\
& 22-23 \\
& 24-25 \\
& 26-27 \\
& 28-29 \\
& 30-31 \\
& 32-33 \\
& 34-35 \\
& 36-37 \\
& 38-39
\end{aligned}
$$

from Station 1; collection Poccilia 1atipima

1

$$
1
$$

$$
1
$$

$$
1
$$

$$
1
$$

$$
1
$$

$$
1
$$

$$
1
$$

$$
\begin{aligned}
& \text { Developing } \\
& N \\
& N
\end{aligned}
$$

$$
\begin{array}{c|c}
\mathbb{E}_{2} & E \\
z & E \\
\hline
\end{array}
$$

$$
\theta
$$

छ छ(100)

$$
\text { ai in in } \boldsymbol{m} \text { न Hr }
$$

Developing

$$
\begin{aligned}
& (0) \\
& (0)
\end{aligned}
$$

(0)

$$
\begin{aligned}
& \text { PLRS-77-38. } \\
& \text { Mature }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total }
\end{aligned}
$$

Summary of reproductive data for female Poecilia latipinna from Station 1; collection
date 2 March 1977; field number PLRS-77-45.

응 0

o



 N Table| $\begin{array}{c}\text { Size Group } \\ \text { mm SL }\end{array}$ |
| :--- |
| $18-19$ |
| $20-21$ |
| $22-23$ |
| $24-25$ |
| $26-27$ |
| $28-29$ |
| $30-31$ |
| $32-33$ |
| $34-35$ |
| $36-37$ |
| $38-39$ |
| $40-41$ |Total





servations.
Pregnant
$N \quad(\%)$

$$
\begin{gathered}
\begin{array}{c}
\text { Size Group } \\
\text { mm SL } \\
\hline 18-19 \\
20-21 \\
22-23 \\
24-25 \\
26-27 \\
28-29 \\
30-31 \\
32-33 \\
34-35 \\
36-37 \\
38-39 \\
\text { Total }
\end{array} \text { } \\
\hline
\end{gathered}
$$


Sumary of reproductive data for female Poecilia latipinna from Station 1 ; collection
date 9 August 1977 ; field number PLRS-77-86. Values in parenthesis in the column
labeled mean number of embryos per brood are not means but are single observations.
$\begin{array}{cc}\text { Embryos/Broods } \\ \text { - } & - \\ - & - \\ - & - \\ (5) & - \\ 9.00 & 3.54 \\ 13.00 & 1.41 \\ 11.67 & 2.34 \\ 12.86 & 2.54 \\ 12.00 & 3.46\end{array}$





Table 12. Sumary of reproductive data for female Poecilia latipinna from Station 1 ; collection

$\quad$ date 7 September 1977: field numher PLRS-77-92. Values in parenthesis in the column

labeled mean number of embryos per brood are not means but are single observations.







 $\stackrel{\sim}{n}$ | Size Group |
| :---: |
| minSL |
| $18-19$ |
| $20-21$ |
| $22-23$ |
| $24-25$ |
| $26-21$ |
| $28-29$ |
| $30-31$ |
| $32-33$ |
| $34-35$ |
| $36-37$ |
| Total |

TableSize GL   min SL$\qquad$	Sumary of reproductive data for female polecilia latipinna ?rom Station 1 ; collection date 8 October 1977; field number plis-77-106. Values in parenthesis in the column labeled mean number of embryos per brood are not means but are single observations.												
	N	$\begin{aligned} & \text { Unde } \\ & \text { owar } \\ & \hline \end{aligned}$	evel   ries   (\%)	Dev   N   -1			$\begin{gathered} \text { ture } \\ \text { Ova } \\ (x) \end{gathered}$		egn.   ( 2			Normal Embryos $\qquad$	$/ \text { Broods }$
18-19	6	6	(100)	0	(0).	0	(0)	-	(100)	-	(0)	-	-
20-21	11	11	(100)	0	(0)	0	(0)	11	(100)	0	(0)	-	-
22-23	10	10	(100)	0	(0)	0	(0)	10	(100)	0	(0)	-	-
24-25	9	8	(89)	0	(0)	0	(0)	8	(89)	1	(11)	(7)	-
26-27	11	8	(73)	0	(0)	0	(0)	8	(73)	3	(27)	11.00	6.24
28-29	18	10	(56)	0	(0)	1	(6)	11	(61)	7	(39)	12.00	1.41
30-31	8	1	(13)	1	(13)	2	(25)	- 4	(50)	$-4$	(50)	13.75	3.59
32-33	15	2	(13)	1	(7)	1	(7)	4	(27)	11	(73)	22.64	7.16
34-35	12	2	(17)	0	(0)	1	(8)	3	(25)	9	(75)	21.56	7.84
36-37	12	0	(0)	0	(0)	3	(25)	3	(25)	9	(75)	29.78	6.94
38-39	1	0	(0)	0	(0)	0	(0)	0	(0)	1	(100)	(45)	-
Total	113	58	(51)	2	(2)	8	(7)	68	(60)	45	(40)		

Sumary of reproductive data for female Poecilia latipinna from Station 1 ; collection date
5 November 1977; field number PLRS-77-109. Values in parenthesis in the column labeled mean
number of embryos per brood are not means but are single observations.

 $\begin{array}{llllllllllll}\underset{y y y}{u} & \hat{0} & \hat{O} \\ \underset{x}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$


 Size Group mm SL

$N$

 \begin{tabular}{c}
$n$ <br>
$\tilde{m}$ <br>
<br>
\hline

 

$n$ <br>
<br>
<br>
\hline
\end{tabular}


Table 15. Summary of reproductive data for female Poecilia latipinna from Station l; collection date
4 December 1977; field number PLRS-77-117. Values in parenthesis in the colum labeled mean
number of embryos per brood are not means but are single observations.

Normal
Embryos/Broods
$X$


 $\begin{array}{lllllllllll}\underset{\sim}{\mu} \boldsymbol{O} & \hat{O} \\ \underset{\sim}{0} & \hat{O} & \hat{O} & \hat{O} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$




Table 16. Summary of reproductive data for female Poecilia latipinna from Station 1 ; collection date
7 January 1978; field number PLRS-78-122. Values in parenthesis in the column labeled mean
number of embryos per brood are not means but are single observations.

Normal
Embryos/Broods
$\times \quad 8$



Total	
Nonpregn,	
N	$(\%)$
8	$(100)$
20	$(100)$
21	$(100)$
23	$(100)$
22	$(100)$
21	$(100)$
29	$(100)$
13	$(100)$
11	$(100)$
4	$(100)$
2	$(100)$
1	$(100)$
175	$(100)$





Size Group
mm SL
$18-19$
$20-21$
$22-23$
$24-25$
$26-27$
$28-29$
$30-31$
$32-33$
$34-35$
$36-37$
$38-39$
$40-41$
Total

Table

[^2] | Total |  |
| :---: | :---: |
| Nonpregn. |  |
| N | $(\%)$ |
| 2 | $(100)$ |
| 7 | $(100)$ |
| 17 | $(100)$ |
| 16 | $(100)$ |
| 26 | $(100)$ |
| 35 | $(100)$ |
| 33 | $(100)$ |
| 9 | $(100)$ |
| 5 | $(100)$ |
| 3 | $(100)$ |
| 3 | $(100)$ |
| 156 | $(100)$ |






Table 18. Summary of reproductive data for female Poecilia latipinna from Station l; collection date
is in the colum labeled mean
ervations.

Pregnant	Normal
$\mathrm{N} \quad(\%)$	X


 $\begin{array}{lllllllllll}\mu_{j}^{0} & \hat{O} \\ \underset{\sim}{\omega} & \hat{O} & \hat{O} & \hat{O} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$

 $z 10 \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N} \underset{\sim}{\sim}$

Table 19. Summary of reproductive data for female Poecilia latipin from Station l; collection date

$\begin{gathered} \text { Size Group } \\ \text { nim SL } \\ \hline \end{gathered}$	6 April, 1978; field number PLRS-78-137. Values in parentheses in the column labeled mean number of embryos per brood are not means but are single observations.												
	N	Undevel. Ovaries N (\%)		Developing Ova		Mature Ova		Total   Nonpregn. $\mathrm{N} \quad(\%)$		Pregnant		Normal   Embryos/Broods   $\overline{\mathrm{X}} \quad \mathrm{s}$	
18-19	25	25	(100)	0	(0)	0	(0)	25	(100)	0	(0)	-	-
20-21	18	18	(100)	0	(0)	0	(0)	18	(100)	0	(0)	-	-
22-23	23	20	(87)	3	(13)	0	(0)	23	(100)	0	(0)	-	-
24-25	26	11	(42)	12	(46)	2	(8)	25	(96)	1	(4)	(7)	-
26-27	24	2	(8)	13	(54)	6	(25)	21	(88)	3	(12)	9.00	1.00
28-29	15	0	(0)	5	(33)	1	(7)	6	(40)	9	(60)	11.89	2.80
30-31	6	0	(0)	0	(0)	1	(17)	1	(17)	5	(83)	14.00	3.16
32-33	5	0	(0)	0	(0)	0	(0)	0	(0)	5	(100)	14.60	7.20
34-3;	5	0	(0)	0	(0)	0	(0)	0	(0)	5	(100)	17.00	2.35
36-27	4	0	(0)	0	(0)	0	(0)	0	(0)	4	(100)	22.50	7.55
38-39	1	0	(0)	0	(0)	0	(0)	0	(0)	1	(100)	(21)	
Total	152	76	(50)	33	(22)	10	(7)	119	(78)	33	(22)		

Table 20 Summary of reproductive data for female Poecilia latipinna from Station 1; collection date
led mean
Normal
Mmbyos/Bro
 1 1 , $\begin{array}{lll}0 & -1 & 0 \\ \infty & n & \infty \\ 0 & n & 0 \\ & & \\ 0 & 0 & 0 \\ 0 & 0 & n \\ n & 0 & i\end{array}$ © $\widehat{\theta}$
 Pregna
 Mature
Ova
$\mathrm{N} \quad(\%)$
$\mathrm{N} \quad(\%)$

오 5 き $\underset{-}{-}$ 犬 $\widehat{O}$ ㅇ | 0 |  |
| :--- | :--- |
| 0 |  |

 Undevel. Ovaries

2
0
2 (100) N
 $\stackrel{\stackrel{\rightharpoonup}{N}}{\underset{N}{N}}$


Table 21. Sumary of reproductive data for female Poecilia latipinna ${ }^{\text {c }}$ rom Station $?$; collection dace
14 June 1978; field number PLRS-78-148. Values in parentheses in the column labeled mean
number of embryos per brood are not means but are single observations.

 Total
Normal
Embryos/Broods 0 1



Tasle 23. Sumary of reproductive data for female Poecilia latipinna from Station 1 ; collection date
7 August, 1970; field number PLRS-78-156. Values in parentheses in the column labeled mean
number of embryos per brood are not means but are single obseivations.






