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A continuous deformation algorithm on the product space of unit sim-
plices

by

T.M. Doup and A.J.J. Talman

Abstract

A continuous deformation algorithm is introduced on S x[1,~),
where 5 denotes the product space of unit simplices, with arbitrary grid
refinement between two subsequent levels. The set S x[1,~) is triangu-
lated in such a way that for each m, m- 1,2,..., S x{m} is triangula-
ted by the so-called V-triangulation. The algorithm starts by applying a
variable dímension algorithm on S until an approximating simplex has
been found on level 1. Then the algorithm follows a path of approxima-
[in~; simplices in S x[l,m), starting on level 1, until a certain level
ur a certein accuracy oL a sulution of the underlying problem has been
reached. If the algorithm returns to level 1, then we again apply the
variable dímension algorithm until a new approxímating simplex is found
un level 1, etc. We allow solutions to lie on the boundary of S x[l,m)
ín which case the algorithm, in general, will follow a path on the boun-
dary of S x [1,~).

Keywords: triangulation, continuous deformation, homotopy, equilíbrium
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1. Introduction

To compute equilibria or fixed points on the unit simplex Sn -
{x E R~l l E~1 x - 1, x. ~ 0 i- 1i-1 i 1 ' ~---.~1} several simplícial algo-
rithms have been developed. In a simplicial subdivision of Sn ínto n-
dimensional simplices such an algorithm searches for an n-simplex which
yields an approximate solution. If the approximation is not good enough
the simplicial subdívision is refined in the hope that the approximate
solution found for the new subdívísíon is better, etc. The so-called
variable dimension restart simplicial algorithms can start anywhere and
find for a given simplicial subdivision within a finíte number of s[eps
an approximate solution by generating a sequence of adjacent simplíces
of varyíng dimension of the simplicial subdivision. If necessary these
algorithms can be restarted in or close to the last found approximation
for a finer subdivision to find a better one. The several variable di-
mension restart simplicial algorithms developed thusfar differ from each
other by tlie underlying triangulation or simplicial subdivísion of Sn
and the number of rays along whích the arbitrarily chosen starting point
can be left. Simplicial algorithms with irFl rays were introduced for the
well known Q-triangulation of Sn in van der Laan and Talman [7], for the
U-triangulation of the affine hull of Sn in van der Laan and Talman [8]
and for the so-called V-triangulation of Sn in Doup and Talman [1].
Although the U-triangulation does not simplicially subdivíde Sn itself
this triangulation seems to be both in theory and in practice better
than the Q-triangulation. The V-triangulation differs from both the U-
and the Q-triangulation since it depends on the arbitrarily chosen star-
ting point of the algorithm. In some way the V-tríangulation is related
to the K'triangulation of Rn originally proposed in Todd [13]. An algo-
rithm with 2nt1-2 rays was recently proposed in Doup, van der Laan and
Talman [2]. In this algorittun the V-triangulation underlíes the algo-
rithm. The other two triangulations do not seem to be appropriate for
this algorithm wi[h more than nfl rays.

In van der Laan and Talman [10] the (n-F1)-ray algorithm for both
the tl-- and U-triant;ulatiun has been generalized in urder to cumpute
equilibria or fixed points on the produc[ space of several, say N, unit
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n.
simplices S ~, j- 1,...,N. This algorithm has E~-1 (njfl) rays to leave
the arbitrarily chosen starting point in S, one ray to each facet of S.
Recently, Doup and Talman [1] introduced such an algorithm on S for the
V-triangulation, generalized for S, with ]T. (n fl) rays, one tu each~-1 j
vertex of S. When applied for N- 1, nl - n, both algorithms simplify to
the above mentioned algorithms on Sn with n-F1 rays.

Instead of restarting a variable dimension simplicial algorithm
on Sn, as soon as an approximating solution has been found, one can also
continue the algorithm with the simplex yielding the approximating solu-
tíon by embedding Sn into the set Sn x[1,~). This set is triangulated
in such a way that for each m, m- 1,2,..., Sn is triangulated on level
m with mesh tending to zero if m goes to infinity. In this way a path of
adjacent (cttl)-simplices of the triangulation of Sn x[1,~) is generated
such that each generated simplex yields an approximate solution. Under
some boundary condition, guaranteeíng that the algorithm can not termi-
nate in the boundary of Sn x [1,~), such an algorithm will exceed each
level m, m- 1,2,..., within a finite number of steps. As soon as some
accuracy for the approximatíon is reached the algorithm can be stopped.
Such algorithms are called homotopy or continuous deformation algorithms
and were initiated in Eaves [3j for problems on Sn. However, the trian-
gulation used in the latter algorithm only allows for a grid refinement
between two subsequent levels of at most two. Arbitrary grid refinement
algorithms were developed i n van der Laan and Talman [9] and Shamir [12]
for the Q- and U-triangulation. Continuous deformation algorithms on the
product space of more than one unit simplex are thusfar unknown although
bo[h the Q- and the U-triangulation of S allow us to construct triangu-
lations of S x[L,m), However the system of the EN (n tl)-ray algorithm~-1 jis not appropriate for continuation in S x[1,~) when on level 1 an ap-
proximation has been found.

In this paper we will show how the recently developed variable
dimension restart algorithm on S described in [1] can be adapted [o a
continuous deformation algorithm on S x[L,m) with arbitrary grid re-
finement between two subsequent levels. The tríangulation of S x(1,~)
which underlies the algorithm is based on the V-triangulation of S it-
self whereas the system of equatíons in which the l.p. pivot steps are
made coincides with the system of equations for the restart algorithm.
To start the algorithm the variable dimension restart algorithm of [1]
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is applied in order to find an approximating simplex in S on level 1.
Then the algurithm generates a path of adjacent approximating simplíces
in S x[1,~) by alternating l.p. pivot steps and replacement steps in
the triangulation. As soon as the algorithm returns to S x{1 }, the re-
start algorithm is again applied in order to find a new approximating
simplex in S on level 1. Then the algorithm continues with this simplex
in S x{1} generating again a path of adjacent approximating simplices
in S x[l,m), etc. Since the number of simplices in S x[l,m] is finite
for each m, m- 1,2,..., the algorithm must exceed each level m wíthin a
finite number of steps. The algorithm caa be terminated when some accu-
racy is reached or a simplex on some specific level has been generated.
Since we will not assume that the boundary condition holds for the
underlying equilibrium or fixed point problem, we allow the algorithm to
generate lower dimensional approximating simplices on the boundary
of S x[l,W) so that the algorithm will generate in general a path of
ad.j.iri~nl simpl l~~oti nl varl;ihli~ dimension. Re~:Lart al}{urilhms un S whlch
.illuw tur thc~;e t;cn~rral Lypc ul problems were developed lor Lhe Q-trian-
gulation in Freund [4] and in van der Laan, Talman and Van der Heyden
[11], and for the V-triangulation in [1].

The advantage of a continuous deformation algorithm seems to be
that as soon as an approximating simplex on say level m, m~ 1, is found
more information is used to find an approximating simplex on level mtl
when compared to a restart algorithm. More precisely a restart algorithm
only uses the information of the approximating solution whereas a conti-
nuation algorithm uses the information of the whole approximating sim-
plex which includes the function values of the vertices of this simplex.
Although this infurmation might be of little value when the gríd size of
the triangulation is large, it could accelerate the algorithm consider-
able when the mesh becomes smaller, especially when the underlying pro-
blem is smooth so that a grid refinement factor of more than two can be
taken between two subsequent levels.

The algorithm presented in this paper can be used to approximate
Nash equillbrla strategy vectors in an N-person noncooperative game.

n. n
Then S-~ S J is the strategy space of the game and S j~ j- 1,...,NJ-1
is the strategy space of player j if njfl is the number of pure strate-
gies of player j. Another application is the international trade model
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(see e.g. van der Laan [6]). Furthermore the homotopy parameter t,
t~ 1, in S x[l,m) can be considered as a time parameter. M'ur example,
the excess demand functions for the different goods in the interna[ional
trade model might change continuously over time and we are interested in
the path of equilibria considered as a function of time (see John [5]).
By triangulating S X[l,m) as described in this paper this path of solu-
tions can be followed. For this application one in general does not need
to refine the grid size on a new level. Although we have described the
triangulation for a sequence of decreasing grid sizes on the subsequent
levels, it will appear that the description of the triangulation is
still valid if we take the same grid size on each level.

The paper is organized as follows. In section 2 we give a short
description of the variable dimensíon restart algorithm on S. Section 3
describes the triangulation of S x[l,m) and in section 4 we show that
this triangulation induces a tríangula[ion of the boundary of S x[1,W).
Finally, section 5 describes the steps of the algorithm.
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2. The variable dimension algorithm on S revisited

In this section we will give a short descriptíon of the variable
dimension al~;orithm in S described in lloup and Talman [l]. This algo-
rithm, starting with a ~-dimensional simplex traces a sequence of adja-
cent simplices of varying dimension of the V-triangulation of S until a
complete simplex, say T~, is found. We will adapt the algorithm in such
a way that it can also start with a complete simplex, say T1, different
from ro, from which it traces a sequence of adjacent simplices of vary-
ing dimension to a complete simplex different from T~ and tl.

n.
Let S- IlN S J be the product space of unit simplices, í.e.J-1 n

x-(x1,...,xN) E S iff xj E S J, j- 1,...,N, let I(j) be the index se[
{(j,l),...,(j,n.tl)}, j- 1,...,N, let n denote EN n, and let I-

J J-1 J
~ I(j). Let T be a proper subset of I with z(j) - ~T.~ - 1~ 0, forj-1 J
all j, where Tj is defined by Tj - T ~ I(j). Furthermore let yj -
((j,k~),...,(j,kz(j))) be a permutation of the z(j)-F1 elements in Tj,

N
j- 1,...,N, let '!.~ be given by 'L~ -{(j,k~)}, ZD - u Z~, Z. - T.`ZD

N j-1 J J J J'
'L - u ZJ, and let y- ( y1,.,.,yN), Finally, let v be an arbitrary point

j-1
in the interior of S.

