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Abstract. Copulas have already proven their flexibility in

rainfall modelling. Yet, their use is generally restricted to

the description of bivariate dependence. Recently, vine copu-

las have been introduced, allowing multi-dimensional depen-

dence structures to be described on the basis of a stage by

stage mixing of 2-dimensional copulas. This paper explores

the use of such vine copulas in order to incorporate all rele-

vant dependences between the storm variables of interest. On

the basis of such fitted vine copulas, an external storm struc-

ture is modelled. An internal storm structure is superimposed

based on Huff curves, such that a continuous time series of

rainfall is generated. The performance of the rainfall model

is evaluated through a statistical comparison between an en-

semble of synthetical rainfall series and the observed rainfall

series and through the comparison of the annual maxima.

1 Introduction

Rainfall serves as an important base for many studies involv-

ing hydrological applications including flood risk estimation,

the design of hydraulic structure and urban drainage systems

or the evaluation of hydrological effects of climate change.

Ideally, one should then have extensive observed rainfall

time series at hand, both in time and space and at different

timescales. Therefore, several rainfall modelling approaches

have been proposed during the last decades (e.g. Kavvas

and Delleur, 1981; Rodriguez-Iturbe et al., 1987a, b; Katz

and Parlange, 1998; Menabde and Sivapalan, 2000; Willems,

2001; Evin and Favre, 2008; Gyasi-Agyei, 2011; Viglione

et al., 2012), which can be subdivided into models that gener-

ate design storms and models that allow for the simulation of

continuous time series at a point or spatially distributed. De-

sign storms are generally developed for a given return period

and storm duration. The corresponding rainfall volume, ob-

tained from e.g. intensity–duration–frequency (IDF) curves

is then assigned to the design storm according to a tempo-

ral rainfall pattern or internal storm structure (Chow et al.,

1988). However, this approach has an important drawback

as it does not properly account for the antecedent wetness

state of the catchment (Verhoest et al., 2010). Yet, this ini-

tial condition regulates the fractioning of the incident rain-

fall into runoff and infiltration and thus determines the flu-

vial response of a catchment to the imposed rainfall event.

It was shown by Verhoest et al. (2010) that, because of this,

the return period of the rainfall event may differ significantly

from that of the corresponding discharge. In order to ac-

count for the antecedent soil moisture condition within the

catchment, one can alternatively work with continuous rain-

fall models that provide input to rainfall–runoff models. As

the latter models continuously update the soil moisture state,

they therefore provide continuous estimates of the antecedent

wetness state within the catchment. Continuous rainfall mod-

els can be classified into four categories (Onof et al., 2000):

(1) physically based meteorological models; (2) stochastic

multi-scale models that allow for modelling the spatial evo-

lution of the rainfall process; (3) statistical models, preserv-

ing trends in precipitation and (4) stochastic process models

that mimic the hierarchical structure of the rainfall process

using a limited number of model parameters.

The variables that characterize a storm, i.e. the storm in-

tensity, duration and volume, mostly exhibit some kind of

mutual dependence: a long storm duration is more likely to

be associated with a low storm intensity than with a high

one. It is therefore of utmost importance to construct joint

probability distribution functions whenever frequency analy-
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sis studies, e.g. to analyse extremes, need to be carried out.

Yet, the marginal probability distribution functions of these

storm variables usually do not exhibit the same type of para-

metric distribution and are largely skewed (Vandenberghe

et al., 2010b), i.e. there is a large deviation from the normal

distribution. These characteristics hamper the identification

of the joint probability distribution functions needed in order

to calculate the probability of occurrence of a storm with a

specific duration and intensity. The introduction of copulas

in hydrology facilitated this task.

Copulas are functions that couple the marginal distribution

functions of the random variables into their joint distribution

function and therefore describe the dependence structure be-

tween these random variables (Sklar, 1959). The great ad-

vantage of copulas is that the joint distribution function is

built based on two independent tasks comprising the mod-

elling of the dependence and the modelling of the marginal

distribution functions. As this property allows for modelling

a large variety of joint probability functions, copulas have

been used within an increased number of publications in re-

cent years. Pioneering work with respect to applying cop-

ulas in hydrology was performed by De Michele and Sal-

vadori (2003), Salvadori and De Michele (2004), Favre et al.

(2004) and De Michele et al. (2005). Concerning rainfall

modelling, copulas offer a great flexibility in the modelling

of high-dimensional dependence structures; however, deter-

mining parametric distributions for high-dimensional ran-

dom vectors is complex (Aas and Berg, 2009). Copulas can,

for instance, improve many rainfall models that mimic the

external rainfall process, i.e. the process of storm arrival, du-

ration and mean intensity at the coarse scale (Salvadori and

De Michele, 2007). These models mostly consider rainfall as

a sequence of rectangular pulses, having a certain duration

and mean intensity, followed by a specific dry period.

This paper explores how a point-scale rainfall model can

be constructed using multivariate copulas, in order to incor-

porate all relevant dependences between the storm variables

of interest. The application of multivariate copulas in hydrol-

ogy is, in contrast to the application of bivariate copulas, a

less explored domain. Some applications can be found in the

modelling of trivariate rainfall (Zhang and Singh, 2007; Kao

and Govindaraju, 2008; Salvadori and De Michele, 2006;

Grimaldi and Serinaldi, 2006), trivariate floods (Serinaldi

and Grimaldi, 2007; Genest et al., 2007; Ganguli and Reddy,

2013) and trivariate droughts (Song and Singh, 2010; Wong

et al., 2010; Ma et al., 2013). Copula applications in hydrol-

ogy that go beyond the trivariate case are still very scarce.

