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A phenomenological constitutive model is proposed which aims at describing the 
overall effect of microfracture in ceramics. Based on this model, the asymptotic 
stress, strain, and displacement fields at the tip of a stationary macroscopic crack 
are determined in closed form. The near-tip stress-intensity factor is computed and 
observed to be significantly smaller than the applied stress-intensity factor even for 
moderate amounts of damage. 

1 Introduction 

Certain classes of ceramics are known to undergo extensive 
microcracking confined to a process zone surrounding 
macrocrack tips (Hoagland et al., 1973; Claussen, 1976; Wu et 
al., 1978). Under these conditions, the processes at the crack 
tip are screened from the remote loads by the intervening 
microcracks and a fracture toughness enhancement results 
(Evans, 1984). Microcracks develop at grain boundary facets 
mainly as a result of residual stresses generated during cooling 
and of applied tensile stresses (Fu, 1983). The net effect of the 
microcracks is to render the material more compliant. Under 
increasing loads, the microcracks already present in the 
material remain confined to their respective facets and their 
size is essentially unaltered. Thus, further elastic degradation 
comes about as a result of increasing microcrack density and 
not microcrack growth. Eventually, the number of available 
nucleation sites which are favorably oriented with respect to 
the applied tensile loads is exhausted and a saturation stage is 
reached in which the material does not undergo further 
damage. 

A first attempt at quantifying the crack shielding effect has 
relied on computer simulation (Hoagland and Embury, 1980). 
However, an analytical treatment of the problem has proven 
elusive in part due to lack of adequate material characteriza
tion. In this study it is assumed that the length scale over 
which the singular fields dominate is large compared with the 
characteristic microcrack size and the mean distance between 
the microcracks, so that an asymptotic analysis can be based 
on the effective overall properties of the continuum. Ideally, 
one would like to have a description of the effective behavior 
based on micromechanics and a detailed knowledge of its 
dependence on relevant micromechanical parameters, such as 
grain size. However, this entails the determination of the ag-
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gregate effect of dense populations of strongly interacting 
microcracks, possibly with preferred orientations, distributed 
over a three-dimensional heterogeneous elastic medium. Even 
under strong simplifying assumptions, this problem poses con
sideration difficulties (Horii and Nemat-Nasser, 1983; 
Kachanov, 1985). Thus, to make progress one has to resort to 
phenomenological models. In Section 2, one such model is 
proposed which aims at describing the effective behavior of a 
material undergoing progressive distributed damage and ex
hibiting a saturation stage. The possibility of a strong damage
induced elastic anisotropy is taken into consideration. Some 
of the ideas involved have been taken from constitutive 
models proposed for other progressively fracturing materials 
such as concrete (Ortiz, 1985). 

In Section 3 the near-tip singular fields for a stationary 
crack are determined in closed form. Then, Rice's J-integral 
(Rice, 1968) is used to relate the stress-intensity factor at the 
crack tip to the amplitude of the remote K field. It is found 
that small amounts of damage can result in a substantial 
reduction of the stress intensity factor and thereby bring about 
a toughening of the material. This situation is in sharp con
trast to transformation toughening which only comes into ef
fect for a growing crack (Budiansky et al., 1983). 

2 Effective Constitutive Behavior of Progessively 
Fracturing Materials 

A phenomenological constitutive model is presented below 
which aims at describing the overall effect of microfracture in 
ceramics. In this work, processes resulting in permanent 
strains as well as rate effects are neglected. The model is 
predicated upon the following assumptions. Stresses and 
strains are assumed to be linearly related according to 

Eij = Cljklakl (1) 

where the elastic compliances Cijkl are regarded as internal 
variables which evolve as a result of damage processes taking 
place at a microstructural level. A threshold is postulated 
below which no further damage can occur. For the class of 
materials under consideration, the onset of damage is assumed 
to occur when the maximum tensile stress a1 reaches a critical 
value ac <::: 0, i.e., 
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Fig. 1 Uniaxial tension stress-strain curve showing an initial elastic 
range and a saturation stage 

(2) 

The direction of incremental damage is given by a damage rule 

cijk/ = 'l...n;njnknl (3) 

where n, .Jn;il; = l, is the direction of maximu~ tensile stress 
and the multiplier A. can be regarded as an effect~ve added flex
ibility due to damage. Implicit in equation (3) 1s the assump
tion that the newly nucleated microcracks tend to be prefere.n
tially oriented normal to the direction of 1!1aximu~ te~s1le 
stress and thus most loss of stiffness occurs m that d1rect1on. 
Similar ideas were used by Hutchinson (1983) to estimate the 
macroscopic steady creep-rate of a material exhibiting po~er
law creep and simultaneously undergoing creep-constramed 
grain boundary cavitation. 