Definition 2.1. Let T be a proper subset of I and let the y., Z~, Z.'s
J J J0and y, Z, Z be as defined above, then the set A(y) is given by

A(Y) -{x E S ~x - v t bqY(Z~) t E a(i,h)9Y(i,h),
(i,h) E Z

0 c a(j,kZ(j)) c... c a(J,ki) c b c 1, j E IN}

where the (Nfn)-vector Y 0q (Z ) is given by

q~(ZO) - Pj(ZO) - vj , j E In

and where for í- 1,...,z(j), j E IN, qh(J~ ) - 0, h ~ j, and

4~(j.ki) - Pj(l(j.k~).---.(j,ki)}) - pj({(j.k~),...,(j.ki-1)!),
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where for j E IN the (nj-fl)-vector pj(Kj), Kj C I(j), Kj ~ is given by

v. k( E v.
)-1

.(j~k) E KjJ~ (j.h) E Kj J~h

pj~k(Kj) -
0 ~ (j~k) ~ K,.

J

The vector pj(Kj) is a relative projection of vj on the boundary
n.

of S J. The set A(T) is now given by the union of A(Y) over all permuta-
tion vectors Y of T. In fact A(T) is the convex hull of v and the verti-
ces e(j,h), (j,h) E T. The t-dimensional set A(Y), t- ~T~ - N t 1, is
triangulated by the collection G(Y) of t-simplices 7(wl,w) with vertices
wl~...~wttl~ where

i) wl - v i- bd11qY(ZO) f E a(i,h)d119Y(i,h),
(i,h) E Z

for nonnegative integers b and a(i,h),(i,h) E'L, such that for all
j E IN~ 0 c a(j~kZ(j)) c... C a(j.ki) c b c dl - 1;

ii) w-(wl,...,wt) is a permutation of the t elements consisting of ZO
and the t-1 elements of Z such that for all i- 1,...,z(j): s~ s'
if a(j,kJ) - a(j,kj ) where w-(j,kJ) and w, Ji i-1 s i s-(J'ki-1)'
j E IN. In the case i- 1, a(j,k~) - b and ws, - Z0,

íii) witl - wi t d11qY(Wi). i- 1,...t

Y 0 Ywhere q(Z ) and q(i,h),(i,h) E Z, are defined as before.

The number dll, dl a positive integer, denotes the grid size of
the triangulation. In fact we consider the so-called V-triangulation of
S with relative projection (see [1]). In the following we define a(ZO) -
a(j.k~) - b, j E IN.

I.et the (Ntn)-vector R(x), x E S, be a labelling function from S
into R~n,



Uefinition 2.2. Let T be a subset of I with ~T.~ ~ 1, j E I. For k-
t-l,t, where t- ~TI - N~-1, a k-símplex T(w1~...3wkt1) is T-complete if
the sysCem of linear equaCions

Ekfl~.(R(wl)) t E u (e(1'h)) - Ej-1sj(e~j)) - ío) , (2.1)i-1 i 1 (i,h) ~ T i,h 0

where e(i,h) denotes the (Ei-1(n fl)fh) -
n .tl ~-1 ~

e(j) - Eh~l e(j,h), j E IN, and 0 is

th unit vector in R~n,

the (Nfn)-dímensional zero vector

in RN}n has a solution a~ 3 Q i- 1 kfl ~~ ' 1 ' '~~~' ' ui,h ~ 0, (i,h) ~ T and
Sj, j E IN.

A solution will be denoted
with k- t-1 we assume that
~ ~ ~
u ,B ), ai

the system
~ ~

~ ~ ~
bY (a ,u ,B ). For

the
~ 0, i - 1,...,t and
has a line segment of

(a ,V ) equal

(t-1)-simplex

system (2.1) has
~

a T-complete k-simplex
~a unique solution (a ,

pi h~ 0(i ,h) ~ T, and,
that

solutions with at most one
for k - t

variable of
to zero (Nondegeneracy assumption) so that each T-complete
in A(T) is a facet of either two T-complete simplices in

A(T) or of one in which case it lies on the boundary of A(T).

Uefinition 2.3. A T-complete (t-1)-simplex
for all x in T: xi h- 0, (i,h) ~ T.

,

r(wl,...,wt) is complete if

Observe that we allow T to be equal to I.
As described in Doup and Talman [1] the T-complete t-simplices

in A(T), T C I, determine paths of adjacent simplices of varying dimen-
sion such that each path is either a loop or has two end points. Exactly
one end point i s the zero-dimensional simplex i(v), whereas all other
end points are complete simplices. Exactly one path connects z(v) with a
complete simplex whereas all other paths with two end points connect two
complete simplices. We will now give the replacement steps occuring in
[he algorithm which follows such a path.

Let r(wl,w) be a T-complete t-simplex in G(y) such that the T-
complete facet of T opposite vertex ws, 1 c s e ttl, is a facet of an-
other T-sim lex - -1 -p 1(w , m) in G( y) ~ then T can be obtained from T as given

in table 1, where e(ZQ) - EN e(j,k~). The vertex ws is
1-1 0

replaced by the
new vertex of T,



s

-1
w

-
w

-
a

s - 1 wlfd119y(wl) ( w2,...~wt~w1) ate(w )l

1 ~ s ~ ttl wl )( wl'...'ws-2'ws'ws-1''..'w at

s- t-~1
1 -1 y
w-dl 9( wt) (wt,wl,....w

) a-e(w )t-1 t

Table 1. s is the index of the vertex of T to be replaced

Now consider the case that the T-complete facet of t opposite vertex ws,
1 c s c tfl, is not a facet of another t-simplex in G(y).

Lemma 2.4. Let T(wl,w) be a t-simplex in G(y). The facet of t opposite
vertex ws, 1 c s t[fl lies on the boundary of A(y) iff

a) s- 1 : wl - Z~ and b- dl-1; the T-complete (t-1)-simplex
T(w2,...,wt}1) lies in Si h, (i,h) ~ T, and is there-~
fore complete;

b) 1~ s~ tfl : ws-1 -(j~ki-1) and ws - (j,ki) for certain j E IN, 1~
i c z(j), while a(w )- a(w )s-1 s

or

Yh -

0
ws-1 - Z and ws -(j,ki) for certain j E IN while b-
a(ws); the facet of T opposite vertex ws is a facet of
the T-complete t-simplex r(wl,w), with wl - wl, w-

(wl'"''ws-2'ws'ws-1'"'~wt) and a- a, and T lies in
G(Y) where y is given by

((j.k~),-.-.(j,ki-2).(j~ki).(j.ki-1)~...~(J.kZ(j))) ' h - j

Yh
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c) s- ttl : wt -(j,kz(j)) for certaín j E IN and a(wt) - 0; the T-
complete (t-1)-simplex r(wl,w), with Wl - wl~ ~-(~
...'wt-1) and a- a, lies in G(Y) where y is given by'

((j,k~),...,(J,kZ(j)-1)) ' h ' j
Yh -

L Yh , h z j.

Furthermore we have the followíng lemma concerning the increase of di-
mension of a t-simplex r(wl,w) in G(Y), t C n.

Lemma 2.5. Let T(wl,w) be a T U{(j,k)}-complete
some (j,k) E I` T, with Yj a permutation of the
and t~ n. Then r is a facet of the (ttl)-símplex

t-simplex in G( y), for
elements of Tj, j E IN
r(wl,w), with wl - wl,

w-(wl,...,wt,(j,k)) and a- a, in G(Y) where Y is given by

((j,k~),...,(j,kZ(j)),(j,k)) , h - j
Yh -

Yh , h ~ j.

We will now give the steps of the algorithm, omitting the initíalization
step, in order to either generate a path of adjacent simplices from the
0-dimensional simplex T(v) to a complete símplex, say rG, or to generate
such a path from a complete simplex T1, T1 t i~, to another complete2 -simplex r. The number s ís the index of the vertex of T whose labelsR(w ) has to be calculated.

Step 1: Calculate R(ws). Perform a pivot step by bringing R(ws) in the
linear system

~ttl~.(R(wl)) f E e(l,h) ~N e(j) O
i-1 i 1 (i,h) ~ Tui,h( 0 )- Zj-1 sj( 0 )-(1)'
i ~s

Either pi h, (i,h) ~ T, becomes zero, then go to step 3, or ~
' s

becomes zero for exactly one vertex ws ~ ws, The facet
vertex ws is T-complete.

opposite
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Step "L: It s- l, wl - ZO and b - dl -1 then the facet of T opposite
vertex wl is a complete ( t-1)-simplex and the algori[hm termi-
nates.
If 1~ s~ tfl, and if w -(j,kJ ) , w-(j,k~), a(w )-s-1 i-1 s i 0 s-1a(ws) for certain j E IN, 1 ~ i c z(j), or if w - Z

s-1 ' s -
(j,ki), b- a(ws) for certain j E IN, then T and y are adapted
according to lemma 2.4 (b).

If s- tfl, wt ~( j,kZ( j)) for certain j E IN and a( w) - 0,
tjthen the dimension is decreased; set t - t-1, T- T`{(j,k )}j z(j)and p- ( j~kz(j)) while i and y are adapted according to lemma

2.4 (c) and go to step 4. In all other cases t(wl,w) and a are
adapted accordíng to table 1.
Return to step 1 with s the index of the new vertex of 1.

Step 3: If t- n, then t(wl,w) i s a complete n-simplex and the algorithrn
terminates; otherwise T(wl,w) and y are adapted according to
lemma- 2.5, set [ 3 ttl and T~ T V{(i,h)}. Return to step 1
with s the i ndex of the new vertex of T.

Step 4: Perform a pivot step by bringing e(p) in the linear system

~1}1~1(R(11)) } ~(i.h) ~ Tui,h(e(O~h)) - ~-1Si(eGJ)) - (O).
(i,h) ~ p

If for some (i,h) ~ T, ui h becomes zero go to step 3, otherwise
return to step 2 with s the index of the vertex whose labelsk(w ) is elíminated.

We can distinguish the following three initíalízations of the alxoritlim
descrlbed above:

1) wíth the 0-dimensional simplex r(v)
2) for some T C I with a complete T-complete (t-1)-simplex T(,,~1~~) of

G(Y) in A(y)rl (( ~h) ~ TS1 h)' where w is a permutation of the ele-
ments in Z, with basic solution ~~ ~ 0 i- 1 ~~ i ~ ,...,t, ui h ~ 0, (i,h) ~
T and sJ~ j E IN '
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3) and for some y with a complete I-complete n-simplex r(wl,w) in A(y),
where w is a permutation of 'L~ and the elements of Z, with basic~ ,~
solution ai, i- 1,...,rrF1 and Sj, j E IN.

