
A Continuous-Time Strategic Capacity
Planning Model Based on the
Minimum-Cut Problem

Woonghee Tim Huh
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853

huh@orie.cornell.edu

Advisor: Robin O. Roundy
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853

The semiconductor industry has been one of the
driving forces of the “new” economy. It boasts of

the exponentially growing performance of semicon-
ductor devices, coupled with rapidly decreasing chip
prices; however, it faces highly volatile demands, and
copes with astronomical fab costs, most of which can
be attributed to tool costs. The leadtime for purchas-
ing tools is between 6 and 18 months, upon which
tools quickly become obsolete. Thus, semiconductor
companies need to recover their capital investment in
the tools over a short period of time.
We develop models and algorithms for strategic

capacity planning, which is to determine the sequence
and timing of acquiring tools. Strategic planning deci-
sions are made in the presence of high uncertainty.
Uncertainty comes from factors such as technology,
the market, and its products, and becomes amplified
by long leadtimes. Although capacity planning deci-
sions need to be made in the presence of high uncer-
tainty, early research and even some current prac-
tices overlook the stochastic nature of planning, with
the exception of simple case analyses. An extensive
review of literature can be found in Çakanyildirim
et al. (1999) and Roundy et al. (2000). Typical methods
of stochastic optimization include stochastic-linear
programming, stochastic-integer programming, and
Markov decisions processes; yet, they have not been
able to solve real-world capacity planning problems
on the scale faced by the semiconductor industry.
This paper takes the stochastic-optimization

approach, which explicitly incorporates randomness

in the model. We assume nonstationary stochastic
demand, with the expected demand for product fam-
ilies increasing over time. We also assume lost sales
and no finished good inventory. As in Çakanyildirim
et al. (1999), we continue to explore alternative
approaches based on continuous-time models. The
time at which a machine is purchased becomes a
continuous-decision variable. These models are more
compact than traditional stochastic-programming
methods based on discrete-time models. It is hoped
that the small dimensionality of continuous-time
models will make the strategic capacity planning
problem computationally tractable.
In this paper, we model multiple resource types

used for multiple product families. The resulting
problem is related to the continuous relaxation of
the lot-sizing problem. We present an efficient divide-
and-conquer algorithm that will find a locally optimal
solution of this problem. A subroutine to this algo-
rithm is the parametric minimum-cut problem.

1. Formulation
We provide a mathematical formulation of the strate-
gic capacity planning problem. Due to the high rate
of obsolescence, industries such as the semiconduc-
tor industry have low finished-goods inventory. This
model assumes that negligible amounts of finished-
goods inventories are held. Motivated by current
industry practices, it also assumes that backorders
are negligible. These assumptions imply that in the
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recourse, the production quantities at a given time
are functions of the capacity and demand at that time
only, and not of other time instances. At Time 0, all
capacity acquisition plans are made, whereas produc-
tion decisions are made at each time instance after
instantaneous demands have been observed. We use
this model as a part of a rolling-horizon implementa-
tion.
We denote t ∈ �0�T � as a continuous time between

0 and T , where T is the planning horizon. We use p
and m to index product families � and tool types �,
respectively. For each tool of type m ∈�, let �m be the
set of tools of type m. Let n index tools in the set �m

in the order that purchases will be made. The ordered
set �m determines the sequence of tool purchases of
type m. We also use j = 
m�n� ∈ � to index all tools
of all types that we contemplate purchasing over the
planning horizon.
The price of purchasing tool j at time t is given by

a decreasing convex function Pj
t� of t. The instanta-
neous lost sales cost is cpt per unit of product family
p at time t. Let umn be the capacity of the nth tool
of the tool type m. For any given subset Q ⊆ � of
tools and a given tool group m, let the associated tool
capacity of the type m tools be �m
Q� = ∑

