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Fig. 1. Block diagram of an ultrasound receiver using dynamic focusing. 

 Abstract—This paper presents the design of a continuous-time 

∆Σ modulator (CTDSM) to be used in an ultrasound beamformer 

for biomedical imaging.  To achieve better resolution, the 

prototype modulator operates at 1.2 GHz. It incorporates a 

digital excess loop delay (ELD) compensation to replace the 

active adder in front of the internal quantizer. A digitally 

controlled reference-switching matrix, combined with the data-

weighted averaging (DWA) technique, results in a delay-free 

feedback path. A multi-bit FIR feedback DAC, along with its 

compensation path, is used to achieve lower clock jitter sensitivity 

and better loop filter linearity. The modulator achieves 79.4 dB 

dynamic range, 77.3 dB SNR and 74.3 dB SNDR over a 15 MHz 

signal bandwidth. Fabricated in a 65 nm CMOS process, the core 

modulator occupies an area of only 0.16 mm2 and dissipates 6.96 

mW from a 1 V supply. A 58.6 fJ/conversion-step figure of merit 

is achieved.  

 
Index Terms—Ultrasound beamformer, continuous-time ∆Σ 

modulator, digital excess loop delay compensation, FIR feedback 

DAC 

I. INTRODUCTION 

EDICAL ultrasound imaging is commonly used for 

obtaining diagnostic medical images, as a compact and 

affordable diagnostic tool. It uses beamforming techniques to 

construct an image of the interrogated medium.  

The function of the beamforming receiver is to amplify and 

demodulate the separate echo signals, provide the proper time 

delay in each channel, and add the signals. Conventional 

digital beamformers use Nyquist rate ADCs as an 

interpolation filter to effectively up-sample the digital sample, 

so that accurately delayed samples are acquired [1][2]. 

However, this requires increased hardware complexity. 

Oversampling ∆Σ ADCs have recently become attractive in 
signal processing applications due to their simplicity and ease 
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of integration [3][4]. As shown in Fig. 1, in the ∆Σ ADC based 
beamforming receiver, the digital signal processing circuitry 

applies dynamic delays to the digitized output of the ∆Σ 
modulator in the each channel, so that a coherent combination 

of the received signals is focused at points along a particular 

direction of interest [4][5]. In the few reported use of ∆Σ 
modulation in biomedical ultrasound beamformers [6][7], the 

dynamic range was only around 60 dB. In the detection of the 

blood flow by a pulsed Doppler ultrasound receiver, the 

ultrasound system sends a signal pulse into the body at F0. The 

returning echo has a very strong component at F0 from 

stationary tissue (the vessel walls) and a very weak signal 

within 1 kHz of F0 due to the slow blood flow. To detect this 

weak blood flow signal in the presence of the strong signal 

from the tissue, it requires a dynamic range larger than 12 bits. 

In this work, a continuous-time ∆Σ modulator (CTDSM) 

was chosen as a power-efficient solution to achieve 12-bit 

effective number of bits (ENOB) over the target signal 

bandwidth (BW = 15 MHz) of the medical ultrasound. 

However, CTDSM is susceptible to severe non-idealities, such 

as excess loop delay (ELD) and clock jitter. Their correction 

in this project will be discussed next. 

In this paper, we give the details of the design, which was 

reported earlier in [13]. The remainder of the paper is 

organized as follows. Section II gives the architecture of the 

modulator. Section III provides a brief overview of prior art 

addressing the excess loop delay issue, and introduces the 

proposed technique. Section IV presents the FIR filtering 

applied in the feedback path, along with its compensation. 

Circuit design details of important building blocks of the 

prototype are discussed in Section V. Measurement results of 

the prototype test chip are provided in Section VI. Section VII 

concludes the paper. 
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Fig. 2. Block diagram of the proposed CT ∆Σ modulator using digital ELD 

compensation and FIR feedback. 
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Fig. 3. Block diagram of a general continuous-time ∆Σ modulator with a direct 

feedback path to compensate for the ELD [9]. 
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Fig. 4. Prior art. (a) Discrete-time differentiation technique [8] (b) Comparator 

switching technique [11]. 