In the first case the algorithm is initialized with the Z~-complete 1-
simplex T(wl,w), Z~ - U~-1{(j,kp)} where the index (j,k~) is such that
kJ'kj(v) - maxkRj~k(v), j E 1Nr wl - v, w-(Z~), a(i,h) - 0, (i,h) E I,

0
and with basic solution a-1

and s. - R (v), j E

J 1'k0

1, pi~h - k 1(v) - R1 h(v). (i,h) ~ ZO,
i,k~ '

IN. The index s is set equal to 2 and the algo-

rithm starts with step 1.
In the second case

plete t-simplex
a - a - e( ZO)

T(wl,w)
where a the basic solution

ai -~i-1' i-
Bj - Bj, j E IN. The index s is

the algorithm is initialized with the T-com-
1 ~1 -1 y 0 0 ~with

induces
w -
~1

w - dl 9 (Z ), w- (Z ,wl,....wt-1),
~tw , and

~2,...,t-tl,
ui,h - pi,h' (i,h) ~ T and

set equal to 1
In the

and the algorittim starts with s[ep 1.
third case the algorithm is initialized with the I-com-
T(wl,w) with wl - wl, w - w and a- a. Let (i,h) be [he
'L~ U Z not in I then we set T- I`{(i,h)} and p-(i,h)~
solution of r is given by ai - ai, i- 1,...,crtl, Sj -
the algorithm starts with step 4.

section we have discussed the variable dimension restart

plete n-simplex

unique index in

while the basic
~
Bj, j E IN. Now

In this

algorithm which generates the path of adjacent simplices from some point
v in S to a complete simplex r~, from another complete simplex to a
third complete simplex, etc. The continuous deformation algorithm on
S x[l,~) to be described in section 5 is initialized by applyíng the
variable dimensíon al};oríthm (on level 1) to generate on level one a
path from v to a complete simplex Ttt. Then the continuous deformatiun
algorithm continues in S x[l,m) with a path of adjacent complete sim-
plices starting with the complete simplex co( r~ x{1 }, {v( z~) } x{2 })

0where v(t ) denotes a specific grid point in r. If the continuous de-
formation algorithm generates a complete simplex, say T1, on level 1
then T1 ~ TN and we again apply the variable dimension algorithm on
level 1 generating a path of adjacent simplices from the complete sim-
plex T1 to another complete simplex TZ z 0 1, T ~ T, T. Then the continuous
deformation algorithm a~ain moves into the set 5 x[l,m), etc.

~
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In the fnllowinK r;ectlcin we will deticr[be a Lrfan};ul~itiun ~i[ S x
[l,w) by describin~ the tríangulation of S x[m,imFl], m- 1,"L,..., where
for some sequence of increasing positive integers dm, m- 1,'L,..., on
each level m S is simplicially subdivided according to the V-triangula-
tion with grid size d-1.m
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3. Triangulation of S x[1,~)

Let dl,d2,... be a sequence of increasing integers such that
di~l - kmdm, m- 1,2..., with km an arbitrary integer larger than one.
In the following we triangulate for each m the subset S x[m,m-F1] of
S x[l,m) such that a11 its ~rid points are points of S x{m} or of S x
{mfl}. Combining the triangulatiuns of S x[m,mfl], m- 1,2,..., we ob-
tain a triangulation of S x[1,~). For m- 1,2,... S x{m} is triangu-
lated by the V-triangulation with grid size equal to dml as described in
section 2. Now for j E IN let Yj -((j,k~),...,(j,kZ( )), z(j) - nj, be
a ermutation of the n.tl elements of I 0P 3 íj). Zj -{(j.k0)}. Zj - I(j)~,ZO.

0 N 0and let Y-(Y1,...,YN), Z- Uj-1Zj and Z- U~-1Zj. Then for j0 E IN

A(Y,jO) -{x E Slx - v t bqY(ZO) t E(i,h) E Za(i,h)qY(i,h), where

j0 G a(j,kZ(j)) 6... t a(j,ki) G b G 1, j E IN and a(j0,kz(j )) L 0}.
0

In facj A(y,j0) is jqual to A(y), with yh - yh, h~ j0 and y.0 -
J

((j0,k00),...,(j0,kz~j )-1)). The set Gm(y,j0) is the collection of n-
0

simplices r(wl,w) with vertices wl,...,wmi such that

i) wl - v t bd-1 Y 0 -1 Ym q(Z )} E(i,h) E Za(i,h)dm q(i,h) for nonnegative
íntegers b and a(i,h),(i,h) E Z such that 0 G a(j,ki(j)) G,,, G

j
a(j,ki) C b G dm-1, j E IN and a(j0,kz(j )) 3 0,

0

ii) w-(wl,...,wml) is a permutation of n~-1 elements consisting of ZO
j

and the n elements of Z such that w -(j ,k 0 ) and for allnf-1 0 z( j0)
i- 1,...,z(j): s~ s' if a(j.ki) - a(j,ki-1) where 5-(j,ki) and
ws -(~'ki-1)' ~E IN' ln the case í- 1, a k~) - b and s, - Z0;~ (J.

iii) witl - wi } dmlqy(wl)~ í- 1,...,nfl, with the convention itl - 1
in the case i- n-il.
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Observe that Gm(y,j0) i s equivalent to G(y) with grid size d-1 so thatm
the union of Gm(y,j~) over all permutations y of I and indices j E I(1 Nis the V-triangulation of S with grid size d-1. This uniun will be de-m
noted by Vm.

We will now introduce a function sm frcim the grid points in
A(Y,jG) to I~1 such that each n-simplex t(wl,w) in Gm(y,jp) is comple-
tely labelled, i.e., {sm(wi)li - 1,...,ntl} - I~1. The function s~n is
given by

sm(x) - 1 t(bfE(i,h) E Za(i,h)) mod(ntl),

where x- v t bd-lqy(Z~) t E a i h d-1cYm (i,h) E Z(,) m I(i,h), satisfyint; i), iti
a grid puint of Vm.

We are now ready to triangulate S x[m,mfl] for some given m~
1. First we choose nonnegative integers 0i,...,0~1 with sum equal to
km - d~l~dm. For any n-simplex t(wl,w) of Vm we call the point

v( t) - Emi dikmlwl ,

with d. - 0m , 1- 1,...,ct~-1,
~ sm(wi)

v( t) is a gríd point

S x [m,mi.l] is

the centrepoint of t. Observe that

of V~1. It will appear that the triangulation of
completely determined by the numbers 0i,...,0~1. To

triangulate S x[m,m-F1] we first triangulate each t(wl,w) x[m,m-~1] and
then we prove that the union of the triangulations
over all n-simplices t
triangulation of
(ntl)-simplex co(t

tion.

of Vm is a tríangulation
of t(wl, c~) x[m,m-F1 j

of S x [m,mtl]. The
S x[m,mtl] will be such that for all t of V, themx{m},{v(t)} x{mfl}) i s a simplex of this triangula-

To triangulate t(wl,w) x[m,m-F.1], t in Vm, we define for any
proper subset T of {cul ,... , ~u~l } the regions Á(T, t) in t by

Á(T,t) -{x E t I x- v(t) f Ej E Tajqy(j). nj ~ 0, j E T}.

Let A(T,t) be the closure of ~(T~t)~ then on level mtl A(T,r) is trian-
gulated by V~1 in t-simplices o(yl,n(T)) with vertices yl,,,,~yttl in T
such that
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rrF 1

1) Y1 - vCT) } h ~lRwhdmi-1qY(wh) . R~ ~ 0~ ~ E T. R~ ' 0, ~~ T;

2) n(T) -(nl,...,nt) is a permutation of the t elements in T;

and

3) Yitl - yl t d-1 r
mf1qY( i) ~

In the sequel the (Ntn)-vector R is defined by

R
~

,k ZO

U

~ - íj.k) E Z

) 0
(Jrk E Z

(j.k) ~ ZG U Z.

Now [ x [m,mtl] is trianguLated by (~rFl)-simplices ~,Y where for some T C
{wl,...,w~l} and aCyl,n(T)) in A(T,T)

~Y -

R

co(co( {wi Iwí ~ T}) x{m}, o(Yl,n(T)) x{m-F1 }).

Lemma 3.1. Let t(wl,w) be an n-simplex in Gm(Y,j~) with centrepoint

v(r). If all the ~rid points x of V~1 in Á(T,T) on level mfl, for pro-
per subsets T of {wl,...,w~l}, are connected with the vertices wl, wi ~
T, on level m, the (nfl)-simplices obtained in this way induce a trian-
gulation of t x [m,rmFl ] .

Pruof. This lemma is a straightforward generalization of the theorem on
the unit simplex, which proof can be found in van der Laan and Talman
[9].

To prove that the uníon of the triangulation of i(wl~w) x[m,
mfl] over all r in V is a triangulation of S x[m,mfl] we need to knowm
how 7(wl,w) and v(T) change when we move from t to an adjacent símplex
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1. So, Let T(wl,w) be an n-simplex in Gm(Y,j~) and let T(wl,w) be the n-
simplex in Vm sharing with T the facet opposi[e ws. If T lies in
Gm(Y,j~), then T ís obtained from r as given in table 2.

-1
w

-
w a

s - 1 1 -1 Yw tdm 9( wl) (w2,...,
n,wl'wnfl) ate(w )

1

1 ~ s ~ mFl w1 (wl,...,ws-2'
s'ws-1'...'irFl) a

s - rrFl wl-d-1 Ym 9 ( wn ) (n , wl , . . . .
wn-1 ' wn-F 1 ) a- e ( n )

Table 2. s is the index of the vertex of r(wl,w) to be replaced

3.
The centrepoint of T is in this case adapted as given in table

v( T)

v(i) t dlkml(wml-wl)

v( t) ~- dskml(WS-ws)

v(r) ~- 6~1kID1(W1-w~l)

d

(d2,...,d~l,d1)

(dl,...,d~l)

( drrFl' al ~ . . . , dn)

Table 3. s is the index of the vertex of r to be replaced

We will now consider the cases that the facet of r opposite
either a facet of an n-simplex t(wl,w) in G(Y,jO) with Y s
of an - -1 - -n-simplex T(w ,w) in G(Y,j~) with j~ t j~, The first

svertex w is
Y or a facet

case occurs
iff
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1 C s t n-F1.
ws-1 -(j~ki-1). ws -(j.ki) and

for certain j E IN.

a( s-1) - a( s)

In this case the parameters wl, w and a of t are given by

-1 1 -
w - w . w- ( wl,....ws-2'ws'ws-1~...,w~l) and a- a (3.1)

and y is given by

Yh - 1

((j,k~),....(j~ki-2).(j.ki),(j.ki-1)~...,(j.kz(j))) h - ~
(3.2)

Yh h ~ j.