 S+ze Group
 $\begin{array}{ll}\infty & \cdots \\ 1 & \cdots \\ \infty & 1 \\ \cdots & 0\end{array}$
 $\begin{array}{cc}n & n \\ & n \\ \underset{m}{1} & j \\ j\end{array}$ $\begin{array}{cc}n & n \\ & \underset{m}{1} \\ \underset{m}{n} & \vdots\end{array}$
Table 24. Summary of reproductive data for female Poecilia latipinna from Station 1; collection date
5 September, 1978; field number PLRS-78-160. Values in parentheses in the column labeled
mean number of embrins per brood are not means but are single observations.








 Size Group
mim SL 18-19 18-19 $20-21$
$22-23$ $22-23$
$24-25$ $\begin{array}{ll}n & N \\ \sim & N \\ \sim & 1 \\ N & N\end{array}$ $28-29$
$30-31$ $\underset{\sim}{n}$
$\underset{\sim}{i}$ $n$
$n$
$n$
$m$ 36-37

Table 25. Summary of reproductive data for female Poecilia latipina from Station li collection date 3 October, 1978; field number FLRS-78-164. Values in parentheses in the colum labeled
mean number of embryos per brood are not means but are single observations.


Total	
Nonpregn.	
N	$(\%)$
8	$(100)$
13	$(93)$
13	$(93)$
14	$(93)$
31	$(79)$
30	$(83)$
20	$(71)$
7	$(88)$
6	$(86)$
1	$(50)$
143	$(84)$




	앙	ลิ	\%	$\underset{\sim}{*}$	ล	ล	$\widehat{\sim}$	ลn	$\xrightarrow{-2}$	\%	$\underset{\sim}{*}$
- ${ }_{0}^{0} 8$	$\stackrel{\text { c }}{ }$									$\stackrel{\sim}{*}$	$N$
¢ ¢ 号 O	$\infty$	$\stackrel{n}{\sim}$	N	$\cdots$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\cdots$	$n$	n	$\square$	$\xrightarrow{\sim}$



'Iable 26.. Sumary of reproductive data for female Poecilia Latipinna from Station 1 ; collecelon date
09 November 1978; field number PLRS $-78 \boldsymbol{1 6 8}$. Values in parentheses in the column labeled

 $\begin{array}{llllllllllll}\underset{\mu}{4} \boldsymbol{\theta} & \hat{O} \\ \underset{\sim}{2} & \hat{O} & \hat{O} & \hat{O} & \hat{O} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0\end{array}$



Size Group
man SL
8-19
$20-21$
$22-23$
$24-25$
$26-27$
$28-29$
$30-31$
$32-33$
$34-35$
$36-37$
$38-39$
$40-41$
$42-43$
Total

Summary of reproductive data for female Poecilia Latipinna from Station 1 ; collection date 05 December 1978; field number PLRS-78-172. Values in parentheses in the column labeled mean number of embryos per brood are not means but are single observations.

$$
\begin{aligned}
& \text { Pregnant } \\
& \mathrm{N} \quad(\%) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{O} \\
& 0
\end{aligned}
$$

of

$$
\hat{\varrho} \hat{O} \hat{O} \hat{O} \hat{O} \hat{O} \hat{O} \hat{\varrho}
$$

§
§

$$
\underset{\sim}{\leftrightarrows}
$$

Table

$$
\begin{aligned}
& \text { Size Group } \\
& \text { SI }
\end{aligned}
$$

9
$\infty$
$\infty$
-1

$22-23$

\[

\] N

N

N | $n$ |
| :---: |
|  |
|  |
|  | 26-27 $\infty$

$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty}$
 36-37 38-39

$$
27
$$ $\vec{n}$

$\vdots$
$\vdots$ $\stackrel{n}{n}$ TGIAL
Table 28. Summary of reproductive data for female Poecilia latipinna from Station 2; collection








$\begin{array}{l}\text { Size } \\ \text { Group } \\ \text { mm SL }\end{array}$
$18-19$
$20-21$
$22-2.3$
$24-25$
$26-27$
$28-29$
$30-31$
$32-33$
$34-35$
$36-37$
$38-39$
$40-41$

Sunmary of reproductive data for female Poecilia latipinna from Station 2; collection
date 3 Decenber 1976; field number PLRS-17-18.



$\div$	O-O	$\stackrel{8}{9}$	억	응	$8$	O	\%			O	
\%	$\underset{\sim}{*}$	N	$\stackrel{\sim}{\sim}$	¢	$\cdots$	$\underset{\sim}{\sim}$	$\pm$			+	




 Table 30.

$\begin{array}{l}\text { Size Group } \\ \text { min SL }\end{array}$
$18-19$
$20-21$
$22-23$
$24-25$
$26-27$
$28-29$
$30-31$
$32-33$
$34-35$
$36-37$



Pregnant
$\mathrm{N} \quad(8)$

0 응
0 C (0) O
0 웅(0)
 0 (0) 응
0 응 O
0 응 하 응 응응

$$
\begin{equation*}
0 \quad(0) \tag{응}
\end{equation*}
$$

$$
\begin{equation*}
0 \quad(0) \tag{0}
\end{equation*}
$$ 0 ( 0

$$
0
$$

$$
0 \quad \text { (0) }
$$

오
Table 31. 응
0 응
0 으 ㅇㅇ $ㅇ$ date 4 January 1977; field number PLes-77-24. $\begin{array}{ll}\text { 으 } & \\ 0 & 0\end{array}$ O
0
 © Q. 응 O 응 응

 $\stackrel{N}{-1}$ Size Group nem SL 18-19
20-21 22-23 $24-25$
$26-27$ 28-29 30-31

$$
\begin{aligned}
& \text { Developing } \\
& \text { Ova } \\
& \mathrm{N} \quad(\%) \\
& \hline
\end{aligned}
$$

$$
0 \quad(0)
$$ $m$

$\sim$ | $n$ |
| :---: |
|  |
|  | 36-37


date 3 February 1977; field number PLPs-77-39.

Mature	
Ova	
N	$(8)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$




Total

latipina


$$
z \underset{\sim}{2} \text { \& }
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Size Group } \\
\text { mim SL }
\end{array} \\
& \hline 18-19 \\
& 20-21 \\
& 22-23 \\
& 24-25 \\
& 26-27 \\
& 28-29 \\
& 30-31 \\
& \text { Tbtal }
\end{aligned}
$$

Summary of reproductive data for female Poecilia latipinna from Station 2; collection date
29 March 1977; field number PLRS-77-51. Values in parentheses in the colum labeled mean
number of embryos per brood are not means but are single observations.


servations.
Pregnant
$\mathrm{N} \quad(\%)$


Pregnant	
N	$(\%)$
0	$(0)$
0	$(0)$

 (100) (18)
Total

을
을
 응 $\widehat{N}$
©


Undevel.
Ovaries
$\mathrm{N} \quad(8)$

$$
\underset{\sim}{N} \underset{\sim}{0}
$$

$$
\widehat{0}
$$

$$
\begin{array}{ll}
\underset{\sigma}{E} & \stackrel{\pi}{E} \\
0 & \underset{\nabla}{n}
\end{array}
$$

$$
\text { zn } \underset{\sim}{\infty} \underset{\sim}{\sim} \text { N } \underset{\sim}{\boldsymbol{N}} \underset{\sim}{N} \underset{\sim}{\sim} \underset{\sim}{\infty} \text { in } N \text { - }
$$

$\stackrel{\infty}{\sim}$
Table 34.
Size Group
min SH.
mm Si
18-1y
20-21
22-23
24-25
26-27
28-29
30-31

$$
16 \quad(89)
$$

$$
\begin{aligned}
& (6) \\
& (0) \\
& (0)
\end{aligned}
$$ n

no
N 34-35 36-37 Total

$$
12 \quad \text { (71) }
$$

C
$\cdots{ }^{\prime}$ le 35. Summary of reproductive data for female Poecilia latipinna from Station 2; collection






## Table 36. Summary of reproductive data for fema e Poecilia latjpinna from Station 2; collection



Total	
Nonpregn	
N	$(\%)$
10	$(100)$
45	$(100)$
45	$(100)$
28	$(100)$
9	$(100)$
6	$(55)$
10	$(75)$
0	$(0)$
0	$(0$,
1	$(100)$
147	$(95)$





Table 37. Summary of reproductive data for female Poecilia latipinna from Station 2; collection
date 7 July 1977; field number PLRS-77-79. Values in parenthesis in the column
labeled mean number of embryos per brood are not means but are single observations.

Total | Nonpregn. |
| :--- |
| $\mathrm{N} \quad(\%)$ |

22 (100)
(1)
(1.00)
(100)
(100)

응
(71)
(33)

N
© ©

Gl





Size Group
mm SL $a$
$\vdots$
$\infty$
$\infty$
$20-21$
$22-23$ 24-25 $26-27$
$28-29$
$30-31$
$32-33$ $34-35$
$36-37$ 38-39 A-37 CDT.
Table 38．Sumary of reproductive data for female Poecilia latipinna from Station 2：collection

莫	1	1	1	$\begin{aligned} & \text { N } \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \text { tै } \\ & 0 \\ & -i \end{aligned}$	$\stackrel{ \pm}{\infty}$	¢	N	N	－	$\stackrel{-1}{0}$	1
号以	1	1	1	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{n} \end{aligned}$	$$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	$$	$\delta$ $\cdots$ $n$	$\begin{aligned} & \dot{\infty} \\ & \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & \vdots \\ & \dot{j} \end{aligned}$	$\stackrel{\Xi}{\Xi}$
	¢	응	©	$\stackrel{\rightharpoonup}{0}$	$\underset{\sim}{\underset{\sim}{m}}$	～	ิㅡㄱ	$\underset{\sim}{\underset{O}{0}}$	$\underset{\sim}{\underset{0}{0}}$	O	n	O
	0	$\bigcirc$	0	N	$\infty$	$\cdots$	Or	$\infty$	$\bigcirc$	$n$	$m$	$\cdots$
	8	$\stackrel{\text { 8 }}{\text { B }}$	$\stackrel{\widehat{8}}{-}$	合	$\widehat{\sim}$	－	－	$\stackrel{\infty}{\infty}$	$\stackrel{\text { ले }}{ }$	©	N	응
－	$\infty$	$\cdots$	$\cdots$	$\stackrel{-1}{-}$	$\cdots$	$\stackrel{n}{\sim}$	$\infty$	$n$	n	－	－	0
	응	$\widehat{9}$	O	n	©	S	$\hat{0}$	¢	$\stackrel{\sim}{\rightleftarrows}$	¢	ヘ	C
	0	0	0	$\cdots$	N	$\cdots$	$\cdots$	0	$\cdots$	0	$\cdots$	c
	응	$\hat{O}$	$\hat{O}$	$\underset{\sim}{\underset{\sim}{-}}$	$\underset{\sim}{\underset{\sim}{c}}$	$\underset{\underset{\sim}{\sim}}{\underset{\sim}{2}}$	$\stackrel{\infty}{\square}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$	¢－	$\stackrel{\text { c }}{ }$	$\widehat{S}$
	0	0	0	0	$\sim$	0	$m$	$N$	$\cdots$	0	0	$\bigcirc$
	of	$\begin{aligned} & \hat{8} \\ & \underset{\sim}{\mathrm{C}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ind } \end{aligned}$	$\underset{\sim}{n}$	－	$\underset{\Xi}{-}$	$\underset{\sim}{\text {－}}$	$\underset{\underset{N}{\mathrm{~N}}}{ }$	E	¢	응	$\hat{O}$
	$\infty$	$\underset{\sim}{7}$	$\stackrel{\sim}{\sim}$	N	$n$	$m$	$\checkmark$	$m$	$\cdots$	0	0	c
$z 1$	$\infty$	$\cdots$	$\cdots$	－	N	$\stackrel{\infty}{\sim}$	$\stackrel{-}{\sim}$	$\cdots$	0	$\sim$	$\checkmark$	r


Table 40. Summary of reproductive data for female Poecilia 1atipinga, frow station 2; collection date
8 October 1977; field number PiRS-77-107. Values in parenthesis in the colum labeled mean number of embryos per brood are not means but are single observations.


