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Abstract. For an absolutely continuous probability measure µ on R
d and a nonnegative

integer k, let s̃k(µ, 0) denote the probability that the convex hull of k +d +1 random points
which are i.i.d. according to µ contains the origin 0. For d and k given, we determine a
tight upper bound on s̃k(µ, 0), and we characterize the measures in R

d which attain this
bound. As we will see, this result can be considered a continuous analogue of the Upper
Bound Theorem for the maximal number of faces of convex polytopes with a given number
of vertices. For our proof we introduce so-called h-functions, continuous counterparts of
h-vectors of simplicial convex polytopes.

1. Introduction

Suppose we choose n ≥ 3 random points, P1, . . . , Pn , i.i.d. according to the uniform
distribution in the unit disk centered at the origin. What is the probability that the convex
hull of these points contains the origin?

There is a beautiful way of determining this probability due to Wendel [8], see also
[1]: First choose n random points Q1, . . . , Qn in the disk. For each i , set Pi to Qi or to
−Qi with equal probability 1/2. The points P1, . . . , Pn are again i.i.d. random points in
the disk. Independently of the choice of the Qi ’s,1 there are 2n possibilities to choose
the signs for the Pi ’s such that the origin can be separated from these points by a line
(every partition of the Qi ’s by a line through the origin gives two such possibilities).
Therefore, the probability for the convex hull of the Pi ’s to contain the origin is precisely
1 − 2n/2n . A second glance at the proof shows that all we used were the facts that the
points were chosen from a distribution that is symmetric about the origin and that certain
degeneracies occur with probability zero.

1 Here we ignore degenerate configurations which occur with probability zero.
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The corresponding probability of n > d random points drawn from such a centrally
symmetric distribution guaranteeing almost sure general position on R

d can be shown
to be2

1 −
∑d−1

i=0

(
n−1

i

)
2n−1

. (1)

What happens if we choose the points from some other distribution? To this end, let
µ be an absolutely continuous (a.c.) probability measure on R

d , that is, one which has
a density function with respect to the Lebesgue measure; µ is called balanced about
a point p if every hyperplane through p equipartitions µ (by absolute continuity, the
hyperplane itself has µ-measure zero).

For a nonnegative integer k, let s̃k(µ, 0) be the probability that the convex hull of
k +d +1 independent and identically µ-distributed random points (i.i.d. ∼ µ, for short)
contains the origin 0. In this paper we show that s̃n−d−1(µ, 0) is at most the number
given in (1). Moreover, this value is attained iff µ is balanced about the origin. To the
best of our knowledge, this result is new. However, as we see it, the main contribution
of this paper is the presentation of this result as a continuous analogue of the Upper
Bound Theorem, and the introduction of continuous twins of h-vectors of convex poly-
topes, and of j-facets of finite point sets. We also discuss continuous versions of the
Dehn–Sommerville relations.

For the proof of the bound on s̃k(µ, 0) we choose a detour by first analyzing the prob-
ability that a line intersects the convex hull of n random points (from some probability
distribution µ). These findings can then be transferred by an appropriate projection to the
setting as described above. We begin by preparing the central notions for our presentation.

1.1. Directed Lines Entering Oriented Simplices

An oriented simplex σ in R
d is a pair (|σ |,H+(σ )), where |σ | is an ordinary (d − 1)-

simplex and H+(σ ) is one of the components of R
d\ aff(|σ |) marked as the positive side

or open positive halfspace of σ . Correspondingly, the other component is called the open
negative halfspace and denoted by H−(σ ). If the positive and the negative halfspaces
exchange their roles, we speak of the simplex with reversed orientation, −σ .

In dimension d ≥ 2, an orientation of the simplex spanned by affinely independent
points p1, . . . , pd is given in a natural way by the order in which the points come:
Defining H+(p1, . . . , pd) to be the set of points q ∈ R

d with

det

[
1 1 · · · 1

q p1 · · · pn

]
> 0,

we obtain the oriented simplex

[p1, . . . , pd ] := (conv{p1, . . . , pd},H+(p1, . . . , pd)).

2 Note that the numerator on the right-hand side is exactly the number of topes (or regions) in an arrangement
of n − 1 affine hyperplanes in dimension d − 1.
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Thus, [p1, . . . , pd ] = [q1, . . . , qd ] iff qi = pπ(i), 1 ≤ i ≤ d, for an even permutation π ,
and [q1, . . . , qd ] = −[p1, . . . , pd ] if π is odd. In dimension one, however, in addition
to a point p1 ∈ R, a sign ε ∈ {+1, −1} is needed; we then write ε[p1] for the oriented
simplex σ with |σ | = {p1} and H+(σ ) = {q ∈ R | ε · (p1 − q) > 0}.