One example is De Michele et al. (2007) who provide a

study on constructing a copula for a 4-dimensional sea storm

phenomenon. The lack of successful applications of multi-

variate copulas in hydrology is, of course, influenced by the

progress made in the theory of multivariate copulas. Due to

the increase in dimensionality, the study of copulas becomes

more complicated than in the bivariate case. Therefore, the

question of how to construct a copula family that is suffi-

ciently flexible to model the complete dependence structure

is a very vivid one in theoretical research. Recently, a flexi-

ble construction method, based on mixing (conditional) bi-

variate copulas, has been introduced, which holds a large

potential for many hydrological applications. In literature,

this method is referred to as the vine copula (or pair copula)

construction method, see e.g. Kurowicka and Cooke (2007),

Aas et al. (2009), Aas and Berg (2009) and Hobæk Haff

et al. (2010). The underlying theory for this method is given

by Bedford and Cooke (2001, 2002) and stems from Joe

(1997), which also forms the basis for the method of “con-

ditional mixtures”, as applied by De Michele et al. (2007).

The use of vine copulas is becoming popular in finance (see

e.g. Nikololoupoulos et al. (2012); Zhang (2014); Mendes

and Accioly (2014)) and geophysics and hydrology (see e.g.

Gräler (2014); Xiong et al. (2014); Gyasi-Agyei and Melch-

ing (2012); Gräler et al. (2013)).

The model that is developed in this paper consists of two

submodels. In a first submodel, the vine copula model, 3-

and 4-dimensional vine copulas are used to describe the de-

pendence between the storm duration, storm volume, the

interstorm period following the storm and, in case a 4-

dimensional vine copula is used, also the dry fraction within

the storm. In a second submodel, the intrastorm-generating

model, the intrastorm variability is obtained based on Huff

curves (Huff, 1967), which plot the normalized cumulative

storm depth against the normalized time since the beginning

of a storm. Before introducing the model, Sect. 2 provides

some background on the construction of vine copulas and the

simulation using vine copulas. Section 3 briefly introduces

the historical time series, while Sect. 4 describes the rainfall

model. In Sect. 5 the model performance is assessed and a

comparison with a state-of-the-art stochastic rainfall model

is performed to further assess the performance of the newly

introduced model.

2 Vine copulas

2.1 Construction

A vine copula mixes (conditional) bivariate copulas stage by

stage in order to build a high-dimensional copula, i.e. the

full density function is decomposed into a product of low-

dimensional density functions. Consider the case of two ran-

dom variables X and Y describing a phenomenon (e.g. storm

duration and storm volume). Using their marginal distribu-

tion functions FX and FY , the values of both random vari-

ables are transformed into values, respectively U and V , in

the real unit interval I = [0,1]:
{

u = FX(x)

v = FY (y)
⇔

{

x = F−1
X (u)

y = F−1
Y (v),

(1)

where x, y, u and v are the values of the corresponding vari-

ables X, Y , U and V . The U and V are uniformly distributed
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on I. The F−1
X and F−1

Y are the (quasi-)inverse functions of

the distribution functions FX and FY (Nelsen, 2006).

A bivariate copula or a 2-copula is a function C : I×I → I

that satisfies

1. for all u,v ∈ I,

C(u,0) = 0 and C(0,v) = 0

C(u,1) = u and C(1,v) = v, (2)

2. for all u1,u2,v1,v2 ∈ I for which u1 ≤ u2 and v1 ≤ v2,

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1) ≥ 0. (3)

The extension of this definition to k dimensions results in a

k-copula (see Nelsen, 2006 for the definition and a detailed

explanation). The theorem of Sklar (1959) relates bivariate

copulas and bivariate distribution functions and states that for

any two continuous random variables X1 and X2, with con-

tinuous marginal cumulative distribution functions F1 and

F2, a unique bivariate copula C12 exists such that

F12(x1,x2) = C12(F1(x1),F2(x2)) = C12(u,v), (4)

where F12 is the joint cumulative distribution function of X1

and X2. This theorem thus formulates that a copula couples

the marginal cumulative distribution functions of two random

variables into a joint cumulative distribution function F12.

This theorem can be extended to k dimensions and hence re-

lates a k-dimensional cumulative distribution function F12...k

to k marginal distribution functions (Sklar, 1959): for k con-

tinuous random variables X1, X2, . . ., Xk , with continuous

marginal distributions functions F1, F2, . . ., Fk , there exists

a unique k-copula C12...k such that

F12...k(x1,x2, . . .,xk) = C12...k(F1(x1),F2(x2), . . .,Fk(xk)). (5)

In order to explain the construction of vine copulas, the con-

struction of a 3-dimensional vine copula is first explained.

The joint probability density function (PDF) f123 of a ran-

dom vector (X1,X2,X3) can, for instance, be decomposed

as follows:

f123(x1,x2,x3) = f13|2(x1,x3|x2) · f2(x2) , (6)

where f13|2 is the joint PDF of X1 and X3, given X2 = x2 and

f2 is the marginal PDF of X2. The joint cumulative distribu-

tion function (CDF) F123 is then obtained by integration, fol-

lowing the conditional mixtures approach (De Michele et al.,

2007):

F123(x1,x2,x3) =

x1
∫

−∞

x2
∫

−∞

x3
∫

−∞

f123(r,s, t)drdsdt

=

x1
∫

−∞

x2
∫

−∞

x3
∫

−∞

f13|2(r, t |s)f2(s)drdsdt

=

x2
∫

−∞





x1
∫

−∞

x3
∫

−∞

f13|2(r, t |s)drdt



f2(s)ds

=

x2
∫

−∞

F13|2(x1,x3|s)dF2(s)

=

x2
∫

−∞

C13|2(F1|2(x1|s),F3|2(x3|s))dF2(s). (7)

