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A continued-fraction expansion of the Laplace transform of the time-correlation functions 

is obtained, which enables us to express the generalized susceptibilities and the transport 

coefficients in terms of the static correlation functions of a set of quantities. This expansion 

has a different feature from the moment and cumulant expansions, and has a convenient form 

to introduce the long-time approximation as well as the short-time approximation. Its ap

plication to the anomalous relaxation and transport phenomena near the second-order phase 

transition points is discussed 

An expansion formula is also obtained for the time evolution of dynamical quantities in 

order to describe the various modes of motion involved according to their characteristic time 

constants. These two expansions are closely related to the time-correlation function formalism 

of irreversible processes, and allow us to have physical intuition in calculating dissipative 

properties. 

§ I. Introduction 

Dynamical properties of a macroscopic system can be expressed in terms of 

the time-correlation functions of appropriate physical variables. For instance, 

the electrical conductivity is the one-sided Fourier transforn1 of the relaxation 

function of the electric current/) and the sound attenuation constant is the two-sided 

Fourier transform of the time-correlation function of the random force acting 

on the sound. 2
) Therefore, it is important to develop a systematic method of 

investigating these time-correlation functions. 

According to recent experiments, the relaxation and transport phenomena 

show interesting anomalous behaviors near the second-order phase transition 

points. 3
) Near the critical points, the thermal fluctuations of some physical 

variables become anomalously large. On the basis of the fluctuation-dissipation 

theorem, therefore, we can expect that the dissipative properties also show 

anomalous behaviors near the critical points. From this point of view, we have 

studied the anomalous behavior of the clamping constants of the inhomogeneous 

magnetization in ferromagnets 4
) and of the line widths of the electron spin 

resonance in antiferromagnets.5
) These investigations were based on the expres

sion for' the clamping constants of the magnetization in terms of the time

correlation function of the . random torque acting on the spins, and the most 

important task was to extract some temperature-dependent factors which became 

anomalous near the critical points. In doing· this we have assumed that the 
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~wo II. i\dori 

time-correlation function of the random torque decays in a Gaussian form. This 

assumption, however, is not valid when the temperature dependence of the static 

correlation function of the random torque is anomalous as in the case of the 

electron spin resonance in ferro- and antiferro-magnets. Therefore, it is quite 

desirable to extract the anomalous factors correctly without making any particular 

assumption of the decay form of the time-correlation function of the random 

torque. A similar situation also occurs when we wish to investigate anomalous 

transport phenomena such as the viscosity and sound attenuation in critical liquid 

solutions. The principal purpose of the present paper is therefore to develop 

such a scheme of extracting anomalous factors in the clamping constants and 

the transport coefficients. This is done by generalizing a method of deriving 

a generalized Langevin equation of motion developed in a previous paper.
2
l 

In ~ 2, we introduce an orthogonal set {fj}, which plays an essential role 

in the present paper, and derive a new expansion formula for the description 

of the time evolution of dynamical quantities. The coefficients of this expansion 

are investigated in ~ 3, and we derive a hierarchy of equations relating a lower

order coefficient to a higher-order coefficient. 

In § 4, a continued-fraction representation of the Laplace transform of the 

relaxation function is obtained, and its singularities in the complex z plane are 

investigated. As an application, we discuss the anomalous relaxation and trans

port phenomena near the critical points. Section 5 is devoted to some remarks, 

in which we discuss the Nyquist theorem on the voltage fluctuation in order to 

clarify the physical significance of the random forces. For illustration of the 

continued-fraction representation, we discuss simple examples for the long-time 

approximation in Appendix B. 

§ 2. Expansion of A ( t) in terms of an orthogonal set 

Let us consider the time evolution of a dynamical variable A (t), starting 

from its equation of motion 

dA (t) I dt= iLA (t)' (2 ·1) 

where L is the Liouville operator; namely, in the classical case, iLA (t) re

presents the Poisson bracket of .. A. (t) with the Hamiltonian and, in the quantal 

case, the corresponding commutator. We assume that A (t) denotes the devia

tion from its invariant part. 

As in the previous paper,2
l let us introduce a Hilbert space of dynamical 

variables whose invariant parts are set to be zero, and denote its inner product 

of two variables F and G by the parenthesis (F, G *), where the asterisk denotes 

the Hermitian conjugate. T'he inner product is assumed to have the Liouville 

operator Hermitian; 

(LF, G*) = (F, [LG] *). (2· 2) 
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/l Continued-P'raction RejJresentation of the Time-Correlation Functions 401 

Such an inner product is provided by 

;3 

(F, G*)-
1 ~<exp(A3{)Fexp(--l,!J{)G*)di,, 
(3 0 . 