The second case occurs iff

s- rr~-1, wn -(j,kZ(j)) for certain j E IN and a( R) - 0. (3.3)

In thís case the parameters wl, w and a of t are given by

-1 1 -w- w~ w- ( wl,....wn-1'wntl'wn) and a- a (3.4)

and j0 is given by jo - j. In both cases the centrepoint of t is gíven
by

v(t) - v(r) t S k-1(ws-ws).
S Ill (3.5)

Theorem 3.2. The union of the triangulations of t(wl,w) x(m,m-F1] over
all n-simplices t of V triangulates S x[m,mfl].m

Proof. The triangulation of t x[m,mtl] is well defined for all simpli-
ces t of V. Let t(wl,w) and t(wl,w) be two adjacent simplices of Vm andm
let x be a grid point of Vm..Fl in the common facet. Then it is sufficient
to prove that if in the triangulation of t x[m,mtl], x is connected
with a vertex w of t n T~ x is alsó connected with w ín the tríangula-
tion uf T x[m,l,~-lj. Suppose that t líes in G(Y~jo) for some permuta-
tion y and index j~~ then we have to consider the following three cases:
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a) r(wl,w) lies in G(y,j~), b) r(wl,w) lies in G(y,j~) where y is Kiv~n
as in ( 3.2) or c) r(wl,w) lies in G(y,j), j~ jG, with j~iven as in
(3.3).

case a): r(w-,w) is an n-simplex in G(y,j~) with a common facet with r
opposite vertex ws, 1 c s c n-F1.

The simplex r is given as in table 2 and the centrepoint of r is given
by (see table 3)

v(T) - V(T) -fi 6Sd~1[qy(ws) - qY(WS-1)~.

with the convention s-1 - n-hl íf s- 1. Now suppose that x lies in
Á(T,T) for some subset T of {wl,.,.,w~l}, then

x- v(r) f Ej E Tajd~lqy(j).

(3.6)

(3.7)

for positive integers a, j E T.
j

Since the poínt x lies in the facet of r opposite vertex ws (3.7) gives
us

5 t a - a - 0.S (U W
S-1 3

Combining (3.6), (3.7) and (3.8) yields

x- v(r) f Ej E Tajd~l9y(j)

- v(r) - ósd~l[qy(ws) -
9Y(WS-1)) } E. a.d-1 qy(j)J E T J m-F 1

- ~(T) t g 1 ia á 1
J E ~iWS-1'WS1 J mf19y(j) }( aws-1}ós)dmtlqY(WS-1) f

-1 y
( aw -ds)dmflq (WS)
s

- v(r) } E. a.d-1 qy(j)J E T J mtl

(3.8)

wi[h the coefficients q~ ~ E T given by
J



19

aj . j E T`{ws-1'wsJ

a
w ' J - ws-1s

a
ws-1

. J - w .s

'f'he point x therefore also lies in ~(T,1) with T~iven by

1 ' ws-1 ' ws E'1 or w w~ T
s-1' s

(3.9)

T- iT, ~ws-1} V 1s} ' ws-1 E T. ws ~ T (3.10)

LT ` 1 ws J V i ws-1 J ' ws E T' ws-1 ~ T'

which proves the theorem for case a.

Case b - -1 - - -):r(w ,w) is an n-símplex in C(y,j ) with y given as in (3.2)0
with .i ccmuncin Fac.~t with r opposite vertex w5, 1~ s c rtfl.

The simplex r is given as in (3.1) and the centrepoint of r is gíven by

v(T) - V(T) f dsd~l[qY(ws) - qY(w )~,
s-1

Combining (3.11), (3.7) and (3.8) yields the following

Yx- v(t) t E. a d-1
J E T j m.i-19 ( j)

- v(T) - Ssd~l[qY(ws) - qY(ws-1)~ f E. a d-1 qY(j)J E T j m-~ 1

- v(T) t Ej ~w l a.d-1 qY(j) f d d-1 qY(w ) fE T`{ws-1 s J J~1 s m-H1 s-1

(3.11)

-1 y -1 y
aw dmflq (ws-1)

i- ( aw
-ds)dmtlq (ws)s-1 s
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- ~(r) t E. f a.d-1 9Y(j) f d d-1 Y
3 E T`lws-1'ws} J mtl s mtlq (ws-1) f

-1
aw dmi-1[9Y(ws-1) } 9Y(ws)]fi-~

- v(r) t Ej E Tajd~l9YíJ).

with the coefficients aj, j E T given by (3.9). The point x then
lies in ~(T,r) with T given by (3.10), which proves the theorem for
b.

also
case

Case c):r(w~,w) is an n-simplex in G(y,j), where j is given as in
(3.3), having a common facet with r opposite vertex w~l,

The simplex r is given as in (3.4) and the centrepoint of r is given by

v(r) - v(r) -f
ó~ldm~-1[9Y(wn-F1) - 4Y(wn)].

This case is similar to case a for s- n-F1 and yields the same T and
j E T. ~'a

We have now shown that we can tríangulate S x[m,m~-1] for m-
1,2,... with on each level m the V-triangulation with grid size d-1 asthe underlying triangulation. The (ntl)-simplices ~,Y are given by m

~Y - co(co( {wi I i~ T}) x{m}, a(Yl,n(T)) x{mtl })

wíth r(wl,w) an n-simplex of Gm(y,j0) and a(yl,n(T)) a t-simplex in
A(T,r) on level mfl. Combíning the triangulations of S x[m,~l]~ m-
1,2,..., we get a triangulation of S x[1,~), In the following section
we will describe how this triangulation induces a triangulation of the
boundary of S x[l,m) allowing us to use arbitrary labelling rule5.
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4. Triangulation of the boundary of S x[1,~)

Let U be a subset of I such that ~Uj~ c nj, j E IN. The set S(U)
is given by S(U) -{x E Slx. - 0 (j,k) E U}. Let Yj -((j,kp),..,,J,k '
(j,kZ( ))) denote a permutation of the elements in I(j)`U, where z(j) -j
nj-uj and uj - ~Uj~. let Z~ -{(J.k~)~. Zj -{(j.ki),~~-.(j~kZ(j))J' J E0 0
IN. Y-(Y1....~YN). Z- V.7., and Z- V Z.

J J J j

Dei t ni t iun 4. I. Pur t~ach j E 1 N, let ll j be a proper subset of í( j), I.ur
j~l E ~N, the set A(Y,jU) is gíven by

A(Y,jU) -{x E S Ix - v(U) t bqY(ZU) -~ E(i~h) E Za(í.h)qY(i,h).

where U c a(j,kZ(j)) c,,, c a(j,kl) c b c 1, j E IN

J
and a(j ,k U }0 z( j~)) - 0

whert~

vi~h(U) - ~

and

)-1
vi h( ~ ~i k

' (i,k) ~ Ui '

0

4~CZO) - Pj(ZO) - pj(Z~ U Zj) ~ j E IN

. (i.h) ~ Ui

, (i,h) E U1

and where the (Nfn)-vector qY(j,ki), i- 1,...,z(j), j E IN, is
qh(j,ki) - 0, h~ j and

q~(j.ki) - Pj({(j.

1 E IN

given by

,....(j,ki)}) - Pj({(j~k~),...,(j.ki-1)})-

Observe that definition 4.1 coincides with definition 2.1 if U is empty.
The set A(y,jU) is a EN ( n -u.)-dimensional subset of S(U). Let A(Y) be

j-1 j J
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the uniun of A(y,j~) over all indices j0 E IN and let u- EN u.. Recall~-1 ~
that n- E~-lnj. Then each set A(y,jo) is triangulated by (n-u)-simpli-
ces, induced by Vm defined in section 3.

Definition 4.2. The set Gm(y,jp) is the collection of (n-u)-simplices

T(wl,w) with vertices wl,.,,~wn-ui-1 such that

1) v t a ., ri tii f„rwl -(U) t bdmlqY(ZO) E(i~h) E Za(i,h) -1 Y
integers b and a(i,h),(i,h) E Z such that

0 c a(j,kz(j)) c .,, c a(j,kl) c b G dm 1

nonnegative
for all j E IN,

j
and a(j ,k U ) - p;0 z(j~)

2) w-(wl'..''wn-u-fl) is a permutation of the elements consisting of Z~
Jand the n-u elements of Z such [hat wn-utl -(~p'kzU ), and for all
(~0)

i- 1,...,z(j); s~ s' if a(j,k~) - a(j,k~ ), where w-(j,k~) and1 í-1 s i

ws' -(J'ki-1)' ~ E IN, In the case i- 1, a(j,k~) - b and s, - Z~;

3) wi}~ - wl t dm1qY(wi), i- 1,...,n-u-il, with the cunvention ifl - 1
ín the case i- n-u.Fl.

It is clear that Gm(y,j~) is a tríangulation of A(Y,jU) and that the
union Gm(Y) of Gm(Y.jU) over all jU E IN triangulates A(y). Finally we
observe that the union Gm(U) of Gm(Y) over all permutations Y of the
elements in I`U induces a triangulation of S(U). Some sets A(y,jU) are
illustrated in figure 1 when N- 2, nl - 1 and n2 - 2. The arrows on the
edges determine the ordering of the vertices in the simplices T of
Gm(Y.j~)-
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v~~
vl2

li

0
0
1
0

Fígure 1. Some regions A(y,j~); A1 - A(y1,2) with yl -(((1,1),(1,2)),
((2,2),(2,3))); A2 - A(yl,l) and A3 - A(y2,2) with y2 -
(((1,1)),((2,2),(2.1),(2.3))), N- 2, nl - 1 and n2 - 2.

