A CONTINUED FRACTION EXPANSION FOR A q-TANGENT FUNCTION

MARKUS FULMEK

Abstract

We prove a continued fraction expansion for a certain q-tangent function that was conjectured by Prodinger.

1. Introduction

In [4], Prodinger defined the following q-trigonometric functions

$$
\begin{aligned}
& \sin _{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{[2 n+1]_{q}!} q^{n^{2}}, \\
& \cos _{q}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{[2 n]_{q}!} q^{n^{2}} .
\end{aligned}
$$

Here, we use standard q-notation:

$$
\begin{gathered}
{[n]_{q}:=\frac{1-q^{n}}{1-q},[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q}} \\
(a ; q)_{n}
\end{gathered}:=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right) .
$$

These q-functions are variations of Jackson's [2] q-sine and q-cosine functions.

For the q-tangent function $\tan _{q}=\frac{\sin _{q}}{\cos _{q}}$, Prodinger conjectured the following continued fraction expansion (see [4, Conjecture 10]):

$$
\begin{equation*}
-z \tan _{q}(z)=-\frac{z^{2}}{[1]_{q} q^{0}-\frac{z^{2}}{[3]_{q} q^{-2}-\frac{z^{2}}{[5]_{q} q^{1}-\frac{z^{2}}{[7]_{q} q^{-9}-\cdots}}}} . \tag{1}
\end{equation*}
$$

Here, the powers of q are of the form $(-1)^{n-1} n(n-1) / 2-n+1$.
The purpose of this note is to prove this statement. In our proof, we make use of the polynomials (see $[3, \S 2,(11)]) A_{n}(z)$ and $B_{n}(z)$, which

Date: January 25, 2001.
are given recursively by

$$
\begin{align*}
& A_{n}(z)=b_{n} A_{n-1}(z)-z^{2} A_{n-2}(z) \tag{2}\\
& B_{n}(z)=b_{n} B_{n-1}(z)-z^{2} B_{n-2}(z) \tag{3}
\end{align*}
$$

with initial conditions (see $[3, \S 2,(12)]$)

$$
A_{-1}=1, B_{-1}=0, A_{0}=b_{0}, B_{0}=1,
$$

where $b_{0}=0, b_{n}=[2 n-1]_{q} q^{(-1)^{n-1} n(n-1) / 2-n+1}$. As is well known (see $[3, \S 2]$), the continued fraction terminated after the term b_{n} is equal to $\frac{A_{n}}{B_{n}}$, whence (1) follows from the assertion

$$
\begin{equation*}
A_{n} \cos _{q}+z B_{n} \sin _{q}=O\left(z^{2 n+1}\right) \tag{4}
\end{equation*}
$$

i.e., the leading $2 n$ coefficients of z vanish in (4).

In Section 2 we give a proof of (4) (and thus of (1)).

2. The proof

Both A_{n} and B_{n} are polynomials in z^{2} :

$$
A_{n}(z)=\sum_{j} c_{n, j} z^{2 j}, \quad B_{n}(z)=\sum_{j} d_{n, j} z^{2 j} .
$$

Observe that from the recursions (2) and (3) we obtain immediately

$$
\begin{equation*}
c_{n, k}=b_{n} c_{n-1, k}-c_{n-2, k-1} \text { and } d_{n, k}=b_{n} d_{n-1, k}-d_{n-2, k-1}, \tag{5}
\end{equation*}
$$

with initial conditions

$$
c_{0, k}=d_{0, k}=c_{-1, k}=d_{-1, k}=c_{n, 0}=d_{n,-1}=0, c_{1,1}=-1, d_{0,0}=1 .
$$

Given this notation, we have to prove the following assertion for the coefficients of $z^{2 k}$ in (4): For $n \geq 1,0 \leq k \leq n$, there holds

$$
\begin{equation*}
\sum_{i=0}^{k} c_{n, i} \frac{(-1)^{k-i}}{[2 k-2 i]_{q}!} q^{(k-i)^{2}}+\sum_{i=0}^{k} d_{n, i} \frac{(-1)^{k-i-1}}{[2 k-2 i-1]_{q}!} q^{(k-i-1)^{2}}=0 \tag{6}
\end{equation*}
$$

