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Abstract
Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building
block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this
work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new
framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for
many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable
to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve
problems with unstructured domains as well.

Keywords Convolutional neural network · Continuous filter · Deep learning · Unstructured data

1 Introduction

In the deep learning field, a convolutional neural network
(CNN) [1] is one of the most important architectures, widely
used in academia and industrial research. For an overview
of the topic, the interested reader might refer to [2–6].
Despite the great success in many fields including, but not
limited, to computer vision [7–9] or natural language pro-
cessing [10,11], current CNNs are constrained to structural
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data. Indeed, the basic building block of a CNN is a train-
able filter, represented by a discrete grid, which performs
cross-correlation, also known as convolution, on a discrete
domain. Nevertheless, the idea behind convolution can be
easily extended mathematically to unstructured domains, for
reference see [12]. One possible approach for this kind of
problem is the graph neural networks (GNN) [13,14], where
a graph is built starting from the topology of the discretized
space. This allows us to apply convolution even to unstruc-
tured data by looking at the graph edges, bypassing in this
way the limitations of the standard CNNs approach. How-
ever, GNNs typically require huge computational resources,
due to their implicit complexity.

Instead in this article, we present a methodology to apply
CNNs to unstructured data by introducing a continuous
extension of a convolutional filter, named continuous filter,
without modeling the data using a graph.

The main idea, which is depicted graphically in Fig. 1,
relies on approximating the continuous filter with a trainable
function using a feed-forward neural network and perform
standard continuous convolution between the input data
and the continuous filter. Previous works have introduced
different approaches to continuous convolution in various
settings ranging from informatics and graph neural networks
to physics and modeling quantum interactions, see for exam-
ple [15–17]. Even so, the latter is difficult to generalize, and
an analogy with a discrete CNN filter is not straightforward.
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Fig. 1 Continuous convolutional filter process. The unstructured domain input points falling into the filter are mapped in the filter domain a. The
filter values are approximated with a MLP kernel b. Finally, the convolution between the mapped values and the filter values is performed c

To our extent [18,19] are the closest works in literature to
our approach, both approximating the trainable filter function
with a feed-forward neural network and performing contin-
uous convolution. However, [18] and [19] focus on filters
with unbounded domains for convolution. In our work, we
instead fix the dimension of the filter, as in state of the art
discrete filters, and learn the approximation function on the
filter domain. This introduces a neat analogy to discrete CNN
filters. Furthermore, differently from [18,19], we also cover
important properties of convolution, such as transposed con-
volution or different approaches tomultichannel convolution.
To summarize, in this work we aim to reproduce as closely
as possible a discrete CNN filter but in a continuous not
structured domain setting, in order to exploit the main deep
learning architectures, based on CNNs, to solve problems
in not discrete domains. To the best of the authors’ knowl-
edge, our approach to continuous convolution has not been
explored in literature yet.

The main novelties of this work rely on:

• Building a new framework, based on continuous filters,
for working with unstructured data (continuous filter).

• Defining a neat analogy between continuous (transposed)
convolution and state of the art discrete (transposed) con-
volution in CNNs.

• Apply continuous convolutional layers in a CNN with
partially-completed input.

• Exploiting general strategies to work with continuous
convolutional autoencoders for dimensionality reduction
and system output predictions at unseen time steps.

All this, we highlight, preserving the features of the stan-
dard CNNs, which make such an approach effective even
dealing with large datasets. The present contribution is
organised as follows: in Sect. 2, a small review of deep
learning architectures useful for later analysis is done, as
well as introducing the continuous filter for one-dimensional
and multi-dimensional channels. In the same Section, we
introduce the main idea to perform transposed continuous

convolution. Sect. 3 is focused on numerical results. First,
we validate the proposed methodology on a discrete domain
problem using a continuous CNN and compare it with its
discrete representation. Second, we show that continuous
convolution can also work with partially-completed images.
Last, we present different deep learning architectures using
continuous filters to solve the step Navier Stokes problem,
and the multiphase problem. Finally, conclusions follow in
Sect. 4.

2 Methodology

This Section focuses on the various methodologies we rely
for building the continuous filter, as well as the introduc-
tion of the framework. First of all, we will describe briefly
the feed-forward neural network and the discrete filter for
a CNN in Sect. 2.1 and Sect. 2.2 respectively. As already
mentioned in Sect. 1, one of the main novelty of the work is
building a new framework based on continuous convolution.
Hence, Sect. 2.3 concerns the introduction of our framework
in different settings: single channel, multiple channel and
transposed convolution using the continuous filter.