(2·3) 

where J}{ is the Hamiltonian of the system and the angular brackets denote the 

average over the canonical ensemble with temperature T= 1/k8 (3, kn being the 

Boltzmann constant. In the classical limit, Eq. (2 · 3) reduces to the correlation 

function <FG*). The following formulation does not depend on the explicit 

form of the inner product. However, since the inner product (2 · 3) is most 

important from the physical point of view,
2
l we adopt this definition (2 · 3) in 

the following. The quantity A, which denotes the value of A (t) at time t = 0, 

defines a vector in the Hilbert space. The projection of a vector G onto this 

A axis is given by 

-PoG= (G, A*)· (A, A*) -l. A. (2·4) 

This equation defines a linear Hermitian operator :;po, which is called the projec

tion operator onto the A axis. 

Now let us separate A (t) into the projective and vertical components with 

respect to the A axis ; 

where 

A(t) =E0 (t) ·A+A'(t), 

Eo (t) ='-""(A (t), A*) · (A, A*)-\ 

A' (t) == (1- Po) A (t). 

(2. 5) 

(2·6) 

(2·7) 

From Eq. (2 ·1) we obtain an explicit expression for A' (t) in the following 

manner. Operating (1- Po) on Eq. (2 ·1) and using Eq. (2 · 5), 

where 

dA' (t) / dt- iL1 A' (t) = Bo (t) ·fb 

L1= (1-s;Po)L, 

f~=iL1 A. 

This IS integrated to yield 

t 

A' (t) =~Eo (s) ·f~ (t -s) ds, 

u 

where 

(2·8) 

(2·9) 

(2·10) 

(2 ·11) 

Namely, the vertical component A' (t) is the convolution of Eo (t) and ~ (t). 

Therefore, taking its Laplace transform, we write 
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402 II. 1\llori 

OJ 

A (z) -~A (t)e-zt dt =Eo (z) ·[A+ j~ (z)]. (2 ·12) 

From Eq. (2 ·11) we have 

( j~ ( t) , A*) = 0. (2 ·13) 

Namely, j~ (t) always stays inside the hyperplane orthogonal to the· il ax1s. Its 

evolution is governed by 

df~ (t) I dt = iL1 J~ (t). (2 ·14) 

This equation has the same form as Eq. (2 ·1). We now proceed similarly to 

the foregoing procedure from Eq. (2 · 5) to Eq. (2 ·12). We first separate j~ (t) 

into the projective and vertical components with respect to the vector j~ ; 

where 

El(t)c~=(j~(t), f~*) • (j~,j~*)-I, 

j/ (t) == (1- !J\)j~ (t)' 

(2 ·15) 

(2 ·16) 

(2 ·17) 

where Sf\ is the projection operator onto the j~ axis. 

Eq. (2 ·14) and then integrating it, we finally obtain 

Operating (1- s;pl) on 

where 

10 = iLA 

f 0 =A 

j~ ( z) = E1 ( z) · [ j~ + j~ ( z) ] , 

j; (t) =exp (iL2t) iL2J1, 

L2~- (1- !.f>1) L1. 

(2 ·18) 

(2 ·19) 

(2. 20) 

The quantity j; is the vertical component of i1 
with respect to the j~ axis. Therefore, A, j; and 

f~ are orthogonal to each other, as is shown in 

Fig. 1. 

We next treat j; (t) similarly by introducing 

a new quantity j~ (t). In. this way we introduce 

a set of quantities j~ (t), j~ (t), .. · successively 

according to the equations 

Fig. 1. Schematic relation be

tween fa, f1 and fz 
j~ (t) =A (t), (2. 21) 

(2· 22) jj (t) =exp (iLit) iLi Ji-1, (j>1), 

where 

L - (1 co ) L 1· ... -L j= - .::.L. j-1 j-1, --~o= , (2·23) 

where Pi is the projection operator ontq the vector jj. It should be noted .that 
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A Continued-Fraction Representation of the Time-Correlat/on Functions 403 

the time evolution of f 1 (t) 's are governed by the propagators which are different 

from each other. Similarly to the derivation of Eq. (2 ·10) from Eq. (2 · 5), we 

obtain 

t 

jj(t) =E1 (t) ·/1+) B1 (s) ·fi+l(t-s)ds 

where 

E1 (t) ~ (jj (t), jj*) . (jj, jj*) - 1
• 

The Laplace transform of Eq. (2 · 24) thus leads to 

jj(z) =E1 (z) · [fj+Ji~l(z)]. 

(2. 24) 

(2. 25) 

(2. 26) 

We can show from Eq. (2·22) that [t is orthogonal to j~, fit is orthogonal to 

fo and fh and thus / 1 is orthogonal to j;,, j~, · · ·f1-h by observing that Eq. (2 · 23) 

can be written as 

j-1 .i-1 

L 1 =II(1-Pi)L:= [1-~.Pi]L. (2·27) 
i=O i=O 

Therefore, the set {jj}, (j = 0, 1, .. · oo), forms an orthogonal set. From Eq. 

