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A CONTINUED FRACTION EXPANSION FOR A
q-TANGENT FUNCTION

MARKUS FULMEK

Abstract. We prove a continued fraction expansion for a certain
q–tangent function that was conjectured by Prodinger.

1. Introduction

In [4], Prodinger defined the following q–trigonometric functions

sinq(z) =
∞∑
n=0

(−1)nz2n+1

[2n+ 1]q!
qn

2

,

cosq(z) =
∞∑
n=0

(−1)nz2n

[2n]q!
qn

2

.

Here, we use standard q–notation:

[n]q :=
1− qn

1− q
, [n]q! := [1]q[2]q . . . [n]q,

(a; q)n := (1− a)(1− aq) . . . (1− aqn−1).

These q–functions are variations of Jackson’s [2] q-sine and q-cosine
functions.

For the q–tangent function tanq = sinq
cosq

, Prodinger conjectured the

following continued fraction expansion (see [4, Conjecture 10]):

−z tanq(z) = −
z2

[1]qq0 −
z2

[3]qq−2 −
z2

[5]qq1 −
z2

[7]qq−9 − · · ·

. (1)

Here, the powers of q are of the form (−1)n−1n(n− 1)/2− n+ 1.
The purpose of this note is to prove this statement. In our proof, we

make use of the polynomials (see [3, §2, (11)]) An(z) and Bn(z), which
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are given recursively by

An(z) = bnAn−1(z)− z2An−2(z), (2)

Bn(z) = bnBn−1(z)− z2Bn−2(z); (3)

with initial conditions (see [3, §2, (12)])

A−1 = 1, B−1 = 0, A0 = b0, B0 = 1,

where b0 = 0, bn = [2n− 1]qq
(−1)n−1n(n−1)/2−n+1. As is well known (see

[3, §2]), the continued fraction terminated after the term bn is equal to
An
Bn

, whence (1) follows from the assertion

An cosq +zBn sinq = O(z2n+1), (4)

i.e., the leading 2n coefficients of z vanish in (4).
In Section 2 we give a proof of (4) (and thus of (1)).

2. The proof

Both An and Bn are polynomials in z2:

An(z) =
∑
j

cn,jz
2j, Bn(z) =

∑
j

dn,jz
2j.

Observe that from the recursions (2) and (3) we obtain immediately

cn,k = bncn−1,k − cn−2,k−1 and dn,k = bndn−1,k − dn−2,k−1, (5)

with initial conditions

c0,k = d0,k = c−1,k = d−1,k = cn,0 = dn,−1 = 0, c1,1 = −1, d0,0 = 1.

Given this notation, we have to prove the following assertion for the
coefficients of z2k in (4): For n ≥ 1, 0 ≤ k ≤ n, there holds

k∑
i=0

cn,i
(−1)k−i

[2k − 2i]q!
q(k−i)2

+
k∑
i=0

dn,i
(−1)k−i−1

[2k − 2i− 1]q!
q(k−i−1)2

= 0. (6)

In fact, we shall state and prove a slightly more general assertion:

Lemma 1. Given the above definitions, we have for all n ≥ 1, k ≥ 0:

k−1∑
i=0

(−1)i
q(k−i−1)2

[2k − 2i− 2]q!

(
cn,i+1 +

dn,i
[2k − 2i− 1]q

)
=

(−1)nq(5+3(−1)n−12k−4(−1)nk+8k2+8n−8kn+4n2−2(−1)nn2)/8

×
∏k

s=k−n[2s]q

[2k]q!
. (7)
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Note that the left hand side of (7) is the same as in (6), and the
right hand side of (7) vanishes for 0 ≤ k ≤ n. Hence (6) (and thus
Prodinger’s conjecture) is an immediate consequence of Lemma 1.

Proof. We perform an induction on k for arbitrary n.
The case k = 0 is immediate. For the case k = 1, observe that

−cn,1 = dn,0 =
n∏
s=1

bn.

For the inductive step (k − 1) → k, we shall rewrite the recursions
(5) in the following way:

cn,k = −
n−2∑
i=0

(
ci,k−1

n∏
j=i+3

bj

)
, dn,k = −

n−2∑
i=0

(
di,k−1

n∏
j=i+3

bj

)
.