As in section 3, given 01,...,0~1, we define for each (n-u)-
simplex r(wl,w) in Gm(U) a centrepoint v(r) of T in the following way

v(i) - Ei-i}ldíkmlwl

where the vector d-(bl'~~~'dn-utl) is given by

0mm i)s (w

i~rtl

k -
En-u~-10m

m 1-1 sm(wi)

with t,~ - 7.U.
r
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Observe that En-ufló is e ual to k and that v(1) is ai-1 i q m grid point of
V~1 in i(wl,w). Furthermore for U- ~J the centrepoint coincides with
[he centrepoint defined in section 3.

Since the algorithm will move from one simplex to an adjacent
one we have to describe how the representation of the latter one can be
obtained from the representation of the former one, and how the centre-
point changes from one simplex [o another adjacent simplex.

So let r(wl,w) and T(wl,w) be in some Gm(y,jU) with a common
facet opposite vertex ws, 1 ~ s G n-u-F1, then T can be obtained from t
as given in table 4. Furthermore, in tables 5 and 6 we describe how ó
and v(T) are obtained from d and v(r).

-1w -w -a

s-1 wlfd-1qY(w )
m 1

( w ,... w w w )
2 ' - ' 1'

ate(w )
n u n-uf-1 1

l~s~n-ufl wl (w ,...,w ,w ,w w )
'~-~'

a1 s-2 s s-1 n-ufl

fl-- l -1 Yns u w -d q (w )m n-u ( w ,w .---.w .w )- 1 - 1 a-e(w )n u n u- n-utl n-u

Table 4, s is the index of the vertex of r(wl,w) to be replaced
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ó - (ól,...,ón-u-~1)

0w - Z m mtd -0 )'d(e ~ó ~- " ~ól l 2 RR 3 ,n-utl
with sm(wl) - R

s-1
~~ Zw ( ó ,...,ó )'ól 2 ln-ufl

w - Z~ (ó ,...,d ,9m d td -6m ó d' ' '"'' )'s-1 1 s-1 R s-F1 s R s-~2 n-utl

with sm(ws) - R

l~s~n-ui-1 w - Z~ ( ó td -6R,6R,d,....ó ,....ó'd )
s l s ~l ~2 .s-1 n-u-F1

m -stlwith s (w ) - R

~ ZDww (á ,... ó )ss-1' l . n-utl
0

- Zw
m m-8 ,d ,....ó}ó ),'ó(8n-u l R 2R n-utl n-u

with sm(wt) ~ R
s-n-ufl

0
~ 'Lw

,ó ,....ó'd(ó )n-u
l 2

n-u-FL n-u

Table 5. s is the index of the vertex of T to be replaced

V(T)

s- 1 v(T) } óldmtlqY(wl) -
Y

ón-ua-ldmflq ( n- fl)u

l C s C n-ufl v(T) f
-1

ósd~19Y(ws) - ósd~19Y(ws-1)

s- n-ufl v(T) t
ón-utldmflqY(wn-ufl) - óldmflqY( n-u)

Table 6. s is the índex of the vertex of T to be replaced
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Lemma 4.3. Let T(wl,w) be an (n-u)-simplex in Gm(y,j~), then the facet
opposite ver[ex ws, 1 c s c n-u~-1, lies on the boundary of A(y,jG) iff

a) s- 1 : wl ~ ZG and a(wl) - dm-1

b) 1~ s c n-ufl : ws-1 -(~'ki-1)' ws -(~,ki) for certain l~icz(j),
j E IN and a( ws-1) - a( ws )
or

ws-1 ~ ZG, ws -(j,ki) for certain j E IN and
a(w ) - b

s

c) s- n-utl : wn-u ~(j,kZ(j)) for certain j E IN and a( n-u) - 0.

The lemma follows immediately from the definitions of Gm(y,jp)
and A(y,j~). If the facet of T(wl,w) opposite vertex ws, 1 c s c n-utl,
lies on the boundary of A(y,j0) then either this facet ís an (n-u-1)-
simplex in Gm(y,jo) or it ís a facet of another (n-u)-simplex z(wl,w)
with either T in Gm(Y,jG), Y~ Y, or T in G(Y,JO)' JO ~ 30'

Lemma 4.4. Let T(il,w) be an ( n-u)-simplex in Gm(y,jo)-iith T the faoet
opposite vertex w on the boundary of A(y,j0), then i(w ,w) is an (n-u-
1)-simplex i n A(Y,j~), where

Y. -
J

and

~0 ~0((j~,k~ ) ,..-.(jO,kZ(j )-1)) , j - j~0

j i
Zj - Zj `{(jG,kz(J ))J and Zj - Zj, j t j0.

0 0 0

Furthcrnwre let J be the index set such that j E J if j t j~~ and r(j) i
1 and j~ E J if z(j~) ~ 2. Let r(j), j E J~ be such [hat

wr( )-j ~
(j,kZ(j)), j t jo and if j0 E J wr(jo) s(jG,kz~j0)-1), The index r ís

now given by



r- r(jG) - max{r(j)la(wr(j)) - min{a(wr(1))~i E J}}.

Then we have

-1 rfl
w - w ' w - ( wrtl'....wn-u'wl,...~wr)~

b- dm - a(wr) - 1 and a(j,kl) for (j,ki) in Z is given by

a(j,ki) -
a(j,ki) - a(wr) - 1 ,(j.ki) E{w~l,...~

á-u}

L a(j.ki) - a(wr) . (j.ki) ~ {w~l,.... n-u}.

Observe that a(w )- 0 and from the construction it is clear thatr
T(wl,w) is an (n-u-1)-símplex in Gm(y,j~). The centrepoint of T is given
by

v( r) - v( T) t d1d~19 Y(Zt~) .

and the vector d-(dl,...,dn-u) is given by

d - (ar~l....,dn-ufl'61t52,d3,...,dr).

Lemma 4.5. Let T(wi,w) be an ( n-u)-simplex in Gm(Y,j~) with the facet
opposite ws, 1 ~ s c n-ufl, on the boundary of A(y,j~). Then we have one
of the Eollowing two cases
(1) 1 ~ s t n-u-1,

a(ws-1) - a(ws). In case i- 1, ws-1 - ZG and a(ws-1) 3 b'
IN and

or

(2) s- n-utl, wn-u -(j,kZ(j)), for certain j E IN and a( n-u) - 0.

ws-1 -(~'ki-1)' ws -(~'ki) for certain 1 c i c z(j), j E

In case (I), we have that the facet of T opposite vertex ws, 1 C s c
n-ufl, is a facet of an (n-u)-símplex t(wl,w) in G(y,j ) where

m 0
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Yh - ~
Yh

((J~k~ ),...,(j.ki-2).(J.ki).(J~ki-1)'-..,(J.k7(J)))

and

-1 1 -
w - w , a - a,

m - (wl,....~s-2'WS'ms-1'msfl~..-.Wn-utl).

The centrepoint of r is given by

v(7) - v(T) i- dsd~lqY(cus) - dsd~lqY(ms-1)

with the vector ó-(dl,...,dn-~1) given in table 7.

á

- Z~
m

(ó ,...'d '..- )ó'e 'ó }a -e 'ds-1
l . 's-1 R s si.l sf2R n-utl

with sm(ws) - R
l~s~n-ufl

0
~ Zm ( d , . . . . d )s-1 l n-uf 1

0
m - Z

m m . ddd(e }a -e )n-u ..2~. ,R' R'l n-utl n-u
m n-ufl(w ) - Rwith s

s - n-ufl
0

~ ZW íó ,....a )n-u l n-ufl

Table 7. s is the i ndex of the vertex of t to be replaced

In case ( 2) we have that the facet of t opposíte vertex wn-~~}1
is a facet of an (n-u)-simplex T(wl~W) in ~(Y~~ ) with ~- ~ and withm U p '

-1 1 - -
w- w ' m~ (ml'"''Wn-u-1'Wn-utl' n-u) and a~ a.
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The centrepoint of t is given by

v( r) - v( T) f d -1 Y Y

and d - d.

n-utldmtl~q (wn-ufl) - q ( n-u)~'

Consider nuw the case that i(wl,w) is an (n-u)-simplex in
Gm(Y,jU) with u ~ l,then T is a facet of only one (n-utl)-símplex in
S(U`{(j.k)}),(j.k)E U.

Lemma 4.6. Let 1(wi,w) be an (n-u)-simplex in Gm(Y,j~) with u ~ 1, and
let (j,k) be an element in U, then i is a facet of exactly one (n-u-F1)-
simplex T in G(U `{(j,k)}). More precisely, T lies in Gm(Y,j) withm

((j~k0),...,(j.kz(j)).(j.k)) , h - j

Yh - ~i
Yh

The parameters of the simplex i are given by

-1 r~-1 -1 Y 0 pw- w - dm q ( Z ) where r is the index such that T- Z,

w - (w . ,w ,w . ,w ,(jsk)),r' n-utl 1' r-1

b- dm - 1, a(j,k) - 0,

and the coefficien[s a(i,h),(i,h) E Z, are given by

a(i,h) - ~

d- b f a(i,h) - 1m

L d - b f a(i,h)m

The centrepoint of t ís given by

, (i,h) E {~1,....
n-utl}

~ (i.h) ~ {ifl~.... n-ufl J.

v(1) - v(T) - óld~1qY(ZU)
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where the vector d-(dl,...,dn-~Z) is given by

m m m -1
d - (eR'dz-F1-eR'drt2'"''dn-u-~1'dl,...,dr), with R - s (w )

The triangulation of S(U) x[m,m-F1] for proper subsets U of I is obtain-
ed as follows. Let i(wl,w) be an (n-u)-simplex in Gm(Y,jO) and let
á(T,i) for proper subsets T of {wl,,,,,wn-utlJ be defined as in section
3. Then the triangulation of r x[m,mfl] is induced by connecting all
the gríd points x of V~1 in á(T,z) on level mfl with the vertices wi,
wi ~ T, of r on level m. An (n-u-Fl)-simplex ~Y of this triangulation is
given by

~Y - co(co( ~wi ~wi ~ TI) x ~mJ. a(Yl.n(T)) x {mtl }). (4.1)

We will now show that an (n-ufl)-simplex ~Y of the triangulation of
S(U) x[m,nr~l] for nonempty U is a facet of jus[ one (n-ut"L)-simplex of
the triangulation of S(U`{(j,k)}) x[m,m-fl], for any (j,k) E U.

