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High-volume, multistage continuous production flow through a re-entrant factory is modeled through a conservation law
for a continuous-density variable on a continuous-production line augmented by a state equation for the speed of the
production along the production line. The resulting nonlinear, nonlocal hyperbolic conservation law allows fast and accurate
simulations. Little’s law is built into the model. It is argued that the state equation for a re-entrant factory should be
nonlinear. Comparisons of simulations of the partial differential equation (PDE) model and discrete-event simulations are
presented. A general analysis of the model shows that for any nonlinear state equation there exist two steady states of
production below a critical start rate: A high-volume, high-throughput time state and a low-volume, low-throughput time
state. The stability of the low-volume state is proved. Output is controlled by adjusting the start rate to a changed demand
rate. Two linear factories and a re-entrant factory, each one modeled by a hyperbolic conservation law, are linked to provide
proof of concept for efficient supply chain simulations. Instantaneous density and flux through the supply chain as well as
work in progress (WIP) and output as a function of time are presented. Extensions to include multiple product flows and
preference rules for products and dispatch rules for re-entrant choices are discussed.
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1. Introduction
In recent years, fast scalable simulations of production
flows in a supply chain have become an important research
topic (Scalable Enterprise Initiative 1999). While the long-
term goal is to optimize production across the whole sup-
ply chain, an intermediate goal is to generate simulation
tools that support the exploration of business questions,
and to pose “what if?” questions on these simulations.
Because most production deals with individual parts and
the processes that these parts undergo, the natural method
of choice for accurate simulations is discrete-event simula-
tors. While they have been very successful on the factory
level (Law and Kelton 1991), e.g., to simulate semiconduc-
tor production lines, they are relatively slow, and it seems
obvious that they are not scalable to a full supply chain.
This paper proposes to develop a new approach to the

simulation of production flow in analogy to traffic flow.
Specifically, we will model the dynamics of material flow

through a factory via a hyperbolic conservation law. The
main variable that is modeled will be the density of prod-
uct in a factory. The specifics of the production process
will enter into a state equation relating the velocity of the
product to the density of the material in the factory. The
focus in our model is on re-entrant factories because they
represent the most important part of arguably the most effi-
cient current production systems, the production of semi-
conductor devices. However, we maintain that our approach
can be tailored to many other production strategies and
processes. The major advantage of hyperbolic conservation
law models is the existence of a large body of numerical
codes to solve such equations efficiently.
The rest of this paper is organized as follows: §2 dis-

cusses the basic model and its relationship to traffic mod-
eling. The shape of the state equation for acyclic and
re-entrant flows is discussed. It shows that a hyperbolic
conservation law can be written that corresponds to Little’s
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law. Section 3 briefly discusses the numerical method to
simulate our re-entrant factory model. We discuss the appli-
cability and limitations of our model and compare it to
several discrete-event simulations in §4. Section 5 discusses
the existence of multiple equilibria for a nonlinear state
equation with constant start rates into a factory. There exist
two equilibria: an equilibrium where a high product density
moves slowly, and another one where a low product density
moves fast, such that the product of speed times density
gives the same production rate in both cases. We will show
that only the low-density equilibrium is stable under per-
turbations. Section 6 deals with the issue of controlling the
output of the factory by adjusting the start rate to a changed
demand rate. Section 7 shows proof of concept for the orig-
inal goal of fast supply chain simulations: We link three
nodes, two linear factories, and a re-entrant factory, each
one modeled by a hyperbolic conservation law. The model
of the linear factories has been discussed in Armbruster
et al. (2004). Instantaneous density, as well as flux through
the supply chain for several scenarios, is shown. Work in
progress (WIP) and output as a function of time are pre-
sented. We conclude with a discussion of the influence of
dispatch rules and an outlook on attempts to derive the
continuum models from first principles.

2. The Model
There are currently three major approaches to simulate pro-
duction flows: Discrete-event simulations (DES), fluid net-
works, and conventional queueing network models. DES
has successfully been used in large simulations for semi-
conductor factories (for instance, Chen et al. 1988 and
Law and Kelton 1991), but typically is very time con-
suming. Fluid models (Dai and Weiss 1996, Kumar 1993)
come from traffic theory and were introduced by Newell
(1965, 1973) to approximately solve queueing problems.
They consider the length of a queue q�t� as a continuous
variable whose rate of change is given by

dq

dt
=
{
��t�−��t� for q�t� �= 0�

0 for q�t�= 0�
(1)

where ��t� is the arrival rate and ��t� is the processing
rate of the queue. This basic building block for a queue
can be connected to a work-conserving fluid model by feed-
ing the outflux of each queue into other queues. Dai and
Weiss (1996) have analyzed the relationship between the
stability of the fluid model and the stability of scheduling
policies for the associated queueing networks. Here, stabil-
ity of the fluid model is represented by the boundedness of
the fluid variables for a given influx ��t�, which is assumed
to be less than the smallest processing rate �i�t� of a queue
in the network. Stability in the queueing theory sense is
given by a unique stationary distribution 
 for the under-
lying stochastic process describing the queueing network.
Dai and Weiss (1996) in particular showed that a queue-
ing discipline is stable if the corresponding fluid model is

stable. Queueing network models have successfully been
used, for instance, to develop input and priority sequencing
policies in two-station networks (Wein 1990).
Fluid models have several distinct shortcomings:
• They do not model stochasticity very well. Either ��t�

and ��t� are mean rates, in which case Equation (1) is
a fully deterministic system and stochasticity is not mod-
eled at all, or ��t� and ��t� are stochastic processes that
allow some theoretical analysis, but drastically diminish the
advantages of a continuum model as a simulation tool.
• Assuming constant production rates, fluid models are

too rigid. If they are stable, there will never be any WIP
waiting in a queue, and if they are unstable, the queues
will explode. Similarly, fluctuations in one queue can never
travel downstream (or upstream) to the next queue unless
the queue actually becomes zero.
• While a fluid network models the WIP with a con-

tinuous variable, it models machines as individual discrete
queues. With several hundred production steps for a typical
chip, it is reasonable to also approximate the production
steps along a continuum.
Systems dynamics (Forrester 1962) is related in spirit to

a fluid model. It will derive ordinary differential equations
(ODEs) that model the flow from one machine to another
and analyze the resulting large system of ODEs. However,
it is unclear how the correct throughput time will be incor-
porated in such a system. Either the ODEs will become
delay equations (which makes them much harder to solve),
or intermediate states will have to be introduced (Hines
2003). In any case, the changes in throughput time due to
increased load in a factory will not be included.
Queueing network models have their own limitations:
• While they can deal with several re-entrant steps by

introducing different customer classes, their complexity
explodes as the number of machines increases.
• They solve control-type problems for a queueing net-

work in steady state, i.e., all their result are valid in the
limit as t→�.
• They have to ignore all incidence in the factories that

cannot be modeled by queueing type of behavior (see below
for examples).
In a modern semiconductor factory, we are interested in

modeling and simulating on the order of 250 production
steps executed on about 100 machines, with a re-entrant
part of the production line that cycles about 15–20 times.
In addition, the life cycle of a product is of the order of
one year, whereas the throughput time lies between 40 and
60 days. Hence, it is unlikely that the factory is ever run
for any longer amount of time in steady state, and we are
especially interested in transient behavior of such systems.
A model that addresses these issues can be derived from
traffic modelling: The simplest model for traffic on a one-
lane highway without on and off ramps is a hyperbolic
conservation law of the form