n′<n umn′�
where n =min�n′� 
m�n′� � Q�. The definition of �m

ensures that tools of the same type should be pur-
chased in the given order because any tool purchased
out of sequence does not contribute to the tool capac-
ity of type m. To produce one unit of product family
p, we utilize U
m�p� units of capacity from each tool
type m.
The decision variables we are interested in are the

purchase times � = 
�j � j ∈ �� of the tools. We min-
imize the sum of tool purchase costs and expected
lost sales costs. The tool purchase cost is �P
�� =
∑J

j=1 Pj
�j �� Let �
Q� t� be the expected instantaneous
lost sales cost provided that Q ⊆ � is the subset of
tools available at time t. We denote Q�

t = �j� �j ≤ t�
as the set of tools available at time t given purchase
times � . We can write the expected lost sales cost �LS

as an integral of instantaneous lost sales cost �LS
��=∫ T

t=0 �
Q
�
t � t� dt� The problem we want to solve is the

following:


P� min �
�� = �P
��+�LS
��

s�t� 0≤ �j ≤ T for all j ∈ � �

We derive another expression for �LS
�� within a
subset of the feasible region and develop some prop-
erties of �. Let � be the set of all permutations
on � , or bijective maps from �1� � � � � �� �� to � . Each
� ∈ � corresponds to a sequence of tool purchases,
and the permutation simplex defined by � is PS
�� =
�� ∈ �0�T �� � ��
1� ≤ ��
2� ≤ · · · ≤ ��
�� ���� which corre-
sponds to the set of valid � ’s for that sequence.
Suppose � ∈ PS
�� where � ∈ �. For each r ∈

�1� � � � � �� ��, let �−
r� = ��
r ′� � r ′ < r�. Suppose that
Q�

t = �−
r� for some r . The amount of reduction in
the expected instantaneous lost sales cost � at time t

by adding the tool �
r� to the set of available tools
is denoted by g

�−
r�
�
r� 
t�. Formally we define, for any

Qo ⊆ � and j ∈ �\Qo, gQo

j 
t� = �
Qo� t�−�
Qo ∪ �j�� t��

Note that gQo

j 
t� is the difference, in lost sales cost, of
having the tool set Qo and that of having Qo ∪ �j� at
time t.
Suppose � ∈ PS
��, i.e., � follows the sequence

given by �. Then for fixed t, Q�
t = �j ∈ � � �j ≤ t� can be

expressed as �−
ro�∪��
ro�� for some ro ∈ �1� � � � � �� ��.
Within the permutation simplex PS
��, the expected
lost sales cost �LS is continuous and separable. It
is also differentiable and its partial derivative with
respect to ��
r� is 
#/#��
r���

LS
�� = g
�−
r�
�
r� 
��
r��, in the

interior of PS
��. Furthermore, �LS is continuously
differentiable if each g�

r , r ∈ �1� � � � � �� ��, is continu-
ous with respect to � . Whenever �
r�= j and �−
r�=
Q, we have 
#/#�j��

LS
�� = gQ
j 
�j �� This is a much

stronger separability of the expected lost sales cost
�LS than separability in each permutation simplex. We
generalize the definition of g: For any disjoint sets Qo�

Q ⊆ � of tools, we define gQo

Q 
t� = �
Qo� t�− �
Qo ∪
Q�t�� This quantity corresponds to the marginal ben-
efit of adding the tool set Q to the existing set Qo at
time t. It can be shown gQo

Q1

t�+gQo∪Q1

Q2

t�= gQo

Q1∪Q2

t� if

Qo� Q1� Q2 ⊆ � are disjoint. It is a strong additivity
property of derivatives of �LS that spans many neigh-
boring permutation simplices.
We let hj
t� = 
d/dt�Pj
t� ≤ 0 be the rate of change

in the tool cost at t. By the convexity of the tool cost
Pj , hj
t� is nondecreasing. For Q ∈ � , we set hQ
t� =
∑

j∈Q hj
t�. We remark that within the permutation
simplex PS
�� defined by �, the objective function �

is separable and its partial derivative with respect to
j is 
#/#�j��
�� = h
�j�+g