Total   Nonpregn,   N	
16	$(100)$
16	$(100)$
20	$(97)$
32	$(87)$
26	$(88)$
15	$(88)$
7	$(78)$
7	$(56)$
7	$(60)$
1	$(50)$
1	$(50)$
133	$(85)$




 Size Group $\xrightarrow{\mathrm{mm} \text { SI }}$ $18-19$
$20-21$ $20-21$
$22-23$ 24-25 $26-27$
$28-29$
$30-31$ 32-33 $34-35$
$36-37$ $\underset{\sim}{m}$
$\underset{m}{m}$
Table 41. Sumary of reproductive data for female Poecilia latipinna from Station 2; collection date
5 November 1977; field number PLRS-77-110. Values in parenthesis in the column labeled mean
number of embryos per brood are not means but are single observations.







date collection date
from Station 2;
Poecilia latipinna
number of embryos per brood are not means but are single observations.


$80$	$\stackrel{8}{8}$	¢		$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\stackrel{-8}{8}$	$\stackrel{8}{8}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{9}$
	$\pm$	-	N	$\stackrel{\sim}{\sim}$	9	$\underset{\sim}{\sim}$	$\rightarrow$	$\cdots$	$m$



Developing   Gva   N	
0	$(\%)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(5)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(1)$



Table 42.

Total

0

Poecilia latipima from Station 2;

ervations.
Pregnant
$N \quad(\%)$


Pregnant		
N	$(\%)$	
0	$(0)$	

§
क
©
© ㅇ
©
(0)

Total	
Nonpregn.	
N	$(\%)$
28	$(100)$
43	$(100)$
32	$(100)$
19	$(100)$
5	$(100)$
5	$(100)$
1	$(100)$
2	$(100)$


$\underset{\sim}{4} \boldsymbol{j}$	$\hat{O}$							
$\underset{\sim}{0}$	0	0	0	0	0	0	0	0



 $\stackrel{n}{n}$ Table 44. 44.

$$
\begin{aligned}
& \begin{array}{c}
\text { Size Group } \\
\text { mm SL }
\end{array} \\
& \hline 18-19 \\
& 20-21 \\
& 22-23 \\
& 24-25 \\
& 26-27 \\
& 28-29 \\
& 30-31 \\
& 32-33
\end{aligned}
$$


Summary of reproductive data for female Poecilia latipinna from Station 2; collection date
6 March $1978 ;$ field number PLRS-78-133. Values in parenthesis in the column labeled mean
number of embryos per brood are not means but axe single observations.

Total	
Nonpregn	
N	$(\%)$
2	$(100)$
39	$(100)$
38	$(100)$
33	$(100)$
17	$(100)$
7	$(100)$
6	$(100)$
3	$(100)$
1	$(100)$
0	$(100)$
0	$(100)$
1	$(100)$
147	$(100)$





 Size Group
mm SL
$18-19$
$20-21$
$22-23$
$24-25$
$26-27$
$28-29$
$30-31$
$32-33$
$34-35$
$36-37$
$38-39$
$40-41$
Total
Table 46. Sumary of reproductive data for female Poecilia latipinna from Station 2; collection date
Values in parentheses in the column labeled mean
number of embryos per brood are not means but are single observations.

egn.
$(\%)$
$(100)$
$(100)$
$(100)$
$(100)$
$(89)$
$(82)$
$(69)$
$(44)$
$(50)$
$(0)$
$(20)$
$(100)$
$(83)$


$\begin{array}{c}\text { Mature } \\ \text { Ova } \\ n\end{array}$	
0	$(\%)$
0	$(0)$
0	$(0)$
0	$(0)$
2	$(8)$
8	$(29)$
5	$(15)$
1	$(6)$
1	$(11)$
1	$(25)$
0	$(0)$
0	$(0)$
0	$(0)$
18	$(11)$



 Size Group
nm $S l$
18-19
N
1
N
N
N
N
24-25 26-27 28-29 30-31 32-33 34-34
36-37 38-39 40-41 Total
Table 47. Summary of reproductive data for female Poecilia latipinna from Station 2; collection date
12 May 1978; field number PLRS-78-145. Values in parentheses in the column labeled mean
number of embryos per brood are not means but are single observations.







 size Group 0
+
-
-1
-1 N
N
N 22-23 $N$
$N$
N
N N
1
$\vdots$
N $n$
$N$
N
N -1
$\underset{m}{1}$ no
$\stackrel{1}{n}$

No | $n$ |
| :---: |
| $n$ |
| n | M

el
on $o$
$\underset{\sim}{\infty}$

$\infty$ | -7 |
| :--- |
| $\underset{y}{*}$ | N

$\underset{1}{1}$

$\underset{\sim}{2}$ | $n$ |
| :---: |
| N |
| j |
|  | | $\hat{7}$ |
| :--- |
| $\vdots$ |
|  |

Table 48. Summary of reproductive data for female Poecilia latipinna from Station 2; collectici Ate
14 June 1978; field number PLRS-78-147. Values in parentheses in the column labeled me-

Normal
Embryos/Broods $\infty$

number of embryos per brood are not means but are single observations.


Total
Foecilia latipinna from Station 2 ; collection date
number of embryos per brood are not mean.



- are single observations.

웅
belled mean
Normal
Embryos/Bro


 Total
Nonpreg S m $\checkmark$ $m$ $6 \underset{N}{n}$ ㅇ N 1 0

Pregna

$\mathrm{N} \quad($ | Size G:oup |
| :---: |
| mr. SL |

 $\begin{array}{ll}n & n \\ n & n \\ \tilde{n} & \tilde{m}\end{array}$ $n$
$j$
0
$m$ 0
9
$\infty$
$m$
 Total
8 Sumary of reproductive data for female poecilia iacionna
7 August, 1978 ; field number plas-78-155. Values in parentheses in the column labeled
mean number of embrycs per brood are not means but are singie observations.






 Size Group Size Group
mon SL $\frac{\operatorname{mon} \text { SL }}{18-19}$ -1
$i$
0
$i$ 22-23 24-25 $m$
$N$
1
0
$N$ $n$
$\sim$
1
$\infty$
$N$ $n$
$n$
$\dot{n}$ $n$
$n$
$n$
$n$ 34-35 $n$
$\hat{n}$
$\dot{n}$ $o$
$\mathbf{m}$
1
$m$ -7
1
1
9 $n$
$i$
$\underset{\sim}{3}$
$\underset{\sim}{3}$
-
-
0
0

Areme 111													
$0$	*												
Table	Sumary of reproductive data for female Poecilia latipinne from Station 2 ; collection date												
	5 September, 1978; field numier PLRS-78-159. Values in parentheses in the column labeled												
$\begin{gathered} \text { Size Group } \\ m \mathrm{~mm} \text { SL } \\ \hline \end{gathered}$	N	Und   Ova $-\mathrm{N}$	eve1. ries (\%)		oping a   (\%)		ture ova (\%) $\qquad$		tal egn. (\%)		gnant   (\%)		al /Brood $\qquad$
18-19	24	24	(100)	0	(0)	0	(0)	24	(100)	0	(0)	-	-
20-21	42	41	(98)	1	(2)	0	(0)	42.	(100)	0	(0)	-	-
22-23	31	27	(87)	4	(13)	0	(0)	31	(100)	0	(0)	-	-
24-25	21	14	(67)	4	(19)	1	(5)	19	(90)	2	(10)	9.00	1.41
26-2;	6	1	(17)	1	(17)	1	(17)	3	(50)	3	(50)	5.67	2.08
28-29	12	1	(8)	3	(25)	0	(0)	4	(33)	8	(67)	8.75	3.01
30-31	9	1	(11)	2	(22)	0	(0)	3	(33)	6	(67)	11.17	5.42
32-33	5	0	(0)	1	(20)	0	(0)	1	(20)	4	(80)	16.50	6.76
34-35	7	0	(0)	3	(43)	0	(0)	3	(43)	4	(57)	9.75	3.10
36-37	5	0	(0)	2	(40)	1	(20)	3	(60)	2	(40)	17.00	1.41
38-39	2	0	(0)	0	(0)	0	(0)	0	(0)	2	(100)	10.50	12.02
40-41	3	0	(0)	1	(33)	0	(0)	1	(33)	2	(67)	24.00	15.56
42-43	1	0	(0)	1	(100)	0	(0)	1	(100)	0	(0)	-	-
44-45	1	0	(0)	1	(100)	0	(0)	1	(100)	0	(0)	-	-
Total	169	109	(64)	24	(14)	3	(2)	136	(80)	33	(20)		

Table 52. Sumpary of reproductive data for female Poecilia latipinna from Station 2; collection date 3 October, 1978; field number PLRS-78-163. Values in parentheses in the columa labeled


mean number of embryos per brood are not means but are single observatione.


Ova




09 November 1978; field number PLRS-78-167. Values in parentheses in the colum labeled



 $\begin{array}{r}\text { Develop } \\ \mathrm{Ova} \\ \mathrm{N} \\ \hline\end{array}$
0000



mean number of embryos per brood are not means but are single observations.
Size Group
time SL
Si

stec



$\therefore$ Q
MOE＝
1
1
．


	$\hat{O}$													
	0	0	0	0	0	0	-	0	0	0	0	0	0	0



 さえだー 54.



$$
\begin{aligned}
& \text { Summary of reproductive data for female Poecilia latipinna from Station 3; collection } \\
& \text { column } \\
& \text { labeled mean number of embryos per brood are not means but are single observations. }
\end{aligned}
$$

$$
\begin{array}{l|lllllllllllll|l}
\underset{y}{\mu} & \hat{0} & \hat{O} \\
\frac{\operatorname{m}}{\boldsymbol{b}} & z & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}
$$

\[

\]

$$
\begin{aligned}
& \begin{array}{l}
\text { Size } \\
\text { Group } \\
\text { mim SL }
\end{array} \\
& 18-19 \\
& 20-21 \\
& 22-23 \\
& 24-25 \\
& 26-27 \\
& 28-29 \\
& 30-31 \\
& 32-33 \\
& 34-35 \\
& 36-37 \\
& 38-39 \\
& 40-41 \\
& 42-43
\end{aligned}
$$

\[

\]

$\cdots$

collection

latipinna from Station 3
Total
(8) N
7420640
玉
ฮ ฮ
๔

ฮ 7-24.