��

�t
+ ��v�����

�x
= 0� (2)
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where subscripts denote partial differentiation. The velocity
v��� is described by a state equation relating vehicle veloc-
ity v and vehicle density � through (Lighthill and Whitham
1955, Helbing 1996)

v���x� t��= v0
(
1− ��x� t�

�m

)
� (3)

with �m the capacity of the highway. This is called the
Lighthill-Whitham model and is the first step in a hierarchy
of traffic models (Helbing 1996).
We propose a full-continuum model for the production

flow through a re-entrant factory with a similar structure:
Let x be a continuous variable representing completion of
the product, i.e., product at x = 0 denotes a raw product
and parts at x = 1 denote a finished product. While x = 0
corresponds to the entry into the factory and x = 1 corre-
sponds to the exit from the factory, there is no one-to-one
correspondence between factory floor space and x. How-
ever, there is a unique production process assigned to every
x-value. Assuming a high-volume, many-stage factory, we
model production flow with a continuum variable on a con-
tinuum domain. We write u�x� t� for the density of product
at stage x and at time t. Assuming a unique entry and exit
for the factory, i.e., all product enters at x= 0 and leaves at
x= 1, and assuming a 100% yield, the density must satisfy

�u

�t
+ ��v�u�u�

�x
= 0� (4)

where

v�u�=��u� (5)

is the state equation relating the speed of the product mov-
ing through the factory to the amount of product in the fac-
tory, i.e., to WIP. Note that the units of u are [parts][stage]
and the units of v�u�u are [parts][time]. This suggests that
in conventional nomenclature of process control and per-
formance simulation, u�x� t� represents local WIP density
and the flux u�x� t�v�x� t� is the local throughput at stage x
at time t, respectively. Recently, based on the earlier work
of Graves (1985) and Karmarkar (1989), Asmundsson et al.
(2002) have developed a similar idea. To model the nonlin-
ear response of the throughput to an increase in WIP, they
introduce the idea of nonlinear clearing functions of the
form

throughput= ��WIP�WIP� (6)

Because throughput is a flux, ��WIP� is a velocity, and
hence equivalent to our state equation ��u� (Equation (5)).
Asmundsson et al. (2002) choose specific nonlinear clear-
ing functions motivated by the theory of queueing net-
works, but emphasize that only empirical data will be able
to decide the correct clearing function for a particular prob-
lem. They do not incorporate their clearing function idea

into a differential equation. Instead, they use the clearing
function to generate a linearization of the supply chain
planning problem that can be solved via an LP algorithm.
The basic issue for our model is to come up with a use-

ful state equation ��u�. As a starting point, the model has
to respect the fundamental law of factory physics, Little’s
law (Little 1961). For a single factory, Little’s law may be
written as

N = ��� (7)

where N is the time-averaged load of the factory (WIP),
� is the mean cycle or throughput time over all outputs
(TPT), and � is the start rate. Little’s law is fundamen-
tally a deterministic law and results from mass conserva-
tion. However, by amending it with a description of the
stochastic processes in a factory, we can generate a state
equation characterizing the factory. In its simplest case, the
stochastic process is represented by its means. For instance,
modeling a factory as a single linear queue with Markov
arrival and processing rates (an M/M/1 queue), the mean
throughput time � can be determined as a function of the
start rate � and processing rate � (Gross and Harris 1985)
to be

� = 1

�−�� (8)

Therefore, the relationship between WIP and throughput
time becomes

� = 1
�
�1+N�� (9)

Equation (8) shows that � becomes the maximal or critical
start rate. With v = 1/� , we have the desired state equa-
tion. Equation (9) shows that WIP is a linear function of
the throughput time with a slope �. The linear relationship
between TPT and WIP is intuitively obvious: A part enter-
ing the queue will have to wait until the queue is served
(N/� timeunits) plus its own processing time, 1/� time
units.
A linear relationship as in Equation (9) is true for a

queueing network that has product form (Nelson 1995), i.e.,
the whole network can be replaced by an effective queue.
BCMP networks (Baskett et al. 1975) and Kelly networks
(Nelson 1995) are of product type. Such networks have
quite restrictive conditions on the stochastic processes of
the network. In general, the Pollaczek Khintchine formula
(Gross and Harris 1985) suggests that the mean throughput
time depends on the first- and second-order moments (the
means and the variances) of all the stochastic processes
involved, and hence in general may lead to a nonlinear
state equation ����. Specifically, any process that increases
variance as the load in the factory is increased will lead
to a nonlinear state equation. For instance, the detailed
empirical analysis by Chen et al. (1988) of a re-entrant
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semiconductor factory shows that a discrete-event simula-
tion based on a product network predicts throughput times
within about 10% of the actual throughput times. It depends
on your point of view whether 10% accuracy is a large or a
small number for describing a factory that is a billion-dollar
investment. Lu et al. (1994) show that through dispatch and
scheduling rules, one can reduce the variance of throughput
times inside semiconductor manufacturing plants. Hence,
there are several key factors that will lead to a queueing
network that cannot be approximated by a product network
with constant production rates:
• Chen et al. (1988) report that 35% of the throughput

time of a chip in the Hewlett Packard (HP) factory studied
was used up on engineering holds. Basically, those are the
queues in front of a human operator, who has to determine
whether the previous process worked properly or whether
reworking is in order. While Chen et al.’s work analyzes
a development factory, which may result in a higher inci-
dence of human operator interactions than in a regular
production fab, it is nevertheless true for all human oper-
ators that they do not have a constant production rate. For
instance, it is known that bank tellers work faster if the
queues in front of them are larger. However, they often do
that by cutting corners and reducing quality of service. For
a model of a semiconductor factory with constant yield,
this may lead to the paradoxical effect that the operators
work faster, but due to errors the mean throughput time of
the good chips will actually increase.
• Recent simulations of fully automated 300 mm wafer

fabs (Shikalgar et al. 2002) show that increased loading
may lead to crowding effects of the transportation sys-
tem, in turn leading to nonlinear dependence of throughput
on WIP.
• Scheduling and dispatch policies play a major role:

Kumar (1993) discusses a mixed push/pull policy that leads
to a blowup in inventory even though all start rates are
smaller than all production rates.
• Similarly, the effects of hot lots and other priority rules

for multiproduct flows will destroy the product property of
a queueing network. DeJong and Wu (2002), for instance,
show that priority lots have an exponential impact on the
throughput of the nonpriority lots.
• Even for the restricted models of fluid networks

(which do not include operator interactions and multiprod-
uct flows), Dai and Weiss (1996) showed that dispatch and
scheduling policies play a major role in the stability of the
queuing regime.
• Daganzo (2003), in discussing the application of traffic

flow models on controls and release strategies for a whole
supply chain, analyzes situations where the state equation is
less determined by any physical constraints, but determined
by the reorder policies in the supply chain.
• Finally, there is anecdotal evidence from real re-

entrant factories (Kempf 2001) that show a stronger than
linear increase in the average throughput time � as the load-
ing of the factory is increased.