Some more terminology: A directed line � is said to enter an oriented simplex σ if it
intersects the relative interior of |σ | in a single point and is directed from the positive to
the negative side of σ ; � is said to leave σ if it is directed the other way. By contrast, we
say that � passes into a nonoriented closed subset C of R

d at p if p is the first point of
intersection of � with C (provided such a point exists). Conversely, � exits C at q if q is
the last point of intersection. Thus, � enters an oriented simplex σ if it passes into the
closed negative halfspace H−(σ ) at some point in the relative interior of σ .

1.2. y-Facets and h-Functions

We now fix a directed line � and an a.c. probability measure µ in R
d , d ≥ 1. An oriented

simplex σ is called a y-facet of µ, for a real number 0 ≤ y ≤ 1, if µ(H+(σ )) = y. We
will need a vast supply of random points; let P1, P2, P3, . . . ∈ R

d be i.i.d. ∼ µ. One of
the geometrical niceties of absolute continuity is that various special cases are negligible
since they only occur with probability zero. For instance, the points are almost surely
(a.s.) in general position with respect to �, and so on. Apart from sporadic reminders,
we are pretty much going to ignore such negligible events from now on.

Moreover, allow us to introduce the notion of a µ-random oriented simplex. In dimen-
sion d ≥ 2, this is just the oriented simplex σ = [P1, . . . , Pd ]; in dimension one, such a
random simplex σ = ε[P1] is obtained by independently choosing ε as −1 and +1 with
equal probability. We also refer to σ as the random simplex spanned by P1, . . . , Pd . Let
then

H(y) = Hµ,�(y) := Prob
[
� enters σ and µ(H+(σ )) ≤ y

]
, (2)

where σ is a µ-random oriented simplex.3 Obviously, the function H is right continuous
and monotone. As a matter of fact, monotonicity suffices to ensure that its derivative,
the h-function

h(y) = hµ,�(y) := dH(y)

dy
(3)

is defined almost everywhere (a.e.), that is, everywhere except possibly on some set of
Lebesgue measure zero.4 There is, however, an issue here that must not be swept under

3 Of course, if we want to measure probabilities, we need to check measurability. First observe that
the set U d

n consisting of all n-tuples of points in general position in R
d is an open subset of R

n·d (small
perturbations of the points do not affect general position) and therefore measurable; the same applies to the
subset {(pi ) ∈ U d

d | � enters [p1, . . . , pd ]} of U d
d . Moreover, by absolute continuity of µ,

(p1, . . . , pd ) �→ µ(H+(p1, . . . , pd ))

is a continuous, hence measurable, function on U d
d . Therefore, {� enters σ } is an event, i.e., a measurable

subset of the underlying probability space, and µ(H+(σ )) is a random variable.
4 That monotone functions are a.e. differentiable is a special case of Lebesgue’s Differentiation Theorem

(see [3]).
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the carpet. Namely, from monotonicity and differentiability a.e. alone we cannot infer
that H(y) = ∫ y

0 h(x) dx .5 In fact, for a function F : [a, b] → R on a compact interval,
the following are equivalent (see Section 3.5 of [3]):

1. There is some Lebesgue integrable function f on [a, b] such that F(x) − F(a) =∫ x
a f (x) dx for all x ∈ [a, b].

2. F is absolutely continuous6 in the sense that for all ε > 0, there exists some δ > 0
such that for any finite set of disjoint open intervals (a1, b1) · · · (ak, bk) ⊆ [a, b],

k∑
j=1

(bj − aj ) < δ ⇒
k∑

j=1

|F(bj ) − F(aj )| < ε. (4)

If these conditions are satisfied, F is differentiable a.e. on [a, b] and (d/dx)F(x) = f (x)

for a.e. a ≤ x ≤ b. We will see in Section 3 that H is even continuously differentiable,
which will resolve our worries. However, for the time being, we must not assume this.

In Section 4 we briefly indicate how h-functions correspond to the h-vectors of convex
polytopes. First and foremost, however, we prove analogues of some properties of h-
vectors, notably

h(y) = h(1 − y),

in analogy to the Dehn–Sommerville relations, and

h(y) ≤ d

2
min{yd−1, (1 − y)d−1}, (19)

in analogy to the Upper Bound Theorem. Note that once we have established absolute
continuity of H , this yields an upper bound of 1/2d on H(1) = ∫ 1

0 h(y) dy, the proba-
bility that a random oriented simplex is entered by �. It follows that an undirected line
intersects the convex hull of d random (according to µ) points with probability at most
1/2d−1. By an appropriate lifting from R

d to R
d+1, we may conclude s̃1(µ, 0) ≤ 1/2d

for an absolutely continuous probability distribution µ in R
d , d ≥ 1. We will see in

Section 2 how the moments of the distribution defined by H yield the bounds (1) for
s̃k(µ, 0), k ≥ 0.

