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Abstract

The decrease in apparent relative viscosity that occurs when blood is made to flow through

a tube whose diameter is less than about 0.3 mm is a well-known and documented

phenomenon in physiology, known as the Fåhræus-Lindqvist effect. However, since the

historical work of Fåhræus and Lindqvist (Amer. J. Physiol. 96(3): pp. 562–568, 1931),

the underlying physical mechanism has remained enigmatic. A widely accepted qualita-

tive explanation was provided by Haynes (Amer. J. Physiol. 198, pp. 1193–1200, 1960)

according to which blood flows in microvessels with a core-annulus structure, where the

erythrocytes concentrate within a central core surrounded by a plasma layer. Although sus-

tained by observations, this conjecture lacks a rigorous deduction from the basic principles

of continuum dynamics. Moreover, relations aimed to reproduce the blood apparent rela-

tive viscosity, extensively used in micro-circulation, are all empirical and not derived from

the analysis of the fluid mechanical phenomena involved. In this paper, we apply the recent

results illustrated in Guadagni and Farina (Int. J. Nonlinear Mech. 126, p. 103587, 2020),

with the purpose of showing that Haynes’ conjecture, slightly corrected to make it more real-

istic, can be proved and can be used to reach a sound explanation of the Fåhræus-Lindqvist

effect based on continuum mechanics. We propose a theoretical model for the blood appar-

ent relative viscosity which is validated by matching not only the original experimental data

reported by Fåhræus and Lindqvist (Amer. J. Physiol. 96(3), pp. 562–568, 1931), but also

those provided by several subsequent authors.
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1 Introduction

The Fåhræus-Lindqvist (FL) effect is a phenomenon that occurs in blood vessels less than

0.3 mm in diameter and is named after the two Swedish scientists Robin Fåhræus and

Johann Torsten Lindqvist [1]. It consists in a progressive reduction of the apparent relative

viscosity of blood as the vessel radius decreases. Actually, such a phenomenon was almost

simultaneously reported by Martini, Pierach, and Scheryer [2] and further investigated by

Pries et al. [3], and by Secomb and Pries [4].

In experiments performed in glass tubes, Fåhræus and Lindqvist showed that the apparent

relative viscosity of blood remains practically constant when the vessel diameter is larger

than about 0.3 mm, but it keeps decreasing for lower and lower diameters. Therefore, 90

years ago, they concluded that [1, p. 568] “the viscosity of the blood is not a constant

quantity, but dependent of the diameter of the tube.”

It has long been understood that this phenomenon originates from the non-uniform dis-

tribution of red blood cells (RBCs) over the cross-section of the tube. Indeed, a qualitative

explanation, which received a large consensus, is the one proposed by Haynes [5] in the

1960s. According to Haynes’ interpretation, the distribution of RBCs on the vessel cross

section changes when the blood flows in vessels with a sufficiently small diameter. More

precisely, RBCs migrate towards the central part of the vessel (thus moving faster), while a

less viscous layer of plasma (ideally free of RBCs) forms close to the walls. Hence, when

blood flows in “small” vessels, the RBC volume fraction (hematocrit φ) varies over the cross

section [6, 7]. For more details on Haynes’ theory and subsequent improvements, we refer

the readers to Fournier [8], Chebbi [9, 10], Sharan and Popel [11], and Kumar and Graham

[12]. Other numerous relevant references are listed in various papers (see, e.g., [13–16]) and

books [17, 18].

Starting from the qualitative explanation of the FL effect by Haynes by means of a core-

annulus flow structure, there was a considerable amount of research in this area. Indeed,

it is known that deformable particles at a small Reynolds number migrate away from the

vessel walls due to hydrodynamic interactions with the wall (see, e.g., [7, 19–22]). This

phenomenon, also referred to as lift force, is responsible for the development of the core-

annulus structure.

In this study, starting from a continuum mechanics approach, we show that the Haynes’

conjecture has, indeed, a rigorous physical base and it provides the starting point for a fluid

dynamic interpretation of the FL effect. The key point is to treat blood, i.e., the plasma-

RBC suspension, as an inhomogeneous viscous fluid whose apparent viscosity, denoted as1

η∗, depends on the hematocrit φ (an aspect extensively treated in the literature) as well as

on other quantities (e.g., shear rates). When φ is uniform (or almost uniform) over the flow

domain, we recover the constitutive response of a homogeneous fluid, but when φ varies on

the vessel cross section, such an inhomogeneity has a significant influence on the viscous

stress, while it does not affect blood density ρ∗ (plasma and RBCs have practically the same

density). For instance, Anand and Rajagopal [23] have shown how inhomogeneous fluids

1Starred quantities are dimensional.
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with viscosity that varies mildly but smoothly around a mean value may lead to dramatic

differences in the rheological response.