2.1 Feed-forward neural network

Feed-forward Neural Network, or multi-layer perceptron
(MLP), is the most basic, yet one of the most important,
building block of most current deep learning architectures
[3,5,20].Widely used in deep learning,MLPs have the ability
to approximate any continuous function due to the universal
approximation theorem [21–23].

More technically, given an input vector x ∈ R
nin and

a function to approximate φ : R
nin → R

nout ; the MLP
approximation is done using a parameterised function class
F = { fθ∈�}, where θ are trainable parameters of the net-
work, belonging to the parameters’ space �. A MLP can be
represented as a directed acyclic graph, as depicted in Fig. 2.
In particular, it is composed by an input layer, an output layer
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Fig. 2 Schematic structure of
Feed-Forward Neural Network

and a certain number of hidden layers, where the processing
units of network, called neurons, perform the computation.
Each layer i , with i ∈ 0, . . . , M , can be thought as a func-
tion f (i) belonging to F , and the overall network function is
given by the layers’ composition [24]:

f = f (M) ◦ f (M−1) ◦ · · · ◦ f (1) ◦ f (0). (1)

Hence, a single layer i , is a function f (i) : Rni → R
ni+1 ,

where ni , represents the number of neurons in layer i , with
n0 = nin and nM+1 = nout. Each layer i is composed by
θi = (w(i),b(i)) parameters, where w(i) is a real matrix
ni+1 × ni , called weight matrix, and b(i) is a real vector
of dimension ni+1, called bias. The output vector h(i+1) of
layer i , corresponding to input vector of layer i + 1 (except
for the output layer), is then calculated using:

h(i+1) = f (i)(h(i) | θi ) = δ(i)(w(i) · h(i) + b(i)), (2)

where h(0) = x, and h(M+1) = ŷ is the output of the network.
The function δ(i) : Rni → R

ni+1 is called activation, intro-
ducing non-linearity through the network; common choices
are represented by the ReLU function, the sigmoid, the logis-
tic function or the radial activation functions. By using Eq.1
and 2, one can express mathematically a MLP architecture.

During the training process, in which a data-set D =
{(xi , φ(x)i )}ni=1 composed by n observation is fed into the
network, the MLP parameters θ are modified in order to
minimize a loss function L(θ | D, f ). The choice of the
loss function depends on the specific problem of applica-
tion [3,5,25]. Hence, the learning phase can be summarised
mathematically as:

min
θ

{L(θ | D, f )
}
. (3)

In practice, to solve the minimization problem, different
optimization algorithms based on back-propagation can be
used, see [26–28] for further reference. The optimization
phase is done in multiple training epochs, i.e. a complete
repetition of the parameter update involving the complete
training data-set D.

2.2 Discrete filter in convolutional neural networks

Convolutional Neural Network (CNN) is a class of deep
learning architectures, vastly applied in computer vision [7–
9,29]. Over the past years, different CNN architectures have
been presented, for instance AlexNet [30], ResNet [31],
Inception [32], VGGNet [33]. Differently from MLPs, in
which affine transformations are performed for learning, a
convolutional layer actually performs the convolution of the
input data I and the so called convolutive filter K, such that

(I ∗ K)(x) =
∫ ∞

−∞
I(x + τ )K(τ )dτ . (4)

CNNsperform such convolution1 in a discrete setting, using a
tensorial representation of the two functions I andK instead
of their continuous formulation. Thus, discrete correlation
is computed as (I ∗ K)(x) = ∑∞

τ=−∞ I(x + τ )K(τ ), with
x, τ ∈ Z

d (with d dimensions), where the latter infinite sum-
mation can be truncated by discarding the null products. In
this way, it is not necessary to know the original function
I, but its evaluation at discrete coordinates. In this context,
the filter K can be represented as the tensor K ∈ R

N1×···×Nd

such that the element Ki1,...,id ≡ K(i1, . . . , id) with i j ∈

1 In many deep learning implementations the term convolution indi-
cates what is known in mathematics as cross-correlation [3]. In this
text, the term convolution will be used to indicate cross-correlation,
thus adapting to the deep learning community convention.
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Fig. 3 Discrete convolution
operation on one dimensional
tensor

{1, . . . , N j },∀ j ∈ {1, . . . , d}. Applying a similar represen-
tation also for the input, the convolution results in the sum
of the element-wise multiplication between input and filter,
as sketched in Fig. 3. The convolution is of course repeated
for all the input components, by moving the filter across the
input in a regularized fashion [3,5].