(2 · 22) and Eq. (2 · 27) we also obtain 

(jj(t), j~*) =0, (i=--=0, 1, .. j-1). (2·28) 

Namely, fJ (t) is always orthogonal to all the jj's of lower indices. 

Inserting Eq. (2 ·18) into Eq. (2 ·12) and then using Eq. (2 · 26) successively, 

we obtain the expansion of A (z) in terms of the orthogonal set {jj}; its inverse 

transform is 

t 

A (t) = ~~C 1 (t) ·frl-- ~ Cn-1 (t- s) -J;~ (s) ds, (2. 29) 

0 

where the expansiOn coefficients are given by 

C1 (z) =E0 (z) ·E1(z) ···E1 (z), (2. 30) 

or 

t tl 

C1 (t) = ~ dt1Eo (t- t1) · ~dt2E1 (t1- t2) .. · 

0 0 

(2. 31) 

Equation (2 · 5) together with Eq. (2 ·10) is one of the fundamental equations 

in the stochastic theory of generalized Brownian motion. 2),G) Equation (2 · 29) 

is its generalization. It turns out from Eq. (2 · 28) that the linear sum of C1 (t) 
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404 1-1. Mori 

in Eq. (2 · 29) describes the projection of A (t) into the subspace spanned by 

j;, fb · · · f~~-h namely, an average evolution of A (t). Taking a larger n cor

responds to a finer description of A (t). The time-integral term describes a 

fluctuation from this average motion. The quantity f~~(t) responsible for this 

fluctuation will be called the n-th order random force acting on the variable 

A (t). It should be noted that the evolution of each j~ (t) is governed by the 

different propagator. vVhen A (t) is the momentum of a Brownian particle 

suspended in a liquid, f~ (t) is shown to represent the usual random force acting 

on the Brownian particle. 2> 

The foregoing treatment can be easily extended to the many-variable case. 

Then, A and A* denote a n-dimensional column matrix of independent vari

ables Ah · · · ilm and its Hermitian row matrix, respectively, and Eq. (2 · 4) denotes 

the projection into the n-dimensional subspace spanned by the n variables. 2> 

(A, A*), Ej(t) and Cj(t) are then square matrices, and the dots denote the 

matrix multiplication. 

~ 3. A continued-fraction representation of Ej (z) 

Equation (2 · 24) relates Jj (t) to .11+1 (t). This leads to an equation relating 

Ej (t) to EHI (t), as will be shown in the following. 

Let us denote the projection of jj onto the jj axis by iwj ·Jj. Then we 

have 

VVe thus obtain 

iwj== ( jh Jj*) · (Jj, fi *) --t, 

ii==iLj Jj = ioJj ·Jj +.fi-1-1. 

djj (t) / dt = ioJj ·.f} (t) + exp (iLjt)fi+l· 

(3 ·1) 

(3 · 2a) 

(3·2b) 

It will be shown in Appendix A that, if f and g are quantities orthogonal to 

the )-dimensional subspace spanned by the vectors };, .f~, · · fi-h then 

(3·3) 

This means that the propagator exp (iLjt) is unitary inside the subspace or

thogonal to the )-dimensional subspace defined above. Therefore, differentiating 

Eq. (2 · 25) and then inserting Eq. (3 · 2b), we obtain 

dEj(t)/dt=iwj-Ej(t) + Cfi+l, .fj( -t)*) · (jj,jj*)- 1
• 

Inserting Eq. (2 · 24) into the second term and then using Ej (s) * = Ej (- s), *> 

we finally obtain 

*> When A is a column matrix, it follows from Eq. (3·3) that 

This also leads to Eq. (3·4). 
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A Continued-Fraction Rej)resentation t~l the Time-Correlation Functions 405 

l 

d E.i (t) = iUJ.i · E.i (t) - (" En1 (t- s) · 11~+1 · Ej (s) ds, 
dt J 

0 

(3 ·4) 

where 

A 2-(f j'*) (I- .{'·X· )-1 
£.lj = h .i • J j-1, J j-,1 • (3·5) 

The Laplace transform of Eq. (3 · 4) leads to 

,..., ( ) 1 J:j. z = 
J • ,..., ( ) A" 

z-uu.i+J::!,.il-1 z '£J)+1 

(3. 6) 

This equation provides us with the hierarchy equations relating a E function 

to a higher order E function. In the one-variable case, applying Eq. (3 · 6) suc

cessively, we thus obtain 

1 

11.7-1-1
2 

Z -iU).i+l + 

117;-1 

Z- iUJn-1 + 11n
2
En (z) 

(3·7) 

where j<n -1. If we let n tend to oo, then we get an infinite continued frac

tion.') 