�−
r�
j 
�j �, provided j = �
r�.
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Suppose at time t, we have a partition QL, Qo�
and QU of �� where QL is the set of tools we have
purchased prior to t and QU is the set of tools we
will purchase after t. Currently, we purchase tools in
Qo at t. If we split Qo, and uniformly slide Q ⊆ Qo

earlier and Qo\Q later, then � changes at the rate
of −�hQ
t�+ g

QL
Q 
t��+ �hQo\Q
t�+ g

QL∪Q
Qo\Q 
t��� Minimiz-

ing this expression is called the cluster-splitting of Qo

given QL and QU .

2. Demand Modeling
As in Roudy et al. (2000), we model the random-
demand vector Dt at time t as a sum of a determin-
istic part and a stochastic part, i.e., Dt = bt +(It�t

*It�t
�

where bt = 
bpt � p ∈�� ∈�� is a deterministic nonneg-
ative vector that is nondecreasing in t; It is a discrete
random variable whose support is a finite set �t such
that P�It = i�=wit for each i ∈�t ; *it = 
*ipt � p ∈�� is a
deterministic nonnegative unit-norm directional vec-
tor in �� ; and (it is a continuous nonnegative random
scalar along *it . Intuitively, the demand Dt is deter-
mined by starting at bt , randomly selecting a direction
by observing It , and moving a random distance (It�t

in the direction *It�t
.

Currently, most models of high-dimensional ran-
dom vectors are either continuous (e.g., multivariable
normal) or discrete (e.g., multinomial). Our demand
model is a hybrid of both: No point in �� has any
nonzero probability mass. The support of Dt is a finite
collection of rays emanating from bt and has mea-
sure zero. It is shown in Roudy et al. (2000) that by a
variance-reduction technique called conditioning, our
demand model can approximate a continuous distri-
bution in � more accurately than the conventional
method of sampling points, provided that the number
of vectors is the same as the number of points.
There is no demand shortfall if the capacity

�m
Q�
t � is sufficient to meet the demand dt , i.e.,∑P

p=1U
m�p�dpt ≤ �t
Q
�
t � for all m = 1� � � � �M� Oth-

erwise, we are unable to meet all demands. The fol-
lowing section outlines a policy we use to allocate
insufficient capacity to product families.

3. Shortfall Allocation
This section explains how we determine the expected
value � of the instantaneous lost sales cost. The lost

sales at time t depend on demands for product fami-
lies at time t, capacities of tool types at time t, and the
allocation of tool capacities to product families. Given
a set Q of tools that are available at time t (which is
determined by �), tool type m’s capacity is given by
�m
Q�. Given the capacity �
Q� = 
�m
Q� � m ∈�� of
all tool types and the realized demand dt = 
dpt � p ∈��

of all product families at time t, we determine both
the production quantity vt = 
vpt � p ∈ �� of product
family p and the allocation xt = 
xmpt �m∈�� p ∈�� of
tool type m’s capacity to p. A capacity allocation policy
is a way of selecting xt and vt .
As in Çakanyildirim et al. (1999) and Roundy et al.

(2000), we assume no finished-goods inventory and
no backorders. In other words, demand at time t can
be satisfied by what is produced at time t only. Thus,
in any capacity allocation policy, production should
not exceed demand, i.e., vpt ≤ dpt for all p ∈�. Produc-
tion v and allocation x must obey the capacity limit
of each tool type:

∑P
p=1 xmpt ≤ �m
Q� for all m ∈� and

t ∈ �0�T �, and U
m�p�vpt ≤ xmpt for all p ∈ � and t ∈
�0�T �.
We conceptually divide the demand into a deter-

ministic portion bt ≥ 0 and a stochastic portion (It�t
·

*It�t
≥ 0. We assume that there is enough capacity to

meet the deterministic part bt of the demand. We may
ensure this assumption by imposing upper bounds on
purchase times � . Because Dt ≥ bt , our allocation pol-
icy meets the deterministic part bt of demand before
allocating resources to the stochastic part.
We use an allocation policy that determines produc-

tion quantities vt , which equalizes the instantaneous
fill rates of stochastic portion of demand at time t

across all products. In the recourse at time t, after the
demand dit = bt+0it*it is realized, this implies that we
select production quantities vt = bt +1*it for some 1 ∈
�0�0it�� Thus, vt also lies on the ray defined by the
starting point bt and the direction *it . The value 1

indicates the magnitude of production along this ray.
It is easy to see that the fill rate of the stochastic part
for product p is 
vpt − bit�/
dipt − bit� = 1/0it , which is
independent of the product family p. If bt = 0� then
this corresponds to the classical fill rate.
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4. Divide-and-Conquer Algorithm
We outline an efficient divide-and-conquer algorithm
to minimize the total cost �. This algorithm finds a
solution that satisfies the first-order necessary con-
dition for the optimality of 
P�—Namely, this solu-
tion has no feasible descent direction. Our algorithm
tracks and modifies clusters C that have the following
properties: (1) C is a subset of the set � of all tools,
and (2) there exists a lower bound lb
C� and an upper
bound ub
C� such that we know there exists a solu-
tion �∗ where lb
C�≤ �∗

j ≤ ub
C� for all j ∈C such that
�∗ satisfies the first-order necessary condition of 
P�.
We note that if lb
C� = ub
C�, then we have found
the desired purchase times �∗

j for all j ∈ C. At the
start of each iteration of the algorithm, we maintain
an ordered collection � of sets, each of which has the
above two properties. We note that � is a partition of
the set � of all tools, and the intervals �lb
C��ub
C��

defined for these clusters are mutually disjoint, except
possibly at endpoints. If C1 and C2 are two members
of � such that C1 precedes C2, then we have ub
C1�≤
lb
C2�.
Here are the steps of the divide-and-conquer algo-

rithm: (0) Initially, set � = ���, lb
��= 0� and ub
��=
T . (1) Choose some 4C ∈ �lb
C��ub
C��, for each C ∈�.
(2) Choose some C ∈ � such that lb
C� < ub
C�. Per-
form cluster-splitting of C at 4C given QL and �\
QL∪
C�, and let S ⊆ C be its optimal solution, i.e., let S

minimize 54C

· � QL� C� �\
QL ∪C��� where QL is the

union of all clusters preceding C in � and S ⊆C. If the
optimal value is nonnegative, set lb
S� = ub
S� = 4C .
Otherwise, replace C with S and S̄ in �, where S pre-
cedes S̄ = C\S. Let lb
S� = lb
C�, ub
S� = 4C , lb
S̄� =
4C
C�� and ub
S̄� = ub
C�. (3) Go to Step 1 unless
lb
C� = ub
C� for all C ∈�.
In general, finding the minimizer of 5t may

not be easy. Using explicit enumeration takes
O
2�Qo �� computational time. Yet, under our model-
ing assumptions, we can minimize 5t efficiently by

constructing a minimum-flow network of O
�� ��� ��
nodes and arcs. The network, similar to one found
in Roundy et al. (2000), exploits the separability
properties of the expected lost sales cost as well as
the order in which tools become bottlenecked along
each demand ray. This divide-and-conquer algo-
rithm resembles the algorithm of Gusfield and Mar-
tel (1992), for the monotone parametric minimum-
cut networks, and the algorithm of Hochbaum
and Queyranne (2000), for the convex cost-closure
problem.

Theorem 1. At each iteration of the algorithm, there
exists some solution �∗ with no descent direction in 
P�

such that �∗
j ∈ �lb
C��ub
C�� where for all j ∈ C and C ∈

�. If the algorithm terminates, we have found such a solu-
tion.

Under some assumptions, our continuous-time
model becomes a minimization of a convex function
and the above algorithm find the globally optimal
solutions.
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