Unfortunately, the true state equation for a re-entrant fac-
tory is not known, as large factories are rarely (if ever) run
in equilibrium, and controlled experiments are obviously
impossible. It is worth noting here that standard discrete-
event simulators may not be a good substitute for real
experiments, specifically if human interaction is part of the
cause for the increase in variance (Spier and Kempf 1995).
For future reference, we restate the full model, with f �x�

an initial density distribution, and taking into account that
v does not depend on x:

�u

�t
+ v�u��u

�x
= 0�

u�x�0�= f �x��
u�0� t�v�t�= ��t��

(10)

with a state equation

v�u�=��u�� (11)

As in the above examples, the velocity given by the state
equation is a functional of u and typically depends on the
total WIP in the factory, i.e., on

∫ 1
0 u�x� t�dx or on suitably

weighted WIP distributions. Note that the start rate ��t�
into the factory enters as the boundary condition for the
local throughput at x= 0.
Our model shares many features with thermodynamic

transport equations. In particular, modeling the relationship
between density and velocity through a state equation is
typically called an adiabatic approximation: Factory flow is
modeled as if it were always in equilibrium, following adia-
batically the state Equation (11). In the thermodynamics of
gases, this corresponds to the ideal gas equations. Elemen-
tary physics tells us that the ideal gas equations are strictly
valid only for infinitesimally slow perturbations. Neverthe-
less, they are a good approximation for many experiments.
Similarly, we can expect that fast transients will be mod-
eled poorly, but that slow transients and averages will be
modeled very well. An adiabatic model is the first closure
of a hierarchy of moment expansions for the time evolution
of the probability distribution of the parts moving through
a factory. A more elaborate model including the first-order
moment leading to a dynamic equation for the evolution
of the velocity is presented in Armbruster et al. (2004).
Moment expansions have the advantage of finding the time
evolution of average quantities of a stochastic process via
the solution of deterministic equations instead of through
repeated simulations.

3. Simulations

3.1. The Method

A typical numerical method to solve Equation (10) is a
first-order conservative up-winding scheme. A conservative
numerical method is one in which the total mass in the
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computational domain will be conserved, or at the very
least will vary correctly, provided the boundary conditions
are properly imposed (LeVeque 1998).
To implement this method, we first partition the spa-

tial space into equal subintervals of width h� Let 0 =
x0� x1� � � � � xN = 1 be the endpoints of these subintervals.
To advance the solution on these endpoints forward in time,
the first requirement to be met is that the time step k satisfy
the Courant-Friedrich-Levy (CFL) condition

0�
v�tn�k

h
� 1�

where tn is the current time (LeVeque 1992). This condi-
tion prevents the numerical solution from traveling faster
than the true solution. We compute the velocity, v�tn� =
��

∫ 1
0 u�x� tn�dx�, via an extended Simpson’s rule quadra-

ture.
Obtaining the time step, we may advance the solution at

each grid point xj , j = 0� � � � �N , by

u�xj� tn+ k�= u�xj� tn�−
k

h
v�tn��u�xj� tn�− u�xj−1� tn���

where k is the time step, and the spatial step h is given by
h= 1/�N − 1�� To advance the solution at the left bound-
ary, we use the boundary condition for the start rate � in
Equation (10) and the propagation scheme

u�x0� tn+ k�= u�x0� tn�−
k

h
�v�tn�u�x0� tn�−��tn���

3.2. A Basic Simulation

Utilizing the numerical method of §3.1, we run the initial
boundary value problem (10) for a state equation of the
Lighthill-Whitham traffic model of the form

v�u�= v0
(
1− ū�t�

L

)
� (12)

with

ū�t�=
∫ 1

0
u�x� t�dx�

Here, v0 is the speed for the empty factory and L is
the maximal load (capacity of the factory). The influx is
given by

��t�=
{
2�016� t < 0�

2�139� t > 0�

This corresponds to a switch from steady state u1 = 2�8
to a new steady state u2 = 3�1 (see below). The parameter
values used are v0 = 1, L= 10, and f �x�= 2�8. Figures 1
and 2 show a snapshot of the solution at t = 1�2641 and the
outflux as a function of time, respectively. We see that the

Figure 1. Snapshot of the density u�x� for the solution
of system (10) and (12) at time t = 1�2641.
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density is asymptotically approaching a stable steady-state
density of u2 = 3�1.
Figure 2 shows an important concept that is typical for

re-entrant manufacturing systems that has so far received
little attention in the literature. The outflux "�t�= u�1� t� ·
v�t� initially declines when the influx increases. The intu-
itive reason for this in the context of re-entrant manufac-
turing systems is the fact that an increase in material at
the beginning of the production line competes for machine
availability with all the other requests. In particular, an
increase at the front of the production line may slow down
wafers at the end of the production line as long as they
still have to go through the same re-entrant machine. This
effect is known as an inverse response in control theory and
is most pronounced for push and first-in-first-out (FIFO)

Figure 2. Outflux as a function of time for the basic
simulation.
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policies. After the initial WIP profile has left the factory
(which happens at about t = 1�5), the outflux increases
drastically because the density jump entered into the factory
at t = 0 has reached the end x= 1. We see that, asymptot-
ically, a steady outflux of approximately 2.14 is reached.
The time to do these computations is not an issue here.

All the figures in this paper were generated on a regular
PC with a code written in C within seconds, to a couple of
minutes, of processing time.

4. Discrete-Event Simulations vs.
PDE Models

To compare the PDE models with standard discrete-
event simulations, we have performed two sets of experi-
ments: We have generated a discrete-event simulation in #
(Hofkamp and Rooda 2002) and studied the transient
behavior of throughput and throughput time for a step-up
experiment in the influx. We also simulate a temporary
overload for a reverse production line. In a second experi-
ment, we have used a large-scale model of an Intel factory
and compare the discrete-event simulation of a four-level
step-up experiment to the corresponding PDE simulation.

4.1. A Relatively Small Re-entrant Factory

A PDE model like Equation (10) is based on a continuum
approximation for the amount of material in the factory
(leading to a density u) and a continuum approximation
for the number of stages in a factory (leading to an inde-
pendent variable x describing the degree of completion of
the product). Hence, although it is tempting to compare the
PDE simulations with queuing models like tandem queues
(Newell 1979) or other simple queueing networks (Dai and
Vande Vate 2000), such comparisons are a new research
project altogether: Typically, a queueing problem that is
solvable is based on a small number of machines and a
small number of steps. That is exactly the limit in which
we do not expect the PDE to behave very well. It would be
interesting to study how the queueing model approaches a
PDE model in the limit of many machines and many steps,
but this is clearly beyond the current state of our under-
standing (but see Lefeber 2004). In the meantime, what
can be done is to compare the PDE model with discrete-
event simulations. To do so, we first need to reflect on the
parameterization of the PDE model: Much like the clearing
function approach, the basic PDE model treats the whole
factory as a black box whose input-output characteristics
are given by the state equation for the velocity (Equa-
tion (11)). Hence, for a given dispatch policy and a given
product mix inside the factory, we can either experimen-
tally or via simulations find a state equation characterizing
the steady-state behavior of the factory under such circum-
stances. The PDE will then allow us to simulate the behav-
ior of the factory for non steady behavior such as start-up
ramps and increases or decreases of the start rates. We do

not at present study questions of optimizing dispatch poli-
cies or product mixes.
For our first experiment, the simulated network con-

