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SUMMARY 

Using Markov renewal theory, analytic expressions for the expected 

average cost associated with (s,S) - policies are derived for a continuous 

review inventory model with a compound Poisson demand process and stochastic 

lead time under the (restrictive) assumption that only one order can be 

outstanding. 

NOTATION 

Z integers 

N non-negative integers 

R reals 

'R+ nonnegative real numbers 



L 1. 

1. A CONTINUOUS REVIEW INVENTORY MODEL. 

The demand process is of the compound Poisson type, i.e., the probabi

lity of a cumulative demand k, in a time period of length t is given by 

k 
l: 

1=0 
e 
-.:h (At) 1 

1! ' 

where A > 0 and v~l) is the 1-fold convolution of the demand-size distribution 

at k; v~l) = vk, with v0 = O, vk > 0 k = 1, 2, ••• , denotes, of course, the pro

bability that, once a request is made on the inventory system, k items are deman

ded.1 

The ordering process is also assumed to be stochastic. When an order 

is placed; the probability that the order is delivered within a time period of 

length tis given by the lQad-time distribution function G(t), which is assumed 

to be continuous and Riemann integrable and to have a finite mean. (Note that 

G(~) is assumed to be independent of the order size.) 

As to the cost structure we consider : 

(i) an ordering cost of the form c0 + c0k, when k items are Qrdered, 

(ii) an inventory carryina cost of c 1 per unit time, 

(iii) a backorder cost of c 2 per unit time. 

Furthermore, it will be assumed that only inventory policies of the 

(s,S)- type will be utilized. 

The optimization criterion will be the expected average cost criterion • 

. so, we want to solve the following optimization problem : Find a 

(s,S)- policy that minimizes the expected average cost over an infinite planning 

The assumption that vk> 0 for all k> 1 is made for analytical convenience and 
can easily be relaxed 



horizon of the inventory problem with the demand and ordering process and 

the cost structure described above. 1 

1. 2. 

To achieve this task, we will employ techniques of Markov renewal 

theory (see Cinlar [ I J , [ 2 l and Schellhaas [ 4 ] ) to obtain an analytic 

expression for the expected average cost associated with a given (s,S)- policy 

(Sections 2 and 3) to reduce. the optimization problem to a straightforward 

search procedure • 

The proposed development will, unfortunately, necessitate the fol

lowing restrictive 

Assumption : No orders can overlap. · 

In other words, if an order is outstanding, the next order can only 

be placed after the arrival of the outstanding order. It should be stressed 

that the tools of Markov renewal theory can be employed without this assumption, 

however, the difficulties arise when one attempts to derive analytical expres

sions for the cost rate associated with (s,S)- policies. 2 

To con trrast this model with some existing work, we can m.ake reference 

to Gross and Harris [ 3 ] and the references mentioned there, and to Schellhaas [ 4 J , 
Gross and Harris consider a model where the lead-time is state-dependent, i.e., 

orders can be procured according to different lead-time processes with changing 

inventory levels. Schellhaas, in the part of the paper devoted to inventory 

theory , derives an expression for the average cost in a model without overlapping 

assumption but with a Poisson demand process. 

1. The subsequent analysis can be adjusted to incorporate the expected discounted 
cost criterion. 

2. A manageable problem results when (S-I,S) policies are employed. 



2 .l. 

2. THE INVENTORY PROCESS AS A REGENERATIVE STOCHASTIC PROCESS. 

In this section we introduce some results from Markov renewal theory 

in the spirit of Cinlar [ 1 ] to apply them to the inventory model described 

above. 

Consider a probability space (~'~' P) and the random variables 

X ~ -+ Z, 
n 

+ T ~-+R, 
n 

such that T0 = 0, Tn ~ Tn+l for all nEN and, finally, Tn-+ oo a.s •• 

Then 

Definition l 

with state space Z if 

P(Xn+l = j, Tn+l - Tn ~ t/XO, • • e ' T ) n 

j, T +l - T ~ t/X ,T) for all je:Z n n . n n and t e: [O,oo) • 

Definition z·: Let { X(t); te:R+} be any stochastic process such that 

X(t) = X for t = T , then, n n { X(t) ; te:R+ } is said to be a regenerative pro~ess 

with respect to a Markov renewal process { (X , T ) ; ne:N } n n 

= P(X(t) = j/X , T ) for all t ~ T , ne:N. 
n n n 

T ~ T) 
n 

if 

Now we show how the inventory problem of Section l can be described 

in terminology of Markov renewal theory. 



