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A continuous deformation algorithm on the product space of unit sim-

plices
by

T.M. Doup and A.J.J. Talman

Abstract

A continuous deformation algorithm is introduced on § x [1,=),
where 5 denotes the product space of unit simplices, with arbitrary grid
refinement between two subsequent levels. The set § x [1,=) is triangu-
lated in such a way that for each m, m = 1,2,.,.., S x hn] is triangula-
ted by the so-called V-triangulation. The algorithm starts by applying a
variable dimension algorithm on $ until an approximating simplex has
been found on level 1. Then the algorithm follows a path of approxima-
ting simplices in § x [1,®), starting on level 1, until a certain level
or 4 certaln accuracy ot a solution of the underlying problem has been
reached. If the algorithm returns to level 1, then we again apply the
variable dimension algorithm until a new approximating simplex is found
on level 1, etc. We allow solutions to lie on the boundary of § x [1,=)
in which case the algorithm, in general, will follow a path on the boun—
dary of S x [1,=).

Keywords: triangulation, continuous deformation, homotopy, equilibrium
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l. Introduction

To compute equilibria or fixed points on the unit simplex S" =
{x € Rn+li22ii x =l » 20, £~ 1,e..,n+l} several simplicial algo-
rithms have been developed. In a simplicial subdivision of S" into n-
dimensional simplices such an algorithm searches for an n—-simplex which
ylelds an approximate solution. If the approximation is not good enough
the simplicial subdivision is refined in the hope that the approximate
solution found for the new subdivision is better, etc. The so—called
variable dimension restart simplicial algorithms can start anywhere and
find for a given simplicial subdivision within a finite number of steps
an approximate solution by generating a sequence of ad jacent simplices
of varying dimension of the simplicial subdivision. If necessary these
algorithms can be restarted in or close to the last found approximation
for a finer subdivision to find a better one. The several variable di-
mension restart simplicial algorithms developed thusfar differ from each
other by the underlying triangulation or simplicial subdivision of §°
and the number of rays along which the arbitrarily chosen starting point
can be left. Simplicial algorithms with n+l rays were introduced for the
well known Q-triangulation of S™ in van der Laan and Talman [7], for the
U-triangulation of the affine hull of S™ in van der Laan and Talman [8]
and for the so-called V-triangulation of S® 4in Doup and Talman [1].
Although the U-triangulation does not simplicially subdivide S™ itself
this triangulation seems to be both in theory and in practice better
than the Q-triangulation. The V-triangulation differs from both the U-
and the Q-triangulation since it depends on the arbitrarily chosen star-
ting point of the algorithm. In some way the V-triangulation is related
to the K'triangulation of R" originally proposed in Todd [13]. An algo—
rithm with 2“+1—2 rays was recently proposed in Doup, van der Laan and
Talman [2]. In this algorithm the V-triangulation underlies the algo—
rithm. The other two triangulations do not seem to be appropriate for
this algorithm with more than nt+l rays.

In van der Laan and Talman [10] the (n+l)-ray algorithm for both
the (= and U-triangulation has been generalized in order to compute

equilibria or fixed points on the product space of several, say N, unit
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simplices Snj, j=1,...,N. This algorithm has Z§=l (nj+l) rays to leave
the arbitrarily chosen starting point in S, one ray to each facet of S.
Recently, Doup and Talman [1] introduced such an algorithm on S for the
V-triangulation, generalized for S, with "§=1(“j+1) rays, one to each
vertex of S. When applied for N = |, n; = n, both algorithms simplify to
the above mentioned algorithms on S™ with n+l rays.

Instead of restarting a variable dimension simplicial algorithm
on Sn, 4s soon as an approximating solution has been found, one can also
continue the algorithm with the simplex ylelding the approximating solu-
tion by embedding S™ into the set s" x [1,%). This set is triangulated
in such a way that for each m, m = : I — L triangulated on level
m with mesh tending to zero if m goes to infinity. In this way a path of
adjacent (n+l)-simplices of the triangulation of s" x [1,%) is generated
such that each generated simplex yields an approximate solution. Under
some boundary condition, guaranteeing that the algorithm can not termi-
nate in the boundary of Sn x [1,=), such an algorithm will exceed each
level m, m = 1,2,..., within a finite number of steps. As soon as some
accuracy for the approximation is reached the algorithm can be stopped.
Such algorithms are called homotopy or continuous deformation algorithms
and were initiated in Eaves [3] for problems on SS9, However, the trian-
gulation used in the latter algorithm only allows for a grid refinement
between two subsequent levels of at most two. Arbitrary grid refinement
algorithms were developed in van der Laan and Talman [9] and Shamir [12]
for the Q- and U-triangulation. Continuous deformation algorithms on the
product space of more than one unit simplex are thusfar unknown although
both the Q- and the U-triangulation of S allow us to construct triangu-
lations of S x [1,=). However the system of the EN_l(n +1)-ray algorithm
is not appropriate for continuation in S x [1,%) when on level 1 an ap-
proximation has been found.

In this paper we will show how the recently developed variable
dimension restart algorithm on S described in [1] can be adapted to a
continuous deformation algorithm on § x [1,2) with arbitrary grid re-
finement between two subsequent levels. The triangulation of § x [1,w)
which underlies the algorithm is based on the V-triangulation of § it-
self whereas the system of equations in which the l.p. pivot steps are
made coincides with the system of equations for the restart algorithm.

To start the algorithm the variable dimension restart algorithm of [1]



is applied in order to find an approximating simplex in S on level 1.
Then the algorithm generates a path of adjacent approximating simplices
in § x [1,=) by alternating l.p. pivot steps and replacement steps in
the triangulation. As soon as the algorithm returns to § x {l}, the re-
start algorithm is again applied in order to find a new approximating
simplex in S on level 1. Then the algorithm continues with this simplex
in 'S % {i} generating again a path of adjacent approximating simplices
in § x [1,#), etc. Since the number of simplices in S x [l1,m] is finite
for each m, m = 1,2,..., the algorithm must exceed each level m within a
finite number of steps. The algorithm can be terminated when some accu—
racy is reached or a simplex on some specific level has been generated.
Since we will not assume that the boundary condition holds for the
underlying equilibrium or fixed point problem, we allow the algorithm to
generate lower dimensional approximating simplices on the boundary
of 8 x [1,%) so that the algorithm will generate in general a path of
ad Jacent slmplices ol vartable dimension. Restart algorithms on S which
dallow tor these pencral type ol problems were developed lor the Q-trian-
gulation in Freund (4] and in van der Laan, Talman and Van der Heyden
[11], and for the V-triangulation in [1].

The advantage of a continuous deformation algorithm seems to be
that as soon as an approximating simplex on say level m, m » 1, is found
more information is used to find an approximating simplex on level m+l
when compared to a restart algorithm. More precisely a restart algorithm
only uses the information of the approximating solution whereas a conti-
nuation algorithm uses the information of the whole approximating sim—
plex which includes the function values of the vertices of this simplex.
Although this information might be of little value when the grid size of
the triangulation is large, it could accelerate the algorithm consider-
able when the mesh becomes smaller, especially when the underlying pro—
blem is smooth so that a grid refinement factor of more than two can be
taken between two subsequent levels,

The algorithm presented in this paper can be used to approximate

Nash equilibria strategy vectors in an N-person noncooperative game.
n n
Then g = H? 15 J is the strategy space of the game and g J’ i=1l,...,N

is the strategy space of player j if nj+l is the number of pure strate-

gles of player j. Another application is the international trade model



(see e.g. van der Laan [6]). Furthermore the homotopy parameter t,

t 21, in S x [1,®) can be considered as a time parameter. For example,
the excess demand functions for the different goods in the international
trade model might change continuously over time and we are interested in
the path of equilibria considered as a function of time (see John [5])s
By triangulating S x [1,®) as described in this paper this path of solu-
tions can be followed. For this application one in general does not need
to refine the grid size on a new level. Although we have described the
triangulation for a sequence of decreasing grid sizes on the subsequent
levels, it will appear that the description of the triangulation is
still valid if we take the same grid size on each level.

The paper is organized as follows. In section ? we give a short
description of the variable dimension restart algorithm on S. Section 3
describes the triangulation of S x [1,=) and in section & we show that
this triangulation induces a triangulation of the boundary of S x [1,=).
Finally, section 5 describes the steps of the algorithm.



2. The variable dimension algorithm on S revisited

In this section we will give a short description of the variable
dimension alporithm in S described in Doup and Talman [l]. This algo—
rithm, starting with a O-dimensional simplex traces a sequence of ad ja-
cent simplices of varying dimension of the V-triangulation of S until a

complete simplex, say 10, is found. We will adapt the algorithm in such
a way that it can also start with a complete simplex, say rl, different

from ro, from which it traces a sequence of adjacent simplices of vary-

ing dimension to a complete simplex different from 10 and 11.

n
Let § = “?nis i be the product space of unit simplices, i.e.
0
X = (X y008,%) €8 1E£ x, €5 3, 5= 1,00.,N, let I(j) be the index set
[€4515 00,50 +1)} j=1,...,N, let n denote EN 1 and let I =
1(j) Let T be a proper subset of I with z(j) = IT | = 1 0, for
j=1
all j, where Tj is defined by T. = T M I(j). Furthermore let Y=

((j,kj),-..,(J,kJ )) be a permutation of the z(j)+l elements in T,
0 z(J) 47

N

Jo= U, 500,0, leg 7 ba given by x = {(],k )} & u 2 . z =T \z,,

N 3 p 3 |

Z=U2Z2 , and let y = (Yl,...,vN). Finally, let v be an arhitrary point
i=1

in the interior of §.