sists of five machines and is re-entrant, i.e., the production
recipe requires that each lot will have to go through the
five machines four times before it exits. We model only
two types of stochastic processes: a stochastic arrival pro-
cess into the factory and a stochastic exit process for every
machine. Both processes are represented by exponential
distributions: The arrival process has an exponentially dis-
tributed interarrival time whose mean we vary; the machine
processes have exponentially distributed processing times
with a mean of 0.12 for the first machine and a mean of
0.10 for the other four machines. We typically start up with
an empty factory. To determine the state equation represent-
ing the steady-state behavior, we simulate a discrete-event
simulation run for between 500 and 4,000 time units—
long enough such that any trace of the initial transient has
disappeared by about 1/3 of the simulation time interval.
We then use the last half of the simulation time interval
to determine average throughput, average throughput time,
and average WIP. Averaging over about 50 runs constitutes
an experiment. We then repeat the experiments until we
reach a predetermined confidence interval for the calcu-
lated averages (typically 5%). Figure 3 shows seven data
points for throughput time versus WIP for the above exper-
iment with a push policy. The data look almost linear and
suggest a state equation for an equivalent single M/M/1
queue, i.e., we use a least-squares approximation of the
form ��u�= aū+ b, where ū is the total WIP in the fac-
tory. The fact that the factory seems to be represented by
an equivalent queue is presumably a result of the fact that

Figure 3. Seven data points for a state equation
describing the relationship between
throughput time and WIP.
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Figure 4. A ramp-up experiment showing a discrete-
event simulation and PDE model: (a) Outflux
and (b) TPT as a function of time.
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we did not include any stochastic processes in the discrete-
event simulation that may generate crowding behavior, as
discussed in §2.
We use this state equation to generate PDE simulations.

Trivially, the PDE simulation is very good for predict-
ing the steady-state throughput and throughput time for
a discrete-event simulation experiment with an arbitrary
steady influx, confirming the linear least-square fit for the
data. Comparing the PDE simulation to step-up experi-
ments shows some nice agreement and some opportuni-
ties for further improvement: We increase the arrival rate
from 1/0�9 and 1/0�8, respectively, to 1/0�7. With a criti-
cal capacity of about �= 1/0�6, this corresponds to a step
from 65% and 75% capacity to 85% capacity, respectively.
We present four figures: Figure 4 shows time series for
the throughput and the throughput time as a function of
time for a ramp-up experiment from 75% capacity to 85%
capacity with pull policy. The noisy curve is the average

Figure 5. Like Figure 4, with a push policy and a
zoom into the transition: (a) Output and
(b) Throughput time.
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of the discrete-event simulations; the continuous curve is
the PDE simulation with the state equation generated from
Figure 3.
Figure 5 zooms into the transition time series for the

throughput and the throughput time of a ramp-up experi-
ment from 65% capacity to 85% capacity with push policy.
Note that the throughput times for push and pull policies
are very different, and hence we have to use a different
state equation for each policy. While the transients in both
cases are not perfectly resolved, the agreement is not bad
either. The large downward spike in the throughput for the
PDE simulation results from the fact that in our model
the velocity is spatially uniform and depends on the total
WIP in the factory. Hence, any increase in WIP (through,
e.g., an increase in influx) will lead to an instantaneous
inverse response, i.e., a reduction in velocity and hence
to an instantaneous reduction in outflux. Obviously, our
simulation factory is not re-entrant enough for such a strong
reaction.
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We have also run the same discrete-event simulation
with a reverse routing: Lots visit the machines in the order
S1� S2� ��S5� S5� S4��S1, repeating this loop four times. Again,
we simulate about seven steady-state influx values to gener-
ate a state equation for a push and pull policy, respectively.
To challenge the model, we are modeling a temporary over-
load influx going from about 75% of capacity to 110% of
the capacity for 2�000 < t < 3�000 before it goes back to
75%. Figure 6 shows the comparison for the throughput
of the discrete-event simulation under a pull policy with
the PDE simulations. The horizontal line shows the capac-
ity limit in steady state. The PDE simulation is not per-
fect, but has, qualitatively, the correct behavior: It predicts
quite well the throughput during the overload interval; it
also has a reasonably good representation of the upswing
transient. The PDE simulation again has a large inverse
response that is not in the discrete-event simulation, and it
also relaxes much faster than the discrete-event simulation
in the downswing phase.
Trying the same comparison for the push policy fails

(see Figure 7): The discrete-event simulation shows a huge
inverse response spread over a very long time such that
the outflux is reduced for much of the overload interval.
In addition, the outflux never becomes steady. In compar-
ison, the PDE simulation restricts the inverse response to
the immediate vicinity of the increase in influx and shows
a constant outflux within about 250 time units. Note, how-
ever, that the time to return to steady state after the down-
shift of the input seems to agree quite well for the PDE
simulation and the discrete-event simulation. It seems that
a push policy for such a topology leads to extreme varia-
tions in the locations of the WIP, and hence a description
based on an average WIP level in the factory will have to
fail badly. This is corroborated by the fact that the discrete-
event simulations are much more noisy than the previous
simulations, as can be seen in Figure 7. This suggests that

Figure 6. Throughput for the reverse production line
with pull policy.
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Figure 7. Throughput for the reverse production line
with push policy.
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a model based on higher moments and several stages might
do much better (see §8).

4.2. A Large Discrete-Event Simulation—An Intel
Factory

We compare the simulation of the PDE with a large-scale
discrete-event simulation of a real Intel Corporation factory.
For obvious reasons, we have changed throughput times as
well as WIP numbers. The model contains approximately
100 machines and simulates 250 steps for a product mix
of 10 products. We are running this model for six different
start rates and determine the associated average WIP levels

Figure 8. Throughput time versus WIP levels in steady
state for a large-scale discrete-event
simulation.
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and throughput times in steady state. This results in Fig-
ure 8. The interpolating curve in the figure follows a sug-
gestion by Asmundsson et al. (2002) and is a least-square
fit of the six data points to

� = W

��1− e−)W � � (13)

with W representing the WIP in the factory; � and ) are
determined by the fit. With v= 1/� as a steady-state equa-
tion, we now study the behavior of the factory to a suc-
cessive ramp-up of the start rate over about a 1,000 days.
Figure 9 shows the start rate increasing from 500 per day
to a 1,000 per day in four different plateaus. We simulate
the PDE with a deterministic start rate that is constant on a
plateau, but follows the average start rates of the discrete-
event simulation. We compare the output of the discrete-
event simulation and the PDE in Figure 10(a). While a sin-
gle discrete-event simulation run takes one hour per year of
simulation time on a standard desktop computer, the PDE
simulation takes seconds. While the output of the discrete-
event simulation varies dramatically day by day; the PDE
simulation is deterministic and seems to be more or less
centered on the average of the output. To illustrate further
how the discrete-event simulation and the PDE simulation
are related, we smooth the output by averaging the output
over three days in the future and three days in the past,
i.e., a moving seven-day average. Figure 10(b) shows the
averaged outs and the PDE simulation again. Figure 10(c)
shows the outs averaged over a moving window of 21 days.
In Armbruster and Ringhofer (2005), we discuss that clos-
ing the hierarchy of moment equations at the zero order
level via a state equation implicitly defines a closure for
the variance of the throughput time. It implies that the
coefficient of variation stays constant. The dotted lines in
Figure 10 are calculated by determining the variance for a