The filter components (the so-called weights) represent
the trainable parameters of the convolutional layer, which
are tuned during the training phase. In general, convolution
reduces the size of a (multidimensional) array, perform-
ing downsampling. Conversely, the opposite transformation
to downsampling, called upsampling, used by many deep
learning architectures, e.g. autoencoders, uses transposed
convolution. The interested reader might refer to [6,34] for
more information regarding discrete (transposed) convolu-
tion.

2.3 Continuous convolutional filter

In contrast to discrete convolution as described in the pre-
vious Section, continuous two-dimensional convolution is
mathematically defined as:

Iout(x, y) =
∫

X

∫

Y
I(x + τx , y + τy) · K(τx , τy)dτxdτy,

(5)

where K : X × Y → R is the continuous filter function,
and I : � ⊂ R

2 → R is the input function. The continuous
filter function is approximated using a MLP, thus trainable
during the training phase. In order tomaintain the parallelism
with discrete convolution in CNNs, the definition adopted for
continuous convolution differs from themathematical one for
which X = Y = R. In fact, the continuous filter presented
is defined on a close domain, smaller than the input function
domain, as in the case of the discrete filter. The integral in
Eq.5 canbe evaluatedusingdifferent techniques fromnumer-
ical analysis [35]. In our implementation, for simplicity, the
double integral is approximated by a double sum on the grid
nodes inside the filter domain. Given {(xi , yi )}ni=1 points of
the input function mapped on the X × Y filter domain, we

approximate Eq.5 as:

Iout(x̃i , ỹi ) =
∑

xi∈X

∑

yi∈Y
I(xi + τx , yi + τy) · K(xi , yi ), (6)

where (τx , τy) ∈ S, with S the set of available strides, corre-
sponds to the current stride position of the filter, and (x̃i , ỹi )
points are obtained by taking the centroid of the filter posi-
tion mapped on the � domain. It is important to remark,
that the discretization strategy for � is irrelevant for the fil-
ter usage, since it can work even for holed or not connected
domains. Finally, the strides positions S, constituting the dif-
ferent positions of the filter on �, do not have to cover the
whole � domain, thus representing a generalization of the
discrete filter stride.

Having described the overall mathematical idea behind
one channel continuous convolutions, in Algorithm 1 a pos-
sible simple implementation is reported.When implementing
the continuous convolutional layer, we identified opportuni-
ties to optimize it (e.g., stacking mapped input to call just
once the MLP or calling the mapping function on the entire
data before entering in the for loop, allowing just one point
search per forward pass). The pseudo-code in Algorithm 1
does not report, for simplicity, these optimizations used in
building the layer. Moreover, the mapping function, which
is responsible for finding the points inside the filter, can
be implemented via linear search or advanced algorithms
based on efficient data structures. The usage of efficient data
structures may decrease the overall time complexity of the
algorithm, leading to an efficient implementation of the con-
volutional layer. Note that the implementation used in this
article relies on linear search for the mapping function.

The latter is easily extendable for multichannel con-
volution. Here two approaches can be adopted: multiple
two-dimensional filters, or multiple three-dimensional fil-
ters. In the first case, the framework is analogous to the
one of the discrete convolution in multi dimensional chan-
nels, see Sect. 2.2. We suggest to use this if the channels
represent independent quantities (e.g., pressure and veloc-
ity in a fluid, or image channels). The second possibility
is to define a three-dimensional filter, meaning a function
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Fig. 4 Example of transposed convolution in discrete setting

Algorithm 1One channel continuous convolution algorithm
Require: I : input function
Require: K : MLP approximation function
Require: S : set of stride positions
Require: � : domain discretization
Iout ← Initialize(�, S) � Initialize output coordinates
for (τx , τy) ∈ S do

(x, y) ← Map(�, (τx , τy)) � � → X × Y
vK ← K(x, y) � MLP evaluation
Iout ← Convolve(I(x + τx , y + τy), vK) � Convolution

end for
return Iout

K : X×Y×P → R, which takes as extra argument a channel
parameter p ∈ P .We suggest to use this if the channels repre-
sent correlated quantities (e.g., velocity along two directions
in a fluid). While the multiple two-dimensional filters strat-
egy needs Output Channels × Input Channels independent
filters, i.e. neural networks; the multiple three-dimensional
filters strategy only needs Output Channels independent fil-
ters, since the multichannel in the input is already handled
by the extra dimension in the filter. In our implementation
we considered and tested both strategies.