Definition 2.1. Let T be a proper subset of I and let the Yj' Zg, Zj's

and vy, zo, Z be as defined above, then the set A(y) is given by

AMY) = [x Eslx = v+ bqg"(z%) + I a(i,h)q(1,h),
(i,h) €2

x 13 3J c
0 < a(J,kz(j)) € .ee <aldk)) <b <1, j IN}
Y, 0 ;
where the (N+n)-vector q (Z ) is given by
) 0
2) =pAZ)~v, , J€
qj( ) PJ( j) VJ J 1.
and where for i = 1,...,2(j), j € Iy, q:(j'kf) =0, h # j, and
3

GG = oG e Gk D = b kD, vea kD b,



where for j € 1N the (nj+l)—vector pj(Kj), Kj C 1(3), Kj #) is given by

v, . ( E w0 » (30 € K,

Wamex, b

k(K ) =

Pk 3

0 » (3,k) & K_.
]

The vector pj(Kj) is a relative projection of vy on the boundary

of Snj. The set A(T) is now given by the union of A(Yy) over all permuta-
tion vectors Y of T. In fact A(T) is the convex hull of v and the verti-
ces e(j,h), (j,h) € T. The t-dimensional set A(Y), t = |[T| = N + 1, is
triangulated by the collection G(Yy) of t-simplices t(wl,uD with vertices

wl,...,wt+l, where

i) W v hd;qu(Zo) % L a(i,h)dIIqY(i,h),
(i,h) € z

for nonnegative integers b and a(i,h),(i,h) € Z, such that for all

JE Iy 0 €aliky ) € aen < a(j,kf) <b<d - 1;

J
z(j 1
ii) w= (ml,...,wt) is a permutation of the t elements consisting of z0
and the t-1 elements of Z such that for all i = 1,...,2(j): s > s'
j j e = ddiad
if a(j,ki) a(j’ki—l) where o, (j,ki) and w, (3,ki_1),

jJ € Iy. In the case i = 1, a(j,kg) =band w, =2

i+1 -
1E) e % d qY(mi), 1= 1,...t

where qY(ZU) and qY(i,h),(i,h) € Z, are defined as before.

The number dIl, dl a positive integer, denotes the grid size of
the triangulation. In fact we consider the so-called V-triangulation of
S with relative projection (see [1]). In the following we define a(ZO) -
a(j,kg) =b, § €.

Let the (N+n)-vector #(x), x €8S, be a labelling function from S

into Rﬂ+n.



Definition 2.2. Let T be a subset of I with [T | > 1, j €1.. For k=

J
t-1,t, where t = |T| - N+l, a k-simplex r(wl,...,wk+lj is T-complete if
the system of linear equations
Ly (AW u  (SCLRy N g @) 8 2.1)
i=11 1 (i,h) &€ T'1,h* 0 j=1"j" 0 1”?
i-1 N+n
where e(i,h) denotes the (Ejzl(nj+l)+h) - th unit vector in R 5
n .+l
e(j) = zhjl e(j,h), j € IN’ and 0 is the (N+n)-dimensional zero vector
N+n * *
in R, has a solution Ay 20, 1= l,esesktl, M oh >0, (i,h) £ T and
*
Bj’ je IN.

A solution will be denoted by (A*,u*,ﬂ*). For a T-complete k-simplex
with k = t-1 we assume that the system (2.1) has a unique solution (A*,

u*,a*), A: >0, Al = 1 sue,t afd u:}h >0 (i,h) € T, and that for k = t
the system has a line segment of solutions with at most one variable of
(k*,u*) equal to zero (Nondegeneracy assumption) so that each T-complete
(t=1)-simplex in A(T) is a facet of either two T-complete simplices in

A(T) or of one in which case it lies on the boundary of A(T).

Definition 2.3. A T-complete (t—1)-simplex T(wl,...,wt) is complete if

for all x in T %, = 0, (i,h) & T.
i,h

Observe that we allow T to be equal to I.

As described in Doup and Talman [1] the T-complete t-simplices
in A(T), T CI, determine paths of adjacent simplices of varying dimen-
sion such that each path is either a loop or has two end points. Exactly
one end point is the zero-dimensional simplex t(v), whereas all other
end points are complete simplices. Exactly one path connects t(v) with a
complete simplex whereas all other paths with two end points connect two
complete simplices. We will now give the replacement steps occuring in
the algorithm which follows such a path.

Let t(wl,m) be a T-complete t-simplex in G(Y) such that the T-

s

complete facet of 7T opposite vertex w', 1 < s € t+l, is a facet of an-

other T-simplex ;(;1,39 in G(y), then 7 can be obtained from t as given

N ]

j=ie(J’k0)' The vertex w®

in table 1, where e(zG) = I is replaced by the

new vertex of ;,



- A 5
s =1 w1+d—1 T(u ) (W, yece,w ,w ) ate(w )
R Iy | A=W 05 1
1
1 < s < e+l W (ml""'ug—z’ué’u%—l""'“i} a
s = t+l wl—d_qu(m ) [P " WS . a~e(w )
1 t G A T | t

Table 1. s is the index of the vertex of T to be replaced

Now consider the case that the T-complete facet of T opposite vertex w®,

1 < s € t+l, is not a facet of another t-simplex in G(Y).

Lemma 2.4. Let T(wl,m) be a t-simplex in G(y). The facet of t opposite

vertex w®, 1 < s < t+1 lies on the boundary of A(y) iff

a) s =1 : w, = ZO and b = d;-1; the T-complete (t=1)-simplex
=il t+l
W ,e.e,w ) lies in Si p» (1,h) € T, and is there-
3

fore complete;

. - J " 3 s e
b) 1 < s < t+l : ws—l (j’ki-l) and w_ (j’ki) for certain j Iys 1 <
i <€ 2z(j), while a(w_ ) = a(w )
s—1 s
or
0 J . -
g Z and o = (J‘kl) for certain j € Iy while b =

a(ws); the facet of T opposite vertex w® is a facet of
- -1 - -1 1 -

the T-complete t-simplex T(w W), withw =w', u=

(ml....,u%_z,ws,ug_l,...,uk) and a = a, and 1 lies in

G(Y) where Y is given by
j J ] ] 3 ’
((j.ko).-.-.(J,k —2)'(J’k1)’(j’k1-l)""’(j’kz(j))) o 20

Yh R




c) s = t+1 g = (i, kJ(J)) for certain J € Iy and a(w ) = 0; the T-
complete (t=1)-simplex r(w ,uO, with wl = wl’ w = (“ﬁ'
weiny t—l) and a = a, lies in G(y) where Y is given by

CEHIE S, sy (o b=

i
z()-12)

Y « B # §,

Furthermore we have the following lemma concerning the increase of di-

mension of a t-simplex t(wl,m) in G(y), t < n.

1
Lemma 2.5. Let 1(w ,w) be a T U {(j k) }-complete t-simplex in G(Y), for

some (j,k) € I \ T, with YJ a permutation of the elements of T eIy
1

and t < n. Then T is a facet of the (t+1)- simplex T(W ,w), with wl =w

(wl,..., t,(J,k)) and a = a, in G(Y) where 7 is given by

(3, kj),-c-,(J.kJ(j)) (5,K)) , h=j

<1
I

Y A

We will now give the steps of the algorithm, omitting the initialization
step, in order to either generate a path of adjacent simplices from the
O-dimensional simplex t(v) to a complete simplex, say ru, or to generate
such a path from a complete simplex 11, Tl # TO, to another complete
simplex 12. The number s is the index of the vertex of T whose label
l(ws) has to be calculated.

Step 1: Calculate 2(w$). Perform a pivot step by bringing z(ws) in the

linear system

t+l l(w )
By Ay € Al

i*s

= 0
(i,h) ¢ Tui,h(E(iéh)) - e (5 - £V

Either ui W (i,h) € T, becomes zero, then go to step 3, or A
» s

becomes zero for exactly one vertex ws # wa. The facet opposite

vertex w® is T-complete.
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z° and b = dl -1 then the facet of 1 opposite

Step 2: 1t s = 1, wl = Z

vertex wl is a complete (t-1)-simplex and the algorithm termi-

nates.

If 1 < s < t+l, and if ®o_1 = (], ki—lJ’ W = (], kI J, a(m ) =
0

a(w ) for certain j € Iy» 1 <41 < 2(j), or if W _y = 7 “g -

Ciik J)’ b = a(w;) for certain j €I, then 1 and y are adapted
according to lemma 2.4 (b).
If s = t+l, t.n.'l-(jkJ

z(j

}) for certain j € Iy and a(m ) =0,
then the dimension is decreased; set t = t~1, T = T\{(j kj

23!

and p = (3’kz(j)) while t and y are adapted according to lemma
1

2.4 (c) and go to step 4. In all other cases ©™(w ,w) and a are

adapted according to table 1.

Return to step 1 with s the index of the new vertex of 1.

1
Step 3: If t = n, then T(w ,w) is a complete n-simplex and the algorithm
terminates; otherwise T(wl,m) and y are adapted according to
lemma 2.5, set t= t+] and T=T VU ki,h)}. Return to step 1

with s the index of the new vertex of 1.
Step 4: Perform a pivot step by bringing e(p) in the linear system

i
g+, (1(‘; )y + 1

- 0
e(i,h), _ e(f)y - ¢
it 2 zl;_lsj( e [ ¥

(1,h) ¢ T, K¢
(i,h) # p

If for some (i,h) & T, i b becomes zero go to step 3, otherwise
return to step 2 with s the index of the vertex whose label

£(w ) is eliminated.

We can distinguish the following three initializations of the algorithm

described above:

1) with the O-dimensional simplex T(v)
2) for some T c I with a complete T-complete (t-1)-simplex ;(Jl’:b of
n i -
G(y) in A(Y) n ( (i,h) £ TS1 h)' where w is a permutation of the ele

*
ments in Z, with basic solution A 2 01 = Jueaeity b >0, (i,h) ¢

i,h

T and
B s Je IN
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3) and for some Y with a complete I-complete n-simplex ?(Gi,a) in A(Y),
where w is a permutation of 20 and the elements of Z, with basic
% *
solution Xi, i=1,0ee,ntl and Bj, FE IN'

In the first case the algorithm is initialized with the Zo-complete 1=

simplex T(wl w), Z 57 j l{(J,k )} where the index (3, kj) is such that

Rj,kS(V) = maxg 2, (v),"j€ Iy, o 1 % o= (), ki, h) =0, (i,h) € 1,

and with basic solution A = 1, = 2 (v) = 2, (v), (i,h) & 20,
1 i,h i i,h
i ku
and ﬂj = £ J(v), jE l . The index s is set equal to 2 and the algo-
kg

rithm starts with step 1.