In fact, we shall state and prove a slightly more general assertion:
Lemma 1. Given the above definitions, we have for all $n \geq 1, k \geq 0$:

$$
\begin{align*}
& \sum_{i=0}^{k-1}(-1)^{i} \frac{q^{(k-i-1)^{2}}}{[2 k-2 i-2]_{q}!}\left(c_{n, i+1}+\frac{d_{n, i}}{[2 k-2 i-1]_{q}}\right)= \\
&(-1)^{n} q^{\left(5+3(-1)^{n}-12 k-4(-1)^{n} k+8 k^{2}+8 n-8 k n+4 n^{2}-2(-1)^{n} n^{2}\right) / 8} \\
& \times \frac{\prod_{s=k-n}^{k}[2 s]_{q}}{[2 k]_{q}!} . \tag{7}
\end{align*}
$$

Note that the left hand side of (7) is the same as in (6), and the right hand side of (7) vanishes for $0 \leq k \leq n$. Hence (6) (and thus Prodinger's conjecture) is an immediate consequence of Lemma 1.

Proof. We perform an induction on k for arbitrary n.
The case $k=0$ is immediate. For the case $k=1$, observe that

$$
-c_{n, 1}=d_{n, 0}=\prod_{s=1}^{n} b_{n}
$$

For the inductive step $(k-1) \rightarrow k$, we shall rewrite the recursions (5) in the following way:

$$
c_{n, k}=-\sum_{i=0}^{n-2}\left(c_{i, k-1} \prod_{j=i+3}^{n} b_{j}\right), d_{n, k}=-\sum_{i=0}^{n-2}\left(d_{i, k-1} \prod_{j=i+3}^{n} b_{j}\right)
$$

Substitution of these recursions into (7) and interchange of summations transform the identity into

$$
\frac{q^{(k-1)^{2}}\left(1-[2 k-1]_{q}\right) \prod_{s=1}^{n} b_{s}}{[2 k-1]_{q}!}+\sum_{i=0}^{n-2}\left(\operatorname{rhs}(i, k-1) \prod_{j=i+3}^{n} b_{j}\right)=\operatorname{rhs}(n, k),
$$

where $\operatorname{rhs}(n, k)$ denotes the right hand side of (7).
Now we use the induction hypothesis. As it turns out, factorization of powers of q from $\left(\operatorname{rhs}(i, k-1) \prod_{j=i+3}^{n} b_{j}\right)$ yields the same power for $2 i$ and $2 i+1$, whence we can group these terms together. After several steps of simplification we arrive at the following identity:

$$
\begin{align*}
& \left(\sum_{j=0}^{\left\lceil\frac{n-4}{2}\right\rceil} \frac{\left(q^{-2 k+6} ; q^{4}\right)_{j}\left(q^{-2 k+4} ; q^{4}\right)_{j}\left(q^{17 / 2-k} ; q^{4}\right)_{j}\left(-q^{17 / 2-k} ; q^{4}\right)_{j}}{\left(q^{7} ; q^{4}\right)_{j}\left(q^{9} ; q^{4}\right)_{j}\left(q^{9 / 2-k} ; q^{4}\right)_{j}\left(-q^{9 / 2-k} ; q^{4}\right)_{j}} q^{2 k-1)}\right) \\
& \times \frac{\left(q ; q^{2}\right)_{n} q\left(1-q^{2 k-1}\right)\left(1-q^{2 k-2}\right)\left(1-q^{9-2 k}\right)}{(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right)}-\left(1-q^{2 k-1}\right)\left(q^{3} ; q^{2}\right)_{n-1} \\
& \quad-(-1)^{n} q^{\left(-1+(-1)^{n}+2 k-2(-1)^{n} k+2 n-4 k n+4 n^{2}\right) / 4}\left(q^{2 k-2 n} ; q^{2}\right)_{n} \\
& \quad+\left(q ; q^{2}\right)_{n}+\chi(n)\left(1-q^{2 k-1}\right) q^{n(2 n-2 k+1) / 2}\left(q^{2 k-2 n+2} ; q^{2}\right)_{n-1}=0, \tag{8}
\end{align*}
$$

where $\chi(n)=1$ for n even and 0 for n odd.