Let us reduce Eq. (3 · 7) to the form 

(3·8) 

where F/n) (z) and G/~l (z) are such functions of z that, if we neglect the z 

dependence of En (z), then F/~l (z) is a polynomial of the order (n- j) and 

G/~l(z) is a polynomial of the order (n--j-1). From Eq. (3·6) we then have 

G/nl(z) =FY2I(z), 

F/nl(z) = [z-iUJ.i]F)'~\(z) +117+' FJ'~~~(z), 

and 

F (n) (-~) -1 pen) (~) _ '>" -z·r··' -t- A 2H' (~) n N -- , n-1 ..v --"'"' , 11n-1 .tJn ~n .'V • 

Therefore, the expansion coefficients (2 · 30) take the form 

C.i(z) =F)'~ 1 (z)/F 0 <nl(z), (j~~n-1), 

which leads to 

1 n-1 

A (z) = [~ Fj'~l, (.z)jj + J:~(z)]. 
F

0 
(n) (z) ·.i=O 

(3·9) 

(3 ·10) 

(3·11) 

(3 ·12) 

(3 ·13) 

This equation indicates that the time evolution of A (t) is mainly determined 

by the zeros of F 0<nl (z) apart from the fluctuation part .~Jz). 

Finally let us derive an equation of motion for the n-th order random force 

jj (t). Inserting Eq. (3 · 6) into Eq. (2 · 26), we easily find 
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406 II. 1Vlori 

(3·14) 

where 

(3 ·15) 

If we take j = 0, then Eq. (3 ·14) leads to a generalized Langevin equation of 

motion for A (t) derived in a previous paper. 2) Therefore, we may visualize 

jj+l (t) as a generalized random force acting on fj (t). 

§ 4. Singularities of the relaxation function E0 (z) 

According to Eq. (3 ·13) the time evolution of a dynamical quantity A (t) 

is determined by the singularities of the Laplace transform of its relaxation 

function Eo (z) in the complex z plane. The admittance to an external pertur~ 

bation can also be written in terms of the relaxation functions. 1
l Thus the 

calculation of the relaxation functions is important for practical purposes as well 

as from the fundamental point of view. The continued~fraction representation 

(3 · 7) suggests a method of studying the relaxation functions. We now discusf 

this problem. 

From Eq. (3·7) we obtain 

E0 (z)-(A(z), A*)I(A, A*), 

1 

z- i{J)0 + 

Z - i{J)n-1 + Lin 2 En (z) 
(4 ·1) 

The parameters o)j and .J/ are given by Eqs. (3 ·1) and (3 · 5) in terms of the 

static correlation functions of the quantities f/s aud i/s. These quantities are 

defined by Eq. (2 · 22), and the use of Eq. (2 · 27) leads to 

i-1 

jj = [1-- ·~ -Pz] iLfj-1, (4· 2a) 
1.=0 

(4· 2b) 

These equations giVe explicit expressions for fj and jj In a straightforward 

manner ; for instance, 

fo=A, 

.h=A- [(A, A*)I(A, A*)]A, 

j; =A- [(A, A*) I (A, A*) + (A, .h *)I (!I, j~ *) 

(4·3) 

(4·4) 
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A Continued-Fraction Ref>resentation of the Time-Correlation Function.'>· 407 

-(A, A*) (.li.,J~*)I(A, A*) (j;,j~*)]A 

-[(A, A*) I (A, A*) -·(A, A *YI (A, A*) 2 

-(A, A*) (A, f~ *)I (A, A*) (.[J, f1 *) 

+(A, A*YCA,J~*)/(A, A*) 2 (.f~,_,f;*)]A, (4·5) 

where A= iLA. Thus .::1/ and w,1 are related to the moments of the frequency 

distribution function of Eo (t), 

(4·6) 

where 

CD 

P(o))=_l Re[E0 (i(J))] = 
1 ~ E0 (t)exp( -i(J)t)dt. 

n 2n 
(4·7) 

It turns out that .::1/ is a function of the moments of lower order than 2j, and 

oJi is a function of those of lower order than (2j + 1). 

When the first moment (Vo =(til) is not zero, it is frequently more convenient 

to consider the function 

and investigate its singularities around z = 0. The inverse transform leads to 

E0 (t) =exp(£Lu0t)E0 (t). (4·8b) 

If we take n~ oo, then Eq. ( 4 ·1) leads to an infinite continued fraction . 

The time evolution of Eo (t) is determined by the singularities of this continued 

fraction in the complex z plane. The actual calculation of .::1/ and (J)i of higher 

indices, however, is difficult except for simple systems. Useful approximations, 

however, will be obtained on the basis of this expression. If we go up to an 

appropriate En(z), then it frequently becomes possible to introduce either one 

of the following approximations for the En (z) .or a combination of some of them : 

(1) a long~tin1e approximation 

(2) a perturbation calculation 

(3) a high or low temperature approximation 

( 4) a short-time approximation. 

\Ve now discuss these approximations. 