In the second case the algorithm is initialized with the T~com—

~1
plete t- simplex T(wl,w) with wl =w = dI (Z ), w = (Z ,&i,.--, L I),
~1
a=a- e(Z ) where a induces w , and the basic solution A - Ai—l’ i=
asae = = = =
2, o o 0 69 ul,h i he (i,h) & T and aj B s 5 IN The index s is

set equal to 1 and the algorithm starts with step 1.

In the third case the algorithm is initialized with the I-com—
plete n-simplex r(wl,w) with wl = ;l, w=wand a = a. Let (i,h) be the
unique index in ZO UZ not in T then we set T = I\{(i,h)} and p = (i,h)
wEile the basic solution of 1 is given by li = AI. 1 = },esesntl, Bj -
Bj' je IN' Now the algorithm starts with step 4.

In this section we have discussed the variable dimension restart
algorithm which generates the path of ad jacent simplices from some point
v in § to a complete simplex tu, from another complete simplex to a
third complete simplex, etc. The continuous deformation algorithm on
§ x [1,=) to be described in section 5 1is initialized by applying the
variable dimension algorithm (on level 1) to generate on level one a
path ftrom v to a complete simplex T“. Then the continuous deformation
algorithm continues in S x [1,*) with a path of adjacent complete sim-
plices starting with the complete simplex co(r x {l} {v(T )} x {2})
where v(T ) denotes a specific grid point in T . If the continuous de-
formation algorithm generates a complete simplex, say Tl, on level 1

then Tl # 10 and we again apply the variable dimension algorithm on

level 1 generating a path of adjacent simplices from the complete sim—

plex rl to another complete simplex 12, 12 & 10, 11, Then the continuous

deformation algorithm again moves into the set S x [l,®), etc.



12

In the followlng sectlon we will describe a triangulation of § x
[1,=) by describing the triangulation of § x [m,m+l], m = l3240eey Where
for some sequence of increasing positive integers dos me= L2 ool (O

each level m S is simplicially subdivided according to the V-triangula-

tion with grid size d;l.
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3. Triangulation of § x [1l,=)

Let d;,dy,... be a sequence of increasing integers such that
d iy = kmdm, m= 1,2..., with k, an arbitrary integer larger than one.
In the following we triangulate for each m the subset S x [m,m+l] of
$ x [1,%) such that all its grid points are points of § x{m} or of S x
{m+1}. Combining the triangulations of § x [mym+1l], m = 1,2,..., we ob-
tain a triangulation of § x [l,®). For m = 1,2,... § x [m} is triangu-
lated by the V-triangulation with grid size equal to d " as described in

section 2. Now for j € Iy let YJ = ({4, k ),...,(j k a)), z(j) = 0y be

a permutation of the nj+1 elements of I(j), 3 {(j k )} z = I(j)\zj
and let y = ( s 20 = 20 and 2w Nz Then for j, € I
n et y = Yl,--.,YN » Uj 1%3 a j 1 j' e or Jo N

0
A(x,jo) = {x € S|lx=v+ th(Z ) + a(i,h)qY(i,h), where

(i,h) € Z

g |

| N | = =
0 < a(j,kz(j)) & ae K a(J,kl) Sb<]l; j& 1N and a(jO’kz(jO)) 0

In fact A(Y,j.) is equal to A(Y), with y,_ = ¥
0 j h h o

’ 0 0
((JO,RO )""’(jo’kz(jo)—l))' The set Gm”'jo) is the collection of n

i e =
s h o and Yj

1 nt+l
simplices r(wl,m) with vertices w ,...,w such that
i) ¥ = + bd_I Y(zo) + I i h)d (1 h) £ r ti
W v q (i,h) € 22 q o nonnegative

integers b and a(i,h),(i,h) € Z such that 0 < a(j,k (j)) & s B
. h|
a(3,k}) € b < d -1, j €I, and a(jo,kz((}j ) = 03
0

ii) w = (ml,...,w ) is a permutation of m+l elements consisting of z0

1

o+l
i= 1,....z(j). & > s' 1f a(y, kj) = a(j, kj ) where @, = (3, kj) and
= (J, )' JGEIN. In the case i = 1, a(j kg) =b and Wy = Zo,

and the n elements of Z such that w (JO, z(j )) and for all

S e e d‘lq"(mi), = 1,es0,0¢1, With the conventivd 4¢1 = 1
m

in the case i = ntl.
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Observe that Gm(Y,jO) is equivalent to G(y) with grid size d;l so that
the union of Gm(Y.jO) over all permutations T_?f I and indices jn (= IN
is the V-triangulation of S with grid size dm « This union will be de-—
noted by Vm.

We will now introduce a function s® frum the grid points in
A(y, j ) to I,+1 such that each n-simplex z(w ,w) in G (y jo) is comple-

tely 1abelled i.e., {s (w Y1 =1,...,0¢1} = Lo The function s™ is

given by
sT(x) = 1+ (BFE, 1y e 2a(1,h) mod(a+l),

where x = v + hd;qu(ZO) + Z a(1i, h)d q (i,h}, satisfying i), is

tdh) € &
a4 grid point of Vm.
We are now ready to triangulate § x [m,m+1] for some given m =

l. First we choose nonnegative 1ntegers 8T,...,Bn+1

km =d I/d . For any n-simplex T(w ,w) of v we call the point

with sum equal to

o+l = W
v(t) = zi-lﬁikm W,

with 51 = Gmm 10 i=1,...,ntl, the centrepoint of 1. Observe that
v(t) is a éii&gggint of vm+l' It will appear that the triangulation of
§ x [m,mtl] is completely determined by the numbers al""’q;+l' To
triangulate S x [m,m+1] we first triangulate each T(w ,uﬂ x [m,m+1] and
then we prove that the union of the triangulations of t(w sw) x [m,m+])
over all n-simplices T of V, 18 a triangulation of S x [m,m+l]. The
triangulation of S x [m,m+l] will be such that for all T of V , the
(n+l)-simplex co(t x {m}, {v(1)} x {w+1}) is a simplex of this triangula-
tion.

To triangulate r(w »w) X [mym+l], T in v ,» we define for any

proper subset T of {m yeee,® | the regions R(T,r) in 1 by

ntl

r,v) = xet]x=v(1) + th‘:‘ Tuqu(j), o >0, 3€ 1.

Let A(T,t) be the closure of R(T,r}, then on level mtl A(T, 1) is trian-

gulated by Vo+) In t-simplices u(yl,ﬂ(T)) with vertices yl,...,yt+l in

such that
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o+l
1 ! s
1) y=v(‘r)+ LR d q( );R 20, ETQR 'Gs%gT;
hel Y T D “h “h “h
2) n(T) = (wl,...,nt} is a permutation of the t elements in T;
and
i+l i =] %
3 y i A T 6 N B TR N
In the sequel the (N+n)-vector R is defined by
( R = (j,k) €2
N “
R, = 4R (3,%) €2°
j'k o j'
Z
: 0
0 (j,k) ¢ 2" U z.

Now 1 x [m,m+l] is triangulated by (m+1)-simplices wY where for some TC
1
{ml,...,mn+1} and o(y ,u(T)) in A(T,T)

o' = co(co({wi|u& E€Th % [m}, o(yl,n(T)) x {m+1}]).

Lemma 3.1. Let 1(wl,m) be an n-simplex in Gm(T,jO) with centrepoint

v(t). If all the grid points x of Vipeq d0 X(T,r) on level mt+l, for pro-
per subsets T of {wl,...,mn+1}, are connected with the vertices wi, uili
T, on level m, the (n+l)-simplices obtained in this way induce a trian-

gulation of 1 x [m,m+1].

Proof. This lemma is a straightforward generalization of the theorem on
the unit simplex, which proof can be found in van der Laan and Talman

[91.

To prove that the union of the triangulation of T(wl’ug x [m,
mt+l] over all Tt in Vm is a triangulation of S x [m,m+l] we need to know

how I(wl,m) and y(t) change when we move from 1 to an ad jacent simplex
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-— - _l -
T. S0, let r(wl,m) be an n-simplex in Gm(y,jo) and let t(w ,w) be the n-
simplex in V, sharing with T the facet opposite w°. If 1 lies in

G (Y,jo), then T is obtained from t as given in table 2.
m

_1 - -
w w a
s =1 wl-i-d-l Y(m ) (o seia w0, ) ate(w )
m 914 pREEE 1° o+l ]
1 €38 ¢ wkl wl (ml,...,ms_z,w L l’“"wn-l-l) a
s = mtl wl—d-qu(m ) (W, 0 00, w ) a—e(w )
m n il "To-1" o+l n

Table 2. s is the index of the vertex of 1(w1,w) to be replaced

The centrepoint of t is in this case adapted as given in table

Fa
v(T) s
-1 -kl 1
s =] V(T)+61km (w -w ) (62'""6n+l'61)
=l-=-g g
" T—
1< s < ntl v(t) + askm (w-w) ( T 5n+IJ
=1.=-1 n#l
s = ml v(r)+6n+lkm (w=-w ) (50'_1-51,---.5)

Table 3. s is the index of the vertex of T to be replaced

We will now consider the cases t:hat the facet of T opposite vertex w is
either a facet of an n-simplex t(w ,m) in G(y j ) with y # Y or a facet
of an n-simplex 'r(w ,m) in G(Y,_j ) with _j =j . The first case occurs

iff
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1<s <ok, w | = (G,k)_)), w, = (4,k)) and aCu,_) = a(u)

for certain j € Iy-

In this case the parameters ;l, wand a of T are given by

=3 1 = =
W o=w , = (ml""'u%—2’ws’ms—l"'"uh+l) and a = a {3a1)

and y is given by

J ] 3 J ]
3 ((j.ko)’--"(J’ki—zj’(j’ki)'(j’ki—l)’.--’(j’kz(j))) h =" j
2 - (3.2)
h # j.