The conditional CDFs F1|2(x1|x2) and F3|2(x3|x2) can also

be expressed in terms of copulas:

F1|2(x1|x2) =
∂

∂u2
C12(u1,u2)

F3|2(x3|x2) =
∂

∂u2
C23(u2,u3), (8)

with u1 = F1(x1), u2 = F2(x2) and u3 = F3(x3). When in-

stead of X1, X2 and X3, their transformed uniform random

variables on I, namely U1, U2 and U3, are considered, Eq. (7)

can be expressed as follows:

C123 =

u2
∫

0

C13|2

(

∂

∂s
C12(u1, s),

∂

∂s
C23(s,u3)

)

ds. (9)

In the theory of vine copulas, the same decomposition of the

density function is performed, but instead of using cumula-

tive probability functions, all equations are rather expressed

in terms of density functions and the full density function

c123 of the 3-dimensional copula is then given by

c123(u1,u2,u3) = c13|2(F1|2(x1|x2),F3|2(x3|x2))

· c12(u1,u2) · c23(u2,u3). (10)

Similarly, for a random vector (X1,X2,X3,X4), the joint

PDF f1234 can, for instance, be decomposed as follows:

f1234(x1,x2,x3,x4) = f14|23(x1,x4|x2,x3) · f23(x2,x3). (11)
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✬

✫

✩

✪

U1 U2 U3

C12 C23

F1|2 F3|2

C13|2

F3|12

tree 1

tree 2

Figure 1. Hierarchical nesting of bivariate copulas in the construc-

tion of a 3-dimensional vine copula through conditional mixtures.

The joint cumulative distribution function F1234 is then ob-

tained by integration, similarly as in Eq. (7):

F1234(x1,x2,x3,x4) =

x2
∫

−∞

x3
∫

−∞

C14|23(F1|23(x1|s, t),

F4|23(x4|s, t))dF23(s, t). (12)

Herein, the derivative of the bivariate CDF F23(x2,x3) is ex-

pressed as dF23(x2,x3) = f23(x2,x3)dx2dx3. The functions

F1|23(x1|x2,x3) and F4|23(x4|x2,x3) are conditional CDFs

(or CCDFs), and can also be expressed in terms of copulas:

F1|23(x1|x2,x3) =
∂C12|3(F1|3(x1|x3),F2|3(x2|x3))

∂F2|3(x2|x3)

F4|23(x4|x2,x3) =
∂C24|3(F2|3(x2|x3),F4|3(x4|x3))

∂F2|3(x2|x3)
(13)

where the CCDFs F1|3, F2|3 and F4|3 are calculated as in

Eq. (8).

2.2 Fitting a 3- or 4-dimensional vine copula

Figures 1 and 2 illustrate the principle of constructing a 3-

respectively 4-dimensional vine copula. Consider tree 1 in

Figs. 1 and 2 where three (respectively four) uniform (on

[0,1]) random variables U1, U2 and U3 (or U1, U2, U3 and

U4) are given and their pairwise dependences are described

by the bivariate copulas C12 and C23 (respectively C12, C23

and C34). Given a specific value of the second variable,

these bivariate copulas can be conditioned (cf. dashed ar-

rows in Figs. 1 and 2) through partial differentiation (Aas

et al., 2009), resulting in the CCDFs F1|2 and F3|2 (respec-

tively F1|2, F3|2, F2|3 and F4|3). The pairwise dependences

between these CCDFs are then captured by the bivariate cop-

ula C13|2 (respectively the copulas C13|2 and C24|3). See tree

✬

✫

✩

✪

U1 U2 U3 U4

C12 C23 C34

F1|2 F3|2 F2|3 F4|3

C13|2 C24|3

F1|23 F4|23

C14|23

F4|123

tree 1

tree 2

tree 3

Figure 2. Hierarchical nesting of bivariate copulas in the construc-

tion of a 4-dimensional vine copula through conditional mixtures.

2 in Figs. 1 and 2. These latter copulas can then also be condi-

tioned by partial differentiation to obtain F3|12 (respectively

F3|12 and F4|23). For the 4-dimensional vine copula, another

bivariate copula C14|23 captures the pairwise dependence be-

tween these CCDFs and can on its turn be partially differen-

tiated to obtain F4|123. See tree 3 in Figure 2. The conditional

CDFs F3|12 and F4|123 (of the 3- and 4-dimensional vine cop-

ula, respectively) will be of use for simulation purposes (Aas

et al., 2009). It should be noted that the hierarchical nesting

of bivariate (conditional) copulas as presented here is just

one of the possibilities and corresponds to what is called a

D-vine (Aas et al., 2009).

In practice, the bivariate copulas in a higher tree of the vine

copula (e.g. C13|2) are fitted as follows. Consider a set of n

data points, for all triplets (u1,i,u2,i,u3,i) (or for all quadru-

plets (u1,i,u2,i,u3,i,u4,i)), i = 1, . . .,n, the CCDF values

(e.g. the CDF values according to F1|2 and F3|2 in the case

of C13|2) are calculated. The bivariate copulas (e.g. C13|2)

are then fitted to these “conditioned observations”, which are

again approximately uniformly distributed on I.