According to the proposed approach, we treat the RBC plasma suspension as an inhomo-

geneous fluid. Of course, our theory is limited to those vessels whose diameter is sufficiently

larger than the RBC dimensions. Indeed, when the vessel cross section becomes comparable

with RBC maximum size, blood can hardly be considered a fluid amenable to the techniques

of continuum mechanics [17, 24, 25]. Consequently, our model is not aimed at describ-

ing the so-called inverse FL effect, that is the increase of blood apparent viscosity in tubes

whose cross section is comparable with RBC maximum size. Moreover, in capillary vessels,

RBCs dispose themselves in a way such as to exploit the hydraulic pressure gradient, like a

parachute [26]. In more detail, we model the hematocrit evolution by an advection equation

in which any diffusive flux is ignored. Indeed, considering non-colloidal suspensions (the

characteristic diameter of a RBC is sufficiently large for Brownian effects to be negligible)

in the framework of mixtures theory, [27–29], the solid-fluid interaction typically depends

on the difference between the phase velocities. However, writing the equations in a dimen-

sionless form, the Darcy’s number Da (i.e., the square of the ratio between the macroscopic

length scale and the particle dimension) appears in front of the solid-fluid interaction term.

Since Da can become quite large, expanding the variables in terms of 1/Da, we find, at the

leading order, that the two phases have the same velocity. Hence, if we limit ourselves to

vessels whose cross section is sufficiently larger than the RBC diameter, we can assert with

reasonable confidence that plasma and RBCs have practically the same velocity and the

suspension can be considered a single non-homogeneous fluid (see, e.g., [30, 31]). Blood

dynamics in such vessels is thus governed by the linear momentum balance equation, con-

tinuity equation, and the RBC conservation law, which simply reduces to the vanishing of

the hematocrit material derivative.
Other approaches are possible for describing the evolution of φ. For instance, some

authors (see, e.g., [10, 32]) considered the blood as a mono-modal suspension of plasma

and RBCs, in which a diffusive processes may occur. According to such an approach, the

net flux of particles consists of two contributions: a diffusive flux driven by the gradient

of the shear rate and a diffusive flux due to the concentration gradient (with a diffusivity

proportional to the local shear rate) [33, 34]. This model was used to predict the formation

of a region close to the wall relatively poor in particles. By a suitable scaling approach,

Leighton and Acrivos [33] and Pranay et al. [35] suggested that the flux of RBCs be driven

by a concentration gradient with diffusivity proportional, in particular, to the shear rate.

This approach, anyway, leads to a serious drawback when simple geometries and flow con-

ditions are considered (such as steady Couette or Poiseuille motions). It turns out, indeed,

that the hematocrit φ should be cusp-shaped at the centerline, a behavior never observed

in real experiments. These difficulties can be overcome by means of a more sophisticated

strategy as that recently developed by Monsorno et al. [36, 37], Lecampion and Garagash

[38], Boyer et al. [39], and Ahnert et al. [40], where blood is treated as mixture. However,

the related mathematical problem to solve shows a high degree of complexity mainly due to

the boundary conditions to select.

In a recent paper by Ascolese et al. [13], Haynes’ conjecture was investigated on the

basis of a mathematical model with the aim of clarifying the real influence of the FL effect

on blood circulation. It was concluded that its advantage is not a reduction of power dis-

sipation during the flow (as originally hypothesized by Haynes and several other authors

since then), but, rather, a significant increase of blood discharge, thus largely improving tis-

sues perfusion. In [13], it was also proved that power dissipation actually increases as the

discharge increases.
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In the present paper, we exploit the model by Ascolese et al. [13], but with a more basic

purpose, namely to show that the FL effect has a precise fluid dynamical interpretation.

Actually, our model, focussing on the flow in a tube, distinguishes two regions: an outer

layer characterized by a “low” hematocrit and the complementary axisymmetric region to

which most RBCs are segregated, where the hematocrit is constant and uniform. Such an

approach differs slightly from the classical Haynes’ scheme in which the outer layer is cell

free. Actually, there are many physical reasons for that and this modification allows improv-

ing the fit with experimental data. The two regions are separated by an interface, whose

radius, denoted as s∗, is a function of the longitudinal coordinate x∗ along the vessel. From

the point of view of continuum mechanics, s∗ is a material surface, i.e., a mathematical ide-

alization. On the other hand, some modest diffusion, here neglected, will always be present,

and this somehow makes s∗ not a net interface but rather a transitional layer.