Figure 9. Start rate ramp-up for the discrete-event
simulations.
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Figure 10. Discrete-event simulation and PDE simula-
tion: (a) Raw outputs, (b) Outputs smoothed
over seven days, and (c) Outputs smoothed
over 21 days.
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given plateau of the outputs. Assuming then that the coef-
ficient of variation stays constant, the dotted lines are the
mean± the standard deviation. It seems that the PDE and
its associated standard deviation are a good description of
a smoothed transient process.
This comparison allows us to make an interesting obser-

vation that we most likely would not expect to find if we are
doing only a pure discrete-event simulation. As discussed
previously, for a re-entrant factory, an increase in the start
rate leads to an inverse response in the output, i.e., the
output initially drops before it increases to the new level.
The direct discrete-event simulation Figure 10(a) shows no
such inverse response; if it is there it is masked in the raw
outputs by the daily variation in the outputs. It is also not
commonly found in the reality of the factory, due in part to
the fact that operators are paid to maintain or increase the
outputs, and hence they will work hard to speed up WIP
at the end of the production line (Kempf 2001). However,
the smoothed outputs in Figures 10(b) and 10(c) indicate
that, without the change of output policies resulting from
operator interference, the inverse response can be found in
the discrete-event simulation too, and it follows quite well
the PDE simulation. The reason why the inverse response
for the discrete-event simulations and the PDE for the Intel
factory agree much better than for the simulations in §4.1
presumably depends on the fact that the Intel factory is
much more re-entrant and that the relative change in its
load is much lower than in the other simulations.

5. Equilibria
For the rest of this paper, we assume a nonlinear state
equation analogous to the Lighthill-Whitham traffic model
(Equation (12)), repeated here for convenience:

v�u�= v0
(
1− ū�t�

L

)
� (14)

Note, however, that all the analysis in the following chap-
ters can easily be adapted to fit any other state equation.
We begin by determining the steady-state solutions.

Proposition 1. For a given (constant) influx ��t�= �, the
model (10) and (14) has two steady states:

u+ = L
2
+
√
L2

4
− �L
v0

and u− = L
2
−
√
L2

4
− �L
v0
�

provided 4�/v0 <L.

Proof. Let uss represent a constant solution to Equation
(10). Then, the boundary condition becomes a quadratic
equation

u2ss −Luss +
�L

v0
= 0� (15)

and the solutions to this quadratic equation are u+ and
u−. �

This implies that a re-entrant factory has two modes
of steady operations that generate the same throughput: a
high-WIP, high-TPT state and a low-WIP, low-TPT state.
Note that any state equation that grows stronger than linear
will show two equilibria.

Proposition 2. The high-WIP, high-TPT state, u+, is un-
stable, while the low-WIP, low-TPT, u−, is stable to pertur-
bations.

Proof. Perturbing the solution near a steady state uss , we
write u�x� t�= uss +p�x� t�, and insert into system (10),

�p

�t
�x�t�+v0

(
1− 1

L

∫ 1

0
�uss+p�x�t��dx

)
�p

�x
�x�t�=0�

u�x�0�= uss +p�x�0��

�uss +p�x�0��v0
(
1− 1

L

∫ 1

0
�uss +p�x� t��dx

)
= ��

(16)

Linearizing the PDE and the boundary condition by dis-
carding higher-order terms of p�x� t�, we get a linear uni-
directional wave equation with constant speed vss ,= v�uss�
and an integral boundary condition:

�p

�t
�x� t�+ v�uss�

�p

�x
�x� y�= 0�

u�x�0�= uss +p�x�0��

−ussv0
L

∫ 1

0
p�x� t�dx+ vssp�0� t�= 0�

(17)

Taking the time derivative of the boundary condition and
solving for �d/dt�p�0� t�, we find

d

dt
p�0� t�= ussv0

Lvss

∫ 1

0

�p

�t
�x� t�dx

=−ussv0
Lvss

∫ 1

0
vss
�p

�x
�x� t�dx

= ussv0
L
�p�0� t�−p�1� t���

To go from the second to the third equation, the wave
equation for ��p/�t��x� t� (17) was used to replace �p/�t
with −v�uss���p/�x�. Because Equation (17) has a con-
stant wavespeed vss , the solution at the right boundary
is p�1� t� = p�0� t − 1/vss�. Hence, with � = 1/vss , . =
ussv0/L, and z�t�= p�0� t�, stability of the steady state uss
is determined by the stability of the trivial solution of the
delay differential equation (Kuang 1993)

d

dt
z�t�−.z�t�+.z�t− ��= 0� (18)

Its characteristic equation is

0−.+.e−0� = 0�

Obviously, 0 = 0 is a solution. This corresponds to the fact
that the system is a conservation law, and hence is neutrally
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stable towards all perturbations that preserve the load (this
reflects the fact that any factory can be run at any load with
a constant WIP policy (CONWIP)) (Spearman et al. 1989).
Define h�0� ��= �0−.�e0� +. and consider h�0� �� as

a function of real 0. Then,

h�0� ��= 0� h�.� ��= . > 0�

and

�h

�0
�0� ��= e0� + �0−.��e0��

�h

�0
�0� ��= 1− �.�

Hence, if � > .−1� then ��h/�0��0� �� < 0, which implies
that there is a 1> 0 such that when 0< 0 � 1, h�0� �� < 0.
Because h�.� �� > 0, there is at least one 0̄, 1� 0̄., with
h�0̄� ��= 0. Hence, the characteristic equation always has
a positive root, signifying an unstable trivial solution. Con-
versely, if � < .−1, then h�0� �� > 0 everywhere. Hence,
there are no � > 0 that solve the characteristic equation,
and the trivial solution is stable.
It is easy to see that u+ implies that � > 1/., while

u− implies � < 1/., which proves the claim. �

Note that for a state equation v�u�= v0/�1+ ū� (Equa-
tion (9)), which describes a simple linear queue (or a
product network), there exists only one stable equilibrium.
Furthermore, it is easy to show that for any state equation
v�u� = ��u� that slows down faster with increasing load
than a simple queue, there exist two equilibria and that the
high-speed, low-WIP equilibrium is stable, while the low-
speed, high-WIP equilibrium is unstable. In particular, the
singularity at ū = L is not a necessary condition for the
existence of the two equilibria.
The relationship of these results to standard queueing

theory is the following: Consider a small WIP perturbation
of a steady state—for instance, a localized WIP increases,
but keeps the start rate the same throughout. The pertur-
bation will travel downstream and will eventually leave
the factory. In the stable steady state, the perturbation will
have generated secondary perturbations that are smaller
than the initial perturbation and, hence, eventually the sys-
tem will return to equilibrium. In the unstable steady state,
an increase in WIP will slow down the system even more,
leading to an even bigger increase in WIP—i.e., the sec-
ondary perturbations are bigger than the original one and,
hence, eventually WIP will increase to infinity. For tradi-
tional queueing systems this corresponds to the examples
of scheduling policies for re-entrant flows (Dai and Weiss
1996, Lu et al. 1994) that will lead to the growth of WIP
without bound, although the utilization (measured as the
start rate relative to the processing rate of the bottleneck)
stays below one.