2.3 Generating samples out of the vine copula

A general simulation algorithm is presented next, borrowed

from the theory on conditional mixtures. The literature on

vine copulas reports very similar simulation algorithms (Aas

and Berg, 2009; Aas et al., 2009). In order to simulate a ran-

dom sample (u1,u2,u3) (or (u1,u2,u3,u4)) out of the 3-D

(or 4-D) conditional mixture copula, i.e. U1, U2, U3 (and U4)
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are uniformly distributed on I, the 1-dimensional CCDF is

highly important and is defined as (De Michele et al., 2007)

Gk|1...k−1(uk|u1, . . .,uk−1)

= P(Uk ≤ uk | U1 = u1, . . .,Uk−1 = uk−1)

=

∂k−1

∂u1...∂uk−1
C1...k(u1, . . .,uk)

∂k−1

∂u1...∂uk−1
C1...k−1(u1, . . .,uk−1)

. (14)

Herein, the numerator is the mixed partial derivative of the

k-dimensional copula with respect to the conditioning vari-

ables. The denominator is the copula density of the (k − 1)-

dimensional copula of the conditioning variables. In order

to simulate a random sample out of the 3-D (respectively 4-

D) conditional mixture copula, a random sample (t1, t2, t3)

(or t1, t2, t3, t4) should be first generated from (T1,T2,T3)

(respectively T1,T2,T3,T4) which are uniformly distributed

random variables on I, and serve as random probability lev-

els of the CCDFs in the simulation algorithm which is listed

next (of course for generating a 3-dimensional sample, step

4 should not be performed):

1. u1 = t1 ;

2. u2 = G−1
2|1(t2|u1) , where

G2|1(u2|u1) =
∂

∂u1
C12(u1,u2) ; (15)

3. u3 = G−1
3|12(t3|u1,u2) , where

G3|12(u3|u1,u2) =

∂2

∂u1∂u2
C123(u1,u2,u3)

∂2

∂u1∂u2
C12(u1,u2)

; (16)

4. u4 = G−1
4|123(t4|u1,u2,u3) , where

G4|123(u4|u1,u2,u3)

=

∂3

∂u1∂u2∂u3
C1234(u1,u2,u3,u4)

∂3

∂u1∂u2∂u3
C123(u1,u2,u3)

. (17)

The calculation of some partial derivatives, necessary for ob-

taining the CCDF G4|123 is given below:

∂3

∂u1∂u2∂u3
C1234(u1,u2,u3,u4)

=
∂

∂u1
C14|23(G1|23(u1|u2,u3),G4|23(u4|u2,u3)), (18)

with

G1|23(u1|u2,u3) =

∂2

∂u2∂u3
C123(u1,u2,u3)

∂2

∂u2∂u3
C23(u2,u3)

=

∂
∂u3

C13|2

(

∂
∂u2

C12(u1,u2),
∂

∂u2
C23(u2,u3)

)

∂2

∂u2∂u3
C23(u2,u3)

, (19)

and

G4|23(u4|u2,u3) =

∂2

∂u2∂u3
C234(u2,u3,u4)

∂2

∂u2∂u3
C23(u2,u3)

=

∂
∂u3

C24|3

(

∂
∂u3

C23(u2,u3),
∂

∂u3
C34(u3,u4)

)

∂2

∂u2∂u3
C23(u2,u3)

. (20)

Once u1, u2, u3 and u4 are simulated, the corresponding val-

ues of x1, x2, x3 and x4 can be calculated by means of the in-

verse marginal CDFs F−1
1 , F−1

2 , F−1
3 and F−1

4 , respectively.

3 Historical time series characteristics

The time series used in this paper for fitting the model con-

sists of a 105-year 10 min rainfall record of Uccle, Belgium.

These data were obtained by a Hellmann–Fuess pluviograph,

installed in and operated by the Royal Meteorological In-

stitute at Uccle near Brussels, Belgium (Demarée, 2003).

This exceptional time series has been used in several stud-

ies, albeit with varying lengths, concerning statistical anal-

yses (Vaes et al., 2002; De Jongh et al., 2006; Ntegeka and

Willems, 2008; Vandenberghe et al., 2010b) and stochastic

rainfall modelling (Verhoest et al., 1997; Vandenberghe et al.,

2011; Vanhaute et al., 2012; Evin and Favre, 2013; Pham

et al., 2013). For the current study, storms were first selected

and their characteristics of interest calculated. Storms were

selected on the basis of a minimal dry duration that sepa-

rates two storms. Any dry period shorter than this threshold is

thus considered to be part of a storm (Bonta and Rao, 1988).

Similar to Verhoest et al. (1997) and Vandenberghe et al.

(2010a, b, 2011), a dry period of 24 h was chosen, as this pe-

riod assures that the arrival times of independent storms are

Poisson distributed (Restrepo-Posada and Eagleson, 1982).

In this way, 8665 storms were selected and the following

characteristics calculated: the onset of a storm (day, month,

year), the storm volume V (mm), the storm duration W (h),

the dry duration after the storm D (h), and the fraction dry

www.hydrol-earth-syst-sci.net/19/2685/2015/ Hydrol. Earth Syst. Sci., 19, 2685–2699, 2015
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Table 1. Observed probability of pd = 0 for the storms in the dif-

ferent seasons

Probability

of pd = 0

Winter 8.75 %

Spring 11.21 %

Summer 13.13 %

Autumn 12.14 %

within the storm pd. It was observed that events with iden-

tical values of variables occur in the observed time series.

As this is not desirable for a copula-based analysis, in which

ranks are important, random noise, uniformly distributed be-

tween −0.1and +0.1 mm was introduced to all strictly posi-

tive 10 min observations as described and motivated in Van-

denberghe et al. (2010b). The choice of 0.1 mm was based on

the pluviograph’s resolution. We also refer to Vandenberghe

et al. (2010b) for a profound analysis of the dependences

between the variables W , V , and D. Vandenberghe et al.

(2010b) asserted that the hypothesis of stationarity of storms

on the Uccle time series is fulfilled through seasonally sub-

dividing the storms allowing copulas to be fitted per season.

