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Abstract—In a single-component material, a chemical potential gradient or a wind force drives 

self-diffusion.  If the self-diffusion flux has a divergence, the material deforms.  We formulate a 

continuum theory to be consistent with this kinematic constraint.  When the diffusion flux is 

divergence-free, the theory decouples into Stokes’s theory for creep and Herring’s theory for 

self-diffusion.  A length emerges from the coupled theory to characterize the relative rate of self-

diffusion and creep.  For a flow in a film driven by a stress gradient, creep dominates in thick 

films, and self-diffusion dominates in thin films.  Depending on the film thickness, either stress-

driven creep or stress-driven diffusion prevails to counterbalance electromigration. The transition 

occurs when the film thickness is comparable to the characteristic length of the material.     
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1  Introduction 

 Self-diffusion can generate stress in a single-component material.  During deposition, for 

example, a thin film sometimes develops a compressive stress.  One possible mechanism has to 

do with the injection of atoms into the film [1].  Impinging atoms may not have enough time to 

find equilibrium positions on the film surface, and may diffuse into the film.  Oxidation leads to 

analogous phenomena.  For some materials, during oxidation, atoms may emit from the 

materials, causing tension in the materials [2].  For other materials, notably silicon, atoms may 

inject into the materials, causing compression in the materials [3].  Electromigration provides yet 

another compelling example.  The conduction electrons motivate atoms to diffuse, generating 

tension upstream and compression downstream [4].      

 The stress generated in the material depends on the deformation mechanism of the material.  

Only elastic property enters the consideration if inelastic deformation (i.e., creep) is either so 

slow as to be negligible, or so fast as to relax the stress field locally to a hydrostatic state.  For 

electromigration along a thin line, encapsulated in a stiff dielectric, it was thought that local 

stress relaxes to a hydrostatic state long before diffusion along the line reaches a steady state 

[5,6].  Experiments, however, have shown large deviatoric stresses [7].  Indeed, the initial 

discovery of electromigration-induced stress was made in a wide aluminum film, which could 

only sustain in-plane stresses [4].   

 This paper formulates a theory to couple self-diffusion and creep in single-component 

materials.  The new theory will contain Stokes’s creep and Herring’s diffusion as special cases.  

Stokes’s creep, as formulated in fluid mechanics, describes a velocity field and a pressure field; 

it neglects self-diffusion.  Herring’s theory [8] for self-diffusion is in terms of the chemical 
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potential, a scalar; it makes no attempt to equilibrate stress tensor field or maintain kinematic 

compatibility.   

 Our theory parallels that of nonreciprocal diffusion in multi-component solid solutions (i.e., 

the Kirkendall effect) due to Darken [9] and Stephenson [10], and extends our previous one-

dimensional theory [11].  The theory rests on a kinematic constraint:  the divergence in the self-

diffusion flux must be accommodated by deformation.  The remainder of this section recalls a 

few historic highlights of the mechanistic picture of creep and self-diffusion.  Sections 2-4 

describe the kinematics, energetics, and kinetics of the theory.  Section 5 gives the coupled 

partial differential equations for the velocity field and the chemical potential field, and identifies 

the characteristic length in the theory.  Sections 6 discusses examples of flows driven by stress 

gradient, wind force, and atomic injection or emission.  Stress gradient-driven channel flow is 

dominated by creep in thick channels, and by self-diffusion in thin channels.  Section 7 discusses 

an anisotropic rule to place diffusion flux divergence as strain-rates in various directions. 

 That creep and self-diffusion in some materials result from the same atomistic process has 

been known for a long time.  In a liquid, self-diffusion and creep are different macroscopic 

manifestations of the same microscopic fact:  molecules change neighbors readily in the liquid. 

Einstein [12] related the Brownian movement of a macroscopic particle in a liquid to the 

viscosity of the liquid.  The Stokes-Einstein formula, derived by Einstein using Stokes’s 

continuum solution, has since been applied to diffusion of molecules in liquids, including self-

diffusion.   

 Nabarro [13] and Herring [8] related creep in a polycrystal to self-diffusion mediated by 

the motion of vacancies.  By itself, the motion of vacancies does not change the crystal shape, 

but the creation and annihilation of vacancies at the grain boundaries do.  Consequently, creep in 
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the polycrystal is fast when the self-diffusivity is high and the grains are small.  When the grain 

size approaches the molecular dimension, the Nabarro-Herring formula for polycrystals reduces 

to the Stokes-Einstein formula for liquids, except for a numerical factor.  Similar comments 

apply to the Coble creep [14] mediated by atoms diffusing on grain boundaries.      