Our analysis relies on the recent results by Guadagni and Farina [41], showing that the

particle movement towards the duct axis can be explained as an entrance effect (i.e., in terms

of the radial velocity arising in the entrance region of the vessel) and that the flow reaches

very soon a core-annulus structure as the one considered here.
A key step is to define the outer layer thickness at the very entrance of the vessel, i.e.,

the difference between the vessel radius R∗ and s∗|x∗=0 = s∗
0 . Though numerous drift

phenomena, linked to the collective RBCs dynamics taking place at the very entrance of the

vessel, contribute to forming the marginal layer, in the literature, this is mainly attributed

to the so-called “size exclusion effect” [7, 18, 42], i.e., most of the particles are excluded

from a zone near the wall as a result of their finite “size.” Concerning RBCs, which have a

discoid shape, such a size should not exceed the discoid maximal half thickness, in view of

the fact that RBCs enter the vessel in a configuration in which they offer the least surface

in the flow direction. Thus, denoting by a∗ the size of this layer, i.e., a∗ = R∗ − s∗
0 , it is

reasonable to guess that a∗ is going to depend on the geometrical properties of the RBCs

in the considered sample, thus a quantity whose value cannot be given a priori with great

accuracy. We then relate s∗
0 to the asymptotic value to which s∗ stabilizes (denoted as s∗

∞)

and, applying the machinery of Ascolese et al. [13], we obtain the global blood apparent

viscosity as a function of R∗, a∗ and of the central core viscosity which, in turn, depends

on φ. The result fits the original experimental curves by Fåhræus and Lindqvist [1], thus

providing an explanation of the FL effect just based on the basic principles of the dynamics

of suspensions. We also consider other series of data examined in the relevant literature, i.e.,

the data by Kümin [43] and by Zilow and Linderkamp [44]. We however remark that our

model, besides providing a theoretical justification of the FL effect, is also able to reproduce

adequately the curves by Pries et al. [45] and by Secomb [4]. It is important to emphasize

that these curves are based upon empirical formulas and have been obtained by fitting a large

set of experimental data available in the literature, not upon the principle of fluid dynamics.

Of course, the model is obviously simplified since we have disregarded phenomena such

as the RBC elastic properties [20, 46], the interaction between RBCs and the vessel endothe-

lium (see, e.g., [47, 48]), and the viscoelastic properties of the plasma [49], which may play

a role in the RBC collective dynamics.

The plan of the paper is as follows. In Section 2, we set down the basic equations and

describe the mathematical model. In Section 3, we compare the downstream marginal layer

thickness, i.e., R∗ − s∗
∞, with the experimental data by Maeda et al. [50] and with those of

Kim et al. [51]. In Section 4, we consider the classical empirical formulas by Pries et al.

[45] and by Secomb [4] and compare our theoretical model with them. Sections 5 and 6 are

devoted to the comparison with the experimental data by Fåhræus and Lindqvist and other

authors. Concluding remarks are reported in the last section.
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2 Themathematical model

We consider a mechanically incompressible stationary laminar flow in a cylindrical vessel

of radius R∗ and diameter D∗ = 2R∗. We denote by x∗, r∗ the longitudinal and radial

coordinates, respectively, and by v
∗ = v∗

ex +u∗
er , the velocity field. In particular, the inlet

discharge Q∗ is prescribed and we set v
∗|x∗=0 = V ∗

ex , with V ∗ = Q∗/πR∗2 .

We model the blood as a solid-fluid mixture, whose components (RBCs and plasma)

are incompressible in their pure states and have the same velocity and density. Thus, the

mixture can be treated as a single inhomogeneous mechanically incompressible fluid whose

dynamical state is specified by three dependent variables: hematocrit φ (volume fraction

occupied by RBCs), velocity v
∗, and pressure p∗. Hence, in a general 3D context, the flow

is governed by these equations:

∂φ

∂t∗
+ ∇∗ ·

(

v
∗φ

)

= 0, (1)

∇∗ · v
∗ = 0, (2)

ρ∗

(

∂v
∗

∂t∗
+

(

v
∗ · ∇∗

)

v
∗

)

= −∇∗p∗ + ∇∗ · T∗, (3)

where ρ∗ is the blood density (constant and uniform), and T
∗ is the non-spherical part of

the Cauchy stress tensor whose constitutive equation is

T
∗ = η∗

(

∇∗
v

∗ + ∇∗
v

∗ T
)

, (4)

with η∗ viscosity of the mixture (mainly depending on both hematocrit and shear rate).

Working in the context of mixture theory, (1) is the RBC conservation law which, when

combined with (2), can also be written as

∂φ

∂t∗
+ v

∗ · ∇∗φ = 0,

i.e., the material derivative of φ equal to 0. We are, indeed, assuming that plasma and RBCs

have the same velocity, namely that the RBC diffusive velocity with respect to the mixture is

negligible (see [27], Sect. 1.2). Equation (2) expresses the mass conservation for the mixture

as a whole or, since plasma and RBCs are incompressible in their pure state, the volume

additivity constraint (see [29], Sect. 2.8). Finally, (3) is the momentum balance equation for

the mixture as a whole (treated as an inhomogeneous fluid), where body forces have been

neglected. The model (1)–(3) is not complete because it contains an undetermined quantity,

namely T
∗. The structure of T∗ is given by the constitutive law (4), which satisfies both

the frame-indifference requirement and the entropy inequality. Concerning blood viscosity,

we set η∗ = η∗
pη, where η∗

p is the plasma viscosity and η > 1, dimensionless, is usually

referred to as the relative viscosity.