The property of the infinite continued fraction depends upon what variable 

A (t) and what region of value of z we are concerned with. When A (t) =A (t) 

exp (- i(J)0t) is a slowly-varying function of time in a certain time scale Jt, a 

En (z) will be insensitive to z in a small region around the origin in the complex 

z plane. In such a case, we can neglect the z dependence of the En (z) ; 
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10R II. 1\dori 

CfJ 

En(z) ~~n-) En(t)exp( -icu0t)dt. (4·9) 

0 

Then from Eq. (3·8) we have 

Eo (z) ~gn-1 (z) /Yn(z), ( 4 ·10) 

where gi (z) IS a j-th order polynomial of z and is obtained from F~n:_j (z + icuo) 

by inserting Eq. (4·9) into En(z) involved in F~n:..i; namely, 

gi(z) = [z-1-i(o)o-UJn-j)]Yj-l(z) +A~-Hlgj-2(z), 

Yo(z) =1, g1(z) =z+i(uJo-Wn-1) +An-h 

where we have introduced the quantities 

( 4 ·11) 

(4·12) 

(1·U~) 

If we neglect U) 0 in ~n' then our approximation is equivalent to neglecting the 

z dependence of En(z). It follows from Eqs. (4·11) and (4·12) that gi(z) 

and Yj-1 (z) do not have any common factor. Therefore the singularities of 

Eq. ( 4 ·10) are given by the zeros of Yn (z). Denoting these zeros by Za = 

i(Qa-wo) -ra, (a=1, 2, ... n), and taking the inverse Laplace transform of (4·10), 

'Jl 

Eo (t) ~~ 2..~.J<a exp [ (iQa -- r a) tl, (;J . 1 1) 
Ci=l 

where Ra is the residue of Eq. ( 4 ·10) at pole Za. In this approximation, 

Ci(.z+iruo) =gn-J-j(z)/Yn(z), and Eq. (2·29) thus leads to 

n 

A (t) ~ :E exp [ (iQa- r a) t] 
a=1 

t 

X {fa-1-C~-l) expf: --- (iQa--ra)s]f;,,(s)ds}, ( 4. 15) 

where 

n-1 

fa= I.; C/ fj, (4·16) 
j=O 

and C/ is the residue of cj (:z + ioJo) at pole Za. 

The approximation ( 4 · 9) corresponds to the description of A(t) 1n the 

time scale At distinctly larger than the decay time fn of En (t), and will be called 

the n-th order long-time approximation around z = iw0• It thus turns out that 

( 1· 9) is valid if all of the n poles locate in the neighborhood of the center 

z=iuJ0 of the semi-circle with the radius equal to 1/rn in the left-half z plane. 

These poles represent slow processes, and the higher frequency components, 

which correspond to the remaining singularities of E 0 (z), are represented by 
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A Continued-Fraction Representation of the Titne-Correlation Functions 409 

the n-th order random force f~ (t) whose correlation time is much smaller than 

the relaxation times of the slow processes. If only rn ( <n) poles locate near 

the center and the others are distributed away from them, then the nz poles 

correctly represent nz singularities of Eo(z) near the center, whereas the other 

(n- m) poles are not insured to represent any singularities of Eo (z). 

In Appendix B, we shall discuss simple examples for the long-time approxi

mation. It will be concluded there in the case of cu1 = 0 that, if 

( 4 ·17) 

then Eo (z) has n poles in the neighborhood of the ongm and these poles are 

determined from the n-th order long-time approximation around z 0. 

In co-operative systems which undergo second-order phase transitions, the 

relaxation and transport phenon1ena also show anomalous properties near the 

critical points. 3
) In treating these phenomena, it is essential to extract anomalous 

temperature-dependent factors correctly. Since the admittances and the kinetic 

coefficients are expressed in terms of the relaxation functions of appropriate 

variables, the expansion formula ( 4 · 1) will be useful for this problem. Near 

the critical points, some physical variables undergo critical fluctuations, giving 

rise to the anomalous increases of the specific heat and other compliance coef

ficients. These critical fluctuations are due to the fact that the static pair cor

relations of particles and spins become anomalously long-ranged near the critical 

points. The parameters o>.i and J/ are written in terms of the static correlation 

functions of particles and spins. Thus some of o)1 and L11 
2 will have anomalous 

temperature dependence, leading to the anon1alous relaxation and transport phe

nomena. 

As an example let us consider the relaxation of the magnetization in ferro

and antiferro-magnets by taking as A the Fourier component of the longitudinal 

or transverse magnetization density with small wave number. Then Eq. (4·1) 

takes the form 

Eo(z) = 
z 

1 

iu>o + Ao ' 
( 4 ·18) 

where 

Ll/ 
i ((})o- (})1) -+ {J}/ (i ((l>o- (})z) + Az} 

(4·19) 

Here we have used the first-order long-time approximation around z = i(})0 • This 

is valid except for antiferromagnets below the Ne€J point. T'he real part of },0 

gives the damping constant of the magnetization. First let us discuss the 

longitudinal magnetization with a small, but non-zero, wave number in ferro

magnets. Then the anomalous temperature-dependence comes out from the 

factor (A, A*) involved in L/1
2

• T'hus extracting this factor, we obtain 
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410 11. Mori 

(4·20) 

where 'X~c is the longitudinal magnetic susceptibility with wave number k. The 

subscripts oo mean to take their high temperature expression. When our in

terest lies in the phenomena below the Curie point, however, it is more con

venient to take their low temperature expression on the basis of the spin wave 

calculation. The temperature dependence of Eq. ( 4 · 20) agrees with. the previous 

result. 4
) It should be noted here that, if we extract (j~, f1*) also, then we get 

a more precise temperature dependence. 