Finally, we highlight that such filter allows to trivially
extend the transposed convolution in the continuous setting.
In several architectures, like the autoencoder employed in the
numerical experiments of this contribution, it is indeed nec-
essary to upsample the output of a given layer. With discrete
filters, such operation is obtained by simply multiplying any
elements in the input tensor by all the elements of the filter in
a element-wise fashion. Figure4 sketches a simple example
of transposed convolution with 2D tensors. In case of over-
lapping elements in the output — such condition depends by
the stride used in the transposed convolution — these ele-
ments are typically summed, but also other choices can be
employed, like averaging.

In the continuous counterpart, the transposed operation
is semantically the same, but the elements within the filter
are not anymore finite. It is necessary indeed, in this latter
case, to select the points within the filter domain, sample the
kernel function at those points and finally weight them with
the elements of the input tensor to produce the output.

3 Numerical results

In this Section different experiments and their results, using
our continuous convolutional filter, are presented. In Sect. 3.2
a comparison between the state-of-the-art discrete filter and
the continuous filter is done, while in Sect. 3.2.1 the advan-
tages of using a continuous filter for partially-complete
images are shown. Following, in Sect. 3.3 we validate the
usage of transposed convolution using a Navier Stokes prob-
lem. Finally, in Sect. 3.4, the continuous filter is used to build
an autoencoder architecture for reconstructing not seen time
snapshot for the multiphase problem.

3.1 Software

In order to implement and construct the continuous con-
volutional filter, as well as performing all the experiments
in this Section, we employed PyTorch [36] due to its ver-
satility and its wide use in the deep learning community.
Moreover, the open source C++ finite volume library Open-
FOAM [37] is used for the mesh creation for the problems
presented in Sects. 3.3 and 3.4, and the FEniCSx [38] for
solving the Navier Stokes problem in Sect. 3.3 using finite
elements method. Finally, the EZyRB Python library [39] is
used for performing a comparison with proper orthogonal
decomposition in Sect. 3.4.

3.2 Convolutional neural networks comparison on
MNIST dataset

The first problem presented for validating themethodology is
the classification task in a supervised learning setting. Train-
ing and testing is done on the MNIST dataset [40], as it
represents a standard benchmark for classification. In par-
ticular we compare two CNNs, differing only for the first
convolutional layer in which discrete and continuous filters
are interchanged.TheMNISTdataset usedduring test is com-
posed by 60000 training images, and 10000 testing images.
The images are saved as 1×28×28 matrix I , where the first
dimension represents the number of channels, while second
and third dimension represent height and width respectively.
Whenpassing through the continuousfilter the image is trans-
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Fig. 5 Comparison of CCNN and CNN with respect to loss value and
the number of iterations

formed using a bed of nail representation

Icont(x, y) =
∑

i, j

δ(x − i, y − j)I [i, j], (7)

where the sum is done on the matrix indices, as also done in
[16]. This representation allows to treat a matrix as a con-
tinuous function, thus permitting the use of the continuous
filter. The opposite transformation is done by arranging the
function value in a matrix whose pixel positions are given by
the (x, y) coordinates of the function Icont.

Due to construction, the continuous filter is expected to
perform equivalently to a discrete filter with structured data,
thus classification on MNIST can be used as a validation
methodology for the continuous filter framework. The gen-
eral network used in training and testing is composed by
two convolutional layers followed by three fully-connected
layers of size 150, 24, and 10 respectively, with hyperbolic
tangent activation after the first two layers. The first convo-
lutional layer has filter size and stride both equal to 4, with
one input and output channel, and zero padding. The second
convolutional layer has filter size and stride both equal to 1,
with one input channel and four output channels, and zero
padding. For the continuous filter we used a MLP with two
layers of size 12, 12 with ReLU activation for the inner net-
work. Through the experiments only the first convolutional
layer is modified in the general network by changing discrete
with continuousfilters (andvice-versa), butwithout changing
any hyper-parameter, e.g. stride, filter size or padding. Let us
indicate with CNN the general network using a discrete filter
in the first layer, and CCNN the continuous version of the
CNN, i.e. the one in which the first convolutional layer dis-
crete filter is replaced with a continuous filter. Both networks
are trained, minimizing the cross entropy loss [3], for 22500
iterations on the training set using the Stochastic Gradient
Descent optimizer [41] with learning rate and momentum
set to 0.001 and 0.9 respectively, and batch size equal to 8.