According to Haynes’ marginal theory [5] and following the same approach of [41] and

[13], most RBCs are confined within a streamtube, also known as central core, whose radius

s∗ (introduced earlier) evolves longitudinally, i.e., s∗ = s∗ (x∗). Next, still following [13]

and [41], we consider the step-shaped profile for φ, i.e., φ = φc within the inner core and

φ = φA in the outer layer. In particular, φA is significantly smaller than φc and both φc,

φA are uniform in space. However, in our approach, we do not make use of the hematocrit

values, but we rather refer to the viscosities of the two domains.

The central core shape is characterized by its radius s∗
0 at x∗ = 0 (an issue that we

will discuss in the detail in the sequel) and by the peculiar evolution in space of s∗ caused

by the curvature of the flow lines. Indeed, in [41], the authors show that in the entrance
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region the flow has a radial component (rapidly vanishing downstream) which, by shifting

the particles towards the vessel axis, increases the thickness of the outer layer. Thus, the

central core radius decreases from s∗
0 to an asymptotic limit, denoted by s∗

∞, which, anyway,

is reached relatively close to the inlet. Moreover, also the velocity field converges quickly

to a pure axial flow, i.e., to v
∗
∞ = v∗

∞ex . In this connection, we remark that some authors

assume that s∗ is constant all over the whole length of the vessel and that the velocity field

has only the longitudinal component [42]. Indeed, as shown by Guadagni and Farina in

[41] in the framework of the Prandtl boundary layer theory [52], deriving the actual shape

of the s∗ interface (schematically depicted in Fig. 1) and the flow radial and longitudinal

components is, by far, not trivial. We also remark that in [41] a different geometrical setting

was considered (a flow between two parallel plates). However, for our purposes, we are not

going to use the actual shape of the interface, but just the fact that it stabilizes to the limit

s∗
∞, and this can be borrowed from the quoted paper.

We set

η∗ =

⎧

⎨

⎩

η∗
pηc, 0 ≤ r∗ ≤ s∗,

η∗
pηA, s∗ ≤ r∗ ≤ R∗,

(5)

where ηc > 1 is the core dimensionless relative viscosity and ηA ≥ 1 is the annulus relative

viscosity. In particular, as it will be clarified in the sequel, we expect ηA to be definitely

lower than ηc and slightly larger than 1. The idea, indeed, is to generalize Haynes’ approach

[5], where ηA = 1.

Fig. 1 A schematic drawing of the geometrical model (the thickness of the outer layer R∗ −s∗ is exaggerated
for visualization purposes). In fluid dynamic terms, r∗ = s∗ (x∗) represents the streamtube whose radius,
in x∗ = 0, is s∗

0 = R∗ − a∗ (with a∗ average RBC half-thickness). This tubular region (surrounded by
streamlines) forms the inner core where most of the RBCs are confined. In the entrance region, the flow has a
radial component, pointing towards the axis, that drives the RBCs towards the central core. Downstream, i.e.,
in the asymptotic region, the radial velocity has vanished and the flow stabilizes into a core-annulus structure
(see Guadagni and Farina [41] for more details). Although the size of the core decreases as we move away
from the vessel inlet, its hematocrit remains constant because the erythrocytes increase their longitudinal
velocity as they approach the axis
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The current literature reports numerous empirical formulas expressing the relative vis-

cosity as a function of hematocrit (see, for example, [8, 53–59]). All these formulas are

characterized by the fact that η is, in particular, an increasing function of φ. However, it

must be pointed out, that, only at sufficiently large shear rates (i.e., larger than approxi-

mately 500s−1), η can be safely approximated as a function depending only on φ. Indeed, in

this limit, the relative viscosity tends to a value depending only on the hematocrit, and blood

behaves as a Newtonian viscous fluid. For shear rates smaller than about 500s−1, the blood

viscosity starts depending on the shear rate too (see [17]). In small vessels, where, accord-

ing to Secomb [7], the shear rate is usually less than 500 s−1, the relative viscosity shows an

evident dependence on both shear rate and hematocrit, thus leading to an extremely complex

rheology. Therefore, in order to bypass this obstacle, we preferred to treat ηc as a parameter

directly deducible from experimental data, rather than trying to guess any link to hematocrit

and other quantities.

Concerning ηA, we set

ηA = 1 + α (ηc − 1) , with 0 ≤ α ≪ 1, (6)

and take α as a fitting parameter. We remark that α = 0 corresponds to an outer layer free

from RBCs.

At the vessel entrance, the core radius, denoted as s∗
0 (see again Fig. 1), can be estimated

in terms of the RBCs dimension, since, on average, RBCs cannot physically approach the

vessel wall due to their finite size. So, we estimate s∗
0 = R∗ − a∗ , with a∗ average RBC

half-thickness. Concerning human RBCs, their minimum thickness in a disk-like configura-

tion is 2 − 3 µm [60]. We use a∗ as a fitting parameter but we limit its values in a physically

acceptable range, i.e., 1 µm ≤ a∗ ≤ 1.5 µm, roughly corresponding to RBC half-thickness.