The evolution of the critical stress <le is assumed to be 
governed by a damage rule of the type 

ilc =h(<Jc)}.., (4) 

for some modulus h(<Jc). In this simple mod~! the d7pendence 
of h on <J can be determined from the uniaxial tension stress
strain cur~e alone. Finally, the damage and loading-unloading 
criteria can be expressed in Kuhn-Tucker form as the require
ment that the constraints 

(5) 

be simultaneously satisfied at all times. 
It is interesting to note that the above constitutive model 

shares a common structure with other rate-independent 
theories such as classical plasticity. In this latter case, a prin
cipal objective of the theory is to predict the evolution of the 
plastic strains while, in the case at hand, interest is focused on 
the evolution of the effective elastic moduli. In spite of these 
similarities certain aspects of the behavior of materials 
undergoin~ microcracking do not have a counterpart in 
plasticity. The effect of closure of microcracks under load 
reversal falls within that category. By this mechanism 
microcracks can become inactive and cease to contribute to 
the flexibility of the material. Consideration of this effect re
quires adding further structure to the model. Microcrack 
closure can be modelled within a phenomenological theory as 
a unilateral constraint which requires that the deformation 
contributed by the microcracks be always tensile in all direc
tions (Ortiz, 1985). In the present study attention is confined 
to monotonic loading processes for which microcrack closure 
is of no concern. 

For the purpose of the asymptotic analysis that follows it 
Proves more convenient to employ a deformation type con-
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Fig. 2 Small scale microcracking problem for stationary crack 

stitutive theory rather than the incremental model introduced 
above. A deformation theory of damage can be readily ob
tained by integrating the incremental constitutive equations 
along proportional stress paths. This results in the following 
stress-strain relation 

eiJ= (Cijk1+°'A.(<Ji)n;n1nkn1)<Jk1 (6) 

where Cijk1 are the isotropic elasti~ moduli ~f the uncracked 
material n is the direction of maximum tensile stress and the 
function' °'A.(<J1) can be determined directly from t~e uniaxi~l 
tension test. A typical uniaxial tension stress-stram curve 1s 
shown in Fig. 1 (Fu, 1983). It is seen that the material initially 
exhibits an elastic domain after which damage starts to ac
cumulate. Eventually, a saturation stage is reached wherein no 
further damage takes places. In this saturation stage equation 
(6) simplifies to 

eiJ = ( Cijk1 + A.,n;n1nkn1) <Jki = Cijk,11k1 + A.,111 n;n1 (7) 

where A., is a constant of value 

I 1 
A.=--- (8) 

s Es Eo 

Here E is the initial Young's modulus of the material and Es 
is th~ sl~pe of the uniaxial tension stress-strain curve in the 
saturation range. 

The stress-strain relation (6) has a hyperelastic structure 

(9) 

where the complementary energy potential x ( u) takes the form 

x(u)=+Cijk,uiJ<Jk1+f(111) (10) 

The functions /(<J1) and A.(111) are related by f' =A.. In the 
saturation stage equation (6) reduces to (7) and /(<J1) to 
A.,<Jr/2, which renders the complementary energy potential 
(10) a homogeneous function of degree t"'.o of the s~ress ten
sor. Therefore, the strain energy potential W(e) 1s also a 
homogeneous function of degree two and satisfies the identity 

I ax(<J) 
W(e)=x(u)=-<JiJe11 , when eu=-a- (11) 

2 (Ji 

i.e., the strain and complementary energy potentials take ~he 
same numerical value when evaluated at stresses and strams 
which satisfy the stress-strain relations (9). 

3 Asymptotic Fields for a Stationary Crack 

Throughout this work it is assumed that the region around 
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the crack tip to which microcracking is confined is small com
pared with the length of the crack but orders of magnitude 
larger than the characteristic size of the microcracks and their 
mean separation. Under the first condition an asymptotic 
problem can be formulated for a semi-infinite crack as shown 
in Fig. 2. The second condition is needed for the constitutive 
model presented above to apply. In this paper attention is con
fined to plane strain conditions and Mode I loading, i.e., ap
plied loads which result in stress fields which are symmetric 
with respect to the plane of the crack. 