The second case occurs iff
—x = j J € =
s o1, w (J,kz{j)) for certain j IN and a(uh) 0. (3.3)

In this case the parameters ;1, w and a of T are given by

< ] =
Wo=wW, w= (ml,...,w

n—l’wn+1’uh) and a = a (3.4)

and 30 is given by 30 = j. In both cases the centrepoint of T is given
by
V(D = w0 + 5k @), (3.5)

Theorem 3.2. The union of the triangulations of t(wl,uo x [m,m+1] over

all n-simplices T of Vm triangulates S x [m,mt+1].

Proof. The triangulation of T x [m,m+l] is well defined for all simpli-
ces T of vm. Let r(wl,m) and ?(El,a) be two adjacent simplices of V, and
let x be a grid point of Vi#1 in the common facet. Then it is sufficient
to prove that if in the triangulation of T x [m,m+1], x is connected
with a vertex w of ¢ N ;, x is also connected with w in the triangula-
tion of T x [m,m+1]. Suppose that 1 lies in G(Y,jo) for some permuta-—

tion y and index o> then we have to consider the following three cases:
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a) T(w ,w) lies in 6(7,30), b) r(w ,w) lies in L(Y,JO) where y is given
a8 in {3.2) ox ) T(w w) lies in G(v,j), j # 30, with j given as in
(3.3).

case a): E(;‘,E) is an nmsimplex in th,je) with a common facet with Tt

opposite vertex w®, 1 < s € ntl.

The simplex T is given as in table 2 and the centrepoint of 1 is given

by (see table 3)
g ¥
V(T)ﬂv(t)+6d yla(e) - a'(e_pI, (3.6)

with the convention s-1 = m+1 if s = 1. Now suppose that x lies in

X(T,T) for some subset T of {w }, then

s ARl

-1
x=v(1) + xj e Tajdm_qu(j), (3.7)

for positive integers aj. jEeT.
Since the point x lies in the facet of T opposite vertex wS (3.7) gives

us

GS + a =a = {, (3.8)

Combining (3.6), (3.7) and (3.8) yields
= =1 N
x = v(1) + % € 7%9pe19 ()

-1
= v(1) - dem+l[qY(w ) =g (m 1)] +-Ej & Tajdm+lq7(j)

P S d;ilq"(j) + (a, +8)d N

q (
sy m+l

J € T\{ws~l’ms}qj
-1 Y
(awﬁﬁés)dm+lq (ms)
= v(;) + I, =1

§ € Tajdm_iqy(j)

with the coefficients ;j’ j e T given by
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aj s 3 ET\{wS_!,mS}
Ej = 4 amS gy = @1 (3.9)
a. s J = :.us.
L s-1
The point x therefore also lies in R(f,_r) with T given by
T 5 ws—l'ma € T or ws-l'ws T
T = A ™o, } v {w } y 0 €T, w T (3.10)
_T\{ms} U{ms—l} € T Ys-1 £,

which proves the theorem for case a.

Case h):_r(:r[,ﬂj) is an n-simplex in c(;,jo) with ¥ given as in (3.2)

with a common tacet with T opposite vertex ws, 1 <8 < nmt+l.

The simplex .1: is given as in (3.1) and the centrepoint of T[ is given by

= =] ¥
)= i)+ S Te' ) = a6t (3.11)
Combining (3.11), (3.7) and (3.8) yields the following

-1 v
¥ viTt) + )IJ_ ETdem-Hq (3)

R S CLCR L OIS 1%dny 197D

S -1 ~1 ¥
=w(7) + Ej i T\-{“'s-.l""s}ajdm'lq (3 =+ 8,441 (w_)) +

=1
B St
8~1

=
d

Y Y
(o )+ (nms—ﬁs) 19 (@)
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- P 1 ¥
= vw(1) + Ej & T\{ws_l.wsfade1q (i) + 6dppd () +

-1 .Y Y
“ms_]dm-l[q (w,_,) + g (w)]

-v() + x5 Garl oY,

with the coefficients Ej’ J €T given by (3.9). The point x then also
lies in x(f,?) with T given by (3.10), which proves the theorem for case
b.

Case c)=?(;1,1) is an n-simplex in G(Y,3j), where j is given as in

(3.3), having a common facet with T opposite vertex wn+1.
The simplex T is gilven as in (3.4) and the centrepoint of T is given by
= -1 Y Y
v(t) = v(1) + Spr19me [0 (0 41) -4 (w)].

This case is similar to case a for § = o+l and yields the same T and ;_,
J

je T. O

We have now shown that we can triangulate S x [m,m+l] for m =
1,2,... with on each level m the V-triangulation with grid size d;l as
the underlying triangulation. The (n+l)-simplices wY are given by

¥' = coleolfu' [u, £ TH x fu}, oly!,m(T)) x fut1}y

with t(w[,w) an n-simplex of Gm(Y,jO) and o(yl,ﬁ(T)) a t-simplex in

A(T,T) on level mtl. Combining the triangulations of S x [mym+1], m =
1,2,..., we get a triangulation of § x [1,=). In the following section
we will describe how this triangulation induces a triangulation of the

boundary of § x [1,w) allowing us to use arbitrary labelling rules.
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4. Triangulation of the boundary of § x [1,)

Let U be a subset of I such that |U,| < n,, € I_. The set S(U)

N
is given by S(U) = {x € S]x‘ =0, (j,k) e IJ} Let TJ = {(], kj),_,,,

yk

(j,ki(J))) denote a permutation of the elements in I(j)\uJ where z(j) =
ny~u, and u |U |, let 20 = {(3,k )} = {(3,k )....,(j K3 )}, i€
¥ 1 o 4 o g z( 1)

Lo ¥ = (¥, 00ns, ), Z = U,Z. and z Wz

N 1 N j i iy

Definition 4.1. For each j € ]N' let UJ be a proper subset of [(j). For

Jo € Ly» the set A(y,jo) is given by
SR . Y,.,0 Y
ACY,Jy) = {x€ S|x = v(U) + bqg'(2") + Ziny € za(1,h)q (1,h),
where 0 < a(]j kj ) € ... € alj kj) $B KL, 1€ X
t] z(j) » ] 1 » N

Io
and a(jo, z(J )) }

where

v h( I v

(i,k) & Uy
i,h = N
0 , (i,h) e U

1) s W)@ u,

and

Vil o 0, _ 0
qj(z ) = pj(zj) pj(zj Uz . je1

i N

and where the (N+n)-vector q (J,k ), 1= 1,565,203, Fe Iy» 1s given by
qh(j kj) 0, h # j and

a3k = oy kDD D = 2 (kD enn 3 b

Observe that definition 4.1 coincides with definition 2.1 if U is empty.

The set A(Y,JO) is a EH nJ~uj)—d1mensional subset of S(U). Let A(y) be
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the union of A(Y,JO) over all indices JOiE Iy and let u = ZN J. Recall
that n = Eﬂ 1" Then each set A(Yy, j ) is triangulated by (n—u)~simpli~
ces, induced by V  defined in section 1

Definition 4.2. The set Gm(Y,jO) is the collection of (n-u)-simplices

1 n-utl
T(wl,m) with vertices w ,...,w such that

1 =l v, .0 o o
1) w = v(U) + bdm q(27) + Z(i,h) e za{i,h)dm q (i,h), for nonnegative

integers b and a(i,h),(i,h) € Z such that for all j € Les
J

] ] _ 0
0 < a(j,kz(j)) < eee S a(3,k)) € b <d -l and a(jy,k

z(jﬂ)) = 0;

2) ws= (wl’°"'uh—u+l) is a permutation of the elements consisting of zU

i

0
and the n-u elements of Z such that w - (30, z(j )), and for all
i=1,...,2(3); s> s' if a(j, kj) = a(j, kj l), where w = (J,kj) and

0

.5 = (J.ki_l), j € Iy- In the case i = 1, a(j,kg) =band w, =2

s'
3) w1+l = wi + d;qu(mi), 1= 1,...,n~utl, with the convention i+l = |

in the case 1 = n-utl.

It is clear that G (Y j ) is a triangulation of A(Y, j ) and that the
union G (T) of G (Y,Jo) over all j; € I, triangulates A(Y) Finally we
observe that the wunion G (U) of G (y) over all permutations Y of the
elements in I\U induces a triangulation of S(U). Some sets A(Y,JD) are
illustrated in figure 1 when N = 2, n; = 1 and n, = 2. The arrows on the

edges determine the ordering of the vertices in the simplices 1 of

Cm(Y,jO)-



v({(2,nh

OO0 — O —

Figure 1. Some regions A(y,jo); Al = A(Yl,z) with 71 = {(((1;:1),01,2));

((2,2),(2,3)))5 A, = A(Y',1) and A = A(Y',2) with Y =

(((lsl))v((zpz)v(2v1)5(2’3)))) N = 2‘ nl = 1 and I'|.2 = 2.

As in section 3, given 9?,...,8:+1, we define for each (nu)-

simplex r(wz,w) in Gm(U) a centrepoint v(t) of t in the following way

> e TIPS S
where the vector ( T . n-u+1) is given by

6" , 1 # 4l
m, 1
g W) 0
61 = with u} =TS
I i , 1= rHl
m i=1 mi. &
s (w )

i#r+l
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Observe that E?:T+lﬁi is equal to k; and that v(1) is a grid point of
Vi In T(w ,w). Furthermore for U = f the centrepoint coincides with

the centrepoint defined in section 3.

Since the algorithm will move from one simplex to an adjacent
one we have to describe how the representation of the latter one can be
obtained from the representation of the former one, and how the centre-
point changes from one simplex to another adjacent simplex.