In Fig. 5 the training loss for the two networks is reported
at different iterations. The result shows a faster convergence
of the CCNN network with respect to the CNN network.
Nevertheless, at plateau, both networks reach similar level
of training loss, as expected. Furthermore, both networks
have a similar decay shape of the loss, evidencing that the
training process on a continuous filter using discrete data is
comparable to a discrete filter.

In Table 1 the training accuracy, the testing accuracy, the
size of the networks used during training and the training
time are reported. The accuracy is defined as the number of
correctly classified predictions divided by the total number of
predictions. It is possible to note from the table that the train-
ing and testing accuracy is approximately the same between
the two networks, thus confirming heuristically the hypoth-
esis that both networks behave the same on structured data.
The discrete filter tends to have a small percentage advantage
0.2% on training data, and 0.5% on test data over the con-
tinuous filter. Nevertheless, fine-tuning the inner network for
the continuous filter might increase the test accuracy as well.
Furthermore, we stress that the true power of continuous fil-
ters is employed when unstructured data are used, and the
test only wants to confirm the validity of the methodology.
The CCNN network presents a small overhead in terms of
the size of the network due to the MLP used for approximat-
ing the continuous filter function. Nevertheless, the sizes of
the two networks are still comparable in order of magnitude.
Finally, due to expensive routines, e.g. the mapping function,
the CCNN is slower compared to a standard CNN, resulting
in higher training time. To summarize, in terms of accuracy
using a CNN or a CCNN does not affect the overall perfor-
mance. Even so, CCNN can be slightly slower than normal
CNN due to continuous filter architecture construction, but
CCNNcanworkwith unstructured domains. In the following
experiments, the power of continuous filter will be shown by
working with unstructured domains.

3.2.1 Partially-completed images

Continuous convolutional neural networks have the ability
to work also with partially completed images, unlike normal
convolutional neural networks. Recalling the bed of nails
representation reported in Eq.7, some information can be
removed from the image I by avoiding some indices (i∗, j∗)
into the summation. This procedure corresponds to not evalu-
ating the continuous representation of I in (x = i∗, y = j∗),
thus removing information from the image. Notice that the
(i∗, j∗) positions are not filled with zeros, but they are actu-
ally not considered by the continuous filter. This procedure
can not be done on a regular discrete filter since it would
require to remove the (i∗, j∗) entry of the matrix I , thus
losing the structure in the data, and making not possible to
perform matrix operations. On the contrary, by using a con-
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Table 1 Results obtained for
CNN and CCNN networks
trained on MNIST dataset. Train
time and test time reported in
seconds

Network Train accuracy (%) Test accuracy (%) Size Train time Test time

CCNN 96.6 96.1 33593 630 21.1

CNN 96.8 96.6 33449 40 1.1

0 20 40 60 80 100
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50

60

70

80

90

ac
cu
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Fig. 6 Variation in testing accuracy at difference percentage of infor-
mation on input images

tinuous representation of I , removing pixels corresponds to
not evaluating the continuous function on them, and the filter
can still be used since it can deal with unstructured data by
construction.

The second problem presented deals with the classifica-
tion task on a supervised learning setting using partially-
completed images. In order to understand if a continuous
filter can work with missing pixels images, i.e. the filter is
able to generalize with loss of information, a simple two-
layer network is used. In the first layer a continuous filter of
size and stride both equal to 4 is posed, followed by the ReLU
activation function and a linear layer (single MLP layer) of
size 10 used to classify the output of the convolution. By
adopting this simple network it is possible to understand how
a single continuous filter is able to classify images as the
pixel information reduces. Indeed, the network is not built
for performance in accuracy, rather it is used to show that
the continuous filter can work and achieve effective results
also with unstructured missing pixels images. Training and
testing is done on the MNIST dataset presented in the pre-
vious Section. The network is trained, minimizing the cross
entropy loss for 22500 iterations on the training set using the
Stochastic Gradient Descent optimizer with learning rate set
to 0.001, and batch size equal to 8.