Next let us discuss the relaxation of the transverse uniform magnetization 

due to a small anisotropy energy in a weak magnetic field. Then, (A, A*) and 

(j~, f 1 *) have strong temperature dependence, and extracting these factors, we 

obtain 

( 4. 21) 

where X1 =f3 (A, A*) I2N, N being the number of magnetic ions, is the transverse 

susceptibility. In antiferromagnets, the fluctuation of the random torque (j~, fr *) 

IN alone becomes anomalously large, thus leading to an anomalous increase of 

the damping constant Ao near the NeE:J point in agreement with experiments on 

the line width of the electron spin resonance.*) In ferromagnets, however, 'X~ 

also becomes anomalously large, and its singularity is of higher order than that 

of (j~, fr *)IN in such a way that the damping constant Ao becomes anomalously 

small when the temperature goes down through the Curie point. This is in 

agreement with experiments on the ferromagnetic resonance. The details of 

these investigations will be reported in a forthcoming paper. It should be noted 

that we have extracted anomalous temperature-dependent factors without making 

any assumption about the decay form of the time-correlation function of the 

random torque (f1 (t), j~ *). This point is the most essential improvement of 

the previous theory,4
)'

5
> and enables us to investigate different kinds of phenomena, 

as will be shown in subsequent papers. In order to know the detailed form of 

},0 in terms of the interaction constants, however, we have to determine the decay 

form. This problem, however, is now not so difficult, since, after extracting the 

anomalous factors, we can employ a perturbation calculation in the spin wave 

region, and a short time approximation in the high temperature region. 

~ 5. Some remarks 

The time evolutions of the random forces fn(t), n>1, are governed by the 

*) The previous theory led to the power 3/2 instead of 2 in Eq. (4·21).5) 

This deviation is due to the previous assumption of the Ga11ssian decay for the time-correlation of 

the random torque. 
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A Continued-Fraction RejYresentation of the Ti·me-Correlation Functions 411 

laws of motion different from the mechanical one. These evolutions, however, 

are physically meaningful, and, in fact, lower-order random forces are directly 

observable. As an example le~ us consider the thermal fluctuations of the electric 

current in a metal. It is well known that the conductivity tensor is given by1
l 

00 

rJ(w) =1-1) (.l(t), J)exp( -iwt)dt, (5 ·1) 

where .I (t) IS the electric current per unit volume, and its static correlation 

satisfies 

(5 ·2) 

where n is the number density of electrons. Therefore, taking .l(t) as A (t) 

and applying Eq. (3 · 6), we obtain 

rJ(r»)=1/R(w), (5·3) 

(5·4) 

where 

CD 

(/Jo (iw) = t1 (m/ ne
2

) ~ ( .fr (t), [I*) exp ( -- iuJt) dt. (5 ·5) 

The f~ (t) is the .random force responsible for the thermal fluctuation of the elec

tric current, and from Eq. (3 ·14) we obtain 

<XJ 

d .l(t) -iw0 ·.l(t) + ~ ({J 0 (s) ·.T(t-s)ds=J:(t) 
dt 0 

(5 ·6) 

for times t 'larger than the decay tirnes of (/Jo (t). Therefore, taking the two

sided Fourier transform of Eq. (5 · 6), we obtain 

R ( (J)) . .J ( U)) := v ( (J)) ' ' ( 5. 7) 

where 

V(t) = (m/ne
2)h (t). (5 ·8) 

The linear relation (5 · 7) shows that V (t) describes the tirne fluctuation of the 

voltage usually measured. This voltage fluctuation is related to the impedance 

R(w) by Eqs. (5·4) and (5·5). Taking the real part of the diagonal element 

of Eq. (5 · 4), we have 

00 

Re[R'"'"(rv)] = ~ ) (V'"(t), V'"*)exp( --ioJt)dt. (5·9) 
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412 I-I. A1ori 

This leads to the Nyquist theorem on the voltage fluctuation. *l Thus Eqs. (5 · 7) 

and (5 · 8) provide us with a typical example showing that the random forces 

themselves have physical significance. 

In the derivation of Eq. (5 · 7) it was essential to defi.ne the inner product 

by Eq. (2 · 3). This inner product satisfies the two requirements ; 

(a) The first term of Eq. (2 · 5), Eo (t) ·A, describes the most probable path of 

the time evolution of A (t) in the linear approximation. 