The sum can be evaluated by means of the very-well-poised ${ }_{6} \phi_{5}$ summation formula [1, (2.7.1); Appendix (II.20)]:

$$
\begin{align*}
& \sum_{j=0}^{\infty} \frac{(a ; q)_{j}(\sqrt{a} q ; q)_{j}(-\sqrt{a} q ; q)_{j}(b ; q)_{j}(c ; q)_{j}(d ; q)_{j}}{(q ; q)_{j}(\sqrt{a} ; q)_{j}(-\sqrt{a} ; q)_{j}\left(\frac{a q}{b} ; q\right)_{j}\left(\frac{a q}{c} ; q\right)_{j}\left(\frac{a q}{d} ; q\right)_{j}}\left(\frac{a q}{b c d}\right)^{j} \\
&=\frac{(a q ; q)_{\infty}\left(\frac{a q}{b c} ; q\right)_{\infty}\left(\frac{a q}{b d} ; q\right)_{\infty}\left(\frac{a q}{c d} ; q\right)_{\infty}}{\left(\frac{a q}{b} ; q\right)_{\infty}\left(\frac{a q}{c} ; q\right)_{\infty}\left(\frac{a q}{d} ; q\right)_{\infty}\left(\frac{a q}{b c d} ; q\right)_{\infty}} . \tag{9}
\end{align*}
$$

The sum we are actually interested in does not extend to infinity, so we rewrite is as follows:

$$
\begin{aligned}
\sum_{j=0}^{\left\lceil\frac{n-4}{2}\right\rceil} s(n, k, j) & =\sum_{j=0}^{\infty} s(n, k, j)-\sum_{j=\left\lceil\frac{n-2}{2}\right\rceil}^{\infty} s(n, k, j) \\
& =\sum_{j=0}^{\infty} s(n, k, j)-s\left(n, k,\left\lceil\frac{n-2}{2}\right\rceil\right) \sum_{j=0}^{\infty} \frac{s\left(n, k, j+\frac{n-2}{2}\right)}{s\left(n, k,\left\lceil\frac{n-2}{2}\right\rceil\right)},
\end{aligned}
$$

where $s(n, k, j)$ denotes the summand in (8). Now, replacing q by q^{4}, a by $q^{-2 k+8 a+9}, b$ by $q^{-2 k+4 a+4}, c$ by $q^{-2 k+4 a+6}$ and d by q^{4} in the summand of (9) gives $\frac{s(n, k, j+a)}{s(n, k, a)}$ times the fraction $\frac{\left(q^{-2 k+8 a+9} ; q^{4}\right)_{j}\left(q^{4} ; q^{4}\right) j}{\left(q^{-2 k+8 a+9} ; q^{4}\right) j\left(q^{4} ; q^{4}\right)_{j}}$, which cancels. So we obtain after some simplification:

$$
\begin{aligned}
\sum_{j=0}^{x} & \frac{\left(q^{-2 k+6} ; q^{4}\right)_{j}\left(q^{-2 k+4} ; q^{4}\right)_{j}\left(q^{17 / 2-k} ; q^{4}\right)_{j}\left(-q^{17 / 2-k} ; q^{4}\right)_{j}}{\left(q^{7} ; q^{4}\right)_{j}\left(q^{9} ; q^{4}\right)_{j}\left(q^{9 / 2-k} ; q^{4}\right)_{j}\left(-q^{9 / 2-k} ; q^{4}\right)_{j}} q^{2 k-1)} \\
& =\frac{\left(1-q^{3}\right)\left(1-q^{5}\right)}{\left(1-q^{2 k-1}\right)\left(1-q^{9-2 k}\right)}\left(1-q^{(2 k-1)(x+1)} \frac{\left(q^{-2 k+4} ; q^{2}\right)_{2 x+2}}{\left(q^{3} ; q^{2}\right)_{2 x+2}}\right) .
\end{aligned}
$$

Substitution of this evaluation in (8) and simplification yield for both cases n even $(n=2 N)$ and odd ($n=2 N-1$) the same equation

$$
\left(q^{-2 k+2} ; q^{2}\right)_{2 N-1}=-q^{-2(k-N)(2 N-1)}\left(q^{2 k-4 N+2} ; q^{2}\right)_{2 N-1},
$$

which, of course, is true. This finishes the proof.

References

[1] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 35, Cambridge University Press, Cambridge, 1990.
[2] F.H. Jackson, A basic-sine and cosine with symbolic solutions of certain differential equations, Proc. Edinburgh Math. Soc., 22, (1904), 28-39.
[3] O. Perron, Die Lehre von den Kettenbrüchen, 1. Band, B.G. Teubner, Stuttgart, 1977.
[4] H. Prodinger, Combinatorics of geometrically distributed random variables: New q-tangent an q-secant numbers, Int. J. Math. Math. Sci. (to appear).

Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

E-mail address: Markus.Fulmek@Univie.Ac.At
WWW: http://www.mat.univie.ac.at/~~mfulmek