Let us define P ∈ [0, 100] the percentage of infor-
mation in the image, i.e. the percentage of pixels of the
original image. The pixels are removed using a uniform two
dimensional distribution, selecting the (x = i∗, y = j∗)
coordinates where not evaluating the continuous representa-
tion of I . The experiment is performed by training, for each

different percentage in P , the proposed network,2 and then
validating the network on the testing data. In Fig. 6 the results
of the experiment are depicted, where the network accuracy
is reported as a function of the percentage of image. The
results show that the network is able to learn with missing
value pixels. Starting from the baseline given by a percentage
of 100, the network is robust in learning, obtaining com-
parable results to the baseline till roughly a percentage of
75. As the percentage decreases the accuracy also decreases,
which is expected since information is hidden to the network.
Nevertheless, with an image percentage of 20 the network
decreases in accuracy only for a small 8% value, before a
fast drop in accuracy due to little information fed into the
network. Overall, it is evident that by using missing value
images the continuous filter is able to generalize and learn,
due to its ability of learning using unstructured domains.

3.3 Navier stokes problem

The second experiment shows the capability of the con-
tinuous filter in a unsupervised learning framework using
autoencoders [42]. In detail, a typical CFDparametric bench-
mark is considered, where Navier Stokes equations are used
to describe the flow in a back-step domain (Fig. 7). More
specifically, equations and boundary conditions are set as
follows:

ν	u + (u · ∇)u + ∇ p = 0 in�,

∇ · u = 0 in�,

u = μ
{ 1
2.25 (x1 − 2)(5 − x1), 0

}
on
in,

u = 0 on
wall,

ν ∂u
∂n − pn = 0 on
out,

(8)

where u ≡ u(x, μ) and p ≡ p(x, μ) are the spatial and
parameter dependent velocity and normalized pressure fields,
respectively, with x = (x0, x1) ∈ � and μ ∈ [1, 80] ⊂
R. The letter n denotes the boundary normals, whereas the
symbol ν indicates the kinematic viscosity, here imposed to
1.0. Thus, we are imposing the so-called no-slip condition
on the walls of the domain, a parametric horizontal velocity
profile at the inflow and the directional do-nothing condition
in the outflow.

2 By decreasing the number of informative pixels, the output size of
the continuous convolutional filter decreases as well. Hence, the input
of following linear layer is different for different percentage of images.
Nevertheless, the overall structure of the network remains the same.
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Fig. 7 The domain for the
Navier Stokes experiment

To numerically solve such (nonlinear) problem, we have
discretized the domain by means of a non-overlapping tri-
angulation, onto which we compute the weak solution by
exploiting a finite element framework. Regarding the test
functions, we have chosen a second order polynomial for the
velocity space and a first order one for the pressure space, i.e.
(P2, P1). The (parameter dependent) solutions belong then
to an irregular discrete space, forbidding to apply standard
CNNs to this kind of data. Thanks to the continuous filter
proposed in the present work, we are able to perform con-
volution also in this setting, avoiding also post-processing
steps — e.g. projecting or interpolating the solutions on a
regular grid.

An autoencoder (AE) is a type of deep learning archi-
tecture, which uses a MLP to encode the input into a lower
dimensional meaningful representation, and then decode it
back to obtain a reconstructed input as similar as possible
to the original one. Convolutional autoencoder (CAE) is a
type of AE where convolutional layers are used. In particu-
lar, CAE have been widely applied in fluid dynamics [43,44]
as reduced order methods. However, as previously men-
tioned, pre-processing and post-processing steps are needed
since discrete filters do not work with unstructured domains.
Therefore, a continuous convolutional autoencoder (CCAE)
is presented and used to extrapolate the latent representation
of theNavier Stokes solution, without the need to pre-process
or post-process it, thus keeping the unstructured domain
representation. In particular the proposed autoencoder is
composed by an encoder, represented by a single channel
continuous convolutional layer followed by a single fully-
connected layer of size 90 (latent representation size) and
GELU [45] activation function after it; and a decoder, rep-
resented by a fully-connected layer of size 840 followed by
a single channel transposed continuous convolutional layer.
The (transposed) continuous convolutional layers have filter
size and stride both equal to [0.75, 0.18], while the inner net-
work is approximated using a MLP of size 40, 40 and GELU
activation function. The CCAE is trained, minimizing the
l1 loss for 150 epochs using the Adam optimizer [46] with
learning rate set to 0.001. The training data and testing data
are divided by a 20− 80% rule on the total data set which is
composed of 500 solution samples at different inlet velocities

of the fluid. Notice that the choice of a small percentage of
data in the training set is made to guarantee that the network
can generalize easily even with a low number of samples
used during training.