2. Moments and the Dehn–Sommerville Equation

As a warm-up, we consider the one-dimensional case. Suppose first that � is directed
from the right to the left. Then a random simplex ε[P] is entered by � if and only if
ε = −1. Therefore,7 H(y) = 1

2 Prob[µ((P, ∞)) ≤ y] = y/2, by monotonicity of H and
continuity of p �→ µ((p, ∞)). By parity of reasoning for the case where � is directed
from left to right, we conclude:

5 The Cantor function, for instance, furnishes an example of a monotone and even continuous function
which maps [0, 1] onto itself while its derivative vanishes a.e. (see [3]).

6 The resemblance of terminology is no coincidence, absolute continuity of functions and of measures are
closely related (see [3]).

7 Observe that (P, ∞) will denote an interval.
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Observation 2.1. In dimension one,

H(y) = y

2
and h(y) = 1

2 . (5)

Trivial as these observations are, they provide a nice base case for inductive reasoning,
which we employ repeatedly in the following.

2.1. Moments

Apart from the fact that H(1) < 1, H behaves just like a probability distribution function
on the unit interval: it is nonnegative, monotonically increasing, and right continuous.8

As in the case of probability distributions, we define, for integer k ≥ 0, the kth moment
of H to be the Lebesgue–Stieltjes integral with respect to H of yk ,

Mk(H) :=
∫ 1

0
yk dH(y). (6)

What we would like to write instead is
∫ 1

0 ykh(y) dy, and that is what you may wish
to think of when reading (6); however, it would be dishonest to use the more familiar
notation at this point, for it is only correct provided that H is a.c. Yet in order to prove
the latter, the apparatus of abstract integration is needed if we do not want to beg the
question.

More generally, it makes sense to speak of moments for a wider class of functions
which contains H . More precisely, we call a function F : [a, b] → R nice if it can be
written as a difference F = F1 − F2 of right continuous, bounded monotone functions.
The point of considering moments is that a nice function F on a compact interval has
moments of all orders and that, moreover, these uniquely determine F :

Lemma 2.2. If F, G: [a, b] → R are nice functions such that Mk(F) = Mk(G) for
all k ≥ 0, then F = G.

(The case of probability distribution functions, i.e., of monotone functions for which
the 0th moments equal 1, is proved in Section 2.3.e of [2]. The general case follows by
linearity.9)

Thus, while it may at first seem difficult to pin down any interesting properties of H
or h, we can try to get a grip on their moments. Of course, Mk(H) = 1/2(k + 1) in

8 In fact, H is the distribution function of a finite measure η on [0, 1] which is given by η([0, y]) = H(y);
we could make η into a probability by normalizing by the constant factor 1/H(1), that is, by considering
conditional probabilities in the definition of H .

9 That is, by the fact that for all c1, c2 ∈ R, Mk(c1 F1 + c2 F2) = c1 Mk(F1) + c2 Mk(F2)): Namely, if
F = F1 −F2 and G = G1 −G2, then Mk(F1)−Mk(F2) = Mk(F) = Mk(G) = Mk(G1)−Mk(G2). Consider
c := M0(F1 + G2) = M0(F2 + G1). If c = 0, then, by monotonicity, F1 + G2 and F2 + G1 are constant on
[a, b], say F1 + G2 = r and F2 + G1 = s. Then r(b −a) = M1(F1 + G2) = M1(F2 + G1) = s(b −a), hence
r = s, hence F = G. If, on the other hand, c �= 0, then Mk(F̄) = Mk(Ḡ) for all k, where F̄ = (F1 + G2)/c
and Ḡ = (F2 + G1)/c. However, these are probability distribution functions, hence F̄ = Ḡ, hence F = G.
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dimension one. Hence, assume d ≥ 2 until further notice. Intuitively speaking, if σ =
[P1, . . . , Pd ] is a y-facet, then by independence yk = Prob[Pd+1, . . . , Pd+k ∈ H+(σ )],
and by averaging over all y, we arrive at

Observation 2.3.

Mk(H) = Prob[� enters σ and Pd+1, . . . , Pd+k ∈ H+(σ )]. (7)

Proof. For d ≥ 2, the transformation theorem for image measures yields

∫ 1

0
yk dH(y) =

∫
· · ·

∫
{(pi )

d
i=1| � enters [p1,...,pd ]}

µ(H+(p1, . . . , pd))
k dµ(pd) · · · dµ(p1)

=
∫

· · ·
∫

{(pi )
d+k
i=1

|� enters [p1 ,...,pd ] and

pd+1 ,...,pd+k ∈H+(p1 ,...,pd )}

dµ(pd+k) · · · dµ(pd+1) dµ(pd) · · · dµ(p1)

= Prob[� enters σ = [P1, . . . , Pd] and Pd+1 . . . Pd+k ∈ H+(σ )],

by independence of the Pi ’s.