II. ARCHITECTURE DETAILS  

The architecture of the proposed CT ∆Σ modulator is shown 

in Fig. 2 [18]. It is well known in loop filter design that the 

first-order path is usually required to be a fast one, since it 

largely determines the unity-gain bandwidth of the loop filter, 

and is essential for the loop stability [8]. Therefore, the 

parasitic poles of the first-order path may degrade stability 

[21]. In the conventional Cascade of Integrators with 

Feedforward (CIFF) topology, the first-order path is 

implemented by the first integrator feeding the adder at the 

input of the quantizer. Hence the amplifier used in the first 

stage integrator is required to be very fast, so as not to limit 

the unity gain bandwidth of the first-stage integrator. 

However, the in-band gain of the first-stage integrator also 

needs to be high enough to provide sufficient attenuation of 

the non-idealities from the following stages. Hence, it may not 

be a power-efficient solution to place the first integrator in the 

high-speed path as in the conventional CIFF topology.  

In order to separate the requirements of both high gain and 

high speed in the first-stage integrator, this work incorporates 

a 3rd-order loop filter with combined feedforward and 

feedback paths. Instead of implementing the fastest first-order 

path by the first integrator, the first-order path is formed by 

the feedback path k1 to the input of the last integrator, which 

replaces an extra summation node required in the CIFF 

topology. The input feed-forward path kff1 and kff2 help to 

reduce the swing of the internal state.  

In addition, a local resonator path kres formed by the second 

and third integrator introduces zeros in the noise transfer 

function (NTF) to further suppress the in-band quantization 

noise. The out-of-band gain (OBG) of the NTF is chosen to be 

2, allowed by the use of a 2-bit internal quantizer. Data 

Weighted Averaging (DWA) technique is employed to 

randomize the unit element mismatch in the feedback DAC. 

The feedback DAC is implemented with switched-resistors, 

which have better noise performance and matching under low 

supply voltage (1 V) than current steering DAC. To counter 

the RC time constant variation, the digitally tunable 

integrating capacitor arrays are employed.  

The CTDSM suffers from the excess loop delay [9]. A 

reference-switching matrix for both ELD compensation and 

DWA technique is introduced as shown in Fig. 2. In addition, 

error due to the clock jitter applied in the feedback path 

increases the in-band noise of CTDSM. To mitigate this effect, 

a multi-bit FIR filtering path F(z) are employed with its 

compensation path C(z). Both techniques will be discussed in 

the following sections. 

 

III. EXCESS LOOP DELAY COMPENSATION 

A. Overview of the Prior Arts 

A general block diagram of a continuous-time (CT) ∆Σ 
modulator with ELD compensation is depicted in Fig. 3 

[9][10]. It contains a CT loop filter H(s) for in-band noise 

attenuation; an internal quantizer; a feedback DAC; and a 

dynamic element matching (DEM) block to filter the DAC 

element mismatch signal. The ELD compensation absorbs the 
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Fig. 5. (a) Proposed ELD compensation by reference-switching technique with the scaled quantizer (b) Differential implementation details of the control logic 

and reference-switching matrix, in which RUNIT = 100Ω (c) possible digitized output sample and the pointer generated to determine the shifted amount. 

signal-dependent delay by introducing an intentional delay Z-D 

between the quantizer and feedback DAC. As a result, a direct 

feedback path around the internal quantizer is necessary to 

compensate the inserted delay Z-D. However, this 

compensation path requires the use of an adder in front of the 

quantizer. This adder is in the main path, and may introduce a 

parasitic pole, which is undesirable in high-speed operation.  

Several techniques to eliminate the use of this adder have 

been proposed in recent years [8] [28]. In [8], as illustrated in 

Fig. 4(a), the addition is shifted to the input node of the last 

stage integrator using discrete-time differentiation. The pulse 

of the feedback DAC is first differentiated and then integrated 

on the capacitor of the last stage integrator, creating a path 

equivalent to summation in front of the quantizer. In [28], an 

equivalent feedforward path is introduced by putting a phase-

lead resistor (PLR) in series with the integrating capacitor in 

the last stage integrator. Thus it eliminates the use of a 

summing amplifier in front of the quantizer. Both technique 

suffer from one drawback: a feed-in path to the last integrator 

required to implement the ELD compensation. The extra feed-

in path mandates a wide opamp finite gain bandwidth 

(FGBW) in the last integrator. In addition, the increased 

parasitics at the input node of the last integrator make it 

difficult for this integrator to form the fast first-order feedback 

path, especially for high speed operation 

Instead of using an analog feedback path, [11] proposed a 

digital ELD compensation method, shown in Fig. 4(b). The 

summation in front of the quantizer is replaced by a group of 

switching comparators with fixed reference voltages. The 

increased number of comparators mandates the following 

multiplexing of the quantizer outputs. The comparator 

selection logic takes the previous output sample of the 

modulator, enables the corresponding comparators upwards or 

downwards and controls the multiplexer to perform the digital 

summation for ELD compensation. This technique, however, 

requires additional comparators in the quantizer, which results 

in the increased parasitic loading, and complicates the design 

of the last integrator. Furthermore, the multiplexing logic in 

the critical path, as shown in Fig 4(b), adds to the loop delay. 