Three well-differentiated regions surrounding the crack tip 
can be identified, Fig. 2. In the innermost region the strains 
are large enough so that the material can be assumed to be in 
the saturation stage. On the other hand, at points far away 
from the crack tip the material behavior is linear isotropic 
elastic and the state of stress is given by 

K 
au (r,O) = ;:__ Bij ( 0) 

Y27rr 
(12) 

where K 00 is the remote stress-intensity factor and the univer
sal angular distributions Bij ( 0) for a linear isotropic elastic 
material are given by 

{ 

B~, (0)} { (5/4)cos(0/2)-(l/4)cos(30/2)} 

B39 (0) = (3/4)cos(0/2) + (l/4)cos(30/2) 

B~ (0) (l/4)sin(0/2) + (l/4)sin(30/2) 

(13) 

The value of K 00 depends upon the particular geometry of the 
cracked specimen and represents the influence of the applied 
loading. In between the inner and outer field lies a transition 
zone in which the material is partially saturated. 

The behavior of the material surrounding the crack tip is 
assumed to be described by the stress-strain law (6). Since 
these relations derive from a complementary energy potential 
which is homogeneous of degree two, a classical argument 
(see, e.g., Rice 1968) shows that the leading term in the asymp
totic expansion of the stress field has to be of the form 

K, -
au(r,0)= ~au(O) (14) 

Y27rr 

where K1 is the local stress-intensity factor of the near-tip 
fields and the angular distributions Bii ( 0) are to be deter
mined. In general K 1 is different from K 00 because the crack 
tip is shielded from the remote loads by the intervening 
microcracks. Assuming that crack growth is controlled by the 
value of K 1 it becomes of primary interest to determine the 
relation between K 1 and K 00 • 

In view of the fact that the constitutive behavior of the 
material surrounding the crack tip is nonlinear and strongly 
anisotropic one would expect singular stress fields which 
substantially depart from the linear isotropic solution. It is 
shown next that this is not the case. In fact, the linear isotropic 
stress field' provides the exact asymptotic solution of the 
problem, i.e., 

(15) 

Under certain circumstances, a similar situation is en
countered in materials exhibiting linear creep and grain 
boundary cavitation (Hutchinson, 1983). On the basis of this 
observation, Hutchinson (1983) anticipated the result stated 
above, namely, that constitutive relation (7) implies the same 
angular distribution of stresses as in the linear elastic solution. 

To prove equation (15) we start by noting that the stress 
field (14), (15) satisfies equilibrium and traction-free 
boundary conditions on the crack faces. Thus, it only remains 
to be shown that the corresponding strains satisfy compatibili
ty. With reference to Fig. 2, the direction of maximum tensile 
stress is computed to be 
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Fig. 3 Angular variations of the near-tip strain field (•

0 
= 0.25) 

n = (cosa, sina), {

7r/4-0/4, 0<0:57r; 
a-

- -1['/4-014, -7r:50<0; 
(16) 

Thus, the angle a made by n and the radial direction varies 
linearly with the polar angle 0 from a value of a= 45 ° at O = O + 
to a= 0 on the crack face 0 = 7r. The vector n can be regarded 
as giving an indication of the preferred orientation of the 
microcracks. In this light, it is interesting to note that for O = 0 
one has a,,= a69 and are= 0. This would appear to render a in-
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determinate on the plane of the crack. However, this indeter
minacy can be resolved by computing the limiting values of a 
as the plane 8 = 0 is approached from above and below. This 
operation yields two values of a= ±45°, respectively. Thus, 
the model predicts two families of perpendicular microcracks 
at I}= 0 symmetrically distributed with respect to the plane of 
the crack. 

Substituting (16) into (7) the asymptotic strain field is com
puted to be 

{

Err(r,8)J 
Kt l 

E06 (r,8) =---
..fiV. 200 

'Y re (r, 8) 

{ 

(5/4-2110 )cos(8/2)-(l/4)cos(31J/2) J 
(3/4- 2v0 )cos(8/2) + (l/4)cos(31J/2) 

(l/2)sin(8/2) + (l/2)sin(31J/2) 

Kt ( 8 l ) + ,,;-- J..s cos-+-sin8 
V211'r 2 2 

{ 

(l + sin(8/2))/2 J 
(l-sin(IJ/2))/2 , 0<8~11' 

cos(IJ/2) 

(17) 

where E0 , 110 , and G0 =£0 /2(1+110 ) are the initial Young's 
modulus, Poisson's ratio, and shear modulus of the uncracked 
material. It is noted that the first term is the isotropic linear 
elastic solution corresponding to a stress intensity factor Kt. 
The second term represents the effect of damage and vanishes 
identically for As=O, i.e., Es=E0 • The strains in the lower 
half plane - 71' ~ 8 < 0 are obtained from the symmetry 
conditions 

Err (r, -8) =Err (r,8), E66(r, - 8) = E66 (r,0), 

'Y re(r, - O) = - 'Y re(r,8) (18) 

The computed angular distributions of the strain components 
are shown in Fig. 3 as function of the material parameters in
volved. A noteworthy feature of the solution is that the shear
ing strain 'Yre exhibits a jump across the plane of the crack. 