So let T(Hl,uD and ?(61,5) be in some Gm{v,jo) with a common
facet opposite vertex w®, 1 < s < n—utl, then 1 can be obtained from 1
as given in table 4. Furthermore, in tables 5 and 6 we describe how &

and v(;) are obtained from & and v(1).

-1 - -
w w a
s=1 w1+d_1q1(m ) (o cawe W oW ) ate(w )
m 1 X n—u’ 1’ n-utl 1
1<s<n-ut1| wl (“ﬁ""'“h-z'“k'“%-1*""“’-u+1’ a
s=n-utl wl_d—qu(w )| (w W oyaneyl , W ) a~e(w )
m n-u n-u’ 1 n-u-1" n-utl n-u

Table 4. s is the index of the vertex of T(wl,m) to be replaced
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8= (3,1000,8,_ )
; m b
w =z (0583000008 1 126,+6,-60),
withe 25w ) = 8
s5=1
£ 7 -
vy ma CEnennnd i ?®)
W R (8, ,000,8 ., 6%.8  +6 <6 5 - )
s-1 | B PUe=1" 4" s+l 2 "s+2?" "2 Tp—utl’?
with s (W) = &
m
Ks<n-utl| w_ = 2 (61""'55—1'63+63+1_9n!1.’e£’69+2""’Gn—u+1)‘
with s (wﬁ+l) = 2
- I
s-1" B %Ry ’Gn—u+l)
T (8™, 6 & 5. )
n—u £ n—utl 1 R'T2" T pen’?
with s’"(GI) = £
s=n—-utl
0
£ 7 8 I P
i % ( n~wtl’ 1’ 2?7 'Gn—u)

Table 5. s is the index of the vertex of T to be replaced

I < n—utl

v(T)
(0 + 8,4, 1q"(w) - %
hl w19 49 St i%ek1? (Yuri
+ & d ( s d =1
v(T) nrl-lq m) = 19 (W
<1
LR T T 1T E dm-!-lq (w -u

)

Table 6. s is the index of the vertex of T to be replaced
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Lemma 4.3. Let r(wl,m) be an (n-u)-simplex in Cm(Y.jO), then the facet
opposite vertex w°, 1 < s < n-u+l, lies on the boundary of ACY, ) iff

0
a) s =1 = wl = Z and a(wl) dm 1

- " = s gl - ity wd .
b) 1 < s < n-utl : ®_y (J,ki_l), W (J,ki) for certain 1<i<z(j),
j €Iy and a(ms_l) = a(wa)

or
0 3
= - =
Wy z, w, (j,kl) for certain j I, and
a(w ) = b
s

c) s = n-utl Ol = (

| s e =
. J’kz(j)) for certain j I, and a(“h—u) 0.

The lemma follows immediately from the definitions of G (Y. 0)
and A(Y,j ). If the facet of t(w ,w) opposite vertex w®, 1 < s < n-utl,
lies on the boundary of A(Y,jo) then either this facet is an (n-u-1)-
simplex in Gm(?,ﬁo) or it is a facet of another (n-u)-simplex ?(Gl,zﬂ
with either 7 in Gm(;’jo)’ Y # Y, or T in G(T,Eo). 30 * 3y

Lemma 4.4. Let T(w ,w) be an (n-u)-simplex in G (v, jO) with T the facet

1

opposite vertex w~ on the boundary of A(y, jo), then T(w ,ua is an (n-u-

1)-simplex in A(Y jo), where

B
- Yj s 3 jU
kR ] 3
0 ( K 0 )) = i
(CGgrkg dseesliplyey 5+ 37 3
and
) B ko 3
2. =2. N ol d Z, =2Z_, J #* J.s
55, = oy Wl g T H W By 5ty 9
Furthermore let J be the index set such that j €J if j ¢ j“ and z(j) »
1 and €J j > 2. Let . 3E€ T, b h that -
an JO if z(jg) et v(3), 3 e suc a u&(j)

J

0
= ind
r(3y) (jo’kz(_‘lo)—l)' - D o

J i
(j’kz(j))' j # 10 and if jU € ¥

now given by
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r = r(}o) = max{r(j)la(wr(j)) - min{a(mr Ylxe 3]}

(1)
Then we have

=] r+]l =
W o= W , W= (wr+1’""mn—u'ml""’mr)'

b = dm - a(mr) - 1 and ;(j,ki) for (j,ki} in Z is given by

_ aik]) - ate) -1, (k) € fuy e, )
.
a(,ky) =
a(3,k) - atu) S CE T Y g

Observe that ;(“E) = 0 and from the construction it is clear that
;(;l,;) is an (n-u-1)-simplex in Gm(;,io). The centrepoint of 7T is given

by

WD = vl + ald;lq"(zu),

and the vector 6 = (El""‘dn—u) is given by

6§ = (8 8 Fhiy ,...,6r).

o R n—u+l’61 2758
Lemma 4.5. Let T(wl,m) be an (n-u)-simplex in Gm(T’jO) with the facet

s

opposite w”, 1 < s < n-ut+l, on the boundary of A(y,j.). Then we have one

j0
of the following two cases
(1) 1 < s € n-u-1,
W = (j,ki_l), w, = (j,ki) for certain 1 < i < z(j), j€ Iy and
0 -
a(ms_l) - a(ms). In case i = 1, w,_, = Z and 8(u§_l) b;
or

= — = i j € = 0
(2) s n—u+l, I (J,kz(j)), for certain j € Iy and a(uh_u) 3

In case (1), we have that the facet of T opposite vertex w®, 1 ¢ s <

n-utl, is a facet of an (n-u)-simplex ;(;l,;b in G (;,jo) where
m
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Y, 5 A # ]
Y. =
. i j 3 c 53 _
((3,ky Yieeas(d, k1 2) (3> ki), (3, ki ).---.(J,kz(j))) s Him g
-1 1 -
W =w ,a=a,
and

Al T T LML RL MY TORTTTRL My

The centrepoint of t is given by

-1y
— (w

v(7) = v(1) + 8.4 qV(w) - B_d )

:m+1cl

with the vector 6 = (El,...,E ) given in table 7.

n-utl
s
o 3 m _
o1 % (Gl""’55—1’31'65+6s+1 el:’63+2""'6n—u+l)'
with s"(w') = &
1<{s<{n-utl
0
“'s-l + Z (61,...,61_1_“'_1)
T (65, 6,+6 -8%,5 & )
n-u ¥ n-utl &' 2'°°°* -y’
wih G Py e e
s = n—utl
0
6, 3 uisayl
Vg T8 (5> o

Table 7. s is the index of the vertex of T to be replaced

e =ut1
[n case (2) we have that the facet of 1 oppusite vertex wn 2

: ace - 2 —1)=- v W s r & P
is a facet of an (n-u)-simplex (yw ,w) in Gm(Y’JU) with 3= % and with

_l -
T (ﬁ-'“'”

n—u—l’wn—u+l’uh-u) and a = a.
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The centrepoint of T is given by

¥

o =3 Y I
v(D = v+ 8 d Ve L) - a0,

and § = §,

Consider now the case that r(wl,w) is an (n-u)-simplex in
Gm(y,jo) with u 2 l,then T is a facet of only one (n-utl)-simplex in
s(U\(3,k) P, (5,k) € U,

Lemma 4.6. Let T(wl,m) be an (n-u)-simplex in Gm(T.jO) with u » 1, and
let (j,k) be an element in U, then T is a facet of exactly one (n-u+l)-

simplex T in Gm(U M(3,k) ]). More precisely, T lies in Gm(?,j) with

J

]
((3okg)seees(3,K]

(j)).(J.k)) 5 B
Y i B e
The parameters of the simplex T are given by

51 = wr+1 = d;lqy(zo) where r is the index such that " - 20,

== (mr'.-.‘mﬂ—tﬂ'l ,I.U] )"'!wr_lr(j!k)))

b=d -1, a(i,k) = 0,

and the coefficients ;(1,h),(1,h)15 Z, are given by

d - b+a(ih) -1 , (i,h) € {u}+l,..., }

w
B n-ut1
a(i,h) =

d!TI - b + a(i,h) ’ (1!h) ¢ {wp}-]_"“'mn“u-l-i }'

The centrepoint of T is given by

< =1

- Y, 0
W7 = wly = 5ldm+qu(Z )
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where the vector § = (61,...,6n_u+2) is given by
- m m m, =1
§ = (e£’5r+1_e£’5r+2'""Gn—u+l’ﬁl""'5r)’ with 2 = s (w )

The triangulation of S(U) x [m,m+l] for proper subsets U of I is obtain-
ed as follows. Let T(wl,m) be an (n-u)-simplex in Cm(T.jO) and let

R(T,T) for proper subsets T of {u be defined as in section

ety il
3. Then the triangulation of 7 x [m,m+1] is induced by connecting all
the grid points x of V., in R(T,T) on level m+l with the vertices wi,

hH_g T, of T on level m. An (n—utl)-simplex wY of this triangulation is
given by

v o= co(co({w1|mi E£T} x {m}, o(yl,n(T)) x {m1]). (4.1)

We will now show that an (n-utl)-simplex wY of the triangulation of
S(U) x [m,n+l] for nonempty U is a facet of just one (n=u+2)=-simplex of
the triangulation of S(U\{(j,k)}) x [m,m+l], for any (j,k) € U.

Lemma 4.7. Let ¢Y be an (n-utl)-simplex of the triangulation of S(U) x
[m,m+l] with U nonempty. Let (j,k) be an element of U, then ¢Yis a

facet of the (n—ut2)-simplex EY of the trianmgulation of S(U\{(j,k)}) x
[m,m+1] where ; is given by

] ] =
((j)ko))"')(J!kz(j))’(.j;k)) L h j

-

3 v ho# ]

=Y

and for some T, ' is given by

V' = coteo(fw! [w, £ T x fm}, 3G, 7D x fmr1 ]

where ;(;I,L) is an (o-ut+l)-simplex of Gm(§,j) and E{;l,;(f)) is a t-
simplex, t = |T|, in A(T,7). The (n-u+l)-simplex ;(;1':9 is described in
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lemma 4.6. We will now construct the simplex g. Recall from lemma 4.6
that the index r is such that w = 2> and thae the centrepoint of Tt is
given by

v(1) = v(1) - Y(Z .