Lemma 4.7. Let ~Y be an (n-u~-1)-simplex of the triangulation of S(U) x
[m,mfl] with U nonempty. Let (j,k) be an element of U, then y,Y is a

facet of the ( n-ut2)-simplex ~Y of the triangulation of S(U`{(j,k)}) x
[m,mfl] where Y is given by

Yh - ~

((j~k~)....,(j.kZ(j))~(j~k)) , h - j

Yh

and for some T, ~' is given by

, h ~ j

~yY - co(co({wi~~i ~ T~) x lml, a(yl,n(T)) x{m-F1})

where T(w ,w) is an (n-u-F1)-simplex of Gm(Y,j) and a(y ,n(T)) is a t-
simplex, t- IT I~ in ,ri(T~t), The (n-ufl)-simplex T(W1~~) is described in
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lemma 4.6. We will now construct the simplex a. Recall from lemma 4.6
that the index r is such that wr - Z~ and that the centrepoint of t is
given by

v( T) - v( T) - g1d~1qY(Z~) -

We consider the two cases (i) w~ T and (ii) w E T. In the case í)r r
wr ~ T we have for the vertex yl of a

yl - v(T) }~h E T hdmflqY(h)

v(T) t dldmflqY(ZO) } ~h E
R Y

T hdmflq (h)-

íf dl is positive, then a(yl,n(T)) is a(tfl)-simplex in

yl - yl - d~19Y(ZD).

T - ~I~ U {w ~,
r

n(T) - (Z~,nl,...,nt).

and

R - R t (dl-1)e(Z~).

If dl - 0, then a- o is a t-simplex in A(T,r).

A(T,r) with

In the case ii) w E T there is an index s, 1 G s G t, such thatr
n- w. We h,rv e Eor the verti~x ys r

yl - v(T) } ~h E TRhdmtlqY(h)

- v( T) } dldmtlqY(ZO) }~h E T` {wr }RhdmtlqY(h)

t Rw d~l[qY(ZD) t qY(j~k)~-
r
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The -1 -(tfl)-simplex a(y ,n(T)) is now given by