Therefore, the storm characteristics of the 105-year 10 min

rainfall time series are subdivided according to the season in

which the storms occurred. To this end, similarly as in Van-

denberghe et al. (2010b), winter is defined as the months De-

cember, January and February, spring as the months March,

April and May, summer as the months June, July and August

and autumn as the months September, October and Novem-

ber. It was furthermore noticed that some of the storms have

no internal dry 10 m intervals, i.e. pd = 0. The set of storms

within each season is then further subdivided into a subset

of storms for which pd = 0 and a subset of storms for which

pd 6= 0. The observed probability of pd = 0 for the different

seasons is listed in Table 1.

A kernel-smoothed distribution function was fitted to the

observed values of W , V , D and pd as none of the commonly

used probability distributions fitted the data well. As D has

a theoretical minimum of 24 h, due to the selection criterion,

the distribution was fit to D − 24 h values, and afterwards,

24 h were added.

As the storm characteristics V , W and D do not reveal any

information on the internal storm structure, and pd only gives

partial information, Huff curves, as derived in Vandenberghe

et al. (2010a), are employed to provide statistical informa-

tion on the internal structure. The idea to use Huff curves to

generate an internal storm structure has also been adopted

by Candela et al. (2014). Given the 105-year time series at

hand, empirical Huff curves can be obtained by partitioning

each storm in the time series in e.g. 20 identical time intervals

at every 5 % of the total storm duration. Furthermore, storms

were classified into seasons, and quartile groups according
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Figure 3. Huff curves for the second-quartile autumn storms. The

10 % (lower) and 90 % (upper) percentile curves are given.

to the quarter of the storm duration that received the largest

amount of rainfall. For each season and each quartile group

the corresponding Huff curves were obtained by visualizing

the 10 and 90 % percentiles of the distribution. In this way, 16

Huff curves were obtained (four quartile groups per season).

As an example, Fig. 3 illustrates the 10 and 90 % percentile

curves of the second-quartile autumn storms. Vandenberghe

et al. (2010a) showed that these curves are independent of

the extremity of the storm.

4 Description of the rainfall model

4.1 The vine copula submodel: construction and use of

vine copulas in the generation of a time series

By examining the storm characteristics of the historical time

series, it is observed that some storms have internal dry

10 min intervals while others have not. It was decided to fit,

for each season, a 4-dimensional vine copula to the values

of W , V , D and the non-zero values of pd. Furthermore, for

each season, a 3-dimensional vine copula was fitted to the

values of W , V and D in the case pd = 0. In this way, depen-

dences between the variables for pd = 0 and pd 6= 0 are taken

into account and four 3-dimensional and four 4-dimensional

vine copulas are obtained.

The ordering of the copulas in the vine copula, i.e. the se-

lection of a D-vine, is based on the values of Kendall’s tau

as listed in Table 2. These values show that the strongest de-

pendences exist between the variables W and V , pd and W ,

and V and D. By putting the most dependent pair of vari-

ables in the first tree of the vine copula, the structure of a D-

vine is established. The 3- (W , V , and D) and 4-dimensional

(pd,W , V , D) vine copulas are fitted stage by stage, follow-

ing the method explained in Sect. 2.2. We are aware that
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Figure 4. Contour plots of the empirical (dotted lines) and the

fitted Frank copulas (solid lines) for the different trees in the 3-

dimensional vine copula for season 1. Bivariate copulas between

W and V and V and D (top panel) and between W |V and D|V

(bottom panel) are shown.

different copula families could be used to describe the de-

pendences between the different variables (see Vandenberghe

et al., 2010b). Yet, in this conceptual study, we opted to re-

strict to the Frank copula family to describe the (conditional)

bivariate dependences within the vine copulas, because of its

ability to represent positive or negative dependence. Further-

more, this family is frequently applied to describe bivariate

hydrological phenomena (Pan et al., 2013). Alternative fami-

lies could better fit the different dependences within the vine

copula – however, the search for the best fitting copula was

out of the scope of the current study. It should be remarked

that two different ways of parametrizing the Frank copula

exist. In this paper, the one that has the dependence parame-

ter range of [−∞,+∞] is employed. The parameters of the

Frank copulas are numerically estimated using the relation-

ship between Kendall’s tau and the parameter value of the

Frank copula (Genest, 1987):

τK = 1 −
4

θ



1 −
1

θ

θ
∫

0

t

et − 1
dt



 . (21)

The fitted Frank copula parameters are presented in Table 3.

Figures 4 and 5 show the contours of the Frank copulas and

the empirical copulas for the 3- and 4-dimensional vine cop-

ula for the first season. It can be seen that the Frank copula

fits the empirical copulas fairly well. Only the dependence

between W and V in the 3-dimensional vine copula and the

dependence between pd and W , and W |V and D|V in the

4-dimensional vine copula are less well represented. In or-

der to check whether the vine copulas preserve the depen-

dence between the variables, two samples, with size 10 000,

0
.1

0.1
0.2
0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1
0

0.5

1

0
.1

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8

0 0.5 1
0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1
0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1
0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1
0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1
0

0.5

1

Figure 5. Contour plots of the empirical (dotted lines) and the

fitted Frank copulas (solid lines) for the different trees in the 4-

dimensional vine copula for season 1. Bivariate copulas between

pd and W , W and V , and V and D (top panel), between pd|W and

V |W , and W |V and D|V (middle panel) and between pd|WV and

D|WV (bottom panel) are shown.

are simulated using the 3- and 4-dimensional vine copulas,

respectively, based on the method described in Sect. 2.3. Ta-

ble 2 shows the good correspondence between the observed

and simulated pairwise dependences. To be able to transform

samples from the fitted copula to real samples, the (inverse)

marginal cumulative distribution functions of pd, W , V and

D are employed.