Substitution of these recursions into (7) and interchange of summa-
tions transform the identity into

q(k−1)2
(1− [2k − 1]q)

∏n
s=1 bs

[2k − 1]q!
+
n−2∑
i=0

(
rhs(i, k − 1)

n∏
j=i+3

bj

)
= rhs(n, k),

where rhs(n, k) denotes the right hand side of (7).
Now we use the induction hypothesis. As it turns out, factorization

of powers of q from
(

rhs(i, k − 1)
∏n

j=i+3 bj

)
yields the same power for

2i and 2i+ 1, whence we can group these terms together. After several
steps of simplification we arrive at the following identity:

dn−4
2
e∑

j=0

(q−2k+6; q4)j(q
−2k+4; q4)j(q

17/2−k; q4)j(−q17/2−k; q4)j
(q7; q4)j(q9; q4)j(q9/2−k; q4)j(−q9/2−k; q4)j

q(2k−1)j


× (q; q2)nq(1− q2k−1)(1− q2k−2)(1− q9−2k)

(1− q)(1− q3)(1− q5)
− (1− q2k−1)(q3; q2)n−1

− (−1)nq(−1+(−1)n+2k−2(−1)nk+2n−4kn+4n2)/4(q2k−2n; q2)n

+ (q; q2)n + χ(n)(1− q2k−1)qn(2n−2k+1)/2(q2k−2n+2; q2)n−1 = 0, (8)

where χ(n) = 1 for n even and 0 for n odd.
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The sum can be evaluated by means of the very–well–poised 6φ5

summation formula [1, (2.7.1); Appendix (II.20)]:

∞∑
j=0

(a; q)j(
√
aq; q)j(−

√
aq; q)j(b; q)j(c; q)j(d; q)j

(q; q)j(
√
a; q)j(−

√
a; q)j(

aq
b

; q)j(
aq
c

; q)j(
aq
d

; q)j

( aq
bcd

)j
=

(aq; q)∞(aq
bc

; q)∞(aq
bd

; q)∞(aq
cd

; q)∞

(aq
b

; q)∞(aq
c

; q)∞(aq
d

; q)∞( aq
bcd

; q)∞
. (9)

The sum we are actually interested in does not extend to infinity, so
we rewrite is as follows:
dn−4

2
e∑

j=0

s(n, k, j) =
∞∑
j=0

s(n, k, j)−
∞∑

j=dn−2
2
e

s(n, k, j)

=
∞∑
j=0

s(n, k, j)− s(n, k, dn− 2

2
e)
∞∑
j=0

s(n, k, j + n−2
2

)

s(n, k, dn−2
2
e)

,

where s(n, k, j) denotes the summand in (8). Now, replacing q by
q4, a by q−2k+8a+9, b by q−2k+4a+4, c by q−2k+4a+6 and d by q4 in the

summand of (9) gives s(n,k,j+a)
s(n,k,a)

times the fraction
(q−2k+8a+9;q4)j(q

4;q4)j
(q−2k+8a+9;q4)j(q4;q4)j

,

which cancels. So we obtain after some simplification:

x∑
j=0

(q−2k+6; q4)j(q
−2k+4; q4)j(q

17/2−k; q4)j(−q17/2−k; q4)j
(q7; q4)j(q9; q4)j(q9/2−k; q4)j(−q9/2−k; q4)j

q(2k−1)j

=
(1− q3)(1− q5)

(1− q2k−1)(1− q9−2k)

(
1− q(2k−1)(x+1) (q−2k+4; q2)2x+2

(q3; q2)2x+2

)
.

Substitution of this evaluation in (8) and simplification yield for both
cases n even (n = 2N) and odd (n = 2N − 1) the same equation

(q−2k+2; q2)2N−1 = −q−2(k−N)(2N−1)(q2k−4N+2; q2)2N−1,

which, of course, is true. This finishes the proof. �

References

[1] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of
Mathematics and its Applications 35, Cambridge University Press, Cambridge,
1990.

[2] F.H. Jackson, A basic–sine and cosine with symbolic solutions of certain
differential equations, Proc. Edinburgh Math. Soc., 22, (1904), 28–39.

[3] O. Perron, Die Lehre von den Kettenbrüchen, 1. Band, B.G. Teubner,
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