(b) The second term, A' (t), describes the linear response of A (t) to its con

jugate mechanical force X(t) applied at time t = 0 if one replaces the 

random force ];. (t) in Eq. (2 ·10) by X (t). 

The requirement (a) was discussed in a previous paper. 2
l Let us consider the 

external disturbance which produces the- perturbation energy 

/J(=-Q*·F(t), Q=A, (5 ·10) 

where F(t) is a parameter and the dot of 6 denotes its time rate with respect 

to the unperturbed Hamiltonian S£. Then ·,the external force conjugate to A is 

defi.ned by 

X(t) == (i/h) ( [ctJI', A])= t1 (A, A*)· F(t). (5·11) 

Then, with the aid of Kubo's theory of the linear response to mechanical dis

turbances/) we can easily show that the requirement (b) is also satisfied. Thus 

our generalized Langevin equation of motion, Eq. (3 ·10) of reference 2), or its 

integral representation (2 · 5) and (2 ·10) describes the mechanical and the thermal 

disturbances in a unifi.ed fashion. 

The continued-fraction expansion ( 4 ·1) has a different, feature from the 

moment expansion9
l and the cumulant expansion. 10

l Namely, first, our 

expansion is entirely determined by the static correlation functions of f/s, and 

i/s. Thus the dissipative quantities associated are expressed in terms of the 

static correlation functions of particles and spins. As was discussed in ~ 4, this 

point is particularly important in studying the anomalous phenomena near the 

critical poins. The two-time Green's function method also has a similar feature11
l. 

Secondly, since Eq. ( 4 ·1) is exact for an arbitrary n, we can introduce a variety 

of approximations depending on the system concerned. Thus, for instance, we 

introduce a long-time approximation by neglecting the z dependence of an ap

propriate En(z), or a short-time approximation by treating the time dependence 

of an appropriate En (t) properly, or both at the same time. In this respect, our 

method differs from the two-time Green's function method, even though the latter 

*> In the classical case, this is clear since the time integral is equal to the spectral density 

of the voltage fluctuation.8> In the quantal case, this is also true in the isotropic case, since we 

obtain Re [R (w)]=n<IV"'(w) 1
2>/EfJ(w) by inserting Eq. (5·7) into Eq. (7·18) of reference 1). In 

a quantal anisotropic case, however, the situation becomes complicated and we may have a deviation 

from Nyquist's relation. 
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A Continued-Fraction Representation of the Time-Correlation Functions 413 

also produces a continued-fraction solution. 11
>'

12
> 

The quantity En(z) plays a similar role to the irreducible self-energy part 

of the thermal Green's function. In an infinite system, since En (t) decays in a 

finite time, En (z) is analytic in the right-half z plane. Therefore, the real and 

imaginary parts of En(iw) satisfy the Kramers-Kronig relations; for instance, 

00 

Im[En(io>)]=-
1 

( 
7i ) oJ- w' 

(5 ·12) 

where the principal part of the integral is to be taken. If A is a variable even 

or odd with respect to time reversal, then we have 

[wn] H = - [o>n] --II, (5 ·13) 

Im [En ( i (})) ] If = --lm [En ( --- i U)) ] _ If , ( 5 · 14) 

Re[En(iw)]u=Re[En( -iw)]-lf, (5·15) 

where - .H indicates the reversal of the external magnetic field H. These time

reversal relations can be derived by extending a previous discussion of w0 and 

(/Jo (z). 2> Their generalization to the many-variable case is obvious. 
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Appendix A 

J)eri·vation of Eq. (.'-? • 8) 

Inserting Eq. (2 · 27) and then using that g is orthogonal to ~l\Lf, 

(Ljf, g*) = (Lj~ g*) = (j~ [Lg] *), 

where Eq. (2 · 2) also has been employed. Since f is also orthogonal to !PiLg, 

this is equal to 

.i-1 

= (f, [(1- ~.Pi)Lg]*). 
,:~~o 

Thus usmg Eq. (2·27) agam, we obtain Eq. (3·3). 

Appendix B 

Simple exmnples for the long-time apj>roximation 

It would be instructive to discuss simple examples for the long-time approxi

mation ( 4 · 9). For simplicity let us consider the case where 
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414 H. Mori 

Olo = W1 = · · · = 0 . 

Then it may be concluded from Eq. ( 4 ·13) that },/s are positive quantities. 

Introducing the third-order long-time approximation around z = 0, we have 

(B·1) 

This function has the. three poles given by 

z 1 } ;,2 1 c ) . v3 c ) =- - u+v =t=z u-v 
z2 3 2 2 ' 

(B·2) 

(B·3) 

where 

u ~ = [B± vtnlf3, 
71 ) 

(B·4) 

where 

(B·5) 

(B·6) 

where Ao and }q are given by Eq. (4 ·13) in terms of il1
2
, il2

2 
and },2· It follows 

from Eqs. (4·9) and (4·13) that 1/Aj represents the mean decay time of Ej(t). 