It is convenient to modify the geometric interpretation (7) further so as to make it
more “symmetric.” The following lemma is a useful tool:

Lemma 2.4 (Counting Permutations). Suppose X = (X1, . . . , Xn) is a vector of i.i.d.
random variables which take values in some set N , and let A and B be measurable sets
of n-tuples (xi )

n
i=1 of elements in N . Assume furthermore that l, m are constants such

that for every x = (xi ) ∈ A and every x′ = (x ′
i ) ∈ B, there are exactly l permutations

π such that xπ := (xπ(i)) ∈ B, and exactly m permutations π ′ for which x′
π ′ ∈ A. Then

l · Prob [X ∈ A] = m · Prob [X ∈ B] .

Proof. Let � be a random permutation on n letters, chosen independently of the Xi ’s,
every permutation being equally probable. By assumption, if x ∈ A, then Prob [x� ∈ B]
= l/n!. Since this holds for all x ∈ A and since X and � are independent, we get
Prob [X� ∈ B | X ∈ A] = l/n!, i.e.,

l

n!
Prob[X ∈ A] = Prob[X� ∈ B and X ∈ A]. (8)

However, by independence, the random vector X� has the same distribution as X; there-
fore, the right-hand side of (8) equals

Prob[X ∈ B and X�−1 ∈ A] = m

n!
Prob[X ∈ B],

as above, since �−1 is again a random permutation.
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Lemma 2.5. Let sk = sk(µ, �) stand for the probability that � intersects the convex
hull of P1, . . . , Pd+k . Then

Mk(H) = 1

2
(

d+k
d

) sk . (9)

Proof. Let B denote the set of all (d + k)-tuples (pi )
d+k
i=1 of points in general position

in R
d such that � intersects conv{p1, . . . , pd+k}, and set A := {(pi ) ∈ B | � enters

[p1, . . . , pd+k] and pd+1, . . . , pd+k ∈ H+(p1, . . . , pd)}. Then, for P1, . . . , Pd+k i.i.d.
∼ µ as above, Mk = Prob[(Pi ) ∈ A] (recall that the general position is for free,
by absolute continuity of µ, and, moreover, sk = Prob[(Pi ) ∈ B]. In the spirit of
Lemma 2.4, we count permutations. Obviously, if (pi ) ∈ A, then (pπ(i)) ∈ B for every
permutation π on d + k letters. Conversely, assume (pi ) ∈ B. By general position, the
convex hull of the pi ’s is a simplicial polytope P; in particular, the facet of P through
which � exits P is a simplex |σ |. There are exactly d! k! permutations π of the pi ’s
such that |σ | = conv{pπ(1), . . . , pπ(d)}, and one-half of these give that simplex the right
orientation, such that � is oriented from the positive to the negative side of the resulting
oriented simplex σ = [pπ(1), . . . , pπ(d)]. However, since � exits P through |σ |, this is
equivalent to saying that the remaining points pπ(d+1), . . . , pπ(d+k) lie on the positive
side of σ . It follows by Lemma 2.4 that

(d + k)! Prob[(Pi ) ∈ A] = d! k!

2
Prob[(Pi ) ∈ B],

which is what we wished to show.

Evidently, the probability that � intersects conv{P1, . . . , Pd+k} does not depend on
the orientation of �; thus, sk(µ, �) = sk(µ, −�) for all k ∈ N0. However, (9) tells us that
H is uniquely determined by the sk’s, hence Hµ,� = Hµ,−�, and therefore

Theorem 2.6 (Dehn–Sommerville Equation). H(y) = H(1) − H(1 − y) for 0 ≤
y ≤ 1. In terms of h, this reads

h(y) = h(1 − y). (10)

(Observe that until continuity of h is established, we only know that (10) holds a.e.)