B. Proposed Digital ELD Compensation 

As illustrated in Fig. 5(a) [12][35], rather than switching in 

or out comparators with fixed reference voltages [11], this 

work proposes to switch the reference voltages of a fixed set 

of comparators, which eliminates the following multiplexing 

as in [11]. A reference-switching matrix, digitally controlled 

by the pointer generation logic, replaces both the direct 

feedback path and the signal adder before the quantizer. Fig. 

5(b) shows the details of the differential implementation of the 

reference-switching matrix. In this work, an ELD coefficient α 
of 0.5, shown in Fig. 3, was implemented. In Fig. 5(b), �̂�𝑟𝑒𝑓𝑖 
and �̂�𝑟𝑒𝑓𝑖 ′ represent the differential threshold inputs to the ith 

comparator in the quantizer. The full-scale quantization 

range is 𝑉𝐹𝑆 ≜ 𝑉𝑟𝑒𝑓𝑝−𝑉𝑟𝑒𝑓𝑛. The reference levels in the 

resistor string are shifted in the quantizer by an 

amount ∆𝑉𝑟𝑒𝑓 ≜  �̂�𝑟𝑒𝑓𝑖 − �̂�𝑟𝑒𝑓𝑖 ′, which is determined by the 

previous output sample DOP/DON of the modulator. In other 

words, an equivalent summation is realized by shifting up or 

down the quantizer reference levels by ∆𝑉𝑟𝑒𝑓  given by: 

 

        

1 0

1 0

0 1

1 0

3 3

P P

P NFS FS
ref FS FS

P N

N N

B B

B BV V
V V V

B B

B B



 
             
 

 

      (1) 

 

where α is the ELD compensation coefficient which here is 

equal to 0.5; [−𝑉𝐹𝑆 − 𝑉𝐹𝑆3   𝑉𝐹𝑆3   𝑉𝐹𝑆  ] are the four quantization 

levels of the 2-bit quantizer. 𝐵𝑃𝑖  and 𝐵𝑁𝑖   are the converted 
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Fig. 6. Simulated SQNR as a function of comparator offsets with the line 

representing the mean SQNR and SQNR distributed within ±3σ. 
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Fig. 7. Block diagram of (a) Conventional thermometer-code shuffling DWA 

(b) Reference shuffling DWA. 

binary representation of the digitized sample; 𝐵𝑃𝑖 ∙ 𝐵𝑁𝑖  are 

generated by the pointer generation logic, which involves a 

thermometer-to-binary conversion and an AND logic, as 

shown in the left part of Fig. 5(b); Fig. 5(c) gives all possible 

values of DOP/DON and pointers 𝐵𝑃𝑖 ∙ 𝐵𝑁𝑖;  ∆𝑉𝑟𝑒𝑓   corresponds 

to the shift in the reference levels. From (1), one shifted 

amount is selected out of the first vector for the next 

quantization based on the current quantized sample output in 

the second vector. Based on (1), it can further implement the 

ELD coefficient α other than 0.5 by changing  ∆𝑉𝑟𝑒𝑓 with 

appropriate design of the adjacent reference levels. 

The operation of both the pointer generation logic and the 

reference-switching matrix is allocated half a clock period, so 

that the shifted reference voltages are able to settle within the 

other half a clock period for the next quantization. The unit 

resistor in the reference matrix, as shown in Fig. 5(b), is 

chosen to be 100 Ω, leading to around 420 µW of power 

dissipation. Care has to be taken in the routing so as to 

minimize the parasitics along the reference-switching path and 

the resulting settling requirement.  The settling error in the 

reference-switching matrix is approximated by an offset in the 

quantizer and fortunately it can be suppressed by the 

preceding loop filter. This technique effectively reduces the 

number of comparators in the quantizer and as a result, it 

eliminates the multiplexing logic delay in the critical path.  