Therefore, if lz11, lz21, lzsl <~',)_2, then these poles give the singularities of Eo (z) 
locating around the origin in the left-haH z plane. 

Now let us assume that 

},2plq=il22/A2, (i.e. A2~J2), 

},2~ Ao = (i11/ il2)
2
l•2, (i.e. A2> L11). 

Then Eqs. (B · 5) and (B · 6) lead to 

where 

B
113
~- Ud3) + Ul/2), 

R;;::: ;,2 U2/3)3.Q2, 

.Q2
=}q

2 [(Ao/l,l)- (1/4)]. 

Since IBI~IV Rl, we thus obtain 

Zr, z 2=- (Al/2) =F i.Q, 

(B·7) 

(B·8) 

(B·9) 

(B ·10) 

(B ·11) 

(B ·12) 

(B ·13) 
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A Continued-Fractzon Representation of the Time-Correlation Functions 415 

The first two poles satisfy lz1l, !z2! <~A2, and the third pole is well separated 

from these poles, as is shown in Fig. 2. In the time scale much larger than 

1/ /l.2, therefore, we obtain 

/ 
I 
I 

->) 

I 

I 

Next let us assume that 

z2 

/l.1'?> Ao = Li1
2 I /l.1, (i.e. /l.1> L11). 

Then Eq. (B ·16) reduces to 

r1~Ao, r2~-~A1-/l.o. 

,//// 

-,\1 :' 

\ z2 Zt 
\ 
\ 

\ 

',, 

In the time scale much larger than 1/ A1, therefore, we obtain 

Eu(t)=exp( -Ao t). 

(B ·14) 

(B ·15) 

(B ·16) 

(B ·17) 

(B ·18) 

(B ·19) 

In this way, as Ao/ A1 reduces fron1 a value larger than 1/4 to smaller values, 

the poles z1 and z2 change from Eq. (B ·12) to Eq. (B ·16) and finally to Eq. 

(B ·18), as is shown in Figs. 2 and 3. 

By extending the conditions (B·7--8) and (B·17), we may conclude that, 

if 

(B·20) 

then 3'0 (z) has n poles in the neighborhood of the ongm inside the semi-circle 

with radius An, and these poles are determined from the n-th· order long-time 

approximation around z = 0. A typical example satisfying Eq. (B ·17) is the 

longitudinal magnetization with a small wave number in ferromagnets. The 

density fluctuation in a one-component system satisfies Eqs. (B · 7 -8) in the 
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416 H. Mori 

isothermal approximation. Therefore, in the neutron scattering by liquids and 

in the ultrasonic sound waves, the Brillouin doublet will undergo a similar 

transition to the change from Eq. (B ·12) to Eq. (B ·16) when the wave number 

or the frequency increases. 

References 

1) R. Kubo, ]. Phys. Soc. Japan 12 (1957), 570. 

2) H. Mori, Prog. Theor. Phys. 33 (1%5), 423. 

3) F. Johnson and A. Nethercot, Phys. Rev. 114 (1959), 705. 

M. Ericson and B. Jacrot, ]. Phys. Chern. Solids 13 (1960), 2:15. 

M. Fixman, J. Chern. Phys. 36 (1962), 310. 

A. Michels, l Sengers and P. van der Gulik, Physica 28 (1962), 1216. 

R. Hill and S. Ichiki, Phys Rev. 128 ( 1962), 1140; 130 (1963), 150. 

4) H. Mori and K. Kawasaki, Prog. Theor. Phys. 27 (1962), 529. 

5) H. Mori and K. Kawasaki, Prog. Theor. Phys. 28 ( 1962), 971. 

H. Mori, Prog. Theor. Phys. 30 (196:~), 578. 

11) S. Chandrasekhar, Rev. Mod. Phys. 15 (194:~), 1. 

7) H. Wall, Continued Fractions (D. Van Nostrand Company, Inc., Princeton, New Jersey, 

1948). 

8) L. Landau and E. Lifshitz, Statistical Physics (Pergamon Press, London-Paris, 1958), Chap. 

XII. 

M. Wang and G. Uhlenbeck, Rev. Mod. Phys. 17 (1945), 323. 

9) R. Kubo, in Lectures in Theoretical Physics, edited by W. Brittin and L. Dunham 

(lnterscience Publishers, Inc., New York, 1959), Vol. l. 

10) R. Kubo, J. Phys. Soc. Japan 17 (1962), 1100. 

ll) K. Tomita and M. Tanaka, Prog. Theor. Phys. 29 (19fi:~), 528. 

12) ·r. Matsubara, Prog. Theor. Phys. 32 (1961), 50. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

4
/3

/3
9
9
/1

9
4
3
1
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