-
00
0
0 0 0 0 0 0 0 0 0 0 $0 \quad 0$

1

3; collection
Enbryos/Bruods
$\overline{\mathrm{X}} \quad \sigma$

11


Total






 59. Table Size Group
 Total.

$n$
$\mathbf{0}$
$\boldsymbol{- 1}$

Size Group
mu SL



$n$
$N$
$N$
$N$
$\begin{array}{ll}N & \text { N } \\ \text { N } & \vdots \\ N & \infty \\ N & N\end{array}$
$30-31$
$32-33$
$34-35$
$\begin{array}{lll}n & m & H \\ i & j & j \\ m & m & b\end{array}$


$\begin{array}{lll}\infty & \cdots & 0 \\ j & j & \infty \\ \infty & \infty\end{array}$
7
5
5

$$
\begin{aligned}
& \text { are single observations. } \\
& \text { Total } \\
& \text { Nonpregn. Pregnant }
\end{aligned}
$$

3；collection date
lumen labeled mean
$\frac{\text { Enbryos／Broods }}{\frac{\sigma}{x}}$
身棕

$$
\text { 䓌z } \ddagger \text { H }
$$

Table 62. Summary of reproductive data for female Poecilia latipinna from Station 3; collection
labeled mean number of embryos per brood are not means but are single observations.





 Size Group Size Group
man SL $\frac{\text { mm_SL }}{18-19}$ $\begin{array}{cc}\underset{N}{N} & N \\ \vdots & N \\ \text { N }\end{array}$ 24-25 26-27 $o$
$\underset{N}{1}$
$\infty$

$N$ | $n$ |
| :--- |
| $n$ |
| 1 |
| 1 | n

N
ल $n$
$n$
$j$

$m$ 36-37 | $\stackrel{a}{2}$ |
| :--- |
| $\infty$ |
| $\infty$ | 7

1
8 42-43 44-45

	63.	Summary of reproduct $\mathrm{s}_{\mathrm{v}}$ data for female Poecilia latipinna frori Station 3 collection date 9 June 1977: field number PLRS-77-75. Values in parenthesis in the column labeled mean number of emisyos per brood are not means but are single observations.											
$\begin{aligned} & \text { Size Group } \\ & \mathrm{mm} \text { SL } \\ & \hline \end{aligned}$	N	Undevel. Ovaries$\mathrm{N} \quad(\%)$		Developing Ova		Mature Ova		Total   Nonpregn.   N   (\%)		Pregnant$\mathrm{N}^{(\%)}$		$\begin{gathered} \text { Embryos/Broods } \\ X \quad s \\ \hline \end{gathered}$	
18-19	24	24	(100)	0	(0)	0	(0)	24	(100)	0	(0)	-	-
20-21	25	25	(100)	0	(0)	0	(0)	25	(100)	0	(0)	-	-
22-23	24	21	(88)	3	(13)	0	(0)	24	(100)	0	(0)	-	-
24-25	29	19	(66)	10	(34)	0	(0)	29	(106)	0	(0)	-	-
26-27	25	6	(24)	19	(76)	0	(0)	25	(100)	0	(0)	-	-
28-29	12	4	(32)	8	(67)	0	(0)	12	(100)	0	(0)	-	-
30-31	1	0	(0)	1	(100)	0	(0)	1	(100)	0	(0)	-	-
32-33	0	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	-	-
34-35	1	0	(0)	0	(0)	0	(0)	0	(0)	1	(100)	(18)	-
36-37	4	0	(0)	3	(75)	0	(0)	3	(75)	1	(25)	(20)	-
38-39	j	0	(0)	0	(0)	0	(0)	0	(0)	3	(100)	22.33	7.02
40-41	4	0	(0)	1	(25)	1	(25)	2	(50)	2	(50)	37.50	23.33
42-43	2	0	(0)	0	(0)	1	(50)	1	(50)	1	(50)	(2.4)	-
Total	154	99	(64)	45	(29)	2	(1)	146	(95)	8	(5)		








$$
\begin{aligned}
& \begin{array}{c}
\text { Size Group } \\
\text { rum SL }
\end{array} \\
& \hline 18-19 \\
& 20-21
\end{aligned}
$$

28-29
Summary of reproductive data for female Poecilia latipinna from Station 3; collection
date 7 July 1977; field number PLRS-77-80. Values in parenthesis in the column
labeled mean number of embryos per brood are not means but are single observations. Table 64.

$$
\begin{array}{lll}
N & N & \underset{ }{N} \\
\underset{N}{N} & \underset{1}{1} & \underset{1}{1} \\
\underset{N}{N} & \underset{N}{n}
\end{array}
$$

Table 65. Summary of reproductive data for female Poecilia latipinna from Station 3: collection
date 9 August 1977; field number PLRS-77-85. Values in parenthesis in the column
labeled mean number of embryos per brood are not means but are single observations.

 Size Group mm SL $\operatorname{man} n$
 $26-27$
$28-29$
 Total

> Sumary of reproductive data for female Poecilia latipinna from Station 3: collection
> date 6 September 1977; field number PLRS-77-93. Values in parenthesia in the column
> labeled mean number of embryos per brood are not means but are single observations.




 Develop
Ova


[^3]. . .

Poecilia latipinna from Station 3; collection date
Summary of reproductive data for female
8 October 1977; field number PLRS-77-108. Values in parenthesis in the column labeled vear:
number of embryos per brood are not means but are single observatinns.






 Table 67.
Table 68. Summary of reproductive data for female Poecilia latipinna from Station 3; collection date







$\begin{array}{c}\text { Size Group } \\ \text { mm SL }\end{array}$
$18-19$
$20-21$
$22-23$
$24-25$
$26-27$
$28-29$
$30-31$
$32-33$
$34-35$
$36-37$
$38-39$
$40-41$

Table 68. Summary of reproductive data for female Poecilia latipinna from Station 3; collection date-

$\begin{array}{c}\text { Pregnant } \\ \mathrm{N}\end{array}$		
1	$(\%)$	
1	$(17)$	
0	$(0)$	
0	$(0)$	
0	$(0)$	

8 (5)

Total	
Nonpregn	
N	$(\%)$
5	$(83)$
1	$(100)$
0	$(0)$
1	$(100)$

* Only 3 of 8 pregnant females carried broods that were normal. Five females had broods with unusually large

Mature   Ova   N	
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(1)$


$\begin{array}{c}\text { level oping } \\ \text { Ova } \\ \mathrm{N}\end{array}$	
0	$(\%)$
0	$(0)$
0	$(0)$
0	$(0)$
2	$(1)$


Undevel.	
Ovaries	
N	$(\%)$
5	$(83)$
1	$(100)$
0	$(0)$
1	$(100)$

147 (93)
$\frac{*}{\substack{\text { epooxg/sonaqug } \\
\text { Iemion }}}$
(Continued)
5 November 1977; field number PLRS-77-111.

## Summary of reproductive data formant December 1977 ; field number Pl

> Poecilia latipinna from Station 3; collection date but are sirgle observations.
olumn labeled mean
Normal
Embryos/Broods
spooxg/soxiqua
temaon





 Size Group
mm 51. $a$
1
$\infty$
$\infty$ 20-21 22-23 1 11 min $n$

~

$a$
$\substack{\infty \\ 0 \\ 0}$

Total
Sumary of reproductive data for female Poecilia latipinna from Station 3；collection date Values in parenthesis in the column labeled mean number of embryos per brood are not means but are single observations． Table 70. 7 January 1978；field number PLRS－78－121．




	$\stackrel{\text { O}}{8}$	$\stackrel{\text { 8 }}{8}$	$\stackrel{\text { ¢ }}{8}$	$\stackrel{\text { 응 }}{\text {－}}$	$\stackrel{\text { ® }}{8}$	©	$\stackrel{\text { ¢ }}{8}$	O	$\stackrel{8}{8}$	$\underline{8}$
呂合z	$\stackrel{\infty}{\sim}$	の	$\infty$	응	윽	$\underset{\sim}{\sim}$	$N$	N	m	$\stackrel{\sim}{1}$


Size Group
mm SL 20－21 22－23 24－25
Total
collection date
from Station 3;
latipinna
Poecilia

## 6 February 1978; field number PLRS-78-128.

 $\begin{array}{lllllllllll}\underset{y}{y} \boldsymbol{j} & \hat{\sigma} & \hat{O} \\ \underset{\sim}{\omega} & \hat{O} & \hat{O} & \hat{O} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$




Size Group
mm SL

$20-21$ 22-23 24-25 $\begin{array}{ll}N & 0 \\ N & \vdots \\ j & \infty \\ N & N\end{array}$ $\vec{n}$
$\stackrel{1}{n}$ 32-33 $32-33$
$34-35$ 36-37 38-39 -7
1
0
$于$
collection date

Summary of reproductive data for female Poecilia latipinna
Table 71.
6 February 1978; .ield number PLRS-78-128. (Continued)

$\begin{array}{l}\text { Total } \\ \text { Nonpregn. } \\ \mathrm{N}\end{array}$	
	$(\%)$
1	$(100)$
0	$(0)$
1	$(100)$
1	$(100)$
130	$(100)$




21 - O - $\stackrel{\Gamma}{2}$
Size Group
mm SL
mm SL
$42-43$
$44-45$
$46-47$
$\stackrel{\substack{1 \\ \hline \\+ \\ \hline}}{ }$

7


Table 73. Sumary of reproductive data for female Poecilia latipinna from Station 3; collection date
6 April 1978; field number pLRS-78-138. Values in parentheses in the column labeled mean

number of embryos per brood are not means but are single observations.
$\begin{array}{r}\text { Pregnant } \\ \mathrm{N} \quad(\%) \\ \hline\end{array}$

ations.
Pregna
$\mathrm{N} \quad($









 $\begin{array}{r}\text { Size Group } \\ \text { man SL } \\ \hline\end{array}$ 0
-1
-1
-1 -1
1
N N
$\underset{N}{1}$
N $n$
$N$
1
$N$ N
N
O
N $\underset{\sim}{N}$
N
N
N $\begin{array}{ll}n & m \\ j & m \\ 0 & ल\end{array}$ $\begin{array}{cc}n & n \\ 1 & 1 \\ j & \\ j & \\ & \end{array}$ $n$
in
ì
 Total
abeled mean
Normal
Embryos $/ \mathrm{Br}$