In the described ELD compensation techniques, however, 

the swing of the loop filter output is increased in the presence 

of the direct ELD compensation feedback path. In order to 

allow the use of a power supply as low as 1 V, the loop filter 

was scaled down by a factor of 2. Accordingly, the reference 

voltages of the quantizer were also scaled by the same factor. 

This effectively scales up the quantizer gain so that the loop 

gain remains unaffected. This downscaling of the quantizer 

reference voltages may make the comparator offset 

requirements harder to meet. However, the number of the 

comparators used in the quantizer is low, and extensive 

simulations were made to guarantee that the comparator offset 

in the quantizer would not be a major source of error in the 

modulator. For each level of comparator offset, 1000 samples 

were simulated as shown in Fig. 6. The broken lines represent 

the mean SQNRs and the SQNRs distributed within ±3σ. It 

shows that in the quantizer with downscaled reference 

voltages, even with a 0.3 LSB 1-σ offset (12.5 mV), the 
achieved SQNR is above 80 dB, leaving a 6 dB margin above 

the target of 12-bit ENOB. Careful sizing of the comparator 

input pair and common centroid layout technique were used to 

guarantee minimal degradation of the performance due to the 

offset of the comparator. 

C. Reference Shuffling DWA 

The use of 2-bit feedback DAC requires data-weighting 

averaging (DWA) to shape the DAC element mismatch error. 

In the conventional DWA technique, as shown Fig. 7(a), the 

thermometer output code of the quantizer is encoded and 

generates a pointer to select the quantizer output. However, 

the shuffler functions in the main feedback path, and hence its 

switching delay contributes to the excess loop delay. At a 

clock rate of 1.2 GHz, the delay through such a shuffler is 

comparable to the clock period, and thus significantly reduces 

the regeneration time budget of the comparators. 

The converter described in this work uses a reference-

switching matrix to eliminate the element shuffler located in 

the feedback path [21][22], as shown in Fig. 7(b). Rather than 

shuffling the thermometer code of the quantizer output, the 

pointer generation logic follows the DWA rotation algorithm, 

and drives the switching matrix to shuffle the quantizer 

reference voltages and obtain the next quantizer output to be 

applied to the DAC. This technique effectively results in a 

delay-free path.  

Similar to the proposed ELD compensation technique, the 

pointer generation logic is also employed to manipulate the 

quantizer reference matrix. Thus, these two reference-

switching matrices are merged.  

IV. PROTOTYPE CT ∆Σ ADC WITH FIR FEEDBACK 

Another design challenge in CT ∆Σ modulators comes from 

the error introduced by the jitter-affected clock applied to the 

feedback DAC. This error is referred to the input without 

being shaped by the loop filter, as demonstrated in Fig. 8(a). A 

modulator using multi-level feedback is less susceptible to 
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Fig. 8. Block diagram of (a) clock jitter induced error model (b) FIR 

feedback DAC, along with its compensation path. 
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clock jitter than a single-bit one due to the reduced step size in 

the DAC. 

One technique to reduce the clock jitter sensitivity is the use 

of an FIR filter F(z) in the feedback path [15], as illustrated in 

Fig. 8(b). The in-band noise power J due to the clock jitter 

[16][17] with the FIR feedback path is: 

 

       
2 2

2

2 0
1

jit j j jlsb

S

J e NTF e F e d
T OSR

     


     (2) 

where 𝜎𝑗𝑖𝑡2  is the variance of the clock jitter; 𝜎𝑙𝑠𝑏2  is the 

variance of the quantization noise of the internal quantizer; 

OSR is the oversampling ratio of the modulator; 𝑁𝑇𝐹(𝑒𝑗𝜔) is 

the noise transfer function of the modulator; and 𝐹(𝑒𝑗𝜔) is the 

transfer function of the FIR feedback path.  

It is clear that the low-pass FIR filter F(z) attenuates the 

quantization noise at high frequency, and thus reduces the 

integrated noise power due to the clock jitter. In the time 

domain, the use of the FIR filter applied to the single-bit 

feedback DAC averages the adjacent samples, and reduces the 

step size from sample to sample, which simulates the benefits 

of the multi-level feedback.  However, the introduction of the 

FIR feedback path necessitates a compensation path for the 

added delay and phase shift. 

A. Compensation of the FIR Feedback Delay 

     Techniques for the compensation of the FIR feedback delay 

have been proposed in recent works [19][20][25]. In [19], an 

analog feedback compensation path is employed. This 

technique increases the complexity, and the implemented NTF 

is changed from the ideal one. Ref. [20] adopts another FIR 

path to compensate for the delay of the main FIR feedback. 