% m+1cl

We consider the two cases (1) wr €T and (ii) w € T. In the case i)
r

1

w_ € T we have for the vertex y' of o

g
V(D) + I, o Tthm_HqY(h)

<
[}

[}

Y 'Y
v(T) + 8 dm-l-lq (Z ) + EhE Tthm-i-lq (h).
If 31 is positive, then E(;l,;(i)) is a (t+l)-simplex in A(T,T) with

-1 _ .1 _ -1 7Y,0
AR | dm_‘_tq(!-)n

T=71U o},

WD = (207,00,
and

R=R+ (El—l)e(zo).

Lf 31 = 0, then 0 = 0 is a t-simplex in A(T,T).

In the case ii) er T there is an index s, | € 8 < t, such that

n o= mr. We have tor the vertex yl
s

1 s |
y = v(1) + Ehe Tthnﬂ-kq (h)

" Y40 P
v(‘r)+5dm+lq (Z)+!:l_le T\{w}hdu&lq (h)

€%, 4 uM[q"(z )+ (501
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The (t+l)-simplex E(;l,;(f)} is now given by

=] 1
¥y =¥y,

= Py {(j.k)},
;(i) = (“I)"Onﬁs_l’(j,k)lﬂs"",ﬂt))
and

R =R+ Ele(zo) + R, e(j,k).
:

From the construction it is clear that g lies in A(E,Tr). In all cases

the (n-utl)-simplex ¢:Y is a facet of the (n-ut+2)-simplex TpY. More preci-

sely, if w & T and 31 > 0, then q,-Y is the facet of ‘@Y opposite vertex

(_l m+l); if w € T and 8, = 0, then y' is the facet of V' opposite ver-
y » ] Tr l

tex (;l,m) and if W, € T, then qu is the facet of ' opposite vertex

—s+l1
(y ,im1) where LS

By extending this lemma it can easily be shown that for any extension :r
of ¥ each (n-utl)-simplex wY of the triangulation of S(U) x [m,m+l] is a

face of just one (mt+l)-simplex EY of the triangulation of S x [m,m+l]

described in section 3.
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5. The steps of the algorithm

N+n
Let z be a continuous function from S into R such that for
all p in §

n +1

£ J

3 = I =
k=1 Pj.klj'k(P) 0,3 I

N

holds. The problem is to find a p* in S such that z(p*) < 0. We call
this problem the nonlinear complementarity problem on S. To solve this
problem we embed S in S x [1,®#) and triangulate S x [l,=) as described
in section 3, inducing also a triangulation of S(U) x [1,=) for proper
subsets U of I. Each point x = (p,t) in S x [1,=) is labelled with the
(N+n)-vector (x) = z(p).

Definition 5.l1. Let U be a proper subset of I, y. a permutation of the

elements in I(j)\Uj, je IN’ ¥ = ('\rl,...,yN) and let *Y be a k-simplex,

k = n-u,n-utl, in S(U) x [m,m+l] for certain m = 1,2,... . The simplex
1 k+1 i 3 3 i i
wY(x g - ) withx = (p ,t'), p €8 and t~ € {m,m—i—l} is complete

if the system of linear equations

i - 0
ktl, A(x") e(i,h), _ N e(§)y _ -
Faphit § 2 ¥ E g Ak Bj( 0= (5.1)

(i,h) € v"1,n j=1

*
20, (i,h) € U, and Bj' i€

* *
has a solution '\i > 5 T O PR o % ui,h
I E

N*

*

A solution Ai’
* Kk K

noted by (A ,p ,B ).

* *
L= Lokt o, (4,0 € U, B, 3 € Iy will be de

Nondegeneracy assumption. If le is a complete k-simplex in S(U) x

* k%
[m,m+1] then the system (5.1) has a unique solution (A ,u ,B ) for k =

* *
n-u with 7\1 20, 1= 1,uus,0~0Fl, ui h >0, (i,h) € U, and for k = n-utl
»

& o
at most one variable of () ,p ) is equal to zero.
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By this nondegeneracy assumption, a complete (n-utl)-simplex wT contains
a line segment of solutions with two end points. Each of the end points
is characterized by a solution with exactly one variable in (l*,u*)

equal to zero. All other variables in (1*,u*) are positive. We call the

solution at an end point of such a line segment a basic solution. To

w2 %

each solution of (5.1) there corresponds a point x = Zz:l zlix in wY.
* &

In particular, when at a basic solution one of the Ai's, say x;, is

equal to zero, the corresponding x lies in the interior of the facet of

Y opposite vertex x°, This facet is then also complete. If at a basic

v

*
luti
solution ui,h

the interior of my. Each line segment of solutions to (5.1) induces by

= 0 for some (i,h) in U, then the corresponding x lies in

this way a line segment of points x in ¢Y with two end points. This line
segment of points can be followed by making a linear programming step in
the system (5.1).

Let g be the function from S x [1,=) into RN+n given by g(p,t) =
z(p), (p,t) €S x [1,») and let g be the plecewise linear approximation
of g with respect to the underlying triangulation of S x [1,%). Observe
that for all (p,t) € S x [1,%) we have p;kj(p,t) =0, j € Iy. We will

now show that a complete simplex induces an approximate solution to the

nonlinear complementarity problem on S.

Theorem 5.2. Let € > 0 and let & be such that

max{|zi,h(p)ﬂzi.h(q)||(i.h)e 1, p,9€S, 'pi,h—qi,hl < 6; (1,h) €1} € e

k+1 i i 4
Y X = Lpo,t ) '€

S x {m,m+l}, i= l,...,k+l, be a complete k-simplex, k = n-u or k =

Let m be such that mesh Y € § and let wY(xl,...,x

* * % E
n-utl, with solution (A ,p ,B ), in S(U) x [m,m+l]. Furthermore let p be

- k+1 * 1
given by p = Ei_llip , then
1 % €
(1) —€ £ Bj L s 3 IN
(2) w = *
Bi — 8 & zi,h(p) < B1 + € » (i,h) & U

- *
(3) z, h(p) < B, + ¢ » (1,h) € u.
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Proof. Let wY(xl,...,xk+l) be a complete k-simplex in S(U) x [m,m+l]
* x %
with solution (A ,u ,B ), then we have for all j€ Iys

i = *
= i h
gj,h(x) Bj if (§ah) €& Uj
and (5.2)
= *
NEORE ) 1f (3,h) € U,
where x = ZT:iAtxi.
Therefore
P o IR T B e S T =i &
1851 = |pje (pst)] ij(gj(p.t) 8;(pyt))
k 3
= (B A le ;6 eY) - g, DID)
=2 k : (5.3
b ij 111[3 (P)_Z(P)]” < i .3)

i -
Observe that max(j,h) |pj,h - pj,h| €68, i=1,...,k+l, since mesh v s
6. Furthermore, for all (j,h) € I(j)

83,00 - 25 (@ = 51N oheh - g, GO0

1r§:ix:(zj’h(pi) - zj'h(E))I < e (5.4)

Combining (5.2), (5.3) and (5.4) proves the theorem.
O

Now let m be a fixed integer and let U be a proper subset of I.
The complete (n-ut+l)-simplices in S(U) x [m,m+1] determine paths of ad-
jacent simplices with complete facets such that each path is either a
loop or has two end points. An end point is either (1) a complete facet
on level m, (2) a complete facet on level m+l, (3) a complete facet in
bd(S(U)) x [m,m+l] or (4) if U is nonempty, a complete (n-u+l)-simplex

tn S(U\{(1,h)}) x [m,m+1] with u: .

= 0, for some (i,h) in U. In case
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(3), the facet is an end point of a path of complete (n—-u)-simplices
in S(UU{(j,k)}) x [m,mt+l] for certain (j,k) not in U, and in case (4)
the simplex is a facet of a complete (n-ut+2)-simplex in S(U\{(i,h)}) x
[m,m+1] which is an end point of a path of adjacent complete (n-u+2)-
simplices in S(U\{(i,h)}) % [m,m+1]. Linking the paths of complete sim—
plices in S(U) x [m,m+1] in this way together for varying U we obtain
paths of adjacent complete simplices of varying dimension in § x
[m,m+1]. Again each path is either a loop or has two end points. An end
point is now either a complete simplex in S(U) x {n} for some UC I or a
complete simplex in S(U') x {m+1}, for some U'C I. In the former case,
if m > 1, the complete simplex is an end point of a path of adjacent
complete simplices in S(U) x [m~1,m], and in the latter case it is an
end point of a path of adjacent complete simplices in S(U') x [mt+l,m+2].

For varying m, m » 1, the complete simplices therefore yield
paths of adjacent complete simplices in S x [1,#). Each path has 0, 1 or
2 end points. Each end point is a complete simplex in S x {l}. A path
with two end points connects therefore two complete simplices in S x
{l}, while a path with one end point has a complete simplex in § x {l}
and must exceed each level § x {m}, m = 2,3,... since the number of sim-
plices in S x [1,m] is finite for each m. A path with no end points is
either a loop and remains in § x [mo,ml] for certain 1 < ™ % m < =, or
there 1is an mu, mU * 1, for which the path exceeds ecach level § x {mf,
m > my with at least two different complete simplices.