Overall, the CCAEhas an l2 percentage error of 3.9%both
on training and testing. In Fig. 8 samples of reconstructed
solutions using the CCAE are reported for different inlet
velocities. The reconstructed samples show that the network
has correctly generalized to unseen solutions, thus it can cor-
rectly extrapolate the latent dimension of them.

A further meaningful test is to compare the CCAE with a
simple AE that only uses a MLP for encoding and decoding.
In fact, a MLP preserves the structure in the data as CCAE,
avoiding pre- and post-processing. Nevertheless, we show
that the MLP AE is characterized by a higher error rate than
the CCAE. The test is done using the same CCAE structure
defined above, while the MLP AE network is obtained by
removing the continuous convolutional layer and the trans-
posed continuous convolutional layer, thus it is represented
by a MLP of input and output size of 1639 (dimension of the
Navier–Stokes solution vector), and hidden size of 90 with
GELU activation function after the first layer. Both networks
are trained minimizing the l1 loss, using the Adam optimizer
with learning rate set to 0.001. In order to see the ability to
correctly learn ameaningful latent representation of the solu-
tionvector, bothnetworks are trainedmultiple times. For each
training, a different percentage of training data with respect
to the overall data set size is used, while testing is done on
the remaining solution samples. Hence, this test allows to
compare the ability of both networks to generalize to unseen
solutions as the number of data in training increases. The test
is repeated 5 timeswith different parameters initialization for
both networks, and results are averaged to reduce noise. The
results of the experiment (Fig. 9) highlight that both networks
tend to reduce the overall test error as the number of train-
ing data increases, as expected. However, the CCAE tends to
outperform theMLPAE constantly for different percentages
of training data, which is shown by a lower l2 error curve.
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Fig. 8 Samples of CCAE reconstructed input (below) compared to the originals (above)

3.4 Multiphase state problem

The last problem presented shows how a continuous filter
can be used in a more advanced deep learning framework.
Specifically, we present a deep learning architecture for per-
forming inference on unseen snapshots in a computational
fluid dynamics simulation using the multiphase problem.
This problem is represented by two fluids occupying a certain
fraction of the volume domain separated by a sharp interface.
The two fluids evolve in time resulting in a wave moving in
a specific direction. In order to perform the mesh we fol-
lowed [47], which gives also a mathematical formulation of
the problem using the unsteadyNavier Stokes equations. The
mesh contains 18750 grid points for a single snapshot, while
200 different time shots of the dynamics are saved.

As depicted in Fig. 10, the overall deep learning archi-
tecture used (MP-Net) can be summarised into two building
networks: an autoencoder (AEnet) to find the latent represen-
tation z; and aMLP (T imeNet) to map the time t instance to
the corresponding latent representation of the wave at time
t . The AEnet is composed by an encoder fθ and a decoder
gφ . The encoder is a single continuous convolutional block
with one input channel and output channel, stride and filter
dimension both equal to [0.4, 0.2], followed by a linear layer
of dimension (150, 30) with ELU [48] activation function.

The decoder, represented in Fig. 11, is composed by a
linear layer of dimension (30, 150), followed by ELU acti-
vation function. The output of the ELU layer is passed to
two independent layers: firstly, a linear layer with dimension
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Fig. 9 Variation in test error for different percentage of data in the
training set

(150, 18750); secondly, a transpose continuous filter layer
of one input and output channel, stride and kernel size both
equal to 0.4, followed by a sigmoid activation function. The
results of these two independent layers are multiplied, fol-
lowed by an adaptive sigmoid activation function [49], which
gives the output of the autoencoder. Both continuous filters,
direct and transposed, are internally approximated by aMLP
of dimension 10, 40, 80 with an adaptive sigmoid activation
function. The choice of multiplying the outputs of the two
independent networks is due to the fact that a simple MLP
decoder tends to over-fit, resulting in multiple waves in the
output; while the continuous transpose filter tends to create
a noisy output, resulting in a poor boundary approximation.
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Fig. 10 Multiphase network with AEnet a and T imeNet b