Table 75. Summary of reproductive data for female Poecilia latipinna from Station 3; collection date
14 June 1978; field number PLRS-78-149. Values in parentheses: in the column labeled mean cations.
Pregnant
N


Total Embryos/Broods
$1,1, \underset{\infty}{\sim} \underset{\sim}{\infty}$
 but are single observe


Nonpr
N

$\infty$ ? $N$ 0 0 $\rightarrow$ ~ $\infty$ n $m$ $\rightarrow$ 000 - J J 144

0 (0) $\widehat{O}$
0 응
ลิ

## $)$

## 教




Develop
Ova
N
$z$

- 。
- oO

Undevel.
Ovaries
$\mathrm{N} \quad(\%)$

o
을
-
$\infty$
$\infty$
응 응 $\hat{\theta} \hat{\theta} \hat{\theta} \hat{0} \hat{\theta} \hat{\theta} \hat{0} \hat{0} \hat{\theta}$ number of embryos per per brood are not
Developing


Table 76. Summary of reproductive data for female Poecilia latipinna from Station 3;
in the con
actions.
Pregnant
$\mathrm{N}(\%)$

Pregnant
$\mathrm{N} \quad(\%)$

0 (0)
O
0
$\hat{O}$
0
人) $\hat{6}$ ㅇ
$\hat{\theta} \hat{c} \hat{E}$
ค $\widehat{0}$
$\underset{-8}{ }$ O
single observant
Total
Nonpregn.
$\mathrm{N} \quad(\%)$
$(100)$
$(100)$
$(100)$
$(100)$
$(100)$
$(100)$
$(100)$
$(0)$
$(100)$
$(100)$

O
O
$\underset{y}{-}$ O

                                    응
                            single observater
    Total
Nonpregn.
N (\%)
м $\circ \underset{\sim}{\infty} \underset{\sim}{\sim}$
34
Her 0
$\rightarrow \mathrm{m}$


が
$-N$
$\rightarrow N 0$ n
(99)
number of embryos per brood are not means but are single observations.


$\begin{array}{c}\text { Mature } \\ \text { avar } \\ N \\ N\end{array}$	
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(33)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(1)$


$\begin{array}{c}\text { Mature } \\ \text { avar } \\ N \\ N\end{array}$	
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(33)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(1)$


$\begin{array}{c}\text { Mature } \\ \text { avar } \\ N \\ N\end{array}$	
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(33)$
0	$(0)$
0	$(0)$
0	$(0)$
1	$(1)$


ค
$\stackrel{\circ}{\circ} \circ$
$\begin{array}{r}\begin{array}{c}\text { Developing } \\ \text { Nova } \\ \mathrm{N}^{(\%)}\end{array} \\ \hline\end{array}$
${ }^{\text {Nova (i) }}$
${ }^{(0)}$
('s)
(7)
$-2$
$\therefore \quad \therefore$
- 0 O


Size Group
mm SL
$18-19$
$4 .-21$
22-23
24-25
26-27
$28-29$
$30-31$
$32-33$
$32-33$
$34-35$
36-37
38-39
40-41

Total
Table 77. Summary of reproductive data for female poecilia laripinna from Station 3; collection date 7 August, 1978; field dumber mLRS-78-157. Values in parentheses in the column labeled

$$
\begin{aligned}
& \text { observations. } \\
& \text { Pregnant R }
\end{aligned}
$$

Pregnant $\begin{gathered}\text { Normal. } \\ \text { Embryos/Brosd }\end{gathered}$ $\infty$
2
2
2
2 1
1
1 1
1
.

$$
\begin{aligned}
& \text { vel. } \\
& \text { lies } \\
& (\%) \\
& (100) \\
& (100) \\
& (71) \\
& (50) \\
& (11) \\
& (6) \\
& (4) \\
& (0) \\
& (0) \\
& (0) \\
& (0) \\
& (0) \\
& (0) \\
& (0) \\
& (17)
\end{aligned}
$$

Table 74 . Sumary of reproductive data for female Poecilia latipinna from Station 3; collection date
5 September, 1978; field number PLRS-78-161. Values in parentheses in the column labeled
mean number of embryos per brood are not means but are single observations.







Table 78. Summary of reproductive data for female Poecilia latipinna from Station 3; collection date
5 September, 1978; field number YLKS-78-161. Values in parentheses in the column labeled mean number of embryos per brood are not means but are single observations. (Continued). mean number of embryos per brood are not means but are single observations. (Continued).




Developing
Ova
$\mathrm{N} \quad(\%)$
$\hat{\circ} \hat{0} \hat{\sim} \hat{c}$
©
(34)

$z \mid \operatorname{nn} N \quad \rightarrow$
$\stackrel{\sim}{n}$
Size Group
mm SL


-1
0
0

Table 79. Sumary of reproductive data for female poecilia latipinna from Station 3; collection date

$$
\begin{gathered}
\text { Size Group } \\
\text { min SL }
\end{gathered}
$$

$$
\begin{aligned}
& \text { min SL } \\
& \hline
\end{aligned}
$$ 3 October, 1978; field number PLRS-78-165. Values in parentheses in the column labeled

mean number of embryos per brood are not means but are single observations.

$$
\underset{\sim}{\dot{y}} \underset{\sim}{\circ} \underset{\sim}{\circ} \text { O}
$$

Total
collection date

mean number of embryos per brood are not means but are single observations.

$$
\begin{array}{llllllllllll}
\underset{y}{\mu} & \hat{O} \\
\underset{\sim}{0} & \hat{O} & \hat{O} & \hat{O} & \hat{O} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0
$$

Table 81. Summary of reproductive data for female Poecilia Latipinna from Station 3; collection date





 $\begin{array}{r}\text { Develop } \\ \text { Ova } \\ \mathrm{N} \quad \\ \hline\end{array}$ | Undeve1. |  |
| :---: | :---: |
| Ovaries |  |
| $N$ | $(\%)$ |
| 7 | $(100)$ |
| 13 | $(100)$ |
| 29 | $(100)$ |
| 24 | $(100)$ |
| 19 | $(100)$ |
| 5 | $(100)$ |
| 5 | $(100)$ |
| 16 | $(100)$ |
| 16 | $(100)$ |
| 8 | $(100)$ |
| 5 | $(100)$ |
| 3 | $(100)$ |
| 2 | $(100)$ |


$\begin{gathered}\text { Size Group } \\ \text { mm SL } \\ 18-19 \\ 20-21 \\ 22-23 \\ 24-25 \\ 26-27 \\ 28-29 \\ 30-31 \\ 32-33 \\ 34-35 \\ 36-37 \\ 38-39 \\ 40-41 \\ 42-43\end{gathered}$

## TOTAL



Table 82. Summary of monthly collections at three sailfin molly study stations.

Vab Study Station (Sta. 1)	October 1976	November 1976	Decamber 1976	January 1977	February 1977
No. of sites seincd	3	2	2	3	3
No. of seine hauls	3	2	2	6	3
Total seining tume (min.)	2.22	1.61	1.83	3.13	1.77
Avg. no. fish caught per min.	168.92	703.11	275.96	179.87	338.98
Gatio tia affinis	163.92	703.11	34.97	11.82	119.21
Lucania parva	-	-	1.64	5.11	5.65
Cirinoion varıegatus	-	-	31.69	5.75	18.64
Tow-way Study Station (Sta. 2)					
No. of sites seined	3	5	3	5	1
No. of seine hauls		5	4	8	3
Tutal seining thee (man.)	1.72	3.06	1.77	4.46	2.40
Avg. no. fish caught per min.					
Poecilia latipinna	293.60	239.54	150.28	141.48	128.33
cantusia affinis	-	-	111.30	65.25	199.58
Lucanu parva	-	-	72.88	24.89	21.25
Chrinodon variegatus	-	-	6.78	2.02	0.45
Brach Roud Study Station (Sta. 3)					
No. of sites seined	3	3	5	3	2
No. of sense hauls	3	3	7	8	
Total seining time (min.)	4.23	1.80	6.42	15.33	8.74
Avg. no. fish caught per min. 174.00 l 611.67					
Poecrila ${ }_{\text {Gumbuia }} \frac{\text { latipinna }}{\text { affinis }}$	174.00	311.67	49.59	23.18	35.24
Gumbusia affinis	-	-	87.23 12.77	59.2 ?	66.59 18.19
$\frac{\text { Lucanıa parva }}{\text { Cuprinodon varıegatus }}$	-	-	12.77 292.99	4.76 83.63	18.19 63.27


1977



July 1977

ヘnल
$n 8$
$\stackrel{y}{c} 8$
$\mathrm{C}_{2}$
in
N
Ni
-


May 1977



Table 84 . Summary of monthly collections at
Table 84 . Summary of monthly collections at
Table 84. Summary of monthly collections at


stations.
Kpnas
sailfin
three


$$
m \backsim \stackrel{O}{0}
$$



Nov. 1977

 on
$\stackrel{+}{+}$
$\infty$
$\infty$ $M \sim M$
$\infty$
$\infty$
$\infty$
0 n
$\stackrel{1}{2}$
$\stackrel{1}{2}$

 Oct. 1977
 20.04
38.60 Tow-way Study Station (Sta. 2)

No. of sites seined 3
$\begin{array}{ll}\text { No. of sites seined } & 3 \\ \text { No. of seine hauls } & 3 .\end{array}$
Total seining time (min.) 2.35 Average no.fish caught per min.
Poecilia latipinna
996.17 $\begin{array}{ll}\text { Poecilia } \frac{96}{} \text { latipinna } & 996.17 \\ & 169.36\end{array}$
$\begin{array}{lr}\text { Lucania parva } & 218.72 \\ & 26.81\end{array}$
Lucania parva
Cyprinodon variegatus
Beach Road Study Station $\begin{array}{r}\text { Beach Road Study Station } \\ \text { (St.a. 3) } \\ \hline\end{array}$

No. of sites seined
No. of seine hauls
Total seining time (min.) Average no.fish caught per
$\frac{\text { Poecilia }}{\text { Gambusia } \frac{\text { atipinna }}{\text { affinis }}}$
Cyprinodon variegatus
Table 35. Summary of monthly collections at three sailfin study stations.
1978

 ナ~ $\begin{array}{r}\infty \\ \text { - }\end{array}$


 Apr. 1978

4 VAB Study Station (Sta. 1)


Beach Road Study Station (Sta. 3) No. of sites seined
No. of seine hauls
Total seining time (min.) Average no. fisn caught per min. $\frac{\text { Poecilia }}{\text { Gambusia }} \frac{\text { latipinna }}{\text { affinis }}$
Lucania parva
Cyprinodon variegatus

Table 86. Summary of monthly collections at three sailfin molly study stations.
Oct 1978 Nov. 1978

$\ddagger$
$\infty$
0
0
0
$\infty$
$\infty$
$\infty$
$\infty$
$\infty$



Tow-way Study Station (Sta, 2)


Cyprinodon variegatus
$\stackrel{\circ}{2}{ }_{2}^{\circ}$

Table 87. The f:equency wi pregnancy among adult female Poecilia latipinna from three study stat: ons for 1977 and 1978. Adult femals: are those equ.. 1 to or exceeding 22.0 mm SL for VABI and TOWY, and equal or exceeding 24.0 mm SL at BCHRD.

