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A CONTINUUM DIFFUSION MODEL FOR VISCOELASTIC MATERIALS

By

Y. Weitsman

5: Mechanics and Materials Center, Civil Engineering Department

Texas A&M University, College Station, Texas 77843-3136

*R Abstract

A model for diffusion in polymers is established from basic principles of

irreversible thermodynamics, employing the methodology of continuum me-

3 chanics. The polymeric materials are considered to respond viscoelastically,

with ageing.

3 It is shown that effects of stress on diffusion and certain anomalies in

the moisture sorption process can be explained by the present model.I
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1. Introduction

The processes of moisture transport and sorption in polymers have been

studied by numerous investigators for more than fifty years. Most of these

studies, which involved experimental, analytical, and materials science

aspects, were conducted by researchers in the fields of physical and polymer

chemistry. These investigations were mostly focused towards applications in

membrane technology and therefore concerned aspects of permeability and

seepage. It is far beyond the scope of the present article to list the many

significant contributions made to this field. References 11) - 191 list some

of the many outstanding review articles on the subject.

During the past fifteen years the transport of moisture in polymers

raised concern and interest in composite materials technology. Moisture plays

a significant role in affecting the mechanical response of fiber-reinforced

polymeric composites and in influencing the behavior of adhesive joints which

are increasingly employed in composite structures. These concerns, which

focus mainly on mechanical effects, produced more than 500 publications on the

subject. A review and sumnary of some of these works is given in references

110] and [11).

Inspite of many overlaps the investigations in the two foregoing

categories reveal distinctions that reflect the disparate scientific

disciplines from which they derive - polymer science in one case and applied

mechanics in the other. It may thus be worthwhile to present an approach to

theory of diffusion that employs the methodology of continuum mechanics and

its well developed constitutive formalism. This approach is especially useful

in the modelling of coupling effects, such as between stress and diffusion, as

detailed in a recent work1 12 1.

Tt should be noted that the most crucial issue associated with diffusing
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substances in polymeric composites is their detrimental effects on structural

strength, integrity and durability. In certain circumstances, diffusing

substances were noted to damage the composites by debonding the fiber/matrix

interfaces. This issue is a topic of current research and its modelling is

hampered by uncertainties regarding the damage mechanisms. Several

investigations concerning moisture induced damage in composites were reviewed

in ref. 111] and an attempt at a continuum-level modelling of the phenomenon

is provided in ref. [131. The issue of damage will not be discussed in the

present paper.

2. Basic Equations

Consider a solid body B occupying a material volume V bounded by a

surface A. Let the solid, of mass density Ps, absorb vapor through its

boundary and let m denote the vapor-mass per unit volume of the solid. Also,

let x be the position of a solid mass particle in the deformed configuration

that corresponds to the place X in the undeformed state, and let f, g and v

denote fluxes of vapor-mass and of heat, and the velocity of the solid

particles, respectively.

In addition, let u and s be the internal energy and entropy densities of

the solid/vapor mixture per unit solid mass, and let oij and T denote the

components of the Cauchy stress due to mechanically applied loads, and

temperature, respectively.

A proper accounting of the state of the solid/vapor mixture, which is a

thermodynamically open system, is obtained by considering each element in

thermodynamic equilibrium with a reservoir containing vapor at pressure p,

density p, and internal energy and entropy densities 6 and i respectively

1141, 115), 1161.

Conservation of the solid and vapor masses gives
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I
0s + ;s ° v = 0(i

I m 0 , f (2)

3 Conservation of energy over B reads

d u dV = i .n.v i dA - f qinidA
V A .J1 A

- r P-- nidA - i fni dA (3)
IA

The third integral on the right side of (3) expresses the mechanical

I power due to vapor flux, observing that fi/o corresponds to vapor velocity.

The last integral in (3) expresses the rate of vapor-borne energy.