Fig. 11 Decoder gφ structure for the MP-Net

Fig. 12 Samples of predicted snapshots (below) comparing to the originals (above) at different time steps

123



Computational Mechanics (2023) 72:253–265 263

Fig. 13 Variation of l2 relative error for different snapshot for POD and
MP-Net

By passing the continuous transpose filter representation to
a sigmoid activation, we consider the output of the filter as a
probability weight. Thus, each coordinate of the linear layer
output is multiplied with this weight, with the intention of
zeroing the noisy extra waves wrongly produced by a lin-
ear layer decoder, and keeping the wave of interest. Finally,
the T imeNet is a simple MLP of size 40, 80 with a ReLU
activation function.

Training is done on 90 snapshots equally spaced in time,
while testing is done on the remaining snapshots. The train-
ing process is divided in two parts as well: first training AEnet

for obtaining a latent representation z of the input I through
encoding z = fθ (I ) and decoding gφ(z); second, once AEnet

is completed, training T imeNet to map a time step t to its
corresponding latent representation z by using a MLP, min-
imizing the mean square error between z and the T imeNet
output. AEnet is trained using Adam optimizer [46] with ini-
tial learning rate 0.001 and using a exponential learning rate
scheduler with multiplicative factor of learning rate decay
equal to 0.99. The training is done on 300 epochs with data
distributed in batches of 5, minimizing the mean square error
loss. T imeNet is trained using Adam optimizer with learn-
ing rate 0.001, minimizing the mean square loss for 10000
epochs with a batch size of 5.

During inference, given only a time t the snapshot is con-
structed. In particular, for each t a latent representation z is
obtained using T imeNet , thus the former is passed to gφ

decoder for getting the snapshot prediction. Notice that at
inference time the encoder is not used since the snapshot sam-
ples are not known during inference. Samples of predicted
snapshots at different times are reported in Fig. 12. Overall,
on the 110 unseen snapshots the network has an l2 relative
error of 2.7 on training, and 3.6 on testing. The obtained
test error is notable considering the fact that the network is
equation-agnostic, and only 90 samples are used for training.
As a comparison baseline, the Proper Orthogonal Decompo-
sition (POD), a possible technique formodel order reduction,

has been employed. By setting the same latent dimension size
and snapshot used for MP-Net, and by using a radial basis
function interpolator, the POD leads to a relative l2 test error
of 6.1 percentage.

In Fig. 13, we report the variation of l2 relative error for all
the snapshots (training + testing) for POD and MP-Net. The
graph highlights that MP-Net outperforms POD for almost
all snapshots, showing that MP-Net is able to find a better
latent representation than a classical POD.

4 Conclusion

We propose a continuous trainable filter to perform con-
volution on unstructured data. We demonstrate the validity
of the methodology on different machine learning frame-
works, such as supervised and self-supervised learning, and
on different type of data e.g., images (structured) andmeshes
(unstructured). We show that a continuous filter is able to
reproduce the same results as the state-of-the-art discrete
filter on structured data, and it can be used efficiently in
deep learning architectures with unstructured data to repro-
duce unseen snapshots in a fluid dynamics simulation. In
addition, we show that by using continuous convolutional
autoencoders higher performances can be achieved with
respect to the more simpler feed-forward autoencoder, when
unstructured data are used. Possible further investigation
include finding the most performing inner network archi-
tecture in the continuous convolutional filter, or using the
latter for transfer learning representations: indeed, by being
independent on the input image size, incompatible data-
sets can easily be merged. Furthermore, possible researches
using the continuous filter for image inpainting algorithms
could be done, considering the shown ability of the filter to
work with partially completed images. Moreover, extending
the framework to a 3-dimensional convolution might open
the possibility to apply the continuous convolution to more
complex manifolds. Finally, the use of the presented contin-
uous filter in physics informed neural network architectures
might be investigated, especially for problems where data
are not structured. The architecture could be also applied
to projection-based [50,51] and non-intrusive reduced order
models [52] extending, for example, the work done in [43] to
unstructuredmeshes. To summarize, the presentedmethodol-
ogy, combined with the proposed research directions, opens
the possibility to use the continuous convolutional filter in
very complex settings, spacing in several application fields
of science and industry.
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