This compensation path is fed into the last-stage trans-

impedance amplifier (TIA) output. Ref. [25] feeds the FIR 

compensation path to the input of the last stage integrator. 

Both methods tend to increase the parasitic in the last stage 

integrator, which is problematic for a modulator running at 1.2 

GHz.  

This work, as shown in Fig. 2, uses a simple FIR feedback 

path C(z) to compensate the delay introduced by the main FIR 

feedback F(z). As discussed in Section II, the last integrator 

implementing the fastest 1st-order path of the loop filter is in 

the high-speed path of the modulator loop. Additional feed-in 

paths to the last stage integrator will tend to create parasitic 

poles and result in increased delay. Hence, rather than 

connecting the compensation path to the last stage integrator, 

as in [20], the compensation path C(z) feeds into the input of 

the second integrator. Simulations shows that this simple 

change reduces the required unity gain bandwidth (UGBW) of 

the opamp of the last stage integrator from 1.6 times sampling 

frequency FS to 1.2 FS while maintaining the same 

performance. 

One concern about the feedback compensation path C(z) is 

the increased output swing at the first-stage integrator output, 
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Fig. 11. Histograms of the loop filter input with or without FIR feedback for 

(a) 1-bit internal quantization (b) 2-bit internal quantization.  

due to the input signal content feeding into this node. 

However, the compensation path C(z) can have a high-pass 

profile, as shown in Fig. 9(b). This is because the added low-

pass main FIR F(z) mainly affects the high-frequency 

response of the loop filter, and hence the compensation path 

C(z) only needs to compensate the medium- to high-frequency 

loop gain.  

Thus, the signal content is further attenuated before feeding 

into this node, and the output swing at the first-stage integrator 

can be kept at a reasonable level, as shown in Fig. 9(c), which 

illustrates the histograms of the integrator output swings, 

normalized to the full scale of the quantization. Note that the 

low output swing of the first-stage integrator is mandatory for 

low-voltage design.  

B. FIR Filter and Feedback DAC Design Considerations   

Eq. (2) shows that the FIR feedback DAC reduces the 

sensitivity to clock jitter, due to its high frequency attenuation. 

This implies that increasing N must result in improved 

performance in terms of the sensitivity to the clock jitter, as 

more shaped quantization noise is filtered out. However, this 

holds true only for F(z) with a small number of tap N. As N 

increases, the main FIR feedback path F(z) exhibits better 

selectivity and higher stop-band attenuation, as shown in Fig. 

9(a). In other words, F(z) with larger N results in larger 

attenuation in the medium-to-high frequency range. Therefore 

it requires a compensation path C(z) with higher out-of-band 

gain to stabilize the loop. This is illustrated in Fig. 9(b), where 

the frequency response of C(z) with different FIR lengths N is 

plotted. It is seen that F(z) with larger N leads to higher out-of-

band-gain of C(z).  

From (2), the input-referred jitter-induced noise power J’ 
due to C(z) can be found as: 
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    (4) 

where G1(jω) is the frequency response of the first-stage 

integrator, and JC(z) is the noise power due to C(z). 

As (4) shows, higher out-of-band gain of C(z) tends to 

increase the jitter-induced noise power, and hence the input-

referred noise power J’ even with the in-band attenuation by 

the first integrator, as in (3). For high values of N, the 

compensation path C(z) may cancel the effects of F(z) in  

reducing the input-referred noise power due to the clock jitter. 

In the behavioural simulation, a 0.1% rms clock jitter was 

applied to the sampling clock period in the feedback path. The 

in-band-noise due to the clock jitter is plotted as a function of 

the FIR filter order N for both single-bit and 2-bit FIR 

feedback DACs. Fig. 10 compares the in-band noise power for 

single-bit and 2-bit internal resolutions as the FIR order N 

increases. An NTF with an out-of-band gain (OBG) is chosen 

to be 1.5 for a CTDSM with a single-bit quantizer, according 

to Lee’s rule [36], and OBG = 2 for the one with a 2-bit 

quantizer. As Fig. 10 shows, for FIR tap length N > 3, the in-

band noise power due to a 0.1% clock jitter saturates for both 

circuits. 

Hence, this device uses a 3-tap FIR filter to achieve reduced 

clock jitter sensitivity while maintaining design simplicity. 