I The entropy inequality reads

d Ps s dV -A -(qi/T)ni dA - A f.n.dA (4)

VA A

3 Where the last integral in (4) expresses the rate of vapor-borne entropy.

Application of Green's theorem to (3) and (4), and employment of (2),

5 yields[121

I ISu Oij vij - - h'if + h (5)

3and

O T s_ -qi,i + (qi/T)gi - T i .f. + T s i (6)1 1 ,1 1

where h (p/ ) + 6 is the enthalpy of the vapor in the hypothetical reservoir
I and g i = T i"

Elimination of qi,i between (5) and (6) yields the following expression

for the "reduced entropy inequality"1
12 1

I
I
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- so - Osos T - ij ij - (qi/T)gi + A - fil i gifi - 0 (7)

In (7) , = u-Ts - , s ijij is the Gibbs free energy and h-Ts is

the chemical potential of the vapor in the hypothetical reservoir. In eqn.

(7) oso denotes the initial mass density of the solid and infinitesimal

deformation has been assumed, whereby Eij << 1.

3. Aqeing Viscoelastic Response With Moisture.

The viscoelastic behavior of high polymers has been associated with the

various degrees of freedom afforded by the motions of the long chain molecules

!171, 1181, 1191 The normal modes of these motions can be represented by N

scalar-valued internal state variables Ir (r = 1, ... N). This

representation motivated subsequent researchers j20 1-124 l to derive a theory of

viscoelasticity from fundamental concepts of irreversible thermodynamics, with

irreversibility stemming from the foregoing variables yr through "growth

laws" that correspond to viscous resistance.

The physical ageing of polymers is generally ascribed (241  to the

introduction of a "free volume" into those materials upon their cooling across

the glass transition temperature Tg. The free volume is a non-equilibrium

thermodynamic internal state variable, which decays spontaneously with the

passage of time and influences the rate of all time-dependent processes within

the polymer.

Consider therefore

,, = €(pij , m, T, r' vf) (8)

where vf denotes the non-dimensional free-volume fraction.

Since eqn. (7) cannot be violated by any process, the methodology of

continuum mechanics126 } yields the following constitutive equations
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ij = - "So 3 ..

=(9)

3;

-S = -;--m

and

-Rr 4r - R If - (qi/T)gi gifi 0 (10)

In eqn. (10), the affinities R r and R are defined by

R P 3; and R = P s avf

Rr S Yso a n f

The aging process is associated with the spontaneous collapse of the free

volume vf 125),[271 from an initial value Vfo, which is created by the cooling

of a polymer across is glass transition temperature T down to a temperature

To. In addition, the subjection of a polymer externally to oij, m, or

AT = T-To, will trigger an irreversible process which will cause the internal
e

variables r to drift spontaneously toward their equilibrium values yr The

two abovementioned processes are assumed independent of each other

1251,127]. Consequently, while both ,r and vf in eqn. (10) denote derivatives

with respect to time, the time-lapse t for Ir is not necessarily equal to the

time-span T for vf.

Assume r' vf << 1. A Taylor expansion about the initial state

(Yr= 0, vf = Vfo) then reads

0 P + $ 1 Vfo)2
so so o r r vVf- vfo) + 2 'rq~ryq + 2 ovv(vf j

+ H.O.T.] (12)

In eqn. (12) ; = 0o(Cij, m,T, 0, Vfo) and Pr' Ov' rq' 4vv denote partial
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derivatives at yr = 0, vf = Vfo , all of which depend on oij, m, and T.

I According to the extremum principles of thermodynamics1281 o attains its
e e Thrfra

minimum at the equilibrium values y = r and vf = vf Therefore, at

equilibrium we have

0- 0, and
ayr av f

1 r rs 62 v (6vf) > 0 for all 6yr and 6Vf.r e 0whave

Expanding o about yr and v =0wehave

so so =e ( 1 0 e - e e) 1 e 2

o o e r- Yr) (Yq- Y) + 2 vv v f + H.O.T. ] (13)

In view of the assumption that yr' 1r' vf, Vfo << 1, expansions (12) and

3 (13) are equal, implying in particular that

i e = e
(vv =  vv , rq =rq "

Therefore, pvv > 0 and 0rq are components of a symmetric, positive

definite matrix.

3 Employing the familiar assumption of viscous-like resistance' 17 1-1 23 ] let

dvfd

R= -b(m, T, Vf) d (14)

and

Rr rq(m T, vf) -bt (15)

By Onsager's principle brq = bqr and, in view of the dissipation

inequality (10), b>O and brq are components of a semi positive definite,

3 symetric matrix. As noted earlier, the time T and t in eqns. (14) and (15)

are distinct because the quench-time T usually occurs earlier than the

3 exposure-time t, namely t = T-te .