 Needleman and Rice [15] formulated a theory for polycrystals, where atoms diffuse on 

grain boundaries and creep in grains.  Here creep can result from the motion of dislocations. The 

two processes, self-diffusion and creep, occur in different places, but couple through a kinematic 

constraint.  For two grains meeting at a grain boundary, the creep in the two grains 

accommodates the divergence of the diffusion flux on the grain boundary.   

 Our theory neglects the microstructure.  Regardless of the specific microstructure, when a 

wind force motivates atoms to diffuse, the material must deform to accommodate the divergence 

of the self-diffusion flux.  The main advantage of the theory is that simple and enlightening 

solutions may be obtained for coupled problems.  The main drawback is that the theory may lead 

to wrong predictions at the size scale approaching or smaller than the microstructural feature 

size.  The new theory can be applied, with virtues and vices of a continuum theory, to complex 

materials, and to crystalline materials when atoms also diffuse in grains, among other situations 

for which the Needleman-Rice theory is not intended.  In particular, we will use the new theory 

to analyze electromigration-induced creep in Newtonian liquids.     

 

2  Kinematics 

 When the two rate processes occur in separate places, creep in grains and diffusion on grain 

boundaries, there is no ambiguity about their distinct contributions to mass transport.  When 

diffusion and creep occur in the same continuum space, how can their contributions be 
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distinguished?  We must give operational definitions of creep and self-diffusion without referring 

to the microstructure.   Following Darken [9], we imagine that markers are dispersed throughout 

the material (Fig. 1).  The markers in the material are analogous to leaves on a river.  The flow of 

water carries the leaves, but is unaffected by their presence.  The motion of the markers defines 

convection.  The atomic flux in excess of convection defines diffusion.  The markers should be 

small compared to the size scale in the flow of interest, but large compared to the atomic 

dimension so that the markers themselves diffuse negligibly.     

 We adopt the Eulerian approach.  Let ( )321 ,, xxx  be the coordinates of a fixed space.  The 

field ( )txxxvi ,,, 321  is the velocity vector of the marker at position ( )321 ,, xxx  at time t.  Let Ω be 

the volume per atom in the body.  Imagine a plane fixed in space and perpendicular to the axis 

xi .  The convection flux, Ω/iv , is the number of atoms moving with the marker across the plane, 

per unit area per unit time.  The net atomic flux, iN , is the number of atoms across the plane, per 

unit area and per unit time.  We can independently measure the marker velocity and the net 

atomic flux.  The difference between the two fluxes defines the self-diffusion flux iJ , namely, 

   Ω+= /iii vJN .  (1) 

The net flux is the sum of the diffusion flux and the convection flux.  

 To demonstrate the new features of the theory with minimum complication, we neglect 

elasticity.  Following Balluffi [16], we also neglect strains due to the space occupied by point 

defects such as vacancies or free volumes; enough dislocations climb or other defects move to 

maintain the point defects close to equilibrium concentrations, which are typically small.  

Consequently, a fixed volume contains a constant number of atoms at all time.  The volume per 

atom, Ω, is constant.  The net atomic flux is divergence-free, 0, =kkN , so that 
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  kkkk Jv ,, Ω−= . (2) 

A repeated subscript implies summation over 1, 2 and 3; a comma before a subscript indicates 

partial differentiation.  Eq. (2) has a clear interpretation.  Imagine a volume fixed in space.  

When kkJ , > 0, atoms diffuse out the volume; for the volume to maintain a constant number of 

atoms, convection must carry atoms into the volume, so that the markers converge.  The opposite 

is true when kkJ , < 0.  In this theory, the material is incompressible, but the marker velocity has a 

divergence to compensate for the divergence in the diffusion flux.  It is this kinematic constraint, 

Eq. (2), that couples creep and self-diffusion. 