Proof. For d = 1, this holds by (5); and for d ≥ 2, the above considerations show that

Hµ,�(y) = Hµ,−�(y)

= Prob[� leaves [P1, P2, . . . , Pd ] and µ(H+(P1, P2, . . . , Pd)) ≤ y ]

= Prob[� enters [P2, P1, . . . , Pd ] and µ(H+(P2, P1, . . . , Pd)) > 1 − y ]

= Hµ,�(1) − Hµ,�(y).
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2.2. Liftings and Projections

We return to the probabilities s̃k(µ, 0) = Prob [0 ∈ conv{P1, . . . , Pd+1+k}] mentioned
in the Introduction and see how they relate to h-functions. In order to do this, we drop
the assumption d ≥ 2 and lift the set-up to dimension d + 1 as follows:

Take your favorite a.c. probability distribution on the real line, for instance, the uniform
distribution on some bounded interval, and pick, for each i ∈ N, a (d + 1)st coordinate
Xi ∈ R according to that distribution.10 Then the lifted points P̃i := (Pi , Xi ) are i.i.d.
according to some a.c. probability measure µ̃ on R

d+1. If we take �̃ to be the xd+1-axis,
then

s̃k(µ, 0) = sk(µ̃, �̃) (11)

(observe that this does not depend on the distribution of the (d + 1)st coordinate), and
we just write s̃k from now on. On the one hand, this implies that any bound for hµ̃,�̃

immediately gives a bound for s̃k = 2
(

d+k+1
k

) ∫ 1
0 ykhµ̃,�̃(y) dy (assuming absolute

continuity of Hµ̃,�̃).
On the other hand, it opens up a door for induction. Namely, suppose that con-

versely, we are given an a.c. probability measure µ̃, a directed line �̃, and random points
P̃1, P̃2, P̃3, . . . i.i.d. ∼ µ̃ in R

d+1. Up to an affine coordinate transformation, which
preserves absolute continuity and does not affect Hµ̃,�̃, we may assume that �̃ is the
xd+1-axis. We identify R

d with R
d × {0} ⊂ R

d+1 and define Pi to be the orthogonal
projection onto R

d of P̃i . Hence P1, P2, P3, . . . ∈ R
d are i.i.d. according to the image

µ of µ̃ under that projection, and µ is a.c. again. The above considerations show that
the “moments” s̃k , and thereby Hµ̃,�̃, are uniquely determined by µ, which lives in one
dimension less. The question remains: Where do we get a directed line � ⊆ R

d for the
induction step? However, that will be answered in the next section.

We conclude this section by generalizing the definition of “balanced” given in the
introduction: µ is balanced about an affine flat A if every hyperplane containing A
equipartitions µ.

Observation 2.7. The measure µ is balanced about 0 if and only if µ̃ is balanced
about �̃.

3. A Continuous Upper Bound Theorem

In this section we inductively establish absolute continuity of H , i.e., H(y) = ∫ y
0 h(y) dy,

by expressing the moments of H in terms of quantities which stem from one dimension
less. This will pave the way to the continuous version of the Upper Bound Theorem
(UBT) and to the promised bounds for s̃k(µ, 0).

As indicated above, assume for the induction step that we start out with µ̃, �̃, and
P̃1, P̃2, P̃3, . . . i.i.d. ∼ µ̃ in R

d+1, and that µ and P1, P2, P3, . . . are obtained by orthog-
onal projection onto R

d (generally, entities marked with “ ˜ ” will live in R
d+1, those

10 In such a way that the X j ’s and Pi ’s are all independent.
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without in R
d ). Recall that, without loss of generality, �̃ is the xd+1-axis, and that in the

case d = 1, there is an additional random sign ε ∈ {+1, −1} involved in µ-random
oriented simplices.

Next, we choose and fix a (completely arbitrary) directed line � ⊆ R
d through the

origin 0 (recall that �̃ projects onto 0). We abbreviate H̃ := Hµ̃,�̃ and H := Hµ,�, and

their derivatives as h̃ and h, respectively.

3.1. The h∗- and ∗h-Functions

For 0 ≤ y ≤ 1, set

H∗(y) = H∗
µ,�(y) := Prob

[
� enters σ before 0 and µ(H+(σ )) ≤ y

]
, (12)

where “� enters σ before 0” means that � enters σ and 0 ∈ H−(σ ); accordingly, we say
that “� leaves σ before 0” if � leaves σ and 0 ∈ H+(σ ), and so on.

Again, the derivative h∗ = h∗
µ,� := dH∗(y)/dy exists a.e.; but more can be said than

this. Inductively, we may assume that H is a.c., i.e., satisfies condition (4). Moreover,
0 ≤ H∗(y) − H∗(x) ≤ H(y) − H(x) for x ≤ y; it follows that H∗ is a.c., too.
Hence, H∗ is the integral of its derivative, which will be called the h∗-function of µ

and �. Analogously, ∗H is defined by replacing “before” by “after” in (12), and thus the
∗h-function is obtained. Note that since almost no µ-random simplex σ contains the
origin, we have H(y) = H∗(y) + ∗H(y), and therefore

h(y) = h∗(y) + ∗h(y) a.e. (13)

Observation 3.1. In dimension d = 1, let a := µ((−∞, 0)). If � is directed from left
to right, then H∗(y) = 1

2 min{y, a}, whence

h∗(y) =
{

1
2 for a.e. 0 ≤ y ≤ a,

0 otherwise.