We remark that the marginal layer is not completely devoid of RBCs.2 A reasonable expla-

nation is due to the fact that the marginal exclusion effect cannot be precisely stated (as it

would be if the RBCs were rigid spheres) and it should be more understood as a statistical

concept (see, for example, [42], pp. 145–146). Thus, a certain amount of RBCs is present

in the marginal layer and this value might have some variability. However, the outer layer

hematocrit is expected to be remarkably smaller than that in the core and it is accounted for

by the parameter α, which, in turn, is expected to be smaller than 1 (typically, not exceeding

0.15). In particular, to simplify this complex dynamics, we consider the outer layer viscosity

uniform and expressed by (6).

Downstream, as proved in [41], both the core radius and the velocity field stabilize to

asymptotic values, i.e., s∗
∞ and v

∗
∞ = v∗

∞ (r∗) ex , since the RBC radial displacement caused

by the radial velocity quickly vanishes outside the entrance region. We indeed assume that

the total vessel length is much larger than the entrance length (i.e., the length until the flow

is converged) so that the flow has reached its asymptotic profile well before the blood flows

out. Recent papers [61, 62] investigate the effect of the entrance region on flow resistance

and on RBC marginalization. However, these studies refer to vessels whose diameter is

comparable with the maximum size of RBC, i.e., to vessels where the continuum approach

that we propose cannot be safely applied.

The key point of the model is that there is a relationship between s∗
∞ and s∗

0 . Indeed,

exploiting the continuity equation, we can write

πV ∗s∗2

0 = 2π

∫ s∗
∞

0

v∗
∞

(

r∗
)

r∗dr∗, (7)

2For instance, Kim et al. [51] refer to the the marginal layer as a cell-poor layer.

259A continuum mechanics model forthe Fåhræus-Lindqvist  effect



where v∗
∞ (r∗) is the classical core-annulus flow. Hence, introducing the dimensionless vari-

ables r = r∗/R∗, s∞ = s∗
∞/R∗, s0 = s∗

0/R∗ = 1 − a∗/R∗, v = v∗/V ∗ , and slightly

extending the procedure presented in Ascolese et al. [13], we have

v∞ (r) =
2

s4
∞

ηc

+
1

ηA

(

1 − s4
∞

)

×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

s2
∞ − r2

ηc

+
1 − s2

∞

ηA

, if 0 ≤ r ≤ s∞,

1 − r2

ηA

, if s∞ ≤ r ≤ 1.

(8)

Then, exploiting (8), (7) can be rewritten as

s2
0 =

1

s4
∞

(

1

ηc

−
1

ηA

)

+
1

ηA

[

s4
∞

(

1

ηc

−
2

ηA

)

+
2s2

∞

ηA

]

, (9)

which is a fourth-order algebraic equation in s∞, having only one physically significant

solution, i.e., s∞ ∈ (0, 1),

s∞ =
s0

√

√

√

√1 +

√

(

1 − s2
0

)

[

1 − s2
0

(

1 −
ηA

ηc

)]

. (10)

To compute the dimensionless asymptotic apparent blood viscosity, we exploit the

classical Poiseuille formula for the discharge referred to the flow as a whole [13], getting

ηapp =
η∗

app

η∗
p

=
1

s4
∞

(

1

ηc

−
1

ηA

)

+
1

ηA

. (11)

with ηA given by (6). We have thus obtained a formula for the apparent viscosity as a

function of the core and outer annulus viscosities ηc, ηA, and, through s0 = 1 − 2a∗/D∗, of

the vessel diameter D∗ = 2R∗ and the gap a∗. Figure 2 shows the typical behavior of ηapp

given by (11) as a function of D∗

Fig. 2 Relative apparent viscosity (continuous curves) of blood given by (11) as a function of tube diameter
D∗, for ηc = 3.3 (dashed line), a∗ = 1.2 µm and α = 0.05, 0.1, 0.15
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In particular, Fig. 2 clearly highlights that (11) reproduces these two fundamental proper-

ties (see, for example [26]): the reduction of apparent viscosity of blood in “narrow” vessels

and its asymptotic behavior for “large” D∗. Indeed, as the tube diameter decreases below

about 500 µm, the apparent viscosity declines to levels substantially lower than the so-called

bulk viscosity. Moreover, Fig. 2 provides also the physical meaning of ηc: it is the asymp-

totic limit of ηapp, i.e., the bulk viscosity. Indeed, in vessels where 2a∗/D∗ ≪ 1, we have

s0 → 1, and consequently also s∞ → 1, meaning that the core practically occupies the

whole cross section. The Newtonian case is thus recovered because the outer layer is so thin

with respect to the vessel size to have any significant effect on the overall blood dynamics.