6. Control
The simplest control problem associated with running a
factory is to change the production flow of the factory from
one steady state, corresponding to outflux that meets a spe-
cific constant demand, to another one. Let us assume that
the demand d�t� changes in the following way:

d�t�=
{
d1� t < 0�

d2� t > 0�

The control problem is to design an influx ��t� that would
move the system from the equilibrium u1 corresponding to
a production rate of d1, to a new equilibrium u2 correspond-
ing to a production rate d2. The outflux and the equilibrium
densities ui are related as

di = uiv0
(
1− ui

L

)
� (19)

The influx ��t� is uniquely determined by the boundary
condition at the left: ��t� = u�0� t�v�t�, where the veloc-
ity depends on the global load. Hence, to generate a WIP
profile that has a discontinuous step from an equilibrium
u�x� = u1 to new value u2 at time t = 0, we choose the
following influx:

��t�=




u1v0

(
1− u1

L

)
� t < 0�

u2v0

(
1− 1

L

[∫ x�t�

0
u2 ds+

∫ 1

x�t�
u1 ds

])
�

0< t < ��

(20)

where x�t� is the characteristic for the discontinuity ema-
nating from x = 0, t = 0 in the xt-plane. At t = � , the
discontinuity is at x��� = 1, and we have a new equilib-
rium profile u�x� = u2. Because u1 and u2 are constants,
Equation (20) reduces to

��t�=




u1v0

(
1− u1

L

)
� t<0�

u2v0

(
1− 1

L
�u1+�u2−u1�x�t��

)
� 0<t<��

u2v0

(
1− u2

L

)
� � <t�

(21)

The characteristic x�t� is the solution of the initial value
problem ẋ�t�= v�u�x�t��� t�, i.e.,

ẋ�t�= v0
(
1− 1

L

[∫ x�t�

0
u2 ds+

∫ 1

x�t�
u1 ds

])
� (22)

x�0�= 0�



Armbruster, Marthaler, Ringhofer, Kempf, and Jo: A Continuum Model for a Re-entrant Factory
944 Operations Research 54(5), pp. 933–950, © 2006 INFORMS

Because u1 and u2 are constants, the integrals can be eval-
uated and Equation (22) reduces to a simple linear ODE.
Its solution is

x�t�= L− u1
u2 − u1

(
1− exp

(
v0�u1 − u2�t

L

))
� (23)

and hence ��t� yields

��t�=




u1v0

(
1− u1

L

)
� t<0�

v0u2�L−u1�
L

exp
(
v0�u1−u2�

L
t

)
� 0<t<��

u2v0

(
1− u2

L

)
� � <t�

(24)

Solving x�t�= 1 for t gives

� = L

u1 − u2
ln
(
L− u2
L− u1

)
� (25)

Using the numerical method described in §3.1, the sys-
tem was run with the parameter values v0 = 1, u1 =
2�8, u2 = 3�1, and L = 10. With these values, we get
� = 1�42. For t > � , we continue the steady influx � =
u2v0�1− u2/L�. Figure 11(a) shows a WIP profile and Fig-
ure 11(b) shows the resulting outflux: Upon the introduc-
tion of u2 into the factory, the total load increases, and
hence the velocity decreases. The velocity continues to
decrease for t < � . Therefore, the outflux given by "�t�=
u1v�t� decreases as well, until the new density u = u2
reaches the end of the production line.
If the change in demand happens without sufficient

notice, then there exists a time lag during which the fac-
tory will not produce according to the new demand, as can
be seen in Figure 11(b). During the transition between the
equilibria we produce an outflux "�t�= u�1� t�v�t� while
we wished to produce an outflux of d2. The difference
between actual and desired production up to time t is called
the backlog. It may be written as

b�t�= u2
(
1− u2

L

)
t−

∫ t

0
"�s�ds� (26)

An optimal control problem can now be defined that asks
for the input function ��t� that moves the factory from
one steady state to another in shortest time, subject to the
constraint of a zero backlog. Formally, we write

minT

subject to

�u

�t
+ ��v�u�u�

�x
= 0�

v�u�= v0
(
1− ū�t�

L

)
for t � T �

u�x�0�= u1�
v�u�u�0� t�= ��t��

(27)

Figure 11. (a) Snapshot of the density u�x� for the
solution of Equation (10). The influx is
given by Equation (24). Note that with this
start rate, the density is piecewise constant.
(b) Outflux; note that the flux is constant
after the transient time of moving between
the steady states.
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and

b�t�=
∫ t

0
�d2 − v�s�u�1� s��ds = 0 for t � T � (28)

Standard optimal control approaches in the production and
inventory modeling context (e.g., Gershwin et al. 1985)
cannot solve our problem here: They are based on ODEs
that cannot take into account the slowdown of the fac-
tory, as the load in the factory increases due to the control
actions. Lefeber (2004) suggested an approach based on
control theory of delay systems. Whether such an approach
will work for the re-entrant factory with its large delays
remains to be proven.
As we currently cannot solve the optimal control prob-

lem in its general setting, we are going to solve the fol-
lowing simplified problem: We assume that we want to go
from an equilibrium solution u1 to an equilibrium solution
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u2 through one intermediate constant density u = u3. We
will find the optimal level u3 and the optimal time that
the system will stay in that intermediate equilibrium. While
this constraint mostly is dictated by the fact that we can-
not solve optimal control problems for nonlinear hyperbolic
equations, it is not entirely unreasonable to have this addi-
tional constraint: We are trying to find the input sequence
that solves the optimal control problem and, in doing so,
limits the disruption of the WIP profile to two-step func-
tions. Clearly, from a resources and management point of
view it is desirable to have a product density in the fac-
tory that is as homogeneous as possible. Furthermore, we
hope that this approach can be the basis for a numerical
algorithm that solves the original optimal control problem
(WIP).
We therefore assume that the solution at x= 0 takes the

following form:

u�0� t�=



u1� t < 0�

u3� 0< t < T �

u2� T < t�

(29)

i.e., we enter the intermediate density u3 for T time units.
Note that once we enter the desired density u2, there is still
the transition time � before the system is completely in
equilibrium. Under the assumption that v0� u1� u2� and L
are known, there are two parameters, u3 and T , to choose.
Therefore, the requirements for a �u3� T � pair to satisfy are

u2

(
1− u2

L

)
�T + ��−

∫ T+�

0
"�s�ds = 0� (30)

There are two cases to consider.

6.1. u3 Saturates the Factory

Here we seek to move to an intermediate equilibrium solu-
tion, u3� and remain on it for some time before moving
again to the final equilibrium solution u2. The method of
Lagrange multipliers and simple algebra allows us to find
the optimal values for the intermediate level u3 and the time
T to stay on that intermediate level. As an example, for
v0 = 1, u1 = 1�8, u2 = 3�5, and L= 10, we find a minimum
time for u3 = 5�29321 and T = 2�85286. Figures 12(a) and
12(b) show the start rate and backlog for the optimal solu-
tion with these parameter values. The drop at around t = 4
is due to the inverse response again. As we lower the start
rate, we reduce WIP in the factory, and hence speed up
production and subsequently increase the output. In order
not to overproduce, we need to start less for a short amount
of time.