To do so, define 1 : 

(1) Xn as a random variable taking values in J = {S,S-1, ••. } , denoting the 

inventory level at time period Tn ; we assume (X0,T0) = (k,O) with k ~ S, 

(2) if X 
1 

= i, n ~ l. then T is the arrival time of the quantity ordered at n- n 
T 1 if i ~ s and is the next order point if s < i ~ s. n-A 

2.2. 

Furthermore, in order to characterize the distribution of the length 

of a regeneration interval, denote by B.(t) the probability that the next 
J 

regeneration point occurs in a time le.ss than or equal to tt:R+ for any jt;J. 

Lemma l 

Proof 

For any jt:J, 

B.(t) = 
J 

+ te:R 

G(t) 

s 
1: A(j,k,t) 

k=-oo 

with A(j,k,t) = 

If j ~ s, quantity 

observe that B.(t) 

]-k 
2: 

1=0 

S-j 

= 

is 

s 
2: 

-Itt 
e 

if j ~ s, 

if j > s, 

(l) 
v. k ' . J-

ordered, hence B. (t) 
J 

where 
J k=-oo 

P(Dt = j-k), 

demand in a time period of.length t. 

= G(t); when j > s, 

Dt denotes the cumulative 

From now on we will assume that a particular (s,S)- policy is given, this to 
avoid cumbersome notation. 



2.3. 

Proposition If X and T are defined by (1) and (2), then {(X, T ); neN} n n n n 

Proof : 

is a Markov renewal process. 

For any neN, X = i, keJ consider 
n 

case (i) i > s 

0 

= 
t 

if k > s, 

!
0 

P(i- D'f = k / x0 , .... , Xn = i; T
0

, T
1

, ... , Tn) dBi(T) 

= 
0 

t 
f P(i- DT =·k I ~n = i, 

0 

case (ii) i ~s 

t 

if k ~ s, 

if k > s, 

T ) dB. (T) 
n l. 

if k ~ s. 

••• , T) 
n 

= J O P(S - D't = k / X0 , •• , , Xn = i; T0 , T l, • , • , Tn) dG(T) 

t 
==f P(S-D't" =k) dG(T). 

0 

The following proposition is then immediate. 



2.4. 

Proposition 2 Let X(t) be a random variable indicating the inventory level at 

time t, then {X(t); t ~ O} is a regenerative process with 

respect to the Markov renewal process defined by (J) - (2). 

Now that it is established that {(X s T ); ne:N} is a Markov renewal 
n n 

process, it is, of course, well-known that {X ; ne:N} is a Markov chain. To 
n 

characterize the transition structure of this imbedded Markov chain, let 

p .• = p (X +1 = j I X = i) lJ n a n 

so that, for any pair i, je:J 

(3) p •. 
lJ 

In fact, 

Lemma 2 

Proof 

(4) 

(5) 

0 "'-.. if i > s, j > s, 

00 

f A(i,j,T) dB. (T) 
= l 

0 
if i > s' j E;;; s' 

00 

f A(S,j,"r) dG(T) if i ~ s. 
0 

The Markov chain { X ; ne:N } is ergodic. 
n 

Aperiodicity and irreducibility follow from (3). To show positi,ve 

recurrence,we first exhibit an explicit solution to the following 

system : 

rr. = 
l. 

II. ;;;., 0 
l. 

E 
j 

P.. II. 
Jl J ie:J' 

ie:J, 



(6) 

with p .. 
l.J 

For all 

as 

i: 
ie:J 

in 

n. = 
~ 

(3). 

i ~ s, we rewrite 

s 
(4) as 

(7) IT. ... E P· . rr. 
l. Jl. J j=s+l 

with a. = p .. for all j ~ s. 
1 Jl. 

For s < i ~ S, we obtain for (4) 

(8) 

Define 

(9) 

with b. ,.. 
l. 

and 

K "" 

II. = a. 
l. ~ 

t 

II. = l. 

s 
E 

j=s+l 

s 
( E 

s 
E 

j=-oo 

fi K 

b. K 
l. 

p .. a. 
J 1 J 

i=s+l · 

I 

IT •• 
J 

+ a. 
1 

2.5. 

s 
+ a. E rr. 

1 j=-oo J 

if s < i ~ s, 

if i ~ s, 

The {II;} 
l 

defined in (9) solve the system (5) - (8); the uniqueness 

s s 
E IT.) ( E II;)-l 

l. -oo J 
of this solution follows trivially from observing that ( 

s+I 

has to be a constant in order to solve (5)- (8). 

Lemma 2 will not only prove to be useful in subsequent theoretical de

velopments, but also provides us with an explicit solution (see (9)) for the 

stationary distribution of the Markov chain {X } • 
n 



2.6. 