-1 1
Y - Y .

~~~ a T U ~(.~.k) }.

n(T) - (nl....~ns-1~(j.k).ns~--..nt)~

a nd

R- R ~- dle(Z~) f Rw e( j,k).
r

From the constructíon it is clear that a lies in A(T,t). In all cases

the (n-ufl)-simplex ~Y is a facet of the (n-ut2)-simplex ~Y. More preci-

sely, if wr ~ T and dl ~ 0, then ~Y is the facet of ~Y opposi[e vertex
-1

(y ,mfl); if wr ~ T and dl - 0, then ~Y is the facet of ~Y opposite ver-

[ex -1(w ,m) and i f w E T, then ~yY is the facet of ~,Y opposite vertex
-stl r

(y ,mtl) where n - w ,s r

By extendíng thís lemma it can easily be shown that for any extension y
of Y each (n-ufl)-simplex ~yY of the triangulation of S(U) X[m,mfl] is a

face of just one (n-F1)-simplex ~Y of the tríangulation of S x(m,mtl]
described in section 3.
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5. The steps of the algorithm

Let z be a continuous function from S into R~n such that for
all p in S

n fl

Ek~l Pj~kLj~k(P) - 0, j E IN

holds. The problem ís to find a p~ in S such that z(p~) G 0. We call
this pcoblem the nonlinear complementarity problem on S. To solve this
problem we embed S in S x[l,m) and tríangulate S x[l,m) as described
in section 3, inducing also a triangulation of S(U) x[l,m) for proper
subse[s U of I. Each point x-(p,t) in S x[1,W) is labelled with the
(Nfn)-vector R(x) - z( p) .

Definition 5.1. Let U be a proper subset of I, yj a permutation of the
elements in I(j)`Uj, j E IN, Y-(Y1,...,YN) and let ~Y be a k-simplex,
k- n-u,n-ufl, in S(U) x [m,mfl] for certain m- 1,2,... . The simplex
Y 1 kf 1 i i i i i~y (x ,...,x ) with x- ( p ,t ), p E S and t E{m,m~-1} i s complete

if the system of linear equations

ktl R(xi) e(i,h) N e(j) ~
Ei-1ai(

1) t
E(i,h) E Uui,h( U)-~j-1sj( U)-( 1) í5.1)

has a solution ai ~ 0, i- 1,...,kfl,
ui h~ U' (i'h) E U, and S~, j E

IN' ~

A solution ai, i- 1,...,kfl,
ui h, (i,h) E U, Sj, j E IN will be de-

~ ~t ~ '
noted by (a ,u ,S ).

Nondegeneracy assumption. If y,Y is a complete k-simplex in S(U) x
~ ~ ~

(m,mi-1] then the system (S.1) has a unique solution ( a, u, S) for k-
~ ~

n-u with ai ~ 0, i- 1,...,n-ufl, ui h~ p~ (i,h) E U, and for k~ n-utl
~ ~ ~at most one variable of (~ ~u ) is equal to zero.
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By this nondegeneracy assumption, a complete (n-ufl)-simplex ~,Y contains
a line segment of solutions wíth two end points. Each of the end points

~ ~is characterized by a solution with exactly one variable in (a ,u )~ ~equal to zero. All other variables in (a ,u ) are positive. We call the
solution at an end point of such a line segment a basic solution. To
each solution of (5.1) there corres onds a n-~2 ~ i yp point x- Ei-1 ~ix in ~.

In particular, when at a basic solution one of the ai's, say as, is
equal to zero, the corresponding x lies in the interior of the Eacet of

~,Y opposite vertex xs. This facet is then also comple[e. If at a basic
~

solution
ui h- U for some (í,h) in U, then the corresponding x lies in

the interíor of ~yY. Each line segment of solutions to (5.1) induces by
this way a line segment of points x in ~yY with two end points. This line
segment of points can be followed by making a linear programming step in
the system (5.1).

Let g be the function from S x[l,m into RNtn
) given by g(p,t) -

z(p), (p,t) E g x[l,m) and let g be the piecewise linear approximation
of g with respect to the underlyíng triangulation of S x[l,m). Observe
that for all (p,t) E S x[1,W) we have p~gj(p,t) - 0, j E IN. We will
now show that a complete simplex induces an approximate solution to the
nonlinear complementarity problem on S.

Theorem 5.2. Let e~ 0 and let ó be such that

max{ Izi~h(P)-zi~h(q) ~ ~(i,h)E 1, P.qES. IPi h-qi h ~ G 6. (i,h) ~[} ~ e.. .

Let m be such that mesh Vm ~ d and let ~Y(xl~,,.~xkfl)~ xi 3(pi~ti) E

S x{m,m-F1}, i- 1,...,ktl, be a complete k-simplex, k- n-u or k-~ ~ ~n-ufl, with solution ( a ,u ,g ), in S(U) x[m,mi-1]. Furthermore let p be
ktl ~ igiven by p- Eí-1~ip ' then

(1)

(2)

(3)

~
- E ~ a~ ~ E

~ ~
Bi - e ~ zi h(P) ~ Bi t E

.

~
zi~h(P) ~ Bi t e
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Proof. Let ~Y(xl,...,xk}1) be a complete k-simplex in S(U) x[m,mtl]~t ~t ~
with solution (a ,u ,s ), then we have for all j E IN,

- ~t
gj~h(x) - Rj if (j,h) ~ Uj

and (5.2)

- ~
gj~h(x) C gj if (j,h) E Uj

~
where x - Ei}l~ixi'
Therefore

IB)I - IP~KjíP.t)I - IP~í~j(P.t) - gj(P.t))~

~
- ~P~(Ei}lailSj(Pi,ti) - 8j(P~t)])I

~t i
- ~P~(E1-11i[zj(P ) - zj(P)1)~ ~ e. (5.3)

Observe that max(j~h) Ip~,h - pj~h~ C d, i- 1,...,k-il, since mesh Vm ~
d. Furthermore, for all (j,h) E I(j)

~Rj~h(x) - zj~h(P)I - IEi}1~1(Bj~h(Pl.ti) - gj~h(P.t))~

~
- I~i}l~i(zj~h(Pi)

- zj~h(P))I ~ e. (5.4)

Combining (5.2), (5.3) and (5.4) proves the theorem.

a
Now let m be a fixed inteKer and let U be a proper subset of I.

The complete (n-ufl)-simplíces in S(U) x[m,mtl] determine paths of ad-
jacent simplices with complete facets such that each path is either a
loop or has two end points. An end point is either (1) a complete facet
on level m, (2) a complete facet on level mtl, (3) a complete facet in
bd(S(U)) x[m,mi-1] or (4) if U is nonempty, a complete (n-ufl)-simplex

~in S(U`{(i,h)}) x[m,mtl] with ui h- p~ for some (i,h) in U. In case,



36

(3), the facet is an end point of a path of complete (n-u)-simplices
in S(Uu{(j,k)}) x[m,~l] for certain (j,k) not in U, and in case (4)
the simplex is a facet of a complete (n-uf2)-simplex in S(U~,{(i,h)}) x
[m,mtl] which is an end point of a path of adjacent complete (n-ut2)-
simplices in S(U`{(i,h)}) x[m,m-F1]. Linking the paths of complete sim-
plices in S(U) x[m,mtl] in this way together for varying U we obtain
paths of adjacent complete simplíces of varying dimension in S x
[m,mtl). Again each path is ei[her a loop or has two end points. An end
point is now either a complete simplex in S(U) x{m} for some U C I or a
complete simplex in S(U') x{mfl}, for some U'C I. In the former case,
if m~ 1, the complete simplex is an end point of a path of adjacent
complete simplices in S(U) x [m-l,m], and in the latter case ít is an
end point of a path of adjacent complete simplices in S(U') x[m~-l,mf2].

For varying m, m) 1, the complete simplices therefore yield
paths of adjacent complete simplices in S x[l,m). Each path has 0, 1 or
2 end points. Each end poínt is a complete simplex in S x{1 }. A path
with two end points connects therefore two complete simplices ín S x
{1}, whíle a path with one end point has a complete simplex in S x{1}
and must exceed each level S x{m}, m- 2,3,... since the number of sim-
plíces in S x[l,m] is finite for each m. A path with no end points is
either a loop and remaíns in S x[mU,ml] for certain 1 ~ m ~ m ~~, ,~r0 1there is an mU, mU ~ 1, for which the path exceeds each Level S x~m},
m~ mp with at least two different complete simplices.

The algorithm described ín this section starts on level one with
the variable dimensíon algoríthm described in section 2, startíng in the
point v yieldíng within a finíte number of steps a complete simplex T~
ín S x{1}. Then the algorithm continues by following the path of adja-
cent complete simplices in S x[l,m) starting with the unique complete
simplex ~y in S x[1,2] containing rU as a facet. The algorithm can be
termina[ed when the accuracy of an approximate solution is sufficient,~
i.e., when 8 is small enough. If the path returns to S x{1} with a
complete simplex T1, then we again apply the varíable dimension restart
algorithm of section 2 starting with the complete simplex T1. This
yields within a finite number of steps another comple[e simplex T2 in
S x{1}. Observe that both T1 and r2 differ from T~, The algorittun con-
tinues with the path in S x[l,m) starting with the unique complete sim-
plex ~, in S x[1,2) containing T2 as a facet, etc. The steps of the al-



37

gorithm follow from the description of the replacement steps gíven in
section 4 and are described below. Therefore let Y 1 n-u-i2~y (x ,...,x ) be a
complete (n-ufl)-simplex in S(U) x[m,m-tl]. By making a linear program-
ming pivot step in (5.1) we can follow the line segment of solutions
(a,u,8) with respect to ~Y. Then either a~- becomes zero for some s in
{ 1,..., n-uf2 } or a Vi h becomes zero

.

zero the facet of ~,Y opposite the

a new adjacent complete simplex.

eíther xs líes on level m(case I)

s
for some (i,h) E U. If a becomes

vertex
s

xs is also complete and yields
We then have to consider two cases,

or xs lies on level mtl (case
ui h becomes zero then ~Y is a facet of a unique (n-ut2)-simplex.

II). If

in
S(U`{(i,h)}) x[m,mfl] which case is described in case III. In the fol-
lowing w will denote the new vertex of r and y the new vertex of a.

Case I. The point xs lies on level m, i.e., xs -(ws,m) for some s,
1 c s c n-ufl.

a) Suppose that ( ws,m) is not the only vertex of ~Y on level m.

Then the points yl~.'.'ytfl lie in the facet of t opposite vertex ws iff

Ws-1 ~ T and ds - 0.

Eirst suppose that (5.5) holds then we have the following 4 cases.

(1) If s- 1, wl - ZO and a(ml) - dm - 1, then Y, j0. T(wl,w),

(5.5)

a and d

are adapted according to lemma 4.4 and T, a(yl,n(T)) and R do not

change. A pivot step is made with (eT(j ,kJO ),0)T,0 z(j0)

(2) If 1 ~ s c n-u~-1, w -(j,k~ ) or ZO when i- 1, w-(j,k~) fors-1 i-1 s i
certain j E IN, 1 t i c z( j) and a( ws-1) - a( ws), then Y and t(wl , w)

are adapted according to lemma 4.5 (1) and T, o(yl~n(T)) and R do

not change. A pivot step is made with (~,T(w,m),1)T.
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(3) If s- n-ufl, w~u -( j,kZ( j) ) for certain j E IN, and a( w )- p,n-u
then jp and t(wl,w) are adapted according [o lemma 4.5 (2) and T,

1
a(y ,a(T)) and R do not change. A pivot step is made with
( RT(w,m) , 1) T.

(4) In all other cases Y and jp do not change and t(wl,w), a and d are
adapted according to tables 4 and 5.
4.1 If s~ 1 and 6 ~ 0 then T becomes T U{w } yl becomesn-ufl ' n-utl '1 -1

, . ,Y - dm-F1qYíwn-u-F1), n(T) becomes ( n-utl'~1 .. nt) and R be-

comes R f (ó -1)e(w ).n-uf1 n-ui-1
4.2 If 1~ s ~ n-ufl and d~ 0, then T becomes T U{ s-1}, yl be-s

1 -1comes y - d~1qY(ws-1)' n(T) becomes

becomes R t (ós-1)e(ws-1).
(ws-1'rl'~"'nt) and R

4.3 In all other cases T, Q(yl,n(T)) and R do not change.
In the cases 4.1 and 4.2 a pivot step i s made with (RT(y,m-F1),1)t
and in case 4.3 a pivot step is made with ( RT(w,m),1)T.

Now suppose that (5.5) does not hold then 1, Y, jp, t(w , w), a and
ó do not change, T becomes T U{w }, yl and R do not change and n(T) be-s
comes ( nl,...,nt,ws), A pivot step is made wíth (~T(y,m~-1),1)T.

b) The vertex s(w ,m) is the only vertex of ,~Y on level m.

The 1(n-u)-simplex a(y ,n(T)) is a simplex of the triangulation of
G~1(Y,jp), T C{wl,..., ~~1}, ~T~ - n-u. There i s exactly one element
in the set {wl,...,w~~l} not in T, say wh. Let h be denoted by n

n-utl
~0and let r be the index such that n- (j k ). The centre point of tr 0' z(jp)

can be denoted by

~(t) ' wl f Ei~laid~lqY(wi),

with n-utl
ai - ~h-ltlóh' i - 1,...,n-u. Furthermore
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wl - v(U) t bd-lqy(Z~) f E a(i~h)d-lqy(i~h)
m (i,h) E Z m

- v(U) -~ bkmmtlqy(LU) } ~(i,h) E za(í'h)kmdmflqy(i,h).