Fig. 11(a)(b) compares the histograms of the loop filter input 

with or without the FIR feedback path for both single-bit and 

2-bit quantization, demonstrating the linearity advantage due 

to the introduction of the FIR feedback path.  As shown in Fig. 

11(b), the use of a 2-bit feedback achieves much smaller input 

swing compared to using a single-bit feedback. A 2-bit 3-tap 

FIR feedback branch was therefore adopted in our work. 

V. CIRCUIT IMPLEMENTATION 

The overall schematic of the CT ∆Σ modulator is shown in 

Fig. 12. It includes a CT loop filter, a 2-bit flash quantizer, an 

FIR filtering feedback DAC F(z) with its compensation path 

C(z), and the reference-switching matrix for ELD 

compensation and DWA. The key building blocks are 

described next.  
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Fig. 12. Schematic of the overall continuous-time ∆Σ modulator [13]. 
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Fig. 13. Block diagram of the NCFF opamp. 
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Fig. 14. Simulated power spectrum density with only quantization noise, 

and thermal noise also included. 
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Fig. 15. Implemented 3-tap FIR DAC and its 2-bit switched-resistor 

elements. 

A. Loop Filter 

The circuit of the opamp used in the loop filter is a two-

stage design that employs no capacitor feed-forward (NCFF) 

compensation rather than a Miller capacitor [13][23]. The 

single-end representation of the opamp block diagram is 

shown in Fig. 13.  The feedforward path gmff creates a zero to 

stabilize the two-stage opamp. Compared to a Miller-

compensated design, this architecture is more power-efficient, 

since no extra power is spent on charging and discharging the 

Miller capacitors. Thanks to the FIR feedback DAC, the 

linearity requirement of the first integrator is greatly relaxed. 

All opamps used in the latter stages share the same topology.  

The input resistance R1 and capacitance C1 of the first stage 

integrator are chosen to be 2.5 kΩ and 1.5 pF, respectively. 
Power reduction and linearity enhancement can be achieved 

by maximizing the R1 up to the thermal noise limit [37], which 

is given by: 
2

2

1 1
1 2

,

2
8 1

3
N W DAC

DAC m OTA DAC

R R
P kTB R R

R g R

  
     
   

  (5) 

where PN is the input-referred thermal noise of the modulator 

and BW is the signal bandwidth; RDAC refers to the resistors 

used for feedback DAC, and gm,OTA represents the amplifier 

input transconductance.  

Fig. 14 shows the simulated modulator output power 

spectrum density (PSD) with only quantization noise and with 

thermal noise also included. The quantization noise is 

designed to be well below the thermal noise and hence the 

modulator performance is limited by the thermal noise. It 

achieves an SQNR of 87dB and an SNR of 78 dB. 

B. FIR Feedback DAC 

Rather than using a current steering DAC, this work 

adopted a switched-resistor (SR) feedback DAC. This was 

because for low-voltage (1 V) implementation the SR DAC is 

less noisy than a current-steering DAC, whose noise 

performance is limited by the available voltage headroom. 

Also, the SR DAC can provide better matching performance 

than a current steering one with low headroom.   

The SR DAC has a non-return-to-zero (NRZ) output. As 

shown in Fig. 15, the switches are located at the reference 

levels, making the on-resistance of the switches unchanged 

with time. However, the distributed RC parasitics due to the 

resistor at the virtual ground of the loop filter may exacerbate 

the inter-symbol interference (ISI) effects, and add loop delay. 

Therefore great care has been taken in the sizing and routing 

of the SR feedback DAC. 

The FIR feedback DAC is implemented by a semi-digital 

approach [24]. Equally weighted coefficients were chosen for 

the main FIR feedback path F(z), whereas the coefficients of 

the compensation path C(z) were determined by using the 

Impulse-Invariant-Transformation (IIT).  
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Fig. 16. The implemented reference-switching matrix for ELD and DWA. 

 
Fig. 17. Die microphotograph of the prototype [13]. 
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Fig. 18. Measured modulator output spectrum (65,536-point FFT with 15 

averages) [13]. 
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Fig. 20. Measured and simulated SNDR as functions of the clock jitter. 
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Fig. 21. Measured signal transfer function. 

C. Reference-switching Matrix for ELD and DWA 

The details of the reference-switching matrix for ELD 

compensation and DWA (Fig. 12) are shown in Fig. 16. The 

two switching matrices are merged, and controlled by their 

pointer generation logic. 