Equations (11), (13) and (14) give

U
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e d vf

sovv f+b--0 (16)

whereby

V / fo e (17)

with dc = d:/b and -1 = e

Equations (11), (12) and (15) yield

oso~rq~q + brq q -= sor (18)

Since ;rq and brq are symmetric, positive definite matrices* they can be

diagonalized simultaneously 1291 and eqn. (18) is expressible in the form

0

+pB = -s (p = 1,...N. no sum on p) (19)

Note that brq, and therefore also Bp, depend on the quency-time , as well

as on the exposure-time t through their dependence on m, T and vf in eqn.

(15).

Following Schapery [221-[241 assume that all 4rq have a common dependence

on m, and T namely ; = aG ( ,mT)p 0with constant q and, similarly,ij, rq G(ij rq rq

brq = a(m,T,vf) b 0 . These common "shift-factors" aG and a carry over to

e
eqn. (19) whose solution, subject to the conditions yr (0) = 0, 1 r() = Y r

reads

A 

Pp = -Kp (-e P) (20)

*The case of a semi-positive definite t is omitted here for the sake of

brevity. This case corresponds to a vricoelastic fluid, as modelled by a
free dash pot attached to Kelvin or Maxwell elements.
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where

Kp p P BP (no sum on p, p = 1,2,...N) (21)

Gpa G so p
and

aG dt

d a (22)

Aiming at linear stress-strain behavior, consider oij/E << 1 where E

denotes a characteristic modulus. To retain linearity assume that all

retardation times do not depend on oij. Hence, in eqns. (17) and (20),

IV = TV (mTvf) and Tp = Tp(m,T,vf) p = I,.. .N. Furthermore, to establish

the linear stress-strain relations, consider the expansion in eqn. (12)

truncated after three-terms, which, resorting to the diagonalized form, reads

A

SsoD = 0so[¢o + sr' r + ' v(Vf - Vfo)J (23)

Eqn. (9)i gives

0~ r ^A v
ii 3;r Ar + ; (Vf - Vfo)I (24)so a-Pso + 3aoij ar fij

The specific forms which follow from eqn. (24) depend on the material

symmetry at hand. Considering isotropy we have

A A *
P(jij m, T, Ir' vf) 0(okk cijcij, m, T, Yr' Vf)

which, for linear behavior gives the well known forms

sol o = Ao0(m,T) - Lonm,T)Okk - Mo(m,T)Okk ai - No(m,T)akzoik

10so r A r(m,T) + Lr(im,T)Okk + Mr (m,T)Okkao + Nr(m,T)akioki (25)

Ocf'v = Av (m,T) + LVn(m,T)Okk + Mv(m,T)akkai + Nv(m,T)Okiaik

It is advantageous to express Lo, Lr and Lv in terms of expansional

coefficients a and a, namely

*The stress invariant lijl is inadmissible for linear behavior.

1!
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L(m,T) = a(m,T)T + 6(m,T)m (26)

Equations (24) and (25) then yield

A A \! A A A

i: = [ao- arIr - Cv(vf - vfo)]LT 6ij + is 0- 8ryr - Bv(Vf- vfo)Im 6ij

A A+2M0 - M rfr - Mv(V f - Vfo)J'kk 6ij + 2[N O- N rYr - Nv(V f - v fo)]Oij (27)

It can be noted from eqns. (20) and (21) that yp depends on cij through

the presence of -p in Kp. However, for sufficiently small stresses Kp

themselves can be expanded according to (25), whereby upon collecting like-

powers in aij, the form of the strain-stress relationship given in eqn. (27)

A
remains valid with stress-independent )