The algorithm described in this section starts on level one with
the variable dimension algorithm described in section 2, starting in the
point v yielding within a finite number of steps a complete simplex 10
in S x {1}. Then the algorithm continues by following the path of adja-
cent complete simplices in S x [1,=) starting with the unique complete
simplex ¢ in 8§ x [1,2] containing TO as a facet. The algorithm can be
terminated when the accuracy of an approximate solution is sufficient,
i.e., when B* is small enough. If the path returns to § x {l} with a
complete simplex Tl, then we again apply the variable dimension restart
algorithm of section 2 starting with the complete simplex 11. This
yields within a finite number of steps another complete simplex 12 in
S x {1}. Observe that both 11 and 12 differ from tO_ The algorithm con-
tinues with the path in § x [1,) starting with the unique complete sim-

plex E in g x [1,2] containing t2 as a facet, etc. The steps of the al-
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gorithm follow from the description of the replacement steps given in
section 4 and are described below. Therefore let w*(xl,...,xn_u+2) be a
complete (n-utl)-simplex in S(U) x [m,m+l]. By making a linear program-
ming pivot step in (5.1) we can follow the line segment of solutions

(A,u,B) with respect to wT. Then either a k; becomes zero for some s in

{1,.c0,n=u#2} or a u becomes zero for some (i,h) € U. If A; becomes

i,h
zero the facet of ¢T opposite the vertex x® is also complete and yields

a new adjacent complete simplex. We then have to consider two cases,

either x; lies on level m (case I) or x° lies on level m+l (case II). 1If
ui,h becomes zero then wT is a facet of a unique (n-u+2)-simplex in
S(U\M(i,h)}) x [m,m+1] which case is described in case III. In the fol-
lowing w will denote the new vertex of T and ; the new vertex of o.

Case 1. The point x° lies on level o, iJes, x° = (ws,m) for some s,

1 € s < n-utl.

a) Suppose that (w”,m) is not the only vertex of ¢Y on level m.

+1

1 T
Then the points y ,...,¥ lie in the facet of 1 opposite vertex w® iff

O, F T and Gs = 0. (5.5)

First suppose that (5.5) holds then we have the following 4 cases.

0
(1) If 8 = 1, w = Z and a(ml) - dm = 1, then ¥, jo, T(wl,ug, a and §

are adapted according to lemma 4.4 and T, c(yl,n(T)) and R do not

J T
change. A pivot step is made with (eT(j sk 0 ),0) .

0”"z(3,)
(2) If 1 < s < n-ubl, o ) = (§,k]_) or 20 when 1 = 1, 6, = (j,gi‘) for

certain j € Ly 152 % z( i) and a(u;_l) = a(ws), then Y and T(wl,uﬁ

are adapted according to lemma 4.5 (1) and T, a(yl,n(T)) and R do

not change. A pivot step is made with (zT(;,m),l)T,
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= - = j j =
(3) If s = n-utl, T (J'kz(j)) for certain j€ Iy, and a(ub_uJ 0,

then j, and T(wl,m) are adapted according to lemma 4.5 (2) and T,
a(yl,ﬂ(T)) and R do not change. A pivot step is made with
(27(w,m),1) 7.

(4) In all other cases Yy and jo do not change and r(wl,uo, a and § are
adapted according to tables 4 and 5.
> 0, then T becomes T V {w

- 1
4.1 If s = 1 and . S }, ¥ becomes

1 n-u+1
1 -1 ¥
y - dm+1q (uh—u+l)’ n(T) becomes (mn_u+1,xl,...,nt) and R be-
comes R + (Gn_u+1-1)e(wn_u+l).

4.2 If 1 < s < n-wtl and Es >0, then T becomes T U {u%_l}, yl be-

=

¥
419 (ms_l), 7(T) becomes ("E—l’“l""'“t) and R

comes yl =ik
becomes R + (Gs—l)e(ms_l).

4.3 In all other cases T, o(yl,n(T)) and R do not change.
In the cases 4.1 and 4.2 a pivot step is made with (ZT(;,mﬂ),l}T
and in case 4.3 a pivot step is made with (zT(;,m),l)T.

Now suppose that (5.5) does not hold, then s jO’ 1(w1,u9, a and
§ do not change, T becomes T U {ms}, yl and R do not change and w(T) be-

comes (nl,...,wt,ws). A pivot step is made with (£11§,m+1),1)T.

b) The vertex (ws,m) is the only vertex of wT on level m.

1
The (n-u)-simplex o(y ,m(T)) is a simplex of the triangulation of
Gm+1(Y’j0}’ TC {ml""’mn-u+l}’ |T| = n~u. There is exactly one element

in the set {ml,...,u%_u+1} not in T, say « . Let w be denoted by -

J
and let r be the index such that L (jo,kz?j )). The centre point of 1
can be denoted by ¢

1 n-u =1 ¥
v(t) = w + xi-lqidm+lq (u&),

n-utl
with = i=1,...,n~u. Furthermore
il L Rt .
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= 0 -
wl = v(U) + bdmqu(Z ) + z(i,h) & za(i,h)dmqu(i,h)

o P =¥ %
v(U) + bk d 9(27) + E(i.h) e za(i,h)kmdMlq (i,h).
Combining these two results yields

= 0 4 = 3
V(D) = ) + bld V@) + T et (d]) aY (b

0

with b' = bkm + A where k is given by w = Z° and

3
aCi,mk + o, , w, = (1,h) € 2\ {(Jo,kz?jo))}

a'{i,h) =

0 » LB = gkl o).
0

The parameters of the (n-u)-simplex ;(;l,;:) are given by

W= (“P+l""’“n*u+l’"l""’"r)’

0
'
b +RZU if 2 @ {“r+1""'"n—u+1}
b =
0
' a €
= RZU : e {ﬂr+l’.'.'ﬂn—u+l}'
and a(i,h),(i,h)€ 2z, are given by
Ll
- LRy * Ri,h » (1,h) ¢ {“r-f-l""'“n-tri-l}
ali,n) =
L] =
a'(i,h) + Ry p =1 , (i,h) € {nﬁl,...,n_m_l }e

If it is the first time that we move into S x [m+1,m+2], we choose an

integer kpyy » 1 and integers 3T:+1, i=1,...,mt]l, such that r‘::i B:H-l =
m+ 1

krn-H’ In general we should choose ei i=1,...,n+l, in such a way

that v(-_[) lies close to the approximation found on level m+l. The algo-
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rithm continues with y1 = v(_t), T=@, R=10, m = m+l and makes a pivot
- T
step with (!.T(y,m-l-l),l) .
Case Il. The point x® lies on level m+l, 1i.e. xs = (yp,m-l-l) for some p,
1 < p < t+1.

a) Suppose that (yp,m-i-l) is not the only vertex of \bY on level mt+l.

To describe the replacement steps of the algorithm in this case, we need

the following lemma.

Lemma 5.3. Let T(wl,w) be an (no-u)-simplex in Gm(T.JO) and o(yl,n('l‘)) a

t-simplex, t = JT[, where T is a proper subset of {ml""'wn—l.ﬂ-l }, in
A(T,T). The facet of a(yl,w('r)) opposite vertex yp, 1 <p < t+l, is not
a facet of another t-gimplex ¢ in A(T,t) iff one of the following cases

holds.

(i) p=1 :68 =R + R, = 1, with w = m, and ws_lﬁT-
s s-1
2 t+1
The points y*,...,y lie in the facet of Tt oppo-

s
site vertex w ;

(i1) 1 < p < o+l : s’:iEl = Rm - Rm = 0, with i - np, and By ™= “p—l'
s s-1
+
The points yl,...,yp_l,yp"-l,...,yt ; lie in the fa-

cet of T opposite vertex w®;

1 t
(iii) p=t+tl : R = 0. The points y ,...,y lie in A(T\{nt},‘r).
t

In all other cases the facet of o opposite vertex yp is a facet of the
- =1 = -

t-simplex o(y ,w(T)) in A(T,1) with the parameters of o given in table

8.
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(1)

5! w(T) R
= 1 ylﬁfl Y(“ Y| CBezomns ™ -3 R+e(m )
g m1d 4T i~ 1
1 € p < t+l y1 (Tr[,...,rrp_z,np,ﬂp_l,...,nt) R
p = t+l yl—d_l qY('r{ ) (m ,m s vy ) R-e(w )
mt1 t { il | t-1 t
Table 8. p is the index of the vertex of o to be replaced
(i) p=1
First suppose that 58 - R“’s + R“"g-j = 1 and W1 & T, with o =
T then we have the following 4 cases.

If s =1, w = 20 and a(uJI) = dm - 1, then v, g r(wl,m), a and §

are adapted according to lemma 4.4, and T becomes T\{ws}, y1 becomes

yz, m(T) becomes (‘ITZ,...,‘-'Tt) and R becomes R - R“ e( '.'rl). A pivot

, 1
J

) Wi 0 ;0

step is made with (e (‘]O’kz(j[}})’O) .

-0

; o ED v PO | _ =y
LE I < s < n-ut+l, ® 4 (J,ki_.l) or Z° when i | O o (J,kl) for

certain j € Iy, 1 <1 < z(j), and a(ws_l) = a(!ﬂs). then v, T(Hl,lﬂ)
and 6 are adapted according to lemma 4.5 (1).
2.t I Es = 0, then T becomes T\{ws]-, y]' becomes yz, m(T) becomes

(ﬁz,...,ﬁt) and R becomes R - Rw e( ms). A pivot step is made
T, - T 8
with (2 (w,m),1) .

2.3 IE Es > 0, then T becomes T\{ms} U {ms_l}, yl becomes y2 -

e |

dnrquY(ms—l}‘ 7(T) becomes (ws_l,ﬁz,...,wt) and R becomes R -
R e(w) + (8 -1)e{(w ). A pivot step is made with

W s s s-1

(2" (y,m+1),1)7.
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(3) If s = n-utl, w

s :
= (= =0
& (3‘kz(j)) for certain j Iy and a("h—u) L

then jj,, r(wl,w) and § are adapted according to lemma 4.5 (2), and T

Ty T(uh_u), 7(T) be-

1 2
}, y becomes y~ - dm+lq

becomes T\ {mn—u+ll U {w

comes (mn_u,ﬂz,...,wt) and R becomes R - Rw (e(uh
n—u+1

n—u

—u+l)-e(uh-u))'

A pivot step is made with (£T(§,m+l),l)r.

(4) In all other cases Yy and jo do not change, t(wx,w), a and § are
adapted according to tables 4 and 5.