Month, Year	VABI			TOWY			BCHRD		
	Ad. 9 $\qquad$	$\begin{gathered} \text { Pre } \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \& \\ (\%) \end{gathered}$	Ad. 9 $\qquad$		$\begin{gathered} q \\ (\%) \end{gathered}$	Ad. 7 $\qquad$		$q$ (\%)
Apr., 1977	84	5	(5)	123	28	(23)	118	3	( 3)
May, 1977	100	36	(36)	175	96	(55)	122	22	(18)
Jun., 1977	138	93	(67)	100	8	( 8)	81	8	(10)
Jul., 1977	130	6	( 5)	103	10	(10)	64	2	( 3)
Aug., 1977	106	28	(26)	135	57	(42)	108	12	(11)
Sep., 1977	108	29	(27)	138	52	(38)	142	74	(52)
Oct., 1977	96	45	(47)	120	23	(19)	113	54	(48)
Nov., 1977	110	0	( 0)	105	0	( 0)	156	7	( 4)
Apr., 1978	109	33	(30)	136	27	(20)	140	85	(61)
May, 1978	151	25	(17)	164	85	(52)	161	100	(62)
Jun., 1978	132	28	(21)	154	89	(58)	51	19	(37)
Jul., 1978	133	57	(43)	149	46	(31)	98	2	( 2)
Aug., 1978	160	81	(51)	136	57	(42)	134	22	(16)
Sep., 1978	125	75	(60)	103	33	(32)	122	61	(50)
Oct., 1978	149	27	(18)	125	19	(15)	135	74	(55)
Nov., 1978	147	4	( 3)	121	0	( 0)	162	4	( 2)



$\pm 9$
$\div 7$
$\vdots+1$
$\underset{\sim}{\circ} 7$
여케
$\dot{\sim}$
㐫か
高咅
$\underset{\sim}{\infty}$ 게
휵

$\dot{\sim}$


ผ่






$\star$



## 

## $\pi$ <br> 

${ }_{5}^{1} 9$
$\underset{y}{1} \mathrm{O}$
59
$\underset{4}{4} 9$













1 n sm$\infty$9

$$
\rightarrow \text { non n ta }
$$



$\qquad$

Table

 y 号出

```
 *9%
 &%%
 &54

 8-1
```

$\rightarrow$	$\rightarrow+$	
$\cdots$	$\rightarrow$	

    \(\pm 9\)
    
sin
$\dot{p}$







它"

$\begin{array}{ll}\text { Station } 2 \\ \text { Jan., } & 1978 \\ \text { Feb., } 1978 \\ \text { Mar. . } & 1978 \\ \text { Apr. } & 1978 \\ \text { May, } 1978 \\ \text { June, } 1978 \\ \text { July, } & 1978 \\ \text { Aug., } 1978 \\ \text { Sep., } 1978 \\ \text { Oct., } 1978 \\ \text { Nov., } 1978 \\ \text { Dec., } 1978\end{array}$

Tabie 93 . Standard length frequoncy distribution for non-pregnant poectile latipinne in monshly samplea from study etation 3 (ached), 1978.


49
$\therefore=1$
$\therefore 1$
$\pm 5$
Sill













Table 94. Standurd length frequency distribution for pregnant poceilin latipinna in monthiy samples from three seudy stations.

	$\begin{array}{r} 18- \\ 19 \\ \hline \end{array}$	$\begin{array}{r} 20- \\ 21 \\ \hline \end{array}$	$\begin{array}{r} 22- \\ 23 \\ \hline \end{array}$	$\begin{array}{r} 24- \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 26- \\ 27 \\ \hline \end{array}$	$\begin{array}{r} 28- \\ 29 \\ \hline \end{array}$	$\begin{array}{r} 30- \\ 31 \\ \hline \end{array}$	$\begin{array}{r} 32- \\ 33 \\ \hline \end{array}$	$\begin{array}{r} 34- \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 36- \\ 37 \\ \hline \end{array}$	$\begin{array}{r} 38- \\ 39 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 42- \\ & 43 \\ & \hline \end{aligned}$	$\begin{array}{r} 44- \\ 45 \\ \hline \end{array}$	$\begin{array}{r} 66 \\ 47 \\ \hline \end{array}$	$\begin{array}{r} 48 \\ 49 \\ \hline \end{array}$	N	菜	5
Station 1																			
net.. 1976					2	-	-	-	1								3	29.5	5.17
AJv. 1976																	0	-	-
Apr. 1977					2	2	-	-	1								5	29.1	3.02
Nay, 1977	-	1	1	18	8	8	1										37	26.1	2.03
'une, 1977	-	-	-	-	4	22	24	16	14	9	4						93	3:.1	3.01
July, 1977	-	-	-	-	-	-	1	2	2	1							6	34.0	1.61
Aus., 1977	-	-	-	-	1	5	6	6	7	3							28	32.4	2.80
Sept. 1977	1	-	3	8	3	1	4	4	4	2							30	28.8	4.80
nct., 1977				1	3	7	4	11	9	9	1						45	32.8	3.42
Station 2 *																			
Cct. 1976					1	-	-	-	1								2	31.2	5.30
Nov., 1976																	0	-	
$\therefore \times .1977$					4	5	8	10	-	1							28	30.8	2.23
:ray, 1977	-	-	1	15	34	19	11	15	-	1							96	28.4	2.83
\% . .unc, 1977	-	-	-	-	-	5	1	2									8	30.2	1.81
$\%_{1}$ July, 1977	-	-	-	2	8	=	4	2	3	1							17	33.3	2.38
	-	-	-	2	8	15	9	8	6	5	3	1					57	31.4	3.82
Sept.,1977	-	3	15	13	13	3	3	2	3								55	26.0	3.54
OEt. 1977			1	4	2	2	4	6	2	1	1						23	30.4	4.14
Stat!on 3																			
Oct. 1976							1	$\bar{\square}$	1									32.4	3.04
Sov., 1976				1	-	-	-	1	-	1	-	-	1				4	34.9	7.55
Apr., 1977													1	1	1		3	44.5	1.62
May, 1977	-	-	-	-	2	-	12	3	2	3							22	32.3	2.72
June, 1977	-	-	-	-	-	-	-	1	1	-	3	2	1				8	39.5	2.10
July, 1977	-	-	-	-	-	-	-			1	1						2	37.7	1.41
Ası. 1977	-	-	-	-	-	-	7	5									12	31.8	1.12
Sept., 1977	-	-	1	3	11	12	7	9	7	7	10	4	2	1	1		75	33.3	5.50
Oct. , 1977			1	3	2	7	7	6	2	8	7	8	2	2			55	36.6	3.74
Sov., 1977	1	-	-	-	-	-	-	2	2	1	-	1	1				${ }^{8 *}$	34.5	7.05

Tabie 95．Standard length frequency diatribution for pregnant Poccilia lativinna in monthiy asaples from three atudy atations，1978．

N $\bar{x}$

8がロN゚Nヘ
mincincti




がきござざ
：s
s이
4
的
晾
ゅ．$\downarrow$
紬
－
．

$m \rightarrow न$


霉～
n＋m Nonn
NがッロッN
がッいが


ถ．


いッブ・•••
oon
$n^{\circ}$
ม우 onのNONO．

$\qquad$
：

$m n$
nom m － $4 \infty$ NH
～N ance

$n \quad$NHO

सं
$\stackrel{1}{\circ}$
玉


Table 96. The mean number of normal embryos in broods of pregnant females from three study areas, 1977 and 1978.

Apr., 1977
May, 1977
June, 1977
July, 1977
Aug., 1977
Sep., 1977
Oct., 1977

Apr., 1978
May, 1978
June, 1978
July, 1978
Aug., 1978
Sep., 1978
Oct., 1978
Nov., 1978

VABI			TOWY			BCHRD		
$\overline{\mathbf{x}}$	S.D.	N	$\overline{\mathrm{x}}$	S.D.	N	$\overline{\mathrm{x}}$	S.D.	N
15.0	6.75	5	10.2	3.18	28	35.0	7.00	3
4.6	1.80	37	7.7	3.79	96	13.9	3.53	22
17.2	9.64	93	11.4	3.11	8	25.5	12.25	8
10.0	2.97	6	13.3	4.30	10	26.0	0.0	2
11.6	3.05	28	10.4	4.41	57	12.2	4.99	12
12.5	7.81	30	6.1	3.35	55	16.4	8.25	75
20.8	9.64	45	6.0	3.23	23	12.9	7.75	55
14.5	5.71	33	17.1	8.17	27	21.5	7.46	84
6.7	1.49	25	10.8	5.22	85	21.8	8.64	100
15.5	13.05	28	10.1	4.03	89	17.3	8.68	19
8.3	2.18	57	13.3	5.08	46	14.5	0.71	2
7.8	2.86	81	13.6	5.29	57	14.3	6.55	22
10.0	3.54	75	11.5	6.30	33	13.6	6.77	61
5.7	2.52	28	9.4	5.14	19	14.0	6.97	74
5.2	4.73	4	-	-	-	14.2	3.54	4

Table 97. The mean number of normal embryos in broods of pregnant females 28.0-33.9 man SL from three study areas, 1977 and 1978.

	VABI		TOWY		BCHRD	
	$\overline{\mathbf{x}}$	N	$\overline{\mathrm{x}}$	N	$\overline{\mathrm{x}}$	N
Apr., 1977	19.0	2	10.6	23	-	-
May, 1977	6.6	9	9.8	45	13.5	15
June, 1977	15.0	62	11.4	8	-	-
July, 1977	9.0	3	11.0	6	-	-
Aug., 1977	11.4	17	8.9	32	12.2	12
Sep., 1977	14.9	9	10.1	8	12.2	28
Oct., 1977	7.6	22	6.8	12	8.2	20
Apr., 1978	13.2	19	13.5	16	14.9	25
May, 1978	7.4	8	8.6	37	12.8	24
June, 1978	16.5	15	9.2	64	9.9	9
July, 1978	9.0	33	9.4	9	-	-
Aug., 1978	7.6	60	12.0	26	9.89	9
Sep., 1978	9.7	53	11.28	18	9.38	26
Oct., 1978	6.1	15	7.33	9	10.35	37
Nov., 1978	6.67	3	-	-	-	-




Table 100. Statistical data for linear regressions of brood size on female size for monthly and pooled samples of Poecilia latipinna at three study areas in 1977. These data correspond to the graph lines shown in text Figure 12.

## Coefficient of Slope Intercept Determination N

Station 1 (VABI)

August	0.78	-13.10	0.67	45
Pooled (Apr., May, Jun.,	1.60	-32.99	0.73	227

Station 2 (TOWY)
$\begin{array}{lllll}\text { October } & 0.53 & -10.03 & 0.68 & 23\end{array}$
Pooled (Apr., May, Jul., 0.86 -16.36 328 Aug., Sep.)