The inverse CDFs are then used to transform simulated

uniformly distributed values in I to values in R. Once the

simulated values of the quadruplet (pd,W,V,D) are known,

a time series of 105 years of rectangular rainfall pulses with

duration W and height I = V/W , being separated by a dry

duration D, is obtained. Of course, these rectangular pulses

only correspond to the external storm structure. At this stage,

only the timing of the beginning and the end of a storm is

important. The pulse itself, characterized by W , V and pd,

needs to be further disaggregated into finer-scale rainfall,

which is elaborated upon in the next section.

4.2 The intrastorm-generating submodel:

disaggregation of rectangular pulses by means of

Huff curves

In order to employ Huff curves in the disaggregation of the

rectangular pulses, a random quartile group is first assigned

based on the probabilities of occurrence of the four quartile

groups, as indicated in Table 4. By assigning the first pulse

of the generated time series to the beginning of the year, the

season of each simulated pulse is easily derived. On the ba-

sis of the probability of pd = 0, the 3- or 4-dimensional vine

copula for the corresponding season is employed to obtain
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Table 2. Correspondence between the observed and simulated pairwise dependences among (pd,W,V,D), expressed as Kendall’s tau τK .

Observed 3-D Observed 4-D Simulated 3-D Simulated 4-D

τ12 – 0.3040 – 0.3066

τ23 0.4140 0.6361 0.4118 0.6305

Season 1 τ34 −0.0804 −0.0736 −0.0754 −0.0790

τ13 – −0.0336 – −0.0092

τ24 −0.0831 −0.0341 −0.0760 −0.0425

τ14 – 0.0259 – 0.0111

τ12 – 0.3418 – 0.3423

τ23 0.5318 0.5888 0.5314 0.5866

Season 2 τ34 −0.0773 −0.0778 −0.0811 −0.0649

τ13 – −0.0183 – −0.0018

τ24 −0.0397 −0.0410 −0.0421 −0.0416

τ14 – 0.0221 – 0.0026

τ12 – 0.4060 – 0.4132

τ23 0.5243 0.5540 0.5248 0.5483

Season 3 τ34 0.0247 −0.0855 0.0222 −0.0820

τ13 – 0.0411 – 0.0602

τ24 −0.0079 −0.0613 −0.0109 −0.0672

τ14 – −0.0126 – −0.0332

τ12 – 0.3208 – 0.3276

τ23 0.4887 0.6058 0.4948 0.6016

Season 4 τ34 −0.1066 −0.0779 −0.1084 −0.0816

τ13 – −0.0287 – −0.0080

τ24 −0.1377 −0.0636 −0.1680 −0.0737

τ14 – −0.0086 – −0.0099

simulated storm pulses. Next, as the season and the quartile

group are known, a random internal storm structure can be

assigned to each simulated storm pulse on the basis of the

corresponding 10 and 90 % Huff curves. To this end, time in-

stants corresponding to the end of each 10 min interval within

the storm are selected. The 10 and 90 % curves are then in-

terpolated such that the values of the normalized cumulative

storm depth for each of these time instants (expressed as a

percentage of the total storm duration) are obtained.

The internal storm structure is then generated as follows.

Firstly, time intervals having zero rainfall are randomly as-

signed within the storm such that the sampled value of pd

is respected. It should be noted that the first and the last in-

terval of the storm cannot have zero rainfall in order to pre-

serve the duration W of the storm. Furthermore, when the

value of pd is such that the storm should only contain one

wet 10 min interval (i.e. pd is close to 1), the rainfall depth

is evenly divided among the first and last 10 min intervals. In

addition, the total length of a dry spell within a storm is con-

strained to 23 h, i.e. 1 hour less than the selection criterion,

in order to avoid that one storm would result in two differ-

ent storms when the same storm selection criterion is applied

on the simulated rainfall series. It should also be mentioned

that storms that have a duration smaller than 40 min and for

which pd 6= 0, are disregarded in the generation of the rain-

fall series, because of the inability to assure the generation of

the imposed quartile storm.

Secondly, the cumulative storm depths are randomly se-

lected. This procedure calculates the normalized cumulative

depth at the end of a time interval, i.e. at time instant b, be-

fore moving to the next time interval. During the generation

of the internal storm structure, three cases may occur, requir-

ing different sampling strategies. These cases are:

1. Time instant b is situated in between two consecutive

wet 10 min intervals. In this case, a cumulative storm

depth is randomly selected between the 10 and the 90 %

percentile curves, ensuring that the cumulative storm

depths do not decrease in time. Figure 6a illustrates

this instant, where time instant a denotes the previous

time instant at which a value Dnc(a) was selected, with

Dnc the normalized cumulative storm depth. The current

time instant b, at which a value Dnc(b) is to be selected,

is also indicated. Dnc(b) is randomly selected between

a minimal (H10(b)) and a maximal value (H90(b)), indi-

cated in the figure. H10(b), respectively H90(b), denote

the value of the 10 %, respectively 90 % Huff curve, at

instant b.

2. Time instant b corresponds to the end of a dry period.

In this case, depicted in Fig. 6b, no sampling has to be
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Table 3. Parameters of the bivariate Frank copulas in the construc-

tion of the 3- and 4-dimensional vine copulas.

Parameter (W,V,D) (pd,W,V,D)

θ12 – 2.9632

θ23 4.3567 8.9789

Season 1 θ34 −0.7276 −0.6651

θ13|2 – −9.1797

θ24|3 −0.4077 0.4199

θ14|23 – −0.4670

θ12 – 3.4077

θ23 6.3457 7.6379

Season 2 θ34 −0.6992 −0.7037

θ13|2 – −.6601

θ24|3 0.2150 0.2348

θ14|23 – −0.2741

θ12 – 4.2445

θ23 6.1971 6.8144

Season 3 θ34 0.2221 −0.7737

θ13|2 – −6.0083

θ24|3 −0.3429 0.0194

θ14|23 – −0.2419

θ12 – 3.1574

θ23 5.5352 8.0877

Season 4 θ34 −0.9686 −0.7041

θ13|2 – −8.1955

θ24|3 −1.1409 −0.0918

θ14|23 – −0.0958

performed (as the time interval between a and b should

be dry), and thus the cumulative storm depth takes the

value of the previous time instant, i.e. Dnc(b) = Dnc(a),

where Dnc(b) may be situated outside the percentile

curves.