Once an output sample of the modulator is generated, the 

pointer generator logic uses it to shift the reference voltage in 

the first matrix for ELD compensation. Then the shifted 

reference voltages are applied to the second matrix, and 

shuffled according to the pointer generated by the DWA 

algorithm. Both reference-switching operations are finished in 

a half clock period. 

VI. MEASUREMENT RESULTS 

The prototype CTDSM was fabricated in a 65 nm CMOS 

process with MiM capacitors.  It occupies an active core area 

of 0.16 mm2. The chip microphotograph is shown in Fig. 17. 

The die was packaged in a 40-pin QFN package. 

A four-layer board is used to characterize the chip. The sine 

wave generated by the signal source (AWG710B) is applied to 

a passive band-pass filter (Allen Avionics) with a center 

frequency of 500 kHz, and then converted to a differential 

signal with a balun (Coilcraft PWB2010LB). An RF clock 

source (Agilent E4433B) is used to provide the clock signal of 

1.2 GHz. The modulator output bit-stream, transmitted by a 

stubbed-series termination-logic (SSTL) interface, is captured 

by a logic analyzer (TLA7012), and post-processed to obtain 

the output spectrum.  

Running at a 1.2 GHz sampling rate, the modulator 

dissipates 6.96 mW, of which 4.31 mW is consumed by the 

analog blocks, 2.17 mW by the digital blocks, and 0.47 mW 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

TABLE I 

PERFORMANCE SUMMAY AND COMPARISON WITH PRIOR WORKS 

Parameter This Work 

[8] 

ISSCC 

2006 

[26] 

JSSC 

2011 

[30] 

JSSC 

2011 

[19] 

JSSC 

2012 

[33] 

JSSC 

2012 

[31] 

JSSC 

2012 

[34] 

JSSC 

2013 

[11] 

ISSCC 

2013 

[28] 

JSSC 

2014 

[29] 

JSSC 

2014 

[32] 

JSSC 

2015 

Topology FF-FB FF-FB CIFF CIFF FF-FB CIFF CIFF CIFF CIFF FF-FB MASH CIFF 

Adder required No No No Active No Active Active Active No No Passive No 

ELD Comp. R.S7 D.D3 D.D D.F4 D.D D.F D.F D.F C.S5 PLR6 D.F R.S 

Technology(nm) 65 130 65 130 90 180 130 130 28 90 28 20 

Area (mm2) 0.16 1.2 0.15 1.17    0.12 0.68 0.38 1.3   0.08 0.225 45 0.1 

VDD (V) 1.0 1.2 1.2/1.3 1.2 1.2 1.8 1.3 1.2 1.2/1.5 1.2 0.9/1.8 1.2/1.5 

FS (MHz) 1200 640 250 640 3600 800 1000 185 640 500 3200 2184 

Power (mW) 6.96 

4.31 (Ana.) 

20 10.5 

 

15 47.6 

      

2.18(Dig.) 58 4 13.7 3.9 8.5 235 23 

0.47 (Ref.)        

BW (MHz) 15 20 20 20 25 16 15.6 10 18 25 45 80 

FIN (MHz) 0.5 1 4 3.7 3.9 1 10 5 5 1 0.625 2 15 15 

SNR (dB) 77.3 77.2 76.4 73.0 62.0 67.9 80.2 67 64.5 73.4 75.4 69.1 84.6 70 

SNDR (dB) 74.3 74.1 73.7 74.0 60.0 63.9 73.3 65 59.8 71.9 73.6 67.5 72.6 67.5 

DR (dB) 79.4 78.8 78.1 80.0 68.0 65.9 86.0 75 67.0 80 78.1 72.0 90 73 

ENOB (bits) 12.0 12.0 12.0 12.0 9.7 10.3 11.9 10.5 9.7 11.7 11.9 11.8 11.8 10.9 

FoM1
Walden (fJ) 54.7 56.0 58.6 122.1 321.2 1110 79.4 1020 160 210 27.7 87.7 184 74.2 

FoM2
Schreier(dB) 172.7 172.1 171.4 170.0 160.8 151.1 178.2 160.3 162.9 168.6 174.7 162.2 172.9 168 

1. FoMWalden = Power/(2(SNDR-1.76)/6.02 x 2 x BW).       2. FoMSchreier = DR + 10 x log10 (BW / P).    3. D.D: Discrete-time Differentiation as in [8].     4. D.F: Direct Feedback as in [9]. 