Combining these two results yields

v(~) - v(U) t b'd~19y(ZO) -t E(i~h) E Za' (í,h)dm}~qy(i,h)

with b' - bk t c~, where k is given by wk - ZU andm

a'(i,h) -

jo~ a(í,h)km f ~, , ~, - (i,h) E Z` {(~o,kZ(~o))}

U
J

, íi.h) - (J~~.kZ(j )).
~

The parameters of the (n-u)-simplex T(w',w) are given by

-1 r~lw - y ,

w - (rrFl~....nn-ufl'~1~...~nr)~

b' t R ~
Z

b

b' f RU- 1
Z

and a(i,h),(i,h) E Z, are given by

if Z~ ,
~ {~rF1' ' nn-ut1 {

0
if Z E

{n~l,...'xn-utl{'

, la'(i h) t Ri~h ,(í,h) ~ nrFl'...'~n-uflJ

L a' (i,h) f Ri h- 1 .(í,h) E lnr~l ~..., nn-ufl J.~

If it i s the first time that we move into S x[m-~l,m~-2], we choose an

integer k~.l ? 1 and integers g~l~ i- 1,...,~rF1, such that E~lgmfl -
1 1-1 1km,},1. In general we should choose g~1~ i- 1,...,ntl, in such a wayithat v(T) lies close to the approximation found on level mfl. The algo-
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rithm continues with yl - v(r), T- ~, R- 0, m- mfl and makes a pivot
step with ( ICT(y,mtl),1)T.

Case II. The point xs lies on level mtl, i.e. xs -(yp,m-H1) for some p,
1 t p t ttl.

a) Suppose that (yp,mf-1) is not the only vertex of ,yY on level mfl.

To describe the replacement steps of the algoríthm in this case, we need
the following lemma.

Lemma 5.3. Let t(wl,w) be an (n-u)-simplex in Gm(y,j0) and o(yl,n(T)) a
t-símplex, t- ~T~, where T is a proper subset of {w ,... w } in1 ' n-uf 1 'A(T,i). The facet of a(yl,n(T)) opposite vertex yp, 1 ~ p G ttl, is not
a facet of another t-simplex a in A(T,T) iff one of the following cases
holds.

(i) p- 1 : ds - R~ t R~ - 1, with ws - nl, and s-1 ~ T.
s s-1

The oin[s 2 ttlP y,...,y lie in the facet of T oppo-
site vertex ws;

( ii) 1~ p~ ttl : ds - R~ f R~ - 0, with ws - n, and w - n
s s-1 P s-1 p-1'

The points yl,,,,~y~l~ypfl~...~yttl lie in the fa-
cet of T opposite vertex ws;

(iii) p- tfl : Rn z 0. The points yl,...,yt lie in A(T`{n[},T).
t

In all other cases the facet of a opposite vertex yp is a facet of the
t-simplex a(yl,n(T)) in A(T,r) with the parameters of o given in table
8.
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yl n(T) R

P- 1
1 -1 yy td~lq (nl) (n2,...,nt,n1) Rte(nl)

1 ~ p ~ ti-1 yL (n ,...,n ,n ,n ,...,n )
1 P-2 P P-1 t

R

- ttlP
1 -1 y
y -d~lq ( nt) (nt,nl,...,n

-1)
R-e(n )t t

Table 8. p is the index of the vertex of a to be replaced

First suppose that ds - Rw t Rw - 1 and ws-1 ~ T, with w-
s s-1 s

nl, then we have the following 4 cases.

(1) If s- 1, wl - Z~ and a(wl) - dm - 1, then y, j0, T(wl,w), a and d
are adapted according to lemma 4.4, and T becomes T`{w }, yl becomes
2 sy, n(T) becomes (n2,...,nt) and R becomes R- Rn e(nl). A pivot

rstep is made with ( e (j ,k ~ , T0 z(j~)) 0) .
1

('i) Lf t ~ s t n-utl, ws-1 -(-1,ki-1) or 'L~ when i- 1, ws -(j,ki) for

certain j E 1N, 1 t i t z( j), and a(ws-1) - a( ws), then y, i(wl, w)

and d are adapted according to lemma 4.5 (1).

2.1 If d- 0 then T becomes T` w 1s , { s{, y becomes y2, n(T) becomes
(n2,...,nt) and R becomes R- Rw e(ws). A pivot step is made

with (RT(w,m),1)T.
s

2.2 If ds ~ 0, then T becomes T`{ws} U{ws-1}, yl becomes 2Y -
d~lqy(ws-1), n(T) becomes ( ws-1'n2'..''nt) and R becomes R

Rw e(wS) t( ds-1)e(ws-1). A pivot step is made with
s

(~T(Y,mtl),1)T.
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(3) If s- n-ufl, w -(j,k~ ) for certain j E I and a(w )- Un-u z( j) N n-u '
then j~, T(wl,w) and d are adapted according
becomes T` {wn-ufl f U{wn-u }' yl becomes y2 -

cumes (w ,n ,...,n )n-u 2 t

to lemma 4.5 (2), and T
-1
dmi-19Y(wn-u)' n(f) he-

and R becomes R- R (e(w )-e(w )).

A pivot step ís made with (RT(y,~l),1)T.

w n-ufl n-un-utl

(4) In all other cases Y and j~ do not change, r(wl,w), a and d are
adapted accordíng to tables 4 and 5.
4.1 If d(w) - 0, with d(w) the coefficient of the new vertex w

and R becomes R- R e(w ). A pivot step is made withws s
(~T(W,m),1)T.

4.2 If d(w) ~ 0, then T becomes T` {ws } U {ws-1 }, y

of T,

then T becomes T`{ws}, yl becomes y2, n(T) becomes (n2,...,nt)

1 becomes y2 -
-1 Ydm}14 (ws-1)' n(T) becomes ( ws-1'r2' "''nt) and R becomes R-

Rw e(ws) f(d(w)-1)e(ws-1)). A pivot step is made with
s

(RTíY.~I),1)T.

Now suppose that ds - Rw t Rw ~ 1 or ws-1 E T, then Y, j~,
s s-1

r(wl,w), a, d and T do not change, and a(yl,n(T)) and R are adap[ed ac-
cording to [able 8. A pivot step is made with (RT(y,mtl),1)T.

(ii) 1 ~ p ~ ttl

First suppose that ds - Rw t Rw - 0 and ws-1s s-1
w- np, then again we have the following 4 cases.s

n , withp-1

0(1) If s- 1, w~ - 7. and a(wl) - dm - 1, then Y, j~, T(wl,w), ~, and 5
:,re adapted ~,ccording to lemma 4.4, and T becomes 'f`{n f, y~ duesp-1
nut change, n(T) becomes (nl,...,n~2,np,...,nt), and R becomc~s R

Rw (e(wn-ufl)-e(wl)).
n-uf 1

A pivot s[ep is made with

j

(eT(~~'kz(j
))'0)T.

0
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(2) If 1 ~ s~ n-ufl, ws-1 -(j'ki-1) or Z~ when i- 1, ws - (j,ki) for

certain jE IN, 1~ i c z(j), and a(ws-1) - a(ws), then y, T(wl,w)
and d are adapted according to lemma 4.5 ( 1), and T and yl do not
chan~e, n(T) becomes ( nl,...,np-z,np,np-1,,,.,nt) and R becomes R-
6se(ws) t~se(ws-1)' A pivot step ís made with (RT(Y,m~Fl),1)T-

(3) If s- n-u-F1, w -( j,k~ ) for certain j E I and a( w )- 0n-u z( j) N n-u '
1

then j~, T(w ,w) and d are adapted according to lemma 4.5 (2), T, yl
do not change, n(T) becomes (n ,...,n ,n ,n ,.,.,n ) and R be-1 p-2 p p-1 t
comes R- d (e(w )-e(w )). A pivot step is made withn-utl n-ufl n-u

(R T(Y,mtl),1)T.

(4) In all other cases, y and j~ do not change, t(wl,w) and d are adap-
ted according to tables 4 and 5, T and yl do not change, n(T) be-
comes (n ,...,n ,n ,n ,...,n ) and R becomes R- d e(w ) t1 p-2 p p-1 t s s
d(w)e(ws-1), with d(w) tl~e coefficient of the new vertex w in t.
A pivot step is made with (RT(y,m-F1),1)T.

Now suppose that ás - Rw -F Rw ~ 0 or
ws-1 ~ n 1, then y,

s s-1 ~
j~, t(wl,w), a, d, T, yl and R do not change, and n(T) becomes ( nl,...,

nFr"L'~p'~4r1'~~~'~rt)'
A hivot stE~p ís made with (kT(y,m{-1),1)T.

(iii) p - tfl

First suppose that Rr - 0, then the points yl,...,yt lie in
t

A(T`{nt},T) and y,j~, r(wl,w), a and d do not change, T becomes T`{nt},
yl and R do not change and n(T) becomes ( nl'~~~'nt-1)' A pivot step is
made with (RT(ws,m),1)T, where s is given by w- n.s t

1Now suppose that Rn ~ 0, then y, j~, r(w ,w), a, d and T do not
t

change, and a(yl,n(T)) and R are adapted according to table 8. A pivot
T - T

step is made with (R (y,m~Fl),1) , where s is given by
s- rt'
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b) Suppose that (yp,cmHl) is the only vertex of ~,Y on level m-El.

In this case we have T- Q1, t- 0 and p- 1. We will first con-
síder the case m~ 1. The (n-u)-simplex T(wl,w) is a complete simplex on
level m of Gm(Y,j~), all vertices of t on level m are vertices of ,yY and
the only vertex of a on level m-H1 has to be replaced. We now have to
compute the unique (n-u)-simplex r(wl,w) in Gm-1(Y,jG) and the set T
such that T lies in A(T,r). The vertex wl is given by

wl - v(U) -F bdmlqY(Z~) t E(i~h) E Za(i~h)dm1qY(i,h). (5.6)

Let a'(i,h),(i,h) E Z~ V Z be given by a'(i,h) - a -1(i,h)km-1 and let
a(i,h) be the entier of a'(i,h), where entier of x, x E R, is the lar-
gest integer less than or equal to x, then a'(i,h) - a(i,h) ~ 0 for all
(i,h) in Z~ u Z. Observe that if a(j,k~ )- a(j,k~), then alsoi-1 1a(j,ki-1) - a(j,ki). Let wl be given by

wl - v(U) f bd-1 Y 0 -
m q (Z ) } ~(i,h) E Za(i~h)dm1qY(l.h). (5.7)

where b is equal to a(j,k~), j E 1N~ then we have for all j E í

0 t a(j.kZ(j)) L... ~ a(j~ki) ~ b~ dm - 1.

Let x he an interior point of - r i,e, x- Zn-ufl k
' ' k-1 ~w , with uniqu~ly

cletcrmined ~k ~O, k- 1,...,n-u-fl. Lt is easy [o show thut

x- v(U) t cd-1qY(ZO) ~- E c(i,h)d-1 Ym (i~h) E Z m q(i.h)~

with b ~ c ~ b-H1 c J.(jp,kZ~jo)) - 0 and a(i,h) ~ c(i,h) ~ a(i,h)tl for
j

all (i,h) E Z`{(jO,kZ~j ))}, Furthermore c(i,h) ~ c(j,k) for all (i,h),0
(j,k) in Z, (i,h) ~(j,k). Let c(i,h),(i,h) E Z U ZU be given by

c(i,h) - c(í,h)kmll.
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with c(i,h) - c for all (i,h) E Z~, then the entier of c(i,h) ís equal
to a(i,h). Then w-(wl'~~~'wn-ufl) is the permutation of ZU and the
elements of Z such that

c(wl) - a(wl) ~... ~ c(wn-u) - a(wn-u),

J
and wn-ufl -( ]0'kzU ) . To complete thís case we have to determine the

(~0)
set T, This set contains n-u elements and is a subset of

{wl',,,'
wn-utlj' i.e., there is exactly one index s with ws not in T, This index
is determined as follows. The centrepoint of t is given by

n-utl -1 -i -1 n-u - -1 y -
v(T) -~i-1 dikm-lw

- w t
Ei-1 aidm q(wi)

- wl t Fi-~nid~nlqY(w~)~ (5.8)

with a. - a, wlien w, - w„ i- 1, ... ,n-u, where a - En-ufl d, i- 1,1 ] 1 ] i h-it1 h
...,n-u. Let a be equal to zero. Equation ( 5.7) can be expressed inn- uf 1
the following way

wl - v(U) } ~i-1}1(a(wí)km-1)dmlqY(wi)~

Combining (5.8) and (5.9) yields for the centrepoint v(r) and wl

v(i) - v(U) } ~i-1}1(a(wi)km-ltai)dm1qY(wi)

and

wl - v(U) t Ei-i-l-la(wi)dm1qY(wi)

- v(T) f En-utl(3(w )-a(w )k -a d-1 Y
i-l L i m-1 i) m q(wi)'

.
Let c(wi), i- 1,...,n-ui-l,be given by

(5.9)

c(wi) - a(wi) - a(wi)km-1 - ai,
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nn~l let c- min{c(mi)~1 - 1,...,n-utl}, then c(w.) - c(w.) - c is n~~n-1 1
ne};ative Eor all i, 1 C 1 c n-ufl. The index s is now ~;iven by

s- max{i E in-ut1lc(mi) - c- 0}.

Then T- {
~1,.-..WS-1'WS-F1'"''mn-u-~1} and the (n-u)-simplex a(yl,n(T))

has parameters

-1 stl
Y - w ,

n(T) - (WStl~...,mn-u~-1'wl~...,ms-1).

The vector R is given by RJ'kj - RZO~ ~- 1,...,N, with
0

c(ZO) if ZU E { }wl,...,ms-1

~(z~) - 1 i f Z~~ {C m . ,m f,sf 1'~ n- uf 1

c ( wi ) ,
~ "GU

c(mi) - 1 , i- stl,...,n-ufl , w. ~ ZU,i

, i - 1, ..,s

and Ri h- 0, (i,h) E U. From the construction it is clear that,
- -1 - - - -a(y ,n(T)) lies in A(T,T). Observe that R~ is equal to zero and that

sall other coefficients of g are non-negative. Now let s be the index
such that ~- ms~ then a pívot step is made with (RT(ws,m-1),1)T.

In the case m- 1 we apply the variable dimension algurithm de-
scribed in section 2 startin~ with the complete simplex i on Levcl I.
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Case III. ui h becomes zero for some (i,h) E U..

This case is described in lemma 4.7 for (i,h) -(j,k). If y,Y is

the facet of y~Y opposite vertex (yp,arEl), for some p, 1 c p G t-fl, a

pivot step is made with (RT(yp,cmFl),1)T. If ~,Y is the facet of ~,Y oppo-

site vertex (wl,m) then a pivot step is made with (RT(wl,m),1)T.

The cases above describe the steps of the algorithm to follow a
path of complete simplices in S x[1,~) to solve the nonlinear comple-
mentarity problem on S with respect to a continuous function z from S to
~N n .tl
Ir. R ~ . The algorithm can easily be adapted to follow a path of ap-~-1
proximating solutions with respect to a continuous functíon z from S X

~N n.fl
[1,~) to 1I-;-1R ~ where t, t~ 1, is interpreted as a time parameter.
In this case we can apply the algorithm for a constant grid size on each
level by takíng km equal to one for m - 1,2,... .
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