In order to be able to invoke some results of Schellhaas [ 4 ] we need 

some definitions. 

Let 

ifljk(t,u) = P(X(t) = k/(X(o) = j, T1 = u) for 

and ~jk(t) = P(X(t) = k, t <T 1 <oo I X(O) = j), 

so that 

00 

Hence 

0 for j > s, k > j or k ~ s, 

00 

f + A(j ,k, t) 'dB. (u) 
~jk(t)= t J 

for j > s, s < k ~ j , 
(to) 

00 

! + A(j,k,t) dG(u) 
t 

for j ~ s, k ~ j • 

The expected length of a regeneration interval is 

j is the initial state, i.e., 

00 

(11) m. = f 
J 0 

t dB. (t), 
J 

jeJ. 

If Pjk(t) = P(X(t) = k / X(O) = j)~ then 

denoted by m; if 
J. 



Theorem i 

(12) 

Proof 

2.7. 

For any ke:J 

00 

I: IT. f '¥.k (t) dt 
J l. 0 l. 

p * = lim pjk(t) = k I: IT. m. 
f:-+00 J 

l. l. 

To apply a result of Schellhaas f 4 , Korrolar 1. 1., p. 12 ] , it 

suffices to observe that the imbedded Markov chain is ergodic (Lemma 2), 

that B.(t) is continuous and '¥.k(t) is Riemann-integrable. 
J J . 

If V.(t} denotes the expected cost associated with a particular (s,S)
J 

policy during a time interval [ 0, t] if X(O) = j, our interest lies in th'e 
-1 limiting behavior f t V.(t). In fact, we have the following 

J 

Theorem 2 of t-l V.(t) exists for all je:J, in fact 
J 

(t) 
.g. = lim 

J t-+oo 
= g, 

.with go + 1 2 
g = g + g 

and IT. 

(13) 

co + co [ s - I: j J I: IT. 
j ~s 

t IT. j ~s J 
0 ·~s J 

g = s 
I: IT. (m. - m') + m' 

j=s+l J J 

(14) . 1 
s 
I: ·p* g ... cl J . ' 

j=O J 

(15) 2 0 
I: •px g "' c2 J • ' 

j=-oo J 

where the IT.'s are the solution of (4)- (6), the m.'s are defined by (11), 
J J 



the P~' . s 
J 

and 

Remark 

2.8. 

are given in (12) 

00 

m' = f tdG(t). 
0 

The fact that g = go + gl + g2, reflects the additive cost structure 

the average cost associated with the ordering process, the inventory 

costs and the backorder costs are added up to obtain the overall 

average costs. Note the intuitive interpretation of (13) - (15). 

In (13), for instance, L: j 
j ~ s II. is the expected inventory 

J 

level ~iven that levels below s are considered. 

Proof : The theorem is an easy consequence of a result of Schellhaas [ 4 , 

Korrolar 2.1., p.2J 1 , which, in turn, can be established by standard renewal 

theoretic techniques, cf. Cinlar [ 2 ] • Schellhaas proved that, if the em

bedded Markov chain is ergodic and for a cost structure which has a finite ex

pected value on finite-intervals 

(16) g =lim 
t-+co 

v. (t) 
J 

t 

L: 
J 
r 
J 

II. 
J 

p. 
J 

IT. m. 
J J 

where p. is the expected cost in a regeneration interval with initial state j. 
J 

This result will be applied to ordering, inventory carrying and back

order costs. 

For the ordering costs we have 

{0 if j > s, 
0 s pj "" 

k=-oo 
CO + cO (S-j )p jk if j ~ s. 



Hence 

{ p9 0 if j > s, 
"" J co + c0{s - j) if j ~ s. 

So 
E n. <co + co (S - j)) 

j ~s J 
0 g = s s 

E n. m. + E n .. ml 
j=s+t J J j=~ J 

and (13) obtains. 

Observe that for the case uf the inventory carrying costs, 

P·~ 
J 

... 
0 

E 
ke:J 

00 

! 'l'jk(t) dt 
0 

if j < o, 

if 0 < j ~ s. 

2.9. 

Substitution in (16) and changing the order of summation gives then 

(14). The same argument applies to the backorder costs. 

Theorem J and 2 give us an explicit method to compute the expected 

average cost of a particular (s,S)-policy, however, we will see in the next 

section bow thes.e results can be simplified from a computational point of 

view. 



3.1. 

3. SOME ANALYTIC RESULTS. 

In this section we exploit the properties of the compO.und Poisson 

process in order to obtain manageable analytic expressions for the 'cost rates' 

(D) - (15). 