6.2. Small Backlog—u3 Does Not Saturate

Here we input the intermediate state u3 only for a time
t < �u3 , such that the factory never saturates on u3. There
will be three stages to the transient in moving from u1 to

Figure 12. (a) Start rate ��t� and (b) Backlog b�t� for
the optimal parameters discussed in §6.1.
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Note. Note that after t ≈ 6�2421, the influx is at the new steady state and
the backlog stays zero.

u2: The first stage will be introducing the density u3 into
the factory. The discontinuity from u1 to u3 moves through
the factory along the characteristic x1�t�. This will yield a
decreasing velocity because the load keeps increasing. This
will last until t = T � at which time the introduction of u2
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will begin. The discontinuity from u3 to u2 will move along
a characteristic called x2�t�. This second stage will consist
of the time needed to purge the factory of u1� so that only
u2 and u3 are left. This time will be referred to as T + T1.
The third and final stage will be the expulsion of u3 from
the factory at which time the new equilibrium is reached.
We call this time t = T +T1+� and we are seeking a mini-
mum time subject to the backlog constraint (30) by varying
the two free parameters u3 and T1� Again, straightforward
algebra and the method of Lagrange multipliers allows us
to find the minima.
We find that for every choice of u1, u2, and L that we

checked numerically, for which there exists a solution for
the backlog constraint, the shortest possible solution was to
make up the backlog through an instantaneous 1-impulse
with a strength of the maximal backlog. While we can
prove the optimality of the 1-impulse for special cases ana-
lytically, we have not been able to do so for arbitrary u1� u2,
and L. We have, however, confirmed it for many cases
numerically. Figure 13(a) shows a WIP profile for a jump

Figure 13. (a) The WIP profile for an approximation of
a 1-pulse and (b) Backlog as a function of
time.
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from u1 = 2�8 to u2 = 3�5 via a maximal density value
of u3max = 17. Figure 13(b) shows the associated temporal
evolution of the backlog.
There is an easy-to-understand limit for this case:

Assume that a backlog of h needs to be made up. If we
enter a 1-impulse with strength h into the factory, then the
factory will have its maximal load just before the 1-impulse
leaves the factory. At that time the load will be u2 + h,
assuming without loss of generality (wlog) that u2 > u1.
Hence, h < L− u2 because otherwise the factory is over-
loaded and the PDE model breaks down. There is also the
practical issue of a 1-impulse in the density: Clearly, this is
not a realistic model for any factory. However, if we assume
that our factory is characterized by a maximal density u3max ,
then our analysis provides a useful heuristic:
If the jump in demand is small �leading to a small

enough backlog�, then the optimal strategy will be to get the
factory to its maximal density instantly and keep it there for
the right amount of time, such that when this extra product
leaves the factory, the backlog is zero.
We conjecture that the optimal solution for the general

optimal control problem (27) for a small enough demand
jump is a 1-impulse.

7. Supply Chains
The major advantage of the PDE model for a re-entrant
manufacturing flow is speed and scalability. Specifically,
using a model like (10) as a node, we can easily link
many nodes together to form a supply chain that would
be impossible to simulate via a discrete-event simulator
within a reasonable time frame. For a network of conser-
vative flows, the challenge for a simulation is not compu-
tational time, but rather display, analysis, and control of
such a network. The recent book by Daganzo (2003) advo-
cates similar ideas. As a prototype example, we are study-
ing a three-node chain: an acyclic factory feeding into a
re-entrant factory feeding into another acyclic factory.
The model for the acyclic (or queueing) factory has been

discussed in Armbruster et al. (2004). It is based on a gen-
eralization of ideas from gas dynamics to queueing net-
works. Consider a job arriving at a queue with processing
rate �. Its throughput time depends on the number of jobs
waiting before it,

� = 1

�
�1+N�� (31)

Using this relationship as a boundary condition, we derive
a set of coupled hyperbolic conservation laws for the WIP
density u�x� t� and the velocity v�x� t� of the form

�u

�t
+ ��vu�

�x
= 0�

�v

�t
+ v �v

�x
= 0�

v�0� t�= �

1+ ū�t� �

v�0� t�u�0� t�= ��t��

(32)
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where � is again the arrival rate and ū�t� = ∫ 1
0 u�x� t�dx

is again the total load (WIP). The first equation in system
(32) again has the form of a hyperbolic conservation law.
However, instead of the heuristic state equation used in the
re-entrant model (10) that relates the velocity to the density,
we have a Burger’s equation for the time evolution of the
velocity. Note that the boundary condition for v provides a
nonlocal feedback of the history of the production on the
current velocity through the length of the queue in front of
an incoming part. This model for the queueing system is
more sophisticated than the model for the re-entrant system
because it allows for nonadiabatic relaxation of the velocity
fields, and hence a better modeling of transient phenomena.
In addition, in contrast to the heuristics of §2, it has been
rigorously derived in Armbruster et al. (2004).
It is straightforward to link the two models together to

form a supply chain. We assume no buffers in between fac-
tories, and hence the outflux of one factory becomes the
influx of the next. This implies, if we extend our comple-
tion variable x to cover the whole chain, that the flux will
be a continuous variable of x while the density will show
discontinuous jumps between factories.
In all experiments, because the PDE models are deter-

ministic moment equations, steady-state modeling is not
interesting: Either on the average the influx is below capac-
ity, in which case we find a stable equilibrium given by
the state equation; or the influx is above capacity, in which
case WIP will explode. However, the PDE models allow
us to focus on simulations driven by a time-dependent
influx ��t�.

7.1. Experiment 1: Short-Time Overload of the
Queuing Factory

Figure 14 shows snapshots of a steady-state density and
flux for a linear chain of three factories—two identi-
cal queue modules surrounding a re-entrant module. Each
module makes up one-third of the total x-axis. The raw

Figure 14. Snapshot of the steady-state density and flux
in the three-node chain.
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Figure 15. The outflux of the experiment of ramping
up the three-node chain from zero.
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velocity �1/�� for each queue is 1.2, and for the re-entrant
module �v0�, it is 2.0. The capacity for the re-entrant mod-
ule is L= 12. We start the experiment from an empty sup-
ply chain. The snapshot is taken at approximately t = 32
at which time the transients have disappeared. The influx
is periodic, given by ��t�= 0�75+ 0�5 sin�23t�. The starts
are constructed so that they exceed the threshold allowable
for an equilibrium to exist in the queue. This occurs for
only a short part of a period—on average, they stay below.
Figure 15 shows the outflux of this experiment, while Fig-
ure 16 shows WIP profiles for each module. Interesting
observations are:
• transient oscillations in the output that are much larger

than the oscillations in equilibrium—notice the “bulge” in
the outs between t = 10 and t = 25;
• extremely long transients (on the order of 30 through-

put times) for the queueing factories;

Figure 16. WIP profiles from 7.1 for each module.
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equilibria: the queues took far longer than the re-entrant module to reach
steady state.
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• the re-entrant factory equilibrates much faster than the
queueing factories; and
• the re-entrant factory acts as a damping device reduc-

ing the amplitude of the oscillations in WIP in the down-
stream factory.

7.2. Experiment 2: Stronger Overload of the
Queuing Factory

We increase the starts to ��t� = 1�1 + 0�5 sin�23t�, i.e.,
the mean influx of 1�1 is just below the threshold of �=
1�2 allowable for a constant steady state to exist in the
queues. Figure 17 shows the outflux and Figure 18 shows
the WIP for all three factories for this experiment. The
major differences to the previous experiment are the much
longer transients and the absence of the bulge in the outflux.