Station 3 (3CHRD)

Pooled (May, Jun., Aug.,	1.18	-24.04	0.70	238
Sep., Oct.)				

Table 101. Statistical data for 3 inear regressions of brood size on female size for monthly and poolec oamples of Poecilia 1s ifipinna at three study areas in 1978. These data correspond to the graph lines shown in text Figure 13.

Slope Intercept $\quad$| Coefficient of |
| :--- |
| Determination |$\quad N$

June	2.10	-46.33	0.57	55
October	7.59	-11.51	0.74	$3 n$
Ynoled (Apr., May, Jul.,	0.79	-14.35	0.61	334

Staticn 2 (TOWY)

July	1.03	-24.06	0.67	63
Pocled (Apr., May, Jun.,	0.85	-16.08	0.62	385

Station 3 (BCKRD)

Pooled (Apr., cy, Jun.,   Aug., Sep., Oct.)	1.32	-28.86	0.75	433

Table 102. Summary of Environmental Parameters at the Vas study station (Station 1).

0:manm




c one sample
Table 103. Summary of Environmental Parameters at the VAB Study Station (Station 1). The July periphyton
chlorophyll mean is based on three determinations, not four. Blanks in the data resulted from
equipment failures.
Parameter
Water Temperature
Monthly Water Temperature

$$
\begin{gathered}
\text { May } 1977 \\
24.0^{\circ} \mathrm{C} \\
22.0^{\circ} \mathrm{C} \\
28.0^{\circ} \mathrm{C} \\
24.0^{\circ} \mathrm{C} \\
10.0 \mathrm{ppt} \\
-18 \mathrm{~cm} \\
23.0 \mathrm{NTU} \\
2.3 \mathrm{fpm} \\
8.1 \\
0.088 \mathrm{mg} / 1 \\
--2
\end{gathered}
$$

September 1977

Water Level Change Turbidity Dissolved Oxygen pH
Ortho-phosphate
Nitrate Nitrog' a
Total Chlorophyll


$$
\begin{aligned}
& \frac{\text { July } 1977}{30.0^{\circ} \mathrm{C}} \\
& \begin{array}{l}
\text { June } \frac{1977}{30.10^{\circ} \mathrm{C}} \\
24.0^{\circ} \mathrm{C} \\
28.10^{\circ} \mathrm{C} \\
26.1{ }^{\circ} \mathrm{C} \\
35.13 \mathrm{ppt} \\
+413 \mathrm{~cm} \\
4.8 \mathrm{NTV} \\
2.5 \mathrm{ppm} \\
\ldots . .2- \\
0.05 .3 \mathrm{mg} / 1 \\
0.235 \mathrm{mg} / 1
\end{array}
\end{aligned}
$$

Table 104. Sumary of Environmental Parameters at the VAB Study Station (Station 1). Blank in the data


Jan. 1978 17.00 C 12.09 C
$14.0^{\circ} \mathrm{C}$
$13.0^{\circ} \mathrm{C}$
21.0 ppt
0 cm
1.3 NTU
9.2 ppm
8.0
$0.070 \mathrm{mg} / 1$
$0.082 \mathrm{mg} / 1$
 Dec. 1977
$20.0^{\circ} \mathrm{C}$
$20.0^{\circ} \mathrm{C}$
$22.0^{\circ} \mathrm{C}$
$21.0^{\circ} \mathrm{C}$
19.0 ppt
-14 cm
1.9 NTU
5.8 ppm
7.6
$0.014 \mathrm{mg} / 1$
$0.042 \mathrm{mg} / 1$
$0.0010 \mathrm{mg} /$
$\mathrm{cm} 2 / \mathrm{day}$
$1.697 \mathrm{mg} / \mathrm{m} 3$

Table 105. Summary of Environmental Parnmeters of the VAB Study Station (station 1).
*Mean of four determinations.

$$
\begin{aligned}
& \text { Apr. } 1978 \\
& 25.0^{\circ} \mathrm{C} \\
& 19.0^{\circ} \mathrm{C} \\
& 23.0^{\circ} \mathrm{C} \\
& 21.0^{\circ} \mathrm{C} \\
& 15.0 \mathrm{ppt} \\
& -13 \mathrm{~cm} \\
& 4.1 \mathrm{NTU} \\
& 3.2 \mathrm{ppm} \\
& 8.0 \\
& 0.003 \mathrm{mg} / 1 \\
& 0.026 \mathrm{mg} / 1 \\
& 0.0007 \mathrm{mg} / \\
& \mathrm{cm} / \mathrm{day} \\
& 1.604 \mathrm{mg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ray } 1978 \\
& 27.0^{\circ} \mathrm{C} \\
& 23.0^{\circ} \mathrm{C} \mathrm{C} \\
& 28.0^{\circ} \mathrm{C} \\
& 26.0^{\circ} \mathrm{C} \\
& 21.0 \mathrm{ppt} \\
& -18 \mathrm{~cm} \\
& 5.7 \mathrm{NTU} \\
& 1.5 \mathrm{ppm} \\
& 8.1 \\
& 0.032 \mathrm{mg} / 1 \\
& 0.000 \mathrm{mg} / 1 \\
& 0.0022 \mathrm{mg} / \\
& \mathrm{cm} / \mathrm{day} \\
& 0.750 \mathrm{mg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { June } 1978 \\
& 30.5^{\circ} \mathrm{C} \\
& 28.0^{\circ} \mathrm{C} \\
& 33.0^{\circ} \mathrm{C} \\
& 31.0^{\circ} \mathrm{C} \\
& 18.0 \mathrm{ppt} \\
& +16 \mathrm{~cm} \\
& 1.7 \mathrm{NTU} \\
& 6.8 \mathrm{ppm} \\
& 8.6 \\
& 0.261 \mathrm{mg} / 1 \\
& 0.000 \mathrm{mg} / 1 \\
& 0.0019 \mathrm{mg} / \\
& \mathrm{cm} / \mathrm{day} \\
& 6.308 \mathrm{mg} / \mathrm{m} 3
\end{aligned}
$$


Station (Station 1). Blanks in the data resulted from equipment fallures.
Table 106. Summary of Environmental Parameters at the VAB Study Parameter
Dec. 1978
$23.0^{\circ} \mathrm{C}$
$22.0^{\circ} \mathrm{C}$
$24.0^{\circ} \mathrm{C}$
$23.0^{\circ} \mathrm{C}$
12.0 ppt
$4 \quad \mathrm{~cm}$
2.4 NTU
3.6 ppm
3.6 ppm
8.4
$0.044 \mathrm{mg} / 1$ $0.027 \mathrm{mg} / 1$
$\begin{gathered}0.0007 \mathrm{mg} / \\ \mathrm{cm} / \mathrm{m} / \mathrm{day}\end{gathered}$
 Nov. 1978
$23.0^{\circ} \mathrm{C}$
$24.0^{\circ} \mathrm{C}$
$27.0^{\circ} \mathrm{C}$
$25.0^{\circ} \mathrm{C}$
12.0 ppt
12.0 ppt
$4 \quad \mathrm{~cm}$
2.8 NTU
8.1 ppm
8.4
$0.011 \mathrm{mg} / 1$
$0.021 \mathrm{mg} / 1$ $0.0005 \mathrm{mg} /$
$\mathrm{cm}^{2} / \mathrm{day}$ $0.016 \mathrm{mg} / \mathrm{m}^{3}$ Oct. 1978
$27.0^{\circ} \mathrm{C}$
$28.0^{\circ} \mathrm{C}$
$32.0^{\circ} \mathrm{C}$
$30.0^{\circ} \mathrm{C}$
14.0 ppt
-2 cm
1.2 NTU
4.4 ppm
8.6
$0.048 \mathrm{mg} / 1$
-
$0.0010 \mathrm{mg} /$
$\mathrm{cm} / \mathrm{m}^{2} / \mathrm{day}$
$2.321 \mathrm{mg} / \mathrm{m}^{3}$ Sept. 1978
$31.0^{\circ} \mathrm{C}$
$28.0^{\circ} \mathrm{C}$
$32.0^{\circ} \mathrm{C}$
$30.0^{\circ} \mathrm{C}$
13.0 ppt
$-14 \quad \mathrm{~cm}$
1.5 NTU
2.0 ppm
8.5
$0.007 \mathrm{mg} / 1$
0
$0 \mathrm{mg} / 1$
$0.0008 \mathrm{mg} /$
$\mathrm{cm} / \mathrm{m}^{2} / \mathrm{day}$
$0.901 \mathrm{mg} / \mathrm{m}^{3}$ Aug. 1978 $30.0^{\circ} \mathrm{C}$
$28.0^{\circ} \mathrm{C}$



* Mean of four determinations

	Pari.ster
	Water Temperature
	Monthly Wate: Terperature Average Daily Min. Average Daill, Max. Average Daily Madian
	Salinity
	Water level Change
	Turbidity
	Dissolved arygen
	P4
	Or tho-phosphate
	Nitrate Nitrogen
	Total Chlorophyll periphyton phytoplankton

[^4]$$
i^{-\infty}
$$
\[

$$
\begin{aligned}
& \text { Table 107. Sumiry of Environmental parameters at the Tow-way study station (stention 2). }
\end{aligned}
$$
\]



$18.0^{\circ} \mathrm{C}$
Feb. 1978 $7.0^{\circ} \mathrm{C}$

0
0
0
0
0 000
000
000
400
 add 0.8
nun 0.1 $\stackrel{\sim}{\infty}$
$0.011 \mathrm{mg} / 1$
$0.145 \mathrm{mg} / 1$ $0.0034 \mathrm{mg} /$
$\mathrm{cm}^{2} / \mathrm{daya}$
$1.783 \mathrm{mg} / \mathrm{m}^{3}$ $0.0031 \mathrm{mg} /$
$\mathrm{cm} 2 /$ dayc
$2.514 \mathrm{mg} / \mathrm{m}^{3}$ $0.0035 \mathrm{mg} /$
$\mathrm{cm}^{2} / \mathrm{day}$
$2.014 \mathrm{mg} / \mathrm{m}^{3}$ $16.0^{\circ} \mathrm{C}$
$18.0^{\circ} \mathrm{C}$
$17.0^{\circ} \mathrm{C}$
6.0 ppt
-8 cm
1.4 NTU
8.5 ppm
7.9 $0.092 \mathrm{mg} / \mathrm{l}$
$0.148 \mathrm{mg} / 1$ $\begin{array}{cc}-2 \\ 0 & \overrightarrow{0} \\ 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}$ Table 109.