3 Asymptotic outer layer thickness

Equation (10) allows estimation of s∞, and so the asymptotic marginal layer thickness, i.e.,

R∗ − s∗
∞, which we can compare with the experimental values. Figure 3 shows the behavior

of R∗ − s∗
∞, either as a function of ηc for given D∗, or as a function of D∗ for given ηc. By

comparing panels on the left side with the corresponding ones on the right side, we see that

the effect of increasing a∗ is a significant increase of the size thickness.

Actually, it is difficult to find direct experimental measurements of the outer layer thick-

ness for cylindrical vessels whose diameter is about 100 µm or larger. Experimental data

Fig. 3 Upper panels: behavior of R∗ − s∗
∞ (ηc) for given D∗. Lower panels: behavior of R∗ − s∗

∞ (D∗) for
given ηc . In all cases, for given α and a∗, the thickness of the marginal layer is a decreasing function of ηc and
an increasing function of D∗. By increasing a∗, the corresponding size of the marginal layer is significantly
higher. The effect of changing α even one order of magnitude is rather modest and it is not shown
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referring to smaller diameters are available in Fig. 5 of [50]. There, the authors consider

hematocrit values in the range 0.08–0.45, and a tube diameter D∗ = 30 ± 5 µm. Although

the conditions of the experiment are outside the range of our theory, we compare the outer

layer size R∗ − s∗
∞ with the experimental values reported in Fig. 5 of [50]. These data pro-

vide only the discharge hematocrit but neither the apparent viscosity ηapp nor ηc. Since the

core relative viscosity is a necessary input of (10), we need an estimate (which may even

be coarse) of ηc in terms of the only available data, i.e., φ. We therefore select Charm and

Kurland’s empirical formula [54]

ηCK(φ) =

[

1 − φ

(

0.07 exp

(

2.49 φ +
1107

310
exp(−1.69 φ)

))]−1

. (12)

and use it just to estimate ηc, in terms of φ. Indeed, it should be considered that the shear

stress in the core is reduced due to the presence of the boundary layer. Of course, other

empirical formulas linking ηc and φ can be selected [55, 56, 58, 63, 64]. However, they

give similar values of
(

R∗ − s∗
∞

)

. The other two parameters appearing in (10), i.e., α and

a∗, have been taken as 0.1 and 1.2 µm, respectively. We selected a∗ = 1.2 µm, since the

data reported in [50] refer to human blood. Table 1 shows the size of the marginal layer

measured by Maeda et al. [50] when φ = 0.08, 0.16, 0.3, 0.45 and the size obtained using

(10). Although Maeda et al. report the data referring to two different types of tube, namely

elastic and rigid, in Table 1, we consider only the “rigid” case. Small changes of α and a∗ do

not modify significantly the outer layer size which remains comparable with the measures

by Maeda et al. [50].

Other sets of reliable data are due to Kim et al. [51]. In Table 2, we compare the thick-

ness of the cell-poor layer reported in [51] with the theoretical values predicted by the

mathematical model.

An updated reference concerning measurements of the outer layer can be found in the

PhD thesis by Gliah [66]. However, experimental conditions, type of blood used, size and

shape of the vessels, and measurement techniques vary so much in the current literature that

an exhaustive comparison is very difficult.

For the purpose of the present research, it suffices to say that, in all cases, we obtained

values of the outer layer thickness very similar to the experimental ones reported in Tables 1

and 2.

Recalling also the great uncertainty of the available data and that we are at the edge of

applicability of the continuum hypothesis, the theoretical values of the outer layer thickness

shown in Tables 1 and 2 are encouraging.

Table 1 Thickness of the marginal layer obtained using (10) with a∗ = 1.2 µm, α = 0.1 (fourth column),
and the values measured by Maeda et al. [50] (third column) when φ = 0.08, 0.16, 0.3, 0.45 in tubes of
diameter 30 µm. The value of ηc appearing in ( 10) has been estimated using (12)

φ ηCK [−] (R∗ − s∗
∞) (meas.) (R∗ − s∗

∞) (theor.)

0.08 1.18 3.9±1.0 µm 2.7 µm

0.16 1.34 3.1±0.5 µm 2.7 µm

0.30 1.61 2.3±0.8 µm 2.6 µm

0.45 2.05 1.6±0.5 µm 2.6 µm
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Table 2 Thickness of the marginal layer obtained using (10) with a∗ = 0.8 µm, α = 0.1, and the values
measured by Kim et al. [51]. The value of ηc appearing in ( 10) has been estimated again using (12). The
experiments reported in [51] refer to rat blood, whose RBCs are 25–30% smaller than the human ones (see
[65]), which justifies a∗ = 0.8 µm

D∗ (R∗ − s∗
∞) (R∗ − s∗

∞)

(meas.) (theor.)