4.1 If §(w) = 0, with 8(w) the coefficient of the new vertex w of 1,

then T becomes T\{ms}, yl becomes yZ, m(T) becomes (RZ..-.,ﬂt}

and R becomes R - R e(ms). A pivot step is made with
w

2" Gw,m), 1" . #

4.2 If §(w) > 0, then T becomes T\{ws} U {“%—l}’ yl becomes y? -

=1 . ¥

wt19 (8,_;), W(T) becomes (u_,,7,

Rul e(ms) + (3(;)-l)e{u%_1)). A pivot step is made with
s

(2" (y,mt1),1)7.

d ,...,wt) and R becomes R -

- # €
Now suppose that 65 Rms + R“g,i 1 or w._, €T, then v, jO'

1
(w ,w), a, 6§ and T do not change, and o(yl,N(T)) and R are adapted ac-

T - T
cording to table 8. A pivot step is made with (2 (y,m+1),1).

E3i) 1 <€ p € t+l

First suppose that 6§ - R + R =0 and w = y With
s u% h%—l s—-1 p-1
W, = ﬂp, then again we have the following 4 cases.

€1} TIE o= I, w = 20 and a(wl) = dm - 1, then vy, jU' T(wl,m), a and §

|
are adapted according to lemma 4.4, and T becomes T\{n }, y  dous

p-1
not change, w(T) becomes (nl,...,np_z,xp,...,nt), and R becomes R -
Rm (e(wn_u+l)—e(ml)). A pivot step is made with

n—utl

J

T 0 T
e (j.,k o) .
(e (5, z(jo)), )
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(2) If 1 < s < n-utl, Wy & (J,kj ) or z¥ when 1 = ;18 w, = (j,ki) for

certain j € Iy, 1 € 1i € z(j), and a(ms_l) = a(ug), then v, r(wl,uﬁ
and § are adapted according to lemma 4.5 (1), and T and yl do not

change, n(T) becomes (7 ,..., saewy MY Ad R becomes R -
1 1

= "p-2""p* Tp- t
8 e(ws) + 8 e(ms l)' A pivot step is made with (1 (y,m¥l), 1)
5 5 =

o e = - j F: =
(3) If s n-utl, @ . (J'kz(j)> for certain j € Iy and a(uh_u) 0,

1
then j,, t(w ,w) and 6 are adapted according to lemma 4.5 (2), T, y1

do not change, m(T) becomes (“l""’“p—z’“p’“p—l""’ﬁt) and R be-

= & - 3
comes R n_u+l(e(w ) e(mn_u)) A pivot step is made with

n—utl
(2 (y,m1),1)"

(4) In all other cases, Yy and jO do not change, T(wl,uo and § are adap-

1

ted according to tables 4 and 5, T and y  do not change, m(T) be-

comes (T, ,eee,T yoe+3T ) and R becomes R - &§ e(w ) +
1 1 t s 5

T W
p-27'p’ p-
E(;)e(ws_[), with 8(w) the coefficient of the new vertex w in T.

- T
A pivot step is made with (ZT(y,m+l),1) .

t § = # +
Now suppose tha , Rms + R“s_l 0 or w1 “ﬁ—l’ then Y,

ig» z(wl,m), a, 8, T, yl and R do not change, and n(T) becomes (n § R
,...,n ). A pivot step is made with (2 (y,m+1) l) .

, T

I |
p-2" p’ p-l
(iii) p = t+1

1 t
First suppose that R1T = 0, then the points ¥y ,.s.,¥ 1lies in
t
A(T\{ﬂt},r) and y,jo, T(wl,m), a and § do not change, T becomes T\{ﬂf}’

yl and R do not change and n(T) becomes (nl,...,nt_l). A pivot step is
made with (ET(wS,m),[)T, where s is given by wo= .

1
Now suppose that R“ # 0, then v, (w ,w), a, 6 and T do not

£
1
change, and o(y ,7n(T)) and R are adapted according to table 8. A pivot

joi

e e b
step is made with (2 (y,m+l1),1) , where s is given by w o= .
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b) Suppose that (yp,m+l} is the only vertex of ¢Y on level mt+l.

In this case we have T =, t = 0 and p = 1. We will first con-
sider the case m > 1. The (n-u)-simplex r(wl,m) is a complete simplex on
level m of Gm(T’jO)’ all vertices of 1 on level m are vertices of ¢Y and
the only vertex of o on level mtl has to be replaced. We now have to
compute the unique (p-u)-simplex T(w ,m) in G (y j ) and the set T
such that 1 lies in A(T T). The vertex wl is glven by

. bd;qu(zo) F By pyie Za(i,h)d;qu(i,h). (5.6)

Let a'(i,h),(i,h) € Z0 U Z be given by a' (i,h) = a(i,h)k 11 and let

a(i h) be the entier of a'(i, h), where entier of X, X ER, is the lar-
gest integer less than or equal to x, then a'(i, h) - a(i h) > 0 for all
(1,0) in 200 2, Observe that if a(j, kj - a(j,ki), then also

a(i,k)_ D = ald,kd). Let w' be given by

g 2 ond o =1
W = v(U) + bd a'z% + Zeiny € za(im)d q"(i,h), (5.7)

where b is equal to ;(j,kg), 1€ I;» then we have for all j € Iy

]

0 < E(j,kz(j)) # ane £ E(j,kf) <b < a_ = L,

. : ut k
Let x be an interior point of 1, i.e., x = Zn_ IAkw » With uniquely

determined Ak >0, k=1,...,0-utl. It is easy to thW that

=1 Yoo e
x = v(U) + cdm q (Z) + z(i,h) c zc(i,h)dm q (i,h),

with b < ¢ < b+l, c(jo,k = 0 and a(i,h) < e(i,h) < a(i,h)+1 for

J

L

2(3)

all (i,h) € 2\{(30,k2?j y) I+ Furthermore c(i,h) # c(3,k) for all (i,n),
0

(3,K) 1n 2, (1,h) # (4,k). Let o(i,h),(1,h) € z U z° be given by

c(i,h) = c(i,h)k;il,
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with e(i,h) = ¢ for all (i,h) € 20, then the entier of E(i,h) is equal

w ) is the permutation of 20 and the
n—u+1

to a(i,h). Then w = (‘ml,...,

elements of Z such that
c(mI) - a(wl) € aigaid c(mn_u) B a(m“_u),
3
: 0
M (Jo'kz(jo)

set T. This set contains n—u elements and is a subset of {“ﬁ

and w ). To complete this case we have to determine the

peeny

w ], i.e., there is exactly one index s with w not in T. This index
n—ut+l s

is determined as follows. The centrepoint of T is given by

= o oDl =l =3 =) -y = =l Yo
vit) = £1=l Gikm_lw =w + zi-l uidm q (u&)
-1 n-u -1 vy
= w + xi=[“ldm q (wl), (5.8)

oL = = n-u+1
with a = aj when w = uﬁ, i l,«..,n0-u, where a = zh=i+16h' i 1.
oseilitle LEL an_u+l be equal to zero. Equation (5.7) can be expressed in
the following way

= n-utl - =1

W v(U) + Zi=l (a(wi)km_l)dm q (u&). (5.9)

Combining (5.8) and (5.9) yields for the centrepoint v(T1) and wl

= n-ut] - ~4.. &
v(t) = v(U) + Ly (a(mi)km_l+ai)dm q (u&)
and
1 n-utl =1 ¥
i = v(U) + Ei=l a(mi)dm q (mi)

— n—ut| = _ =1 7,
= v(T) + zi=l (a(ml) a(u&)km_l ui)dm q {ui).
LY
Let c(wi), i=1,...,n~utl,be given by

c(ml) = a(mi) - ;(wi)km_l -y,
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and  let ¢ = rnin{c(mi)]i = l,...,n—-u+[}, then E(mi) = L‘{mi) - ¢ is non-

negative for all i, 1 <41 < n-utl. The index s is now given by

s = max{i €1 Ic(wi) -c= 0}.

n—-u+l

= ) o
Then T = {mi""’ws-l’ws+l""’wn—u-i-l} and the (n-u)-simplex o(y ,(T))

has parameters

n(T) = {w&fl’""mn—ul-l'wl"“’m—l)°
The vector R is given by R j =R 0 J = Yiaes; N, with
jlko
= 13 0
. |- c(z) iE 2 € {“’1’“"""s-1}
Ro =
Z
_-(ZO) -1 if ?“ - |w w I
L ¥ a = T n-u+] °
= 0
c(ml) s L= liseeya » w o #Z
R, =1
x & 0
i c(mi) -1 2 L= 8%l eesyn-ubl wo *Zo,
and Ei ' 0, (i,h) € U. From the construction it is clear that

—] _l P — —_— - -—

o(y ,w(T)) lies in A(T,1). Observe that Rm is equal to zero and that
—_— S —

all other coefficients of R are non-negative. Now let g be the index

= - i
such that @ = w, then a pivot step is made with (ET(ws,rrl),lJ .
s
In the case m = ]| we apply the variable dimension algorithn de-

scribed in section 2 starting with the complete simplex T on level |.
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Case II11. p becomes zero for some (i,h) € U.

i,h

This case is described in lemma 4.7 for (i,h) = (j,k). If wY is

the facet of EY opposite vertex (;p,m+l), for some p, 1 < p < t+l, a
pivot step is made with (2T(§p,m+l),l}T. 1f y' is the facet of ' oppo-

site vertex (al,m) then a pivot step is made with (IT(;l,m).l)T.

The cases above describe the steps of the algorithm to follow a
path of complete simplices in S x [l,®) to solve the nonlinear comple—

mentarity problem on § with respect to a continuous function z from S to
n_+1
H§ lR ] . The algorithm can easily be adapted to follow a path of ap—

proximating solutions with respect to a continuous function z from S x
nj+l
[1,#) to H§=1R where t, t > 1, is interpreted as a time parameter.

In this case we can apply the algorithm for a constant grid size on each

level by taking k  equal to one for m = 1,2,... .
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