The stress strain relations (27) are of the familiar form employed in

linear viscoelasticity, except that the retardation spectra incorporate now

ageing effects and all instantaneous compliances age with time. Recalling eqn

(20), for a discrete spectrum of retardation-times Tr expressions (27) read

Eij = (co 0 C 1(1-e v) + E ar(l-e r)].T
-4/: r - /Tr

+ It + 6I(1-e v) + L 8r (le )Im
1-e v r rr/ 6

+ [B 0 + B1 (le ) + E B (-e Okk 6ij
- r - / r)+ Ij°0 + Jl1(l-e v)+ z J r (-e )10ij (28)

r

In eqn. (28), the quantities a, a, B and J depend on m and T, the

"reduced times" { and c both depend on m, T and the ageing time r. However,

in contrast to 4, the reduced time , is measured from the time of application

of oij, m, and T. For fluctuating environments and stresses, expression (28)

takes the form of convolution integrals. The case of a continuous spectrum of

retardation times Tr can be represented in the familiar manner by means of

retardation integrals.
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I
I 4. Stress Assisted Diffusion in Ageing Viscoelastic Media

Employing eqns. (9)3, (23), (25) and (26) we obtain

aA 0 A r(m,T) aA v(m,T)
= am -r am (Vf- Vfo )

am- T am r a T (vf- Vfo )]T

+() (% r) + a(mB V)
am 3m Ir m (v f- V fo)lokk

I 0 am Mr am v

+ [- + -T + T (vVo ako
No VaM N5am am r am f Vf) 0kk U

aN aN 6 N
+ - +  + -m (v f)O k (29)3am am r am f Vf) Zkioik

The boundary conditions for moisture transport are

-(xt) = 'A(x',t) x on boundary (30)

where wA represents the chemical potential of the ambient vapor.

Assume for simplicity that the expansional coefficients a and o do not vary

3 with m. In this case eqns. (29) and (30), together with eqn. (20), yield

3A -lr -/l

am A + I Wr(m,T) (1-e + W(m,T) (1-e )
rr 

-lv 

I
+ 1-8O + 2r (-e ) + v(l-ekl r
+ 1-Y(m,T) + i Yr (m,T) (1-e r) + Yv(1-e v)Okk

r

+ j-Z(m,T) + L Z r(m,T) (1-e r + Zv( - )Okk (31)

r

Eqn. (31) illuminates the effects of viscoelastic retardation and ageing,

as well as of stress, on the diffusion process. In the absence of those

effects the boundary condition, which reads aAo/am = "A' translates into the

familiar statement m(x,t) = mo(t), x on boundary and m. prescribed. In

contrast, eqn. (31) states that the equilibrium boundary value is approached1
3
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gradually with time (even for exposure to constant ambient vapor pressure), it

is affected by age, and depends quadratically on the applied stress.

Consider now the diffusion coefficient D. Since this coefficient

reflects micro-level phenomena, its form cannot be derived from a continuum

model*. Molecular-level considerations of diffusion in solids 130 1  and

fluids1 31 1 suggest that

o - Vacancy in host material e Agitation energy of diffusing substance

In the present case it is reasonable to expect that the vacancy would

depend mostly on vf and secondarily on m,T and oij (through their influence on

swelling strains). On the other hand, the agitation energy would depend

mostly on T.

Accordingly

0~ 01t dcokk
Som,T,vf(c(T)), F((t) - d) d-j • (exp(-E/RT)) (32)

0

In the absence of a satisfactory molecular theory for the glassy state at

the present time it appears expedient to base the form of D on empirical

evidence.

In isotropic materials, the flux of moisture at fixed oij and T is taken

to be**

f -D (33)
1ax.i 1

Consequently, eqn. (2) yields the field equation

*The principle of equi-presence suggests that 0 = D(oijm,T,YrVf) but
provides no further insight.

*When m,T and ij vary in space couplings occur between the fluxes of

moisture and of temperature and both depend on the gradients of p , 2

and of the invariants of stress
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am = a (D a) (34)
at ax.i ax.

In view of eqns. (29) and (32), relations (33) and (34) are extremely

complicated even at T = T and a = 1i9. the complexity is due to the

presenre of m in D and vf (through E(T), and 4(T) in the compliances listed in

eq. (29)). However, inspite of the cumbersome details and the paucity in

information several features of the form of equation (34) emerge.

Accordingly, the diffusion equation:

(1) Contains non-linear terms in the moisture gradient am/ax.

(2) Follows a time-retardation process akin to mechanical viscoelastic response.

(3) Varies non-linearly with external stresses o ij.

(4) Exhibits an ageing behavior characteristic of glassy polymers.