φ = 0.42, ηCK = 1.94 72.3 µm 2.7±0.5 µm 3.4 µm

49.2 µm 3.1±0.6 µm 2.9 µm

45.3 µm 2.3±0.4 µm 2.8 µm

30.8 µm 2.1±0.4 µm 2.4 µm

φ = 0.41, ηCK = 1.90 71.1 µm 3.2±0.7 µm 3.2 µm

60.2 µm 2.2±0.4 µm 3.0 µm

54.2 µm 2.9±0.6 µm 2.9 µm

51.7 µm 2.3±0.4 µm 2.8 µm

4 Comparison with classical empirical formulas

Pries et al. [45] provided the following empirical formula to evaluate ηapp

η(P )
app (d, φ) = 1 +

(

η
(P )
0.45(d) − 1

) (1 − φ) c(d) − 1

(1 − 0.45) c(d) − 1
, (13)

where

η
(P )
0.45(d) = 220 exp(−1.3 d) + 3.2 − 2.44 exp

(

−0.06 d 0.645
)

, (14)

and

c(d) = (0.8 + exp(−0.075 d))

(

1

1 + 10−11d 12
− 1

)

+
1

1 + 10−11d 12
. (15)

A similar empirical formula was suggested by Secomb [4]

η(S)
app(d, φ) =

d 2

(

d 2(η
(S)
0.45(d) − 1)

(

(1 − φ) c(d) − 1
)

(d − 1.1)2
(

0.55 c(d) − 1
) + 1

)

(d − 1.1)2
, (16)

where

η
(S)
0.45(d) = 3.2 − 2.44 exp

(

−0.06 d 0.645
)

+ 6 exp (−0.085 d) . (17)

In all these relations, d denotes the tube diameter (D∗ in our notation) which is measured in

micrometers. These formulas are both based on a best fitting procedure using several sets

of data collected in the last 70 years.

It is interesting, anyway, to compare both these empirical formulas with our model. As

Fig. 4 shows, the agreement is satisfactory.

The values of a∗ range between 1.1 and 1.4 µm, which are compatible with RBC half-

thickness in a disk-like configuration. Moreover, we point out that the marginal layer does

not consist of pure plasma. Referring to the cases φ =0.4–0.5, we have, on average, α ≈

0.11, which, according to (6), entails ηA ≈ 1.2. Now, if we estimate the corresponding

hematocrit using, for example, (12) we get that φ in the outer layer ranges around 0.13,

remarkably smaller, as expected, than the one of the inner core.
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Fig. 4 Comparison between the mathematical model (11), ( 10) and the empirical formulas by Pries and
Secomb for four different values of the hematocrit. On the top of each plot, the values of a∗, α, ηc , and the
hematocrit φ used in formulas (13)–(17)

5 Comparison with the data of Fåhræus and Lindqvist

We decided to devote a single section to the celebrated article by Fåhræus and Lindqvist

[1]. Figure 5 shows graphically the original data reported in [1].

In Fig. 6, we reported the four experimental series of data for the apparent relative viscos-

ity documented in the original paper by Fåhr æus and Lindqvist [1] along with the function

ηapp (D∗) given by (11).

We stress that our estimates of a∗ are still falling in an acceptable range and they look

rather stable. We also emphasize that the experimental data do not refer to the same human

blood (series 1, 2, and 4 refer to the Lindquist’s blood, while series 3 refers to Fåhræus’

blood) and that they are certainly affected by an experimental error which, unfortunately,

is not documented in the original paper [1]. In particular, the experimental errors can range

between 10 and 20% as shown, for example, in Table 1, on p. 596 of Zilow and Linderkamp

[44].

We remark that to fit the FL data with the empirical formulas by Pries and Secomb, hema-

tocrit values larger than 0.6 are required, resulting in high relative viscosities. In particular,

series 4 corresponds to a very high level of φ, close to the so-called jamming transition (see,

e.g., [17, 67]).

The fits just found provide also a theoretical explanation of the fact that the FL effect is

observable for D∗ � 0.3 µm. Indeed, it is only below that threshold that the model indicates

a non-negligible variation of viscosity.
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Fig. 5 The original data by Fåhræus and Lindqvist published in 1931: series 1, 2, and 4 refer to Lindquist’s
blood, while series 3 refers to Fåhræus’ blood

Fig. 6 Comparison between the experimental series 1, 2, 3, and 4 reported in Tables at p. 565 of Fåhræus
and Lindqvist [1] (dots) and the theoretical model (11) (solid curve). The fitting via the empirical formulas
(13) by Pries and (16) by Secomb is also shown (dashed curves). On the top of each plot, the values of a∗, α,
ηc and the hematocrit φ used in formulas (13)–(17) to fit the Fåhræus and Lindqvist data
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Fig. 7 Comparison between our mathematical model (solid curve) and data by Zilow and Linderkamp [44]
(dots). These authors considered both adult and infant blood samples at different values of the hematocrit.
The empirical fitting via the empirical formulas (13) by Pries and (16) by Secomb is also shown (dashed
curves)

6 Comparison with other experimental data

In this section, we compare the theoretical model (11) with the data by Zilow and

Linderkamp [44] and Kü min [43].