Proof. Recall from Observation 2.1 that in this set-up

H(y) = 1
2 Prob [µ((−∞, P)) ≤ y] = y,

where P ∈ R
1 is a µ-random point (the 1

2 stems from the fact that the random sign ε has to
be 1). Now, if we impose the additional condition that the simplex [P] be entered before
0, then we arrive at H∗(y) = 1

2 Prob[µ((−∞, P)) ≤ y and P < 0] = 1
2 min{y, a}.

We would like to express the s̃k’s in terms of h∗. To this end, let Ck denote the event
that � intersects the convex hull Pk of P1, . . . , Pd+k+1 and passes into it before 0. In this
event, there are two cases: either � exits Pk after the origin, i.e., 0 ∈ Pk , or � also exits
Pk before the origin. The probability of the first case is just s̃k . Thus, if we write Dk for
the second case, we get

s̃k = Prob(Ck) − Prob(Dk). (14)
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Lemma 3.2.
1

2
(

d+1+k
d

) Prob(Ck) = Prob[� enters σ before 0 and Pd+1, . . . , Pd+k ∈ H−(σ )]

=
∫ 1

0
(1 − y)k+1h∗(y) dy. (15)

Proof. We count permutations: Let B be the set of all (d + k + 1)-tuples (pi ) of points
in general position in R

d such that � intersects conv{p1, . . . , pd+k+1} and passes into it
before 0, and define

A = {
(pi ) ∈ B | � enters [p1, . . . , pd ] before 0

and pd+1, . . . , pd+k+1 ∈ H−(p1, . . . , pd)
}
.

If (pi ) ∈ A, then any permutation of the pi ’s lies in B; on the other hand, exactly
1
2 d! (k + 1)! permutations take an element (pi ) ∈ B to an element of A, since we have
to assign the indices 1, . . . , d and the right orientation to the simplicial facet where
� exits the convex hull of the points, and the remaining indices to the other points.
Applying Lemma 2.4, we obtain the first equality,11 while the second is proved just
like (7).

Similarly, one shows

Lemma 3.3.
1

2
(

d+1+k
d

) Prob(Dk) = Prob[� enters σ before 0 and Pd+1, . . . , Pd+1+k ∈ H+(σ )]

=
∫ 1

0
yk+1h∗(y) dy. (16)

3.2. Assembling the Parts

The preceding lemmas together with (14) yield

1

2
(

d+1+k
d

) s̃k =
∫ 1

0
yk+1

(
h∗(1 − y) − h∗(y)

)
dy

and integration by parts12 gives

1

2
(

d+1+k
d+1

) s̃k =
∫ 1

0
yk

(
(d + 1)

∫ y

0
h∗(x) − h∗(1 − x) dx

)
dy (17)

11 Strictly speaking, the argument as stated is only valid for d ≥ 2, but the random sign ε makes the
statement come out true in dimension one as well.

12 This is justified since y �→
∫ y

0
h∗(1 − x) − h∗(x) dx is a.c.; see Section 3.5 of [3].
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for all k ∈ N0. However, the expression on the left is exactly the kth moment of H̃ , and
the integral on the right is that of the nice function given by

y �→
∫ y

0
(d + 1)(H∗(x) − H∗(1) + H∗(1 − x)) dx .

Since nice functions are completely determined by their moments and since the above
integrand is continuous, we conclude

Theorem 3.4. H̃ is continuously differentiable, and

h̃(y) = (d + 1)

∫ y

0
(h∗(x) − h∗(1 − x)) dx (18)

for 0 ≤ y ≤ 1. It follows that h̃ itself is absolutely continuous.

For the tightness part of the upper bound on h, we need the following:

Lemma 3.5. Given µ̃ and �̃ in dimension d + 1 = 2, let H̃L and H̃R denote the open
halfspaces left and right of �̃, respectively. If we set a := min{µ̃(H̃L), µ̃(H̃R)}, then

h̃(y) = min{y, 1 − y, a}.

Proof. As before, we identify �̃⊥ with R
1 in such a way that �̃ orthogonally projects

onto 0, and that H̃L and H̃R project onto the intervals (−∞, 0) and (0, ∞), respectively.
Thus, a = min{µ((−∞, 0)), µ((0, ∞))}. Take � = R

1 to be directed from left to right,
say. Then, by (18) and Observation 3.1,

h̃(y) = 2
∫ y

0
h∗(x) dx − 2

∫ 1

1−y
h∗(x) dx

= 2
∫ min{y,a}

0

1
2 dx −

∫ a

min{a,1−y}
1
2 dx

= min{y, 1 − y, a},

as desired.