3. Time instant b corresponds to the end of a wet pe-

riod. In this third case, depicted in Fig. 6c and d, the

dry period starts at time instant b and ends at time in-

stant c. Two sampling strategies are possible, among

which is chosen with equal probability. It is allowed

that a cumulative storm depth is sampled according to

the 10 and 90 % Huff curves either at time instant b

or at time instant c. When the first strategy is cho-

sen (see Fig. 6c), Dnc(b) is sampled from the interval

[max(Dnc(a),H10(b)),H90(b)], and the sampled value

can hence be smaller than H10(c), which indicates that

the generated Huff curve will intersect the 10 % Huff

curve, before reaching time instant c and will hence not

remain between the 10 and 90 % boundaries. When the

second strategy is chosen (see Fig. 6d), Dnc(b) is drawn

from [max(Dnc(a),H10(c)),H90(c)], i.e. the sample is

chosen according to the 10 and 90 % Huff curves at

time instant c. The sampled value can hence be larger

than H90(b), which indicates that the generated Huff

Table 4. Probability of a storm to belong to a certain quartile group.

Quartile group Probability [–]

First 0.3930

Second 0.2063

Third 0.1826

Fourth 0.2181

curve will intersect the 90 % Huff curve before reaching

time instant b. Such flexibility is required as the fraction

of dry spells often does not allow the curve to remain be-

tween the 10 and 90 % boundaries. However, this flex-

ibility is not a major problem, as at each time interval

within the storm there are always 20 % of the historical

relative cumulative storm depths outside these bound-

aries by definition.

Based on the historical time series, it was observed that

the increment in cumulative storm depth between two sub-

sequent time instants in a Huff curve is not uniformly dis-

tributed (this observation was neglected in Vandenberghe

et al., 2010a). Smaller increments occur more often than

large increments. This behaviour is simulated by first estab-

lishing a cumulative probability distribution of strictly posi-

tive increments on the basis of the 105-year time series. To

this end, for all storms in a particular season and quartile

group, the frequencies of normalized (strictly positive) in-

crements of cumulative rainfall depths between two subse-

quent wet periods were recorded. This empirical cumulative

distribution function for the respective season and quartile

group is then used to randomly select a normalized increase

in storm depth for the subsequent wet time interval. Figure 7

illustrates the use of the cumulative distribution in the sam-

pling procedure. In this figure, the minimum and maximum

bounds of the increments are first determined on the basis of

the Huff curves, as explained above. These bounds are then

transferred to the cumulative distribution of normalized in-

crements between which a value is randomly selected by uni-

formly sampling within this sampling range (see Fig. 7). The

corresponding difference percentage of total storm depth is

then obtained.

5 Results

It is common to validate the performance of a model through

comparing statistics of one modelled time series to those cal-

culated on the observed time series. However, given that the

model has a stochastic nature, the statistics of the simulated

time series will show some variability. To account for these

stochastic effects, the model described in the previous sec-

tion is employed to generate an ensemble of 100 time series

of 105 years of 10 min rainfall (i.e. similar to the length of

the observed time series). In order to evaluate whether the
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Figure 6. Illustration of the generation of an internal storm structure. The part of the Huff curve that is already generated (up to time

instant a) is indicated by a thick solid line. The value at time instant b needs to be determined. Four sampling strategies are possible:

sampling in between two consecutive wet periods (case 1; a), sampling at the end of a dry period (case 2; b), sampling at the end of a wet

period followed by a dry period with a selection on the basis of the current time instant (case 3; c) and with a selection on the basis of the

last time instant in the dry period (case 3; d).

model performs well in the reproduction of aggregated rain-

fall statistics, the 100 time series are furthermore regarded

as equally probable realizations and the statistics are calcu-

lated on a yearly basis. The traditional first- and second-order

statistical moments (i.e. mean and variance), autocorrelation

(AC) at different time lags and the zero depth probability

(ZDP) are calculated along with the third-order central mo-

ment (skewness). These statistics are calculated on a yearly

basis for each ensemble member at aggregation levels of 1/6,

1, 3, 6, 12 and 24 h. Thus, for an aggregation level, 100 × 105

values of each of these statistics are obtained, such that a bun-

dle of 100 empirical cumulative distributions can be estab-

lished, i.e. one distribution per ensemble member. The em-

pirical cumulative distribution of the values of the statistics

of the observed time series can then be compared with this

bundle. If the empirical CDF of the observed statistics is situ-

ated within the bundle of distributions obtained by the model,

the model performs well.

Figure 8a shows the bundles of the 100 empirical cumu-

lative distributions of the yearly statistics of the time series

generated by the copula-based model and the empirical cu-

mulative distribution of the yearly statistics of the observed

time series for a 10 min aggregation level. Figure 8b dis-

plays the comparison for a 1 h aggregation level. These fig-

ures show that the observed mean is well represented by the

copula-based model. For a 10 min aggregation level, the ZDP

is also fairly well represented. The variance and the third cen-

tral moment are overestimated, whereas the lag-1 and lag-2

autocovariances are underestimated. For the 1 h aggregation

level, the ZDP and the lag-1 autocovariance are underesti-

mated, the other statistics are fairly well represented. For the

other aggregation levels, only the mean is well represented.