5. Two-Phase Diffusion

The non-Fickean weight uptake of water vapor by epoxy resins can be

described by a two-phase diffusion model. This model assumes that the vapor

within the polymer divides into two portions - a bound phase mc and a mobile

phase ma. Details are given in refs. 1331, 1341, where the resin's

viscoelasticity has been discarded.

It is interesting to note that the above model can be derived in the

context of the thermodynamic theory developed in this work. In this case, let

Sso¢ : 1Soo (aij, ma. mc* T, yr' vf) (35)

In analogy with sections 2-4 we now have

a =so ama ' so amc

Equation (29) and the boundary condition (31) pertain now to the chemical
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potential of the mobile phase h a, so that all partial derivatives in those

equations should be taken with respect to ma instead of m.

Similarly, the flux-gradient relation now involves the mobile phase only,

so that eqn. (33) is replaced by

f = -D -- (36)
1 3X1

Since the balance equation (2) remains valid, equation (34) is replaced

now by

a ) 3 ( 0 a) (37)
A ax.i ax.i

The system of equations is supplemented by the phase interaction

relation133),1341

Pmc - Qma (38)

where P and Q are empirical factors.

The dependence of field equations and boundary conditions on retardation-

times, physical ageing and stress is retained for the case of two-phase

diffusion and is expressible in the same forms as presented in section 4.

6. Experimental Observations.

The present constitutive model can be employed to explain certain

experimental observations on diffusion in polymers, as shown in Figs. 1-9

below.

Fig. I exhibits the uptake of water vapor, from an ambient environment

maintained at a fixed level of 97% R.H., by unidirectionally reinforced

graphite/epoxy coupons. The per-cent weight gain is plotted vs. ti. Note

the discrepancy between data and predictions based upon the linear Fickean

model.
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On the other hand, when the retardation process cl the epoxy is taken in

consideration by means of a boundary condition of the form

m (boundary) = ma + mb (1-e ) (39)

it is possible to obtain an excellent fit between data and theory. In eqn.

(39) ma corresponds to the instantaneous response and mb is the contribution

of polymeric retardation processes. The corresponding prediction, with ma =

1.2%, mb = 0.467X, and -1 = 2.63xi0 6 min., is drawn with a solid line in Fig.

l.* It is worth noting that the above value of i falls roughly in the middle

of the spectrum of mechanical retardation-times for epoxy.

Another form of history-dependence of moisture sorption in epoxy is

suggested in Fig. 21361. According to those data there exists a distinct

difference in the moisture up-take of "as prepared" samples and the re-

absorption by saturated-and-dried samples. This behavior can be attributed to

the possibility that re-absorption may have occurred before the complete

recovery of the retardation processes caused by the earlier exposure.

It is possible to match data of the type shown in Figure 2 with the

boundary condition expressed in eqn. (39). The incomplete viscoelastic

recovery at the onset of the second exposure to moisture can be introduced by

an enhanced value of ma, compensated by a reduced value of mb, maintaining ma

+ mb = m. = constant. Alternately, the incomplete viscoelastic recovery may

be expressed by an increased value of T1. The trends are exhibited in Figs. 3

and 4 respectively.

Effects of stress on diffusion are shown in Figs. 5-8137) - 1391. Fig. 5

shows the per-cent weight gain of water vapor, maintained at 97% R.H., by

*An analytic solution for boundary condition (39) is available in Ref. 1351.
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epoxy coupons that were subjected to various levels of uniaxial tensile

stress. The weight-gain is plotted vs. time and data are compared against

predictions of the linear Fickean law, showing discrepancies that increase

with stress. The maximal level of moisture up-take reached during the tests

(which lasted about seven weeks) are plotted vs. stress in Fig. 6. Although

the above maximal levels of moisture uptake are not the equilibrium saturation

levels, Fig. 6 shows a trend which suggests a quadratic relation between

saturation levels and stress, as suggested in section 4.

In Figs. 5 and 6 the ultimate tensile stress was ault. = 5.17 MPa.

The dependence of water absorption by polymers on compressive stress

levels was reported in ref. (381. In particular, the sorption of distilled

water by epoxy coupons subjected to uniaxial compression is shown in Fig. 7.

Inspite of the relatively short duration of these tests, which were terminated

much below saturation, they indicate a non-linear relationship between stress

and saturation levels.