Theorem 3.6 (Continuous Upper Bound Theorem (CUBT)). The h-function of µ and
� satisfies

h(y) ≤ d

2
min{yd−1, (1 − y)d−1}. (19)

It follows that H(y) ≤ 1
2 min{yd , 21−d − (1 − y)d}. These upper bounds are tight, and

equality a.e. is attained if and only if µ is balanced about the line �. More precisely,
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if there is a hyperplane H ⊇ � with µ(H+) =: a < 1
2 < 1 − a = µ(H−) then, for

0 ≤ y ≤ 1
2 ,

h(y) ≤
{

d
2 yd−1 if 0 ≤ y ≤ a, and
d
2

(
yd−1 − (y − a)d−1

)
if a ≤ y ≤ 1

2 .
(20)

That is, h(y) falls strictly short of the upper bound (19) on the interval (a, 1 − a).

Proof. Observation 2.1 takes care of the assertions in dimension d = 1 (note that any
measure on R

1 is vacuously balanced about the real line itself). Assume then that (19)
holds in dimension d . To establish it in dimension d+1, it suffices to consider 0 ≤ y ≤ 1

2 ,
by the Dehn–Sommerville equation. We have

h∗(x) − h∗(1 − x)
(i)≤ h∗(x)

(ii)≤ h∗(x) + ∗h(x) = h(x), (21)

and therefore, by induction (iii),

h̃(y)
(i)+(ii)≤ (d + 1)

∫ y

0
h(x) dx

(iii)≤ d + 1

2

∫ y

0
dxd−1 dx = d + 1

2
yd . (22)

Now we turn to the last claim. On the one hand, if µ̃ is balanced about �̃ in R
d+1, then

the projected measure µ is balanced about the origin (Observation 2.7). Therefore, by
induction, h(y) = (d/2)yd−1. This tells us that the second inequality (iii) in (22) is, in
fact, an equality. It remains to prove that (i) and (ii) in (21) are also equalities. However,
since µ is balanced about 0, any halfspace H containing 0 has measure µ(H) ≥ 1

2 .
It follows that for x < 1

2 and δ > 0 sufficiently small, no matter which directed line
� ⊆ R

d through 0 we have chosen, there are no (x ± δ)-facets of µ which � leaves
after 0, and no (1 − x ± δ)-facets which it enters before 0. Letting δ → 0, we derive
∗h(x) = 0 = h∗(1 − x) for a.e. x ≤ 1

2 . This shows the “if” part of the asserted
equivalence.

On the other hand, assume that µ̃ is not balanced about �̃, i.e., that there is some
oriented hyperplane H̃ ⊃ �̃ such that µ̃(H̃+) =: a < 1

2 < b := µ̃(H̃−). In dimension 2,

bound (20) is just Lemma 3.5. If d + 1 ≥ 3, we set H := H̃ ∩ R
d and choose the line �

to be contained in H. Then µ is unbalanced about � since µ(H+) = a and µ(H−) = b.
Inductively, h satisfies the estimate (20), and (22) guarantees that, mutatis mutandis, so
does h̃.

Plugging into s̃k = 2
(

d+k+1
d+1

) ∫ 1
0 yk h̃(y) dy the upper bound which the CUBT pro-

vides for the integrand on the right, we get the following:

Corollary 3.7.

s̃k(µ, 0) = Prob [0 ∈ conv{P1, . . . , Pd+k+1}] ≤
∑k

i=0

(
d+k

i

)
2d+k

. (23)

Equality is achieved if and only if µ is balanced about the origin.
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Remarks 3.8. 1. It can be shown that µ is balanced about the origin if and only if
its radial projection µ̆ onto the unit sphere is symmetric about 0, i.e., invariant under
reflection about 0. In dimension d ≤ 2, this is rather trivial; for d ≥ 3, we refer to
Corollary 3.4 of [6].

2. The inequality (23) can also be derived by discrete methods, notably the UBT
for j-facets (see Section 4), applied to successively larger random samples from the
distribution µ. This approach avoids the machinery of h-functions; it does not, however,
lead to a characterization of the cases in which the upper bound is attained.

Upon further examination, more information can be squeezed from the proof of the
CUBT. For instance, we say that a measure is a-balanced about an affine flat A, 0 ≤
a ≤ 1

2 , if every hyperplane containing A has mass at least a on either side. Clearly,
µ̃ is a-balanced about �̃ iff µ is a-balanced about 0. Inductively, we see that the upper
bound h(y) = (d/2) min{y, 1 − y}d−1 is attained for y ≤ a and y ≥ 1 − a. This gives,
for example, lower bounds for s̃k(µ, 0) if the origin is a center point of µ, i.e., if µ is
(1/(d + 1))-balanced about 0.