Figure 7 shows the comparison between our model and the experimental data extracted

from Fig. 1, at p. 597, of Zilow and Linderkamp [44] and referring to both adults and infant

blood samples. In Table 3, we report ηc and a∗ for three values of the hematocrit.

Figure 8 shows the comparison between our model and the experimental data by Kümin

[43]. Data are extracted from Fig. 2, on p. 1195 of [5].

As in previous sections, in all figures, for completion, also the empirical curves of Pries

and Secomb are shown (dashed lines). In all cases, the parameter a∗ is in agreement with

the other cases considered here.

Table 3 Values of ηc , α, and a∗

used to fit the data extracted from

Fig. 1, at p. 597, of Zilow and

Linderkamp [44], referring to

three different values of the

hematocrit

φ ηc [–] a∗(µm) α

Infant 0.6 6.4 1.2 0.1

Adult 0.2 1.7 1.3 0.09

Adult 0.4 3.5 1.2 0.11

Adult 0.6 6.0 1.0 0.14
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Fig. 8 Comparison between our model and the experimental data by Kümin [43] (dots). Data are extracted
from Fig. 2, at p. 1195 of [5]. The empirical fitting via the empirical formulas (13) by Pries and (16) by
Secomb is also shown (dashed curves)

7 Conclusions

The FL effect was discovered 90 years ago and ever since physicians have speculated about

its meaning, its origin, and its purpose. The RBC segregation hypothesis, formulated 30

years later by Haynes, opened the way to an interpretation based on physical arguments.

Haynes’ assumption was rather extreme: in small (though not too small) vessels, two flow

regions are present, a marginal one free of RBCs and an internal one, in which all RBCs

are concentrated. Based on this picture, Ascolese et al. [13] formulated a mathematical

model and computed the corresponding two-phase steady unidirectional flow. In that way,

they disproved the early conjecture that the FL effect could reduce power dissipation due

to internal friction (which, on the contrary, increases) and concluded that the real advantage

of the FL effect is an increase of blood discharge, which improves tissues perfusion, thus

exploiting at the best the hydraulic gradient made available by the heart.

In the present paper, a finer analysis was performed aimed at retrieving, on a pure contin-

uum mechanics basis, the experimental curves originally obtained by FL in their celebrated

paper, relating the apparent blood viscosity to the vessel diameter. This goal has been

achieved by correlating the thickness of the marginal layer at the vessel entrance with its

asymptotic value, by using both the peculiar core-annular structure of the flow and a phys-

ically reasonable estimate of the inlet radius of the core and of the viscosities of both inner

core and marginal layer. In fact, in the model, there are two fitting parameters, a∗ and α, for

which both the physical meaning and the range in which they can vary are well specified.

The first one is the minimum marginal layer thickness whose order of magnitude ranges

around the RBCs half thickness (i.e., 1–1.5 µm for human blood). The second one accounts

for the outer layer viscosity (and consequently its relative hematocrit) with respect to the

one of the central core. In particular, this means that we consider the marginal layer not

completely free of RBCs. However, by specifying that α = O
(

10−1
)

, we require that the

marginal layer viscosity is significantly lower than that of the central core and this obviously

implies that the marginal hematocrit is significantly lower than the one of the core.
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The physical background of the model is provided by the recent paper by Guadagni

and Farina [41] in which the migration phenomenon in the flow of suspensions has been

carefully investigated.

The present model provides a physical explanation of the FL effect, showing that this

can be mainly attributable to the peculiar flow that develops in the vessel entrance region.

Moreover, the model prediction fits the experimental results by Maeda et al. [50], Kim et

al. [51], and the experimental curves by Fåhræus and Lindqvist [1], Kümin [43], and Zilow

and Linderkamp [44] as well as the empirical formulas by Secomb [4] and Pries et al. [45].

Finally, we emphasize that the proposed model essentially relies on the estimate of the

initial marginal layer thickness (indeed used as a fitting parameter) and on the assumption

that the inner core and marginal layer viscosities are uniform (which implicitly entails that

the hematocrit in the two regions is uniform). A conclusive theoretical advance would be an

analysis of the entrance dynamics which does not use the Prandtl approximation and does

not assume a uniform step-shaped hematocrit profile (as we did in the present work). Of

course, this would provide a more accurate estimate of the RBC radial distribution at the

inlet of the vessel and, consequently, of the asymptotic flow structure. However, the price to

pay for this choice would be an increase of the model complexity that would imply giving

up an explicit (and simple) formula for ηapp as the one proposed here.
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Agreement.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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shear-induced red blood cell migration model. J. Biol. Phys. 44(4), 591–603 (2018)
11. Sharan, M., Popel, A.: A two-phase model for flow of blood in narrow tubes with increased effective

viscosity near the wall. Biorheology 38, 415–28 (2001)
12. Kumar, A., Graham, M.D.: Mechanism of margination in confined flows of blood and other multicom-

ponent suspensions. Phys. Rev. Lett. 109, 108102 (2012)
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