5. C.S; Comparator Switching as in [11].                 6. PLR: Phase Lead Resistor as in [28].        7. R.S: Reference-Switching as in this work. 

by the reference voltage generators. Both the analog and 

digital blocks operate with 1 V supply voltages.  

Fig. 18 gives the measured ADC output power spectrum 

density (PSD) for a -1.58 dBFS input tone at 500 kHz. (The 

full scale or 0 dBFS is 2 VPP.) The sampling frequency was 1.2 

GS/s. A 15-times averaged 65,536-point fast Fourier transform 

with a Hanning window was used for spectrum analysis. The 

ADC achieved a peak SNR of 77.3 dB, and an SNDR of 74.3 

dB over a 15 MHz signal BW, resulting in an ENOB of 12. 

The measured SNR and SNDR are plotted for different input 

amplitudes in Fig. 19(a) for a 500 kHz input tone. A dynamic 

range of 79.4 dB was achieved. This validates the use of 

switched resistor feedback DAC with 1 V power supply. The 

SNDR curves for various input frequencies near the full-scale 

amplitude are plotted in Fig. 19(b). The peak SNDR is 

degraded by 0.6 dB over an input signal frequency range from 

500 kHz to 4 MHz. The rms jitter of the applied clock source 

is around 300fs, or 0.1% of the sampling clock period. 

To verify the effectiveness of the FIR feedback DAC, the 

measured and simulated SNDRs with FIR feedback path 

against the clock jitter are shown in Fig. 20. The clock jitter 

injection was obtained using the software interface to Agilent 

E4438C. The applied clock jitter is then characterized by the 

spectrum analyzer Agilent E4440A. It can be seen from Fig. 

20 that the modulator achieves a measured SNDR larger than 

70 dB when the applied rms clock jitter is less than 3 ps, 

which is 0.4% of the clock period. Within this range, the 

thermal noise contributed by the input-referred noise of the 

loop filter and switched-resistor feedback DAC dominates. In 

addition, even-order harmonic distortion is also found and 

contributes to the performance degradation due to the ISI 

effect in the feedback DAC. This results in a levelling of the 

noise in the measured result, which includes the thermal noise, 

the quantization error and the jitter-induced error. With the 

clock jitter larger than 0.6%TS, the noise power induced by the 

clock jitter becomes dominant, and matches well with the 

simulated results. 

The FIR feedback DAC will affect the signal transfer 

function (STF) of the modulator. A longer FIR filter results in 

a more out-of-band peaking of STF [25], which is not 

desirable when an out-of-band blocker is present. The 

measured STF, along with the simulated one is shown in Fig. 

21. They coincide, and show a peaking around 6 dB, which is 

much lower than in prior work with FIR feedback path 

[19][25].  

The performance of the ADC is summarized in Table I. It 

compares the performance of the state-of-the-art ADCs. It can 

be seen that the ADCs in which the active adder was 

eliminated achieved better power efficiency, as in [8][11][19] 

[29]. Furthermore, the ELD compensation without the 

conventional direct feedback path relaxes the requirements of 

the last integrator stage. This change helps to achieve an even 

better FoM, as in [11]. In our work, by removing the direct 

feedback path, the required UGBW of the opamp of the last 

integrator could be reduced from 1.6 FS to 1.2 FS. The 

proposed converter achieves a peak SNDR of 74.3 dB with 1 

V power supply. The Walden and Schreier Figures of Merit 

are below 60 fJ/step and above 170 dB, respectively, which 

compare favorably with the state-of-the-art. 

VII. CONCLUSION 

A ∆Σ–based ultrasound beamforming receiver for 

biomedical imaging was described. It allows finer dynamic 

delay increments to achieve better image quality. A 3rd-order 

CT ∆Σ modulator clocked at 1.2 GHz and operating with a 1 

V power supply, was described. A digital ELD compensation 

technique is proposed to eliminate the power-hungry adder 

used in earlier circuits. Also, the DWA logic is incorporated 

into the reference-switching matrix used in the digital ELD 

compensation, in order to minimize the delay in the critical 

path. Finally, a 2-bit 3-tap FIR filter is introduced in the 

feedback path, to make the modulator less susceptible to the 
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clock jitter. The effect of increasing the FIR tap length on the 

clock jitter sensitivity was analyzed. Fabricated in a 65 nm 

CMOS process, the prototype modulator achieves a 79.4 dB 

dynamic range, 77.3 dB SNR and 74.3 dB SNDR over a 15 

MHz signal bandwidth, with a FoM of 58.6 fJ/conversion-step.  
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