4. What about h-Vectors?

You may wonder: What has all this got to do with the h-vectors of simplicial convex
polytopes? Recall that these are defined as follows: if P is a d-dimensional simplicial
polytope, and if fk = fk(P) denotes the number of its k-dimensional faces, −1 ≤ k ≤
d − 1, then

hj = hj (P) :=
j∑

k=0

(−1) j−k

(
d − j

d − k

)
fk−1(P). (24)

The sequence h := (h0, . . . hd) is called the h-vector of P , and it proves to be a very
convenient means of encoding the face numbers13 fk .

The reason why our h-functions can be thought of as continuous variants of h-vectors
is the following connection between simplicial polytopes and j-facets of finite point
sets. Let S be a set of n points in general position in R

d . A j -facet of S, for integer j ,
is an oriented simplex σ spanned by an ordered tuple of d distinct points in S such that
exactly j points of S lie on the positive side of σ . Given a generic directed line � (i.e.,
one which is disjoint from the convex hull of any d −1 points in S), we count the number
of j-facets of S that are entered by �; the resulting number is denoted by hj (S, �), and
h = (h0(S, �), . . . , hn−d(S, �)) is called the h-vector of S and �.

Here is the promised connection, see [7]. It is based on a duality closely related to the
Gale transform or LP-duality.

Theorem 4.1.

1. If h(P) is the h-vector of a simplicial d-polytope P on f0(P) = n vertices, then

13 These can be recovered from the hj ’s since (24) just states that h = T · f, where f = ( f−1, . . . , fd−1)

and T is the invertible matrix with entries (−1) j−k
(

d− j
d−k

)
(see [9]).
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there are a set S of n points in general position in R
n−d and a generic directed

line � ⊂ R
n−d such that h(S, �) = h(P).

2. Conversely, if S is a set of n ≥ d points in general position in R
d , and if � ⊆ R

d

is a generic directed line which intersects conv(S), then there is some simplicial
(n − d)-polytope P on at most n vertices such that h(P) = h(S, �).

Thus, we have a dictionary between “polytope-speak” and “ j-facet-entered-by-a-line-
speak.” This guarantees that whatever results are known in one setting will be immedi-
ately applicable to the other. Examples are the Dehn–Sommerville relations

hj (S, �) = hn−d− j (S, �) ,

which just state that any directed line � leaves as many j-facets as it enters, and the
Upper Bound Theorem (UBT):

hj (S, �) ≤ min

{(
j + d − 1

d − 1

)
,

(
n − j − 1

d − 1

)}
.

Remark 4.2. At this point, the reader is perhaps curious to see a “discrete equivalent”
of Corollary 3.7. For instance, one can show that given n points in general position in
R

d , the number of d-simplices containing the origin in their interior is at most

(⌊
n+d

2

⌋
d + 1

)
+

(⌈
n+d

2

⌉
d + 1

)
.

Without bothering the reader with the details, we would also like to mention that via the
duality indicated above, the probabilities s̃k can be thought of as continuous versions of
f -vectors of simplicial polytopes (see [7]).

All in all, we see that h-functions are, in a sense, the natural extension of h-vectors
to the continuous realm. Currently, we are investigating14 continuous analogues of the
Generalized Lower Bound Theorem and the g-Theorem, see Section 8.6 of [9].

5. Discussion

We have analyzed the probability of the convex hull of n random points (i.i.d. ∼ µ) to
contain the origin. For that we borrowed the seminal concept of h-vectors from polytope
theory, and introduced their continuous counterparts, h-functions. Note, however, that
our proof of the upper bound on h(y) is not merely a translation of McMullen’s proof in
the discrete setting [4]. Rather, when employed directly to the polytope set-up (via the
duality discussed in [7]), it would also give a proof by induction of the UBT, but with
the induction step going from d + 1 → d and base case d = n − 1.

14 A note on how to derive the continuous Generalized Lower Bound Theorem from the discrete one can
be found at www.inf.ethz.ch/∼uli.
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Here is a challenging related open question. For µ on R
2 given, consider

a(µ) = Prob [P1 ∈ conv{P2, P3, P4}]

for points P1, P2, P3, P4 i.i.d. ∼ µ. What is a tight upper bound for this probability over
all (a.c.) probability distributions µ on R

2? The probability a(µ) determines

b(µ) = Prob [conv{P1, P2} ∩ conv{P3, P4} �= ∅]

by the relation 4a(µ) + 3b(µ) = 1. Hence, it is closely connected to the problem
of determining a good bound for the crossing number of straight-line embeddings of
complete graphs, see [5].
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