A similar, though less direct, non-linear relation between stress and

saturation levels is inferred from Fig. 8.1391 This figure shows the reduced

permeability associated with the flow of oxygen gas across a membrane made of

extruded PET, when the membrane is subjected to various levels of uniaxial and

biaxial tensile stresses.

A more intricate kind of sorption behavior is shown in Fig. 9136 1. Since

earlier experiments have shown that equilibrium solubility decrease with

temperaturel3 6 1, one might expect to observe water desorption when a specimen

equilibrated at 750C is transferred to a water bath at 230C. However, Fig. 9

shows that the opposite takes place. A similar phenomenon was also observed

in graphite/epoxy composites'4 01 .

One possible explanation of this behavior, in addition to those suggested
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in [361, is that the slow, decelerating collapse of the free volume (initiated

when the sample was c,'eated) is reactivated in the saturated epoxy when it is

cooled from 75-C down to 23'C. Indeed, it was indicated in 1361, that for

saturated epoxy Tg is lowered to 108 3C. According to eqns. (29) and (30) the

rejuvination of the process of free volume collapse would indeed be reflected

in an increased saturation level.

6. Concluding Remarks

In this article it was shown that the constitutive formalism of continuum

mechanics can be employed to model several aspects of the process of diffusion

in polymers. Certain micro-level characteristics of the polymer structure,

such as free volume and motion degrees-of-freedom, were incorporated as

internal state variables. The constitutive formalism led to a linear

viscoelastic model with ageing and resulted in diffusion relations that were

coupled with stress and with the time-dependent material response.

On the other hand, it was shown that the continuum mechanics formalism

provides only scant information about material parameters such as the

diffusion coefficient. This shortcoming is attributable to the fact that

continuum mechanics, which aims at the modelling of macro-level phenomena, is

unsuitable for describing inherently micro-level aspects. This conclusion

indicates that an interdisciplinary effort, combining continuum mechanics and

polymer science, is required for a comprehensive formulation of the diffusion

process.
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Figure Titles

Fig. 1: Moisture weight gain (%) in a 12-ply unidirectional AS4/3502

graphite/epoxy laminate under exposure to constant ambient relative

humidity of 97X, Vs. V'tTm. Temperature = 73°C. Data (dots),

predictions of Fick's law (dashed line), and of eqn. (39) (solid

line). Values of ma, mb and T, given in text.

Fig. 2: Solubility S (in %) Vs. non-dimensional t of epoxy samples

immersed in water at 23'C. Open circles - samples as prepared, solid

circles - samples previously swollen and dried. After Apicella et.

al., reference 1361.

Fig. 3: Moisture weight gain (%) Vs.Vt-me for test conditions as in Fig. 1

and predictions according to eqn. (39). ma and mb as in text (dashed

line) and Ma = 1.25 ma m = mb - 0.2 5 ma (solid line). In both

cases -. is same as in text.

Fig. 4: Moisture weight gain(%)Vs. Vtie for test conditions as in Fig. 1

and predictions according to eqn. (39). TI as in text (solid line)

and I = 1/2 (dashed line). In both cases ma and mb are same as in

text.

Fig. 5: Average values of moisture weight gains (%) Vs.VTtm of 3502 epoxy

coupons subjected to various stress levels under constant relative

humidity of 97% and at temperature of 400 C. Predictions of Fick's

law are drawn by dashed lines. After Henson and Weitsman, reference

1371.

Fig. 6: Maximal levels of moisture weight gain (%) attained in 3502 epoxy

samples after five weeks of exposure to humidity under various stress

levels. Conditions same as in Fig. 5. After Henson and Weitsman,

reference 137).
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Fig. 7: Relative moisture absorption (%) in epoxy coupons Vs. time.

Samples immersed in distilled water at 5'C under various levels of

compressive stress. After Yaniv and Ishai, reference 138).

Fig. 8: Reduced 02 permeability in extruded PET films Vs. stress. After

Seymour and Weinhold, reference 139).

Fig. 9: Sulubility S (in %) Vs. non-dimensional time of epoxy samples

immersed in water. Regime "A" - sorption behavior at 75°C. Regime

"B" - increased sorption in a sample equilibrated at 75°C, then

cooled to 23-C. After Apicella et. al., reference 1361.
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