The other statistics are sometimes well represented, under-

or overestimated. With respect to the ZDP statistic, the fact

that this statistic is well represented at a 10 min aggregation

level, yet underestimated at higher aggregation levels (except
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Figure 7. Illustration of the procedure to sample the storm depth at

the next time instant (b). First, the minimal and maximal increment

in percentage of storm depth at time instant b are determined (top

panel). Then, the corresponding sampling range in the CDF of nor-

malized increments is defined based on the minimal and maximal

increment in percentage of storm depth derived from the top panel

(bottom panel).

for a 24 h aggregation level), is probably due to the selection

of the dry periods within the storm. For storms that have a

duration of more than 1 hour, these zero intervals are prob-

ably not connected as no temporal correlation is taken into

account during the selection of dry periods, such that fewer

dry periods are obtained after the aggregation than what is

observed in the Uccle time series. Future research will fur-

ther elaborate on a better selection of dry periods within the

storm.

As simulated time series are often used to simulate ex-

treme discharges (Verhoest et al., 2010), the behaviour of

the modelled extreme rainfall was also assessed. Figure 9

shows the annual maximum rainfall depths of the ensem-

ble and of the observed rainfall series related to empirical
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Figure 8. Comparison of the empirical cumulative distributions of

the yearly statistics of the observed time series (black line) and the

bundle of empirical cumulative distributions of synthetic time series

generated by means of the copula-based model (grey) at a 10 min (a)

and a 1 h aggregation level (b).

return periods, considering six different aggregation levels.

This figure shows that the extrema are well modelled albeit

the model overestimates extremes at short aggregation lev-

els and tends to underestimate extremes at larger aggrega-

tion levels. Notwithstanding the shortcomings highlighted,

this novel modelling concept holds promise. It should fur-

thermore be stressed that other stochastic models such as

the state-of-the-art Bartlett–Lewis models also are not able

to preserve all statistics.
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Figure 9. Comparison of empirically derived annual maxima related to the empirical return periods for different aggregation levels on the

observed (black asterisks) and ensemble of synthetic time series generated by means of the copula-based rainfall model (grey asterisks).

6 Conclusions

This study is the first in its kind in which a continuous

stochastic rainfall generator is developed that uses vine cop-

ulas to describe the storms and their arrival process. The in-

ternal storm structure is based on the concept of Huff curves,

while the fraction of dry periods within the storm is deter-

mined by the copulas. The main advantage of this approach

is that the model is completely data driven and is easier to

calibrate than other rainfall generators such as the commonly

used Modified Bartlett–Lewis model as, once the structure of

the vine copula is determined, the calibration is reduced to

estimating the parameters of the bivariate copulas. It should,

however, be noted that we have at our disposal an exception-

ally long time series of rainfall data on the basis of which the

vine copulas are determined. If one would follow the same

approach and search for the best-fitting copula family on a

more commonly shorter time series of e.g. < 50 years of rain-

fall data, one could be faced with difficulties as the number

of storms per season may become too small for fitting the

copulas.

The model applies 3- and 4-dimensional vine copulas to

describe the dependence between the different storm char-

acteristics. The 3-dimensional vine copulas are employed

to describe the seasonal dependence between storm dura-

tion, storm volume and the interstorm period for storms that

have no dry fraction within the storm. The 4-dimensional

vine copulas are employed to describe the seasonal depen-
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dence between these storm characteristics and the dry frac-

tion within the storm. These vine copulas were fitted to the

observed storm characteristics of a 105-year time series of

10 min rainfall. Because of its frequent successful applica-

tion in hydrological applications, the Frank copula family

was chosen to be used within the vine copulas. On the ba-

sis of these vine copulas, values of these four storm charac-

teristics were drawn, representing the external storm struc-

ture, ensuring a time series of 105 years of rectangular rain-

fall pulses. According to their seasonal probability of occur-

rence, storms with zero dry fractions were sampled from the

3-dimensional vine copulas. The internal storm structure of

the rectangular pulses is superimposed based on Huff curves,

which were identified on the basis of the observed time se-

ries, leading to the generation of continuous 10 min rainfall

time series. In the generation of the internal storm structure,

it is ensured that the fraction of dry periods within the storm

as drawn from the vine copulas, is maintained. The internal

storm structures are furthermore generated according to the

probability of occurrence of the quartile storms in the ob-

served time series, and the season in which they occur. In or-

der to determine the difference of cumulative storm depths in

the internal storm structure, the empirical cumulative PDF of

increments between two subsequent wet periods in the storm

is employed. In this way it is guaranteed that smaller incre-

ments occur more often than larger increments, as was ob-

served in the measured time series.

In order to evaluate the performance of the rainfall model,

an ensemble of 100 time series of ca. 105-year 10 min rainfall

was generated, such that stochastic effects were accounted

for. The results show that the copula-based rainfall model

represents the mean value of the time series well, whereas

the other statistics are either represented (fairly) well, over-

or underestimated, depending on the aggregation level. A

second evaluation of the generated ensemble encompassed

the calculation of the annual maximum series, for different

aggregation levels. It was observed that the annual maxima

simulated by means of the copula-based model were larger

than the observed maxima for an aggregation level of 10 min,

and the moderate return period of the 24 h aggregation level.

For aggregation levels of 1–12 h and the smaller and larger

return periods of an aggregation level of 24 h, a good cor-

respondence between the simulated and observed extremes

was observed. Future research will reveal whether the rep-

resentation of the ZDP statistic for larger aggregation levels

by the copula-based model can be improved by better select-

ing the internal dry storm periods. The performance of the

copula-based model will also be compared to state-of-the-

art stochastic rainfall generators. Also, it should be inves-

tigated whether including other bivariate copula families in

the vine copulas can further improve the performance of the

vine-copula-based model.
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