7.3. Experiment 3: Short-Time Overload of
the Re-entrant Part

We return to the starts profile of Experiment 1: ��t� =
0�75+ 0�5 sin�23t�. However, we now reduce the capac-
ity for the re-entrant module to L= 4, leading to a critical
influx for the re-entrant part of �c = 1. This influx profile
violates the threshold for constant steady states to exist for
the queues (for a very short time) and for the re-entrant
module (for a longer time). The time series for outflux
and WIP for this experiment are very similar to those in
Experiment 1. In particular, the “bulge” in the transient of
the outflux reappeared. The most striking difference can be
seen in the snapshot of the density and flux of the re-entrant
factory: Because the re-entrant part is partially overloaded,
its velocity will decrease, and hence the overall WIP will
increase from an average of u ≈ 0�5 in Figure 14 to an
average of u�x�= 1 in Figure 19. In addition, we find that
the flux and density waves travelling through the factory
have a much shorter wavelength 5 than in the previous
experiments, suggesting a dispersion relation 5∝ v.
Figure 17. The outflux for Experiment 2.
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Figure 18. WIP profiles for Experiment 2.
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8. Conclusions and Further Work
This study can be viewed as a response to the call for
scalable simulation of supply chains (Scalable Enterprise
Initiative 1999). We have shown that high-volume produc-
tion in linear and re-entrant factories can successfully be
modeled via hyperbolic conservation laws. This idea opens
up the vast literature on traffic modeling and hydrodynamic
transport equations to be adjusted for the details of produc-
tion flow. In particular, standard numerical schemes allow
fast and accurate simulation of production networks. Obvi-
ously, a lot of future work needs to be done to make such
an approach a real competitor to the standard discrete-event
simulators.
An issue that needs clarification is the issue of network

topology and the related issue of prioritization or dispatch
rules. The appeal of the current formulation is that it treats
the dynamics of a full factory as one unit whose param-
eterization is completely determined by its state equation.
While this allows us to discuss experiments changing the

Figure 19. Snapshot density and flux profiles for
Experiment 3 at t ≈ 58 seconds.
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input of the factory and incorporating such PDEs as build-
ing blocks in supply chains (see §7), it does not allow us
to easily study the changes due to changing dispatch rules
or changing product routing. If we want to do this, we
need to give up the concept of a homogeneous model (in
completion space) of the factory and introduce completion-
dependent parameters. In the simplest case, this can be
done by coupling two PDE models together where one
feeds into the other. For instance, the transistor and the
metalization segments in chip processing would naturally
be separated like that. Each part is re-entrant, but not across
the transistor/metalization boundary.
A single state equation, but a more accurate model, uses

appropriate weight functions w�x� s� to represent the influ-
ence of WIP at stage s on the velocity of WIP at stage x:

N�x� t�=
∫ 1

0
w�x� s�u�s� t�ds�

For instance,

Npull�x� t�=
∫ 1

x
u�s� t�ds

restricts the WIP relevant for the velocity at point x to the
WIP in front of x, whereas

Npush�x� t�=
∫ x

0
u�s� t�ds

restricts it to the WIP behind x—mimicking pull and push
policies, respectively. The experience with the failed PDE
model discussed in §4.1 (Figure 7) suggests that the current
model based on a global velocity will be quite good if the
dependence of the velocity at stage x on the WIP at stage s
is constant; and it will not be good if that dependence varies
significantly, as it does, e.g., for a push policy in a reverse
production line.
We are currently pursuing several first-principle models

and heuristic extensions of these ideas:
• While it is extremely hard to characterize in any mean-

ingful way the actual stochastic processes involved, we
know that there exist some physical limits. In particular,
a fixed production line has a maximal production capac-
ity at every machine. No matter what policies, the recipe
for a certain chip expects it to stay x hours in a diffusion
oven. Hence, we can define a maximal capacity function
C�0� that describes the capacities of all machines that are
involved in the production process, where 0 now is a vari-
able that does not describe the stages, but the sequence of
machines. The resulting quasi-static model then becomes

�u

�t
+ �F
�x

= 0�

F �x�=min9uveq���x�:�

veq =;�u��
(33)

where the maximally available capacity at stage ��x� de-
pends on the dispatch policy: Assume that there are n layers

that are produced on the same machines, leading to n loops
through those machines. The map between machine posi-
tion and production stage is then given by modular divi-
sion: The stage variable x acquires a layer index i such that
xi = �i− 1�/n+ 0 for i= 0� � � � � n− 1 describes a produc-
tion stage in the i + 1th loop at the machine position 0.
At any particular machine, flux requests from all n loops
may compete for the maximally available capacity C�0�
leading to a distribution of the maximally available capaci-
ties at stage i, ��xi�, depending on the fluxes F �xj� in the
other loops. For instance, for a “push” policy, capacities
are allocated from front to end. Hence, we can iterate, for
i= 0� � � � � n− 1, the following scheme to find the capacity
distribution ��x�:

��x0�=C�0��
F �xi�=min9��xi�� uveq�xi :�
��xi�=max90���xi−1�− F �xi−1�:�

Such a model will lead to the formation of bottlenecks, and
hence 1-distributions in the density variable for any influx
that temporarily exceeds the total capacity.
• For a completely deterministic flow network, we have

derived the system (33) from first principles using mod-
els from gas dynamics (Armbruster et al. 2006a). In Arm-
bruster et al. (2006b) we extend this to derive a general
model supporting arbitrary policies.
• The fundamental PDE model (Equation (10)) with a

state equation (Equation (5)) based on mass conservation
can be shown to be the zero order moment expansion of a
Boltzmann equation with appropriate closure assumptions
(Armbruster et al. 2004). Specifying the stochastic process
that generates the randomness in the production process as
a stochastically varying throughput time adds a diffusion
term to the mass conservation (Armbruster and Ringhofer
2005).
We are currently working on the following issues:
• A major source of stochasticity in factory production

is machine breakdowns. Usually, the distributions of time
to failure and time to repair can be approximated. This will
lead to a stochastic version of the capacity limited flow
network discussed above.
• The optimal control problem (27) should be solved in

its most general form. Specifically, extending the analysis
of §§6.1 and 6.2 to allow for more than one intermediate
level should lead to a numerical algorithm for the optimal
control problem.
• We plan to parametrize and validate PDE-based mod-

els for complicated discrete-event models and for real fac-
tories. The goal is to determine modifications of the simple
state equation (12) model to describe more accurately the
inverse response of a production system and the general
form of transients and their dependence on policies. This
will involve diffusion terms (Armbruster and Ringhofer
2005) and/or terms representing a relaxation time. Another
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goal will be to determine the discretization error associ-
ated with treating a fundamentally discrete problem as a
continuous flow.
• While we showed the feasibility of linking hyperbolic

conservation laws together to make a simple linear chain,
this is really just a proof of concept. The real test for
the usefulness of our approach will be whether relevant
business questions can be answered for a supply network
by linking our nodes together and performing simulations.
This may involve the development of an object-oriented
simulation interface. A related project uses the PDE-based
models as the predictive model for attempts to optimize
the behavior of a whole supply chain via model predictive
control (MPC) algorithms (Wang et al. 2004).
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