Lengthy but straightforward algebra shows that the strain 
field (17) identically satisfies the compatibility equation. 
Hence, equations (14), (15) do indeed provide a closed form 
asymptotic solution of the problem. The displacement field 
can be computed from the strain-displacement relations to 
obtain 

{
u, (r,0)} K ~ 
u

0 
(r,O) = 4~o h 

{ 

(2K0 - l)cos(8/2)-cos(38/2) } /r 
+ Ktf..s.._f-:;::-

- (2K0 + l)sin(8/2) + sin(31J/2) 271' 

{ 

(cos(IJ/2) + (l/2)sin8)(1 + sin(8/2)) }· 

cos8- sin(8/2)-sin3(8/2)- l 

0<8~11' (19) 

where K0 = 3 - 4v 0 • The displacements in the lower half plane 
follow from the symmetry conditions 

u,(r,-8)=ur(r,8), u6 (r,-8)= -u6 (r,O) (20) 

Of particular interest is the crack opening profile 
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As can be seen, the opening profile is parabolic as in the linear 
elastic solution. 

The asymptotic analysis presented above has been based on 
the deformation theory of damage given in Section 2. 
However, since the stress field about the crack tip is identical 
to the stress field in the outer undamaged region except for an 
amplitude factor it can be concluded that the stress paths at all 
material points are nearly proportional and the solution given 
above is consistent with the incremental constitutive model as 
well. A similar situation was encountered by Hutchinson 
(1968) and Rice and Rosengren (1968) who based their analysis 
on a deformation theory of plasticity to find a posteriori that 
their solution satisfies the incremental constitutive equations 
as well. 

4 Crack Tip Stress-Intensity Factor: Application of 
the /-Integral 

To have a complete asymptotic solution of the problem 
under consideration, it remains to determine the value of the 
crack tip stress-intensity factor Kt as a function of the 
amplitude K 00 of the applied K field. This relation follows 
simply from an application of the J-integral of Rice (Rice, 
1968). It has been shown above that under monotonic loading 
the stress path at all points is nearly proportional and the 
response of the material is indistinguishable from -ihat of a 
small strain, nonlinear elastic solid with complementary 
energy potential (10). Under these conditions, the formalism 
of the J-integral applies. Let us recall that 

J= f (W(e)m1-<J··ffl·U·1Jds J f I) J I, 
(22) 

Here, m signifies the outer normal to the contour r encircling 
the crack tip. If the contour is chosen to lie entirely within the 
remote field, J reduces to the classical expression 

1- 2 
J = ~K1:. (23) 

oo Eo "' 

For a contour shrunk down to the crack tip (22) can be 
evaluated from equations (14), (15), and (19). For the par
ticular material model under consideration the strain and com
plementary energy potentials coincide in numerical value and 
W( e) in equation (22) can be replaced by x ( u) as computed 
from (7), (14), and (15). A lengthy but straightforward com
putation yields 
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1- ,,2 
J, = __ o J(f + /3AsKf (24) 

ED 
where the numerical constant {3 takes the value {3 = 1.0942. The 
path-independence of J necessitates 

(25) 

from where one finds 

(26) 

The dependence of K,IK"" on E 0 /Es is shown in Fig. 4. 
A substantial reduction in K is observed even for moderate 
deviations from elastic behavior. 

5 Discussion 

The analysis presented above has been based on a model of 
damage in which permanent strains and rate effects are as
sumed to be negligible. The model incorporates some of the 
complexities that are encountered in most progressively frac
turing materials such as a strong damage-induced elastic 
anisotropy. However, the constitutive framework is simple 
enough that a closed form analytical solution for the asymp
totic problem can be obtained. 

The computed results are indicative of a significant reduc
tion in the crack tip stress-intensity factor from the remote K. 
Unfortunately, the net toughness enhancement cannot be ex
pected to be as substantial as Fig. 4 would tend to suggest due 
to the fact that the microcracks created ahead of the main 
crack degrade the crack extension resistance of the material 
(Evans, 1984). The main microstructural mechanism underly
ing this latter effect is microcrack coalescence, a process which 
is poorly understood at present. Thus, it would appear that a 
detailed understanding of the toughness properties of ceramics 
will inevitably require further experimental and analytical 
research. 
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