Nov. 1977

$24.0^{\circ} \mathrm{C}$
$23.0^{\circ} \mathrm{C}$
$20.0^{\circ} \mathrm{C}$
$23.0^{\circ} \mathrm{C}$
$22.0^{\circ} \mathrm{C}$
7.0 ppt
-8 cm
12.0 NTU
4.6 ppm
7.7
$0.057 \mathrm{mg} / 1$
$0.096 \mathrm{mg} / 1$ $0.0010 \mathrm{mg} /$
$\mathrm{cm}^{2} / \mathrm{day}^{\mathrm{a}}$
$2.733 \mathrm{mg} / \mathrm{m}^{3}$
$20.0^{\circ} \mathrm{C}$

$000^{\circ} 0 Z$ | -2 |
| :---: |
| 6 |
| 9 |
| 9 |
| 0 |
| 0 |
| 0 |

10.3 ppm
8.3 $\cdots \quad \stackrel{9}{0}$ 2.3 NTU


[^5]a nean of four determanations
b nean of threce deaceramatatations
o mean of three determinations
c mean of two determinations

Oct. 1977
$25.0^{\circ} \mathrm{C}$

Parameter
Water Temperatuie
Monthly Water Temperature Average Daily Min.
Average Daily Max.
Average Daily Median Average Daily Median Salinity

Water Level Change Turbidity Dissolved Oxygen菑莒


Nitrate Nitrogen
Total Chlorophyll
Periphyton
Phytoplankton

Table 110. Summary of Environmental Parameters at the Tow-way Study Station (Station 2).

$$
\begin{aligned}
& \text { Apr. } 1978 \\
& 25.0^{\circ} \mathrm{C} \\
& 21.0^{\circ} \mathrm{C} \\
& 24.0^{\circ} \mathrm{C} \\
& 22.0^{\circ} \mathrm{C} \\
& 2.0 \mathrm{ppt} \\
& -10 \mathrm{~cm} \\
& 2.8 \mathrm{NTU} \\
& 4.9 \mathrm{ppm} \\
& 7.8
\end{aligned}
$$

$$
\begin{aligned}
& \text { May } 1978 \\
& 28.0^{\circ} \mathrm{C} \\
& 24.0^{\circ} \mathrm{C} \\
& 27.0^{\circ} \mathrm{C} \\
& 26.0^{\circ} \mathrm{C} \\
& 4.5 \mathrm{ppt} \\
& -14 \mathrm{~cm} \\
& 3.8 \mathrm{NTU} \\
& 2.4 \mathrm{ppm} \\
& 8.0 \\
& 0.052 \mathrm{mg} / 1 \\
& 0.018 \mathrm{mg} / 1 \\
& 0.0081 \mathrm{mg} / \\
& \mathrm{cm}^{2} / \mathrm{day} \\
& 3.454 \mathrm{mg} / \mathrm{m}
\end{aligned}
$$



*Mean of four determinations.

* Mean of four determinations

Table 111. Summary of Environmental Parameters at the Tow-way Study Station (Station 2).
Blanks in the data resulted from equipment failures.
Monthly Water Temperature Average Daily Min.
Average Daily Max.
Average Daily Median Salinity

Water Level change
Turbidity
Dissolved Oxygen


宽


Nitrate Nitrogen
Total Chlorophyll
Periphyton*
Phytoplankton

C
Table 1i2. Sumpary of Emiromental Parameters at the Beach Road Stuxy Station (Station 3). Parameter
Water Temperature
Monthly Water Termerature
Average Daily Min.
Average Daily Max.
Average Daily Madian
Salinity
Water Level Change
Turbidity
Dissolved Orygen
ph
Ortho-phosphate
Nitrate Nitrogen
Total Chlorophyll
periphyton
phytoplankton
$\cup$ Table 113. Sumnary of Environmental Parameters at the Beach Road Study Station (Station 3). Blanks in the data resulted from equipment fallures. Parameter
Water Temperature

Monthly Water Temperature Average Daily Min. Average Daily Max.
Average Daily Miedian Salinity

Water Leve 1. Change Turbidity Dissolved Oxygen pH
Ortho-phosphate
Nitrate Nitrogen
Total Chlorophyll

Periphyton* Phytoplankton

* Mean of four determinations Feb. 1978
 $11.0^{\circ} \mathrm{C}$
$14.0^{\circ} \mathrm{C}$
$13.0^{\circ} \mathrm{C}$
29.0 ppt 29.0 ppt
+2 cm 9.5 NTV
9.4 ppm

$0.011 \mathrm{mg} / 1$
$0.002 \mathrm{mg} / 1$ \(\begin{array}{cc} <br>
0.0015 \mathrm{mg} / \& 0.0930 \mathrm{mg} / <br>
\mathrm{cm}^{2} / \mathrm{day} <br>

1.819 \mathrm{mg} / \mathrm{m}^{3} \&\)| cm |
| :---: | <br>

\& \end{array} 3). (Station Beach Road Study Station Table 1i4. Summary of Environmental Parameters at data resulted from equipment failures. Jan. 1978 $19.0^{\circ} \mathrm{C}$ $16.0^{\circ} \mathrm{C}$
$19.0^{\circ} \mathrm{C}$
$18.0^{\circ} \mathrm{C}$
28.0 ppt 28.0 ppt
+4 cm 19.0 NTU 3.4 ppm
8.0 $0.101 \mathrm{mg} / 1$
$0.062 \mathrm{mg} / 1$ $\begin{array}{cc}0.0015 \mathrm{mg} / & 0.0930 \mathrm{mg} / \\ \mathrm{cm} 2 / \mathrm{day} \\ 1.819 \mathrm{mg} / \mathrm{m}^{3} & 3.498 \mathrm{mg} / \mathrm{m}^{3}\end{array}$ $6.5^{\circ} \mathrm{C}$

$17.0^{\circ} \mathrm{C}$

$13.0^{\circ} \mathrm{C}$
$16.0^{\circ} \mathrm{C}$
$14.0^{\circ} \mathrm{C}$ $\begin{array}{ll}\text { L } & \\ a & \\ 0 & \text { 号 } \\ 0 & 0\end{array}$ 9.3 NTU
3.6 ppm $\begin{array}{ll} & \\ 0 & \\ 0 \\ 0 & \\ 0\end{array}$
 $1.819 \mathrm{mg} / \mathrm{m}^{3}$
1



-
00
0
0
0
0
0
0

 Nov. 1977

38.5 ppt3.3 NTU
4.6 ppm
8.3
$0.140 \mathrm{mg} / 1$
$0.062 \mathrm{mg} / \mathrm{l}$
$29.0^{\circ} \mathrm{C}$

7dd 0.07 --18.0 NTU
4.8 ppm
9.0
$0.385 \mathrm{mg} / \mathrm{l}$
$0.093 \mathrm{mg} / 1$ $0.0008 \mathrm{mg} /$
$\mathrm{cm} 2 / \mathrm{day}$
--Monthly Water Temperature Average Daily Min.
Average Daily Max.
Average Daily Median Salinity
Water Level Change
Turbidity Turbidity
Dissolved Oxygen Dissolved Oxygen pH Ortho-Phosphate
Nitrate Nitrogen

## Total Chlorophyl1

Periphyton*
Parameter
Water Temperature

$$
\begin{gathered}
0.0021 \mathrm{mg} / \\
\mathrm{cm}^{2} / \mathrm{day} \\
1.755 \mathrm{mg} / \mathrm{m}^{3}
\end{gathered}
$$

()
Table 115. Sumary of Environmental Parameters at the Beach Road Station (Station 3).
May 1978
$27.5^{\circ} \mathrm{C}$
$21.0^{\circ} \mathrm{C}$
$29.0^{\circ} \mathrm{C}$
20.0 ppt $-16 \mathrm{~cm}$
28.0 NTU
1.9 ppm
8.0
$0.097 \mathrm{mg} / 1$
$0.018 \mathrm{mg} / 1$
$0.0020 \mathrm{mg} ;$
$\mathrm{cm}^{2} / \mathrm{day}$
$2.578 \mathrm{mg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \text { Apr. } 1978 \\
& 25.0^{\circ} \mathrm{C} \\
& 20.0^{\mathrm{C}} \mathrm{C} \\
& 24.0^{\circ} \mathrm{C} \\
& 22.0^{\circ} \mathrm{C} \\
& 18.0 \mathrm{ppt} \\
& -8 \mathrm{~cm} \\
& 13.0 \mathrm{NTU} \\
& 3.8 \mathrm{ppm} \\
& 8.4 \\
& 0.011 \mathrm{mg} / 1 \\
& 0.033 \mathrm{mg} / 1 \\
& 0.0022 \mathrm{mg} / \\
& \mathrm{cm} / \mathrm{day} \\
& 3.910 \mathrm{mg} / \mathrm{m}^{3}
\end{aligned}
$$

*Mean of four determinations.
Tabic 116. Sumary of Envi ronmental Parameters at tr. a Beach Poad Study Station (Station 3). Blanks in the dara resis ten from equipment fallures.


*Mean of four determinations

$$
\begin{aligned}
& \text { Aug. } 1978 \\
& 29.0^{\circ} \mathrm{C} \\
& 19.5 \mathrm{ppt} \\
& +8 \mathrm{~cm} \\
& 17.0 \mathrm{NTU} \\
& 3.2 \mathrm{ppm} \\
& 8.4 \\
& 0.089 \mathrm{mg} / 1 \\
& 0 \\
& 0.0031 \mathrm{mg} / \\
& \mathrm{cm} / \mathrm{m}^{2} / \mathrm{day} \\
& 1.707 \mathrm{mg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sept. } 1978 \text {. } \\
& 28.1^{\circ} \mathrm{C} \\
& 20.0 \mathrm{ppt} \\
& -6 \mathrm{~cm} \\
& 18.0 \mathrm{NTU} \\
& 4.1 \mathrm{ppm} \\
& 8.4 \\
& 0.011 \mathrm{mg} / 1 \\
& 0 \\
& 0.0023 \mathrm{mg} / \\
& \mathrm{cm} / \mathrm{day} \\
& 5.121 \mathrm{mg} / \mathrm{m}^{3}
\end{aligned}
$$

## STANDARD TITLE PAGE



## 18. kon mode

Reproduction; Incicator Specits; Poccilia Latipinna; pregnancy; embryos; egys


KBC FOTm 18-272ms (AEV 7/7B


[^0]:    Figure 8. Least-suures Inear reperssion lines for brood size on fenale length celleculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the BCHRD study site in 1977. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant $(p=0.05)$ are not shown. See Appendix Table 98 for statistical details.

[^1]:    Figure 10. Least-squares linear regression lines for brood size on female length calculated from monthly samples of the sailfin molly (Poecilia latipinna) collected at the TOWY study site in 1978. Lines based on a monthly sample size of less than 10 or where the regression was not statistically significant $(p=0,05)$ are not shown. See Appendix Table 99 for

[^2]:    Table 17. Summary of reproductive data for female Poecilia latipinna from Station l; collection date
    3 February 1978; field number PLRS-78-126. Values in parenthesis in the column labeled mean
    number of embryos per brood are not means but are single observations.

[^3]:    Size Group
    

[^4]:    a Mean of four samples b mean of three samples
    c mean of two samples

[^5]:    