In view of (9), it is clear that an analytic expression for the stationary 

distribution can be obtained if the transition probabilities (see (3)) can be 

explicitly computed. 

So 

Lemma.3 : For any given (s,S)- policy 

p •. = 
~J 

Proof 

Then 

0 if s ~ i > s, j > s, 

s+l-j 
(1) 2-(l+l) E v .. ifi = s+l, j~ s, 

1=0 1.-J 

i-j i-s-1 k 
(m) i-j (1) 2-(1+1) vk . (1) z v. • E z E v •. 

1=0 ~-J k=l n=l (n-1)! 
1=0 1.-J 

if s ~ i;;;;. s + I ' 

S-j 
(1) 

00 

-At (At) 1 
E v • f e 

1! 
dG(t) ifi~s. 

1=0 s-J 0 

Consider the case where S ~ i ~ s+l and j ~ s. 

oo j~s-1 

f A(i,j,t) d(l-e-At - E 
0 k=l 

k -At 
E e 

n=l 

n 
(At) (n)) 
'"""'ii"! vk ' 

(l+n-l)! 
U2l+n 

j ~ s, 

(1- 1-.:!:E. ~ 
2n ' 



so that 

00 i-lii-1 k (n) 
00 -/..t(At)n-l 

P •• = A f A(i,j,t) e-At dt- A E E vk 1 A(i,j, t) ( e (n-1)! l.J 0 k=l n=l 0 

-A.t ( At)n ) 
dt. - e n! 

Substituting for A(i,j,t), and exploiting the properties of the· 

gamma density gives 

00 
-At f A(i,j ,t) e 

0 
dt = 

j-i 
r, 

1=0 

(1 + n) ! 

> .. u 2 l+n+l 

Hence the result for S ~ i ~ s + 1 and J ~ s obtains. The other cases are 

trivial. 

We also have, in view of Lemma land (11) 

Lemma 4 For any ieJ 

00 

f tdG(t) ifi~s, 
0 

1 if i s+ I , I = 
m. = 

1. j-s-1 k 
1 {n)) 
X (l + 1: 1: vk if i > s+ 1 • 

k=l n=l 

3.2. 

Furthermore, and this is useful to compute the values of P~ (see Theorem 1)~ 



Lemma 5 For any icJ 

00 

J 1¥. (t)dt= 
0 ~k 

0 

k i-k 
r v~n) ( L: 

n=O 1=0 

(1) 
vi-k 

i-k (1) 
E v. l 

1=0 ].-

-1 i-k (1) 
A. - E vi-k 

1=0 

(F • 1' . (O) or s1.mp l.C~ty vk - I.) 

i > s ~ k > i or k ~ a, 

(n + 1) 

if 

oo -At O.t) 1 
J e '"Tt · dG(t) 

0 

if i ~ s, k < J. 

The proof of Lemma 4 and 5 is similar to that of Lemma 3. 

3.3. 

The results can be. used to evaluate (13)- (15). 
-1 0 H 

infinite series ( E j IT. ( E IT.) and E jP.) are 
j~s . J j<s J j=...oo J · 

Unfortunately, two 

still to be evaluated. 

In practical cases these series would have to be approximated; this is, of 

course, numerically speaking, not an unsurmountable task. 

Further simplifications arise if a special form of the lead-time 
-l.lt distribution is assumed. For instance, if G(t) = 1 - e , then,for all 

j ~ s 

and, setting e "" 

S-i 
E 

1=0 

(1) 
v . 

s-l. 



II. = 
l. 

S-i 
2: 

1=0 
s 
r 

i=s+l 

s-i 
( 2: 
1=0 

el 

s-j 
1:: 

1=0 

(1) 
VS-i 

el v~l? + A+lJ 
-J ll 

el . (1) 
vs . + -I. 

where K is defined as in (9). 

s 
E 

j=s+l 

S-j 
pJ.i E 

1=0 

if s ~ i ~ s, 

(1) ) K vs . -J 

Of course, the expressions for p •. ~ m. and P~ simplify accordingly. 
l.J l. l. 

3 •. 4. 

The results for the case when the demand occuts according to a Poisson 

process can be obtained by simplifying all prev;ious expressions to account for 

the fact that in this case v~n) = 0 whenever i ~ n. 
l. 

If we now consider the overall expected average cost as a function of the 

policy used, i.e., g(s,S), then it follows that g(.,S) is a unimodal function and 

if we denote s~(S) as 

~ 
g(s (S), S) =min g(s,S)~ 

s<S 

the optimal solution is found by minimizing g(s~(S),S) overS. To achieve this 

task, simple search procedures can be used. 
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