 Markers at different locations may move at different velocities.  When two markers move 

away from each other, atoms have to be inserted in the space between them.  When two markers 

move toward each other, atoms have to be removed from the space between them.  The gradient 

of the marker velocity field defines the strain-rate tensor: 

  dij =
1
2

vi, j + vj ,i( ). (3) 

If im  is the unit vector pointing from one marker to the other, then Ω/jiji mdm  is the number of 

atoms inserted or removed per unit time, per unit area normal to and per unit distance along the 

direction im .  The strain-rate is the sum of that due to diffusion, D
ijd , and that due to creep, dij

C :  

  dij = dij
C + dij

D . (4)    

 As suggested by Eq. (2), the divergence in the diffusion flux, kkJ , , causes the divergence in 

the marker velocity.  We assume that the divergence in the diffusion flux causes an equal strain-

rate in all three directions: 

  dij
D = −

Ω
3

Jk , kδ ij ,    (5) 
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where δij =1 when i = j, and δij = 0  when i ≠ j.     

  A combination of Eq. (2)-(5) gives the creep strain-rates in terms of the marker velocity 

field: 

  ( ) ijkkijji
C
ij vvvd δ,,, 3

1
2
1

−+= . (6) 

The creep strain-rate tensor is symmetric and trace-less. 

 

3  Energetics 

 Fig. 2 illustrates three types of load on the material.  We identify them by the ways they 

supply power to the material.  The wind force iF  supplies power dVJF ii∫ , with the integral over 

the volume of the material.  The traction it  supplies power dSvt ii∫ , with the integral over the 

material surface where the traction is prescribed.  The chemical potential µ  is the free energy 

difference between an atom on the material surface and an atom in a reference body (a bulk 

under no stress).  The chemical potential is a scalar field defined on the material surface, in the 

same spirit as the traction is a vector field defined on the surface.  We assume local equilibrium:  

the chemical potential of atoms in the material immediately beneath the surface equals that of 

atoms on the surface.  Let the unit vector in  be normal to the surface and point to the outside of 

the material, and iinJ  be the flux at which the atoms diffuse out the material. The chemical 

potential acts on atoms in the same way as the voltage acts on electrons.  When atoms diffuse out 

of the material and join the reference body (i.e., when atoms move across the chemical 

potential), the chemical potential supplies power dSnJ ii∫− µ , with the integral over the material 

surface where the chemical potential is prescribed. 
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 We next identify driving forces for the two rate processes, following an approach often 

used in constructing continuum theories of multiple rate processes and thermodynamic forces 

[e.g., 17]. We state the principle of virtual power in the form of the balance between power 

dissipation and power supply:   

  ( ) ( ) ∫∫∫∫∫ −+=Ω+++ dSnJdSvtdVJFdVJvdVJfds iiiiiikkkkii
C
ijij µλ ,, . (7) 

On the right-hand side of Eq. (7) are the three modes of power supply discussed above.  On the 

left-hand side, the first integral contains two modes of power dissipation.  Eq. (7) defines the 

creep driving force, ijs , as the power-conjugate of the creep strain-rate.  Because C
ijd  is a 

symmetric and trace-less tensor, without loss of generality, we require that ijs  be a symmetric 

and trace-less tensor.  Eq. (7) defines the diffusion driving force, if , as the power-conjugate of 

the diffusion flux.  The second integral enforces the kinematic constraint, Eq. (2), with λ  as the 

Lagrange multiplier.   

 Because ijs  is a symmetric and trace-less tensor, and C
ijd  relates to the marker velocity 

field by Eq. (6), we confirm that jiij
C
ijij vsds ,= .  Using the divergence theorem, we can express 

Eq. (7) as 

  ( ) ( )( ) ( ) ( ) 0,,
=+Ω+Ω−−+−+++− ∫∫∫ ∫ dSnJdVJFfdSvtnsdVvs iiiiiiiijijijijijij µλλλδλδ . (8) 

This equation holds for arbitrary marker velocity and diffusion flux field, with no constraint.  

Consequently, the power balance requires that 

  ( ) 0
,
=+

jijijs λδ ,   in volume (9) 

  ( ) ijijij tns =+ λδ ,    on surface (10) 

  iii Ff ,λΩ+= ,       in volume (11) 
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  λµ Ω−= ,        on surface (12) 

Eq (9) and (10) recover force balance equations.  In familiar terms, the creep driving force ijs  is 

the deviatoric stress tensor, the Lagrange multiplier λ  is the mean stress σ , and the combination 

ijijij s σδσ +=  is the Cauchy stress tensor.  Eq. (11) and (12) recover Herring’s equations for the 

diffusion driving force [4,8].  The quantity σΩ−  is the free energy change associated with 

transferring an atom in the stress-free reference body to a point inside the material under the 

mean stress σ .  In short, σΩ−  is the chemical potential inside the material.  Its gradient, 

together with the wind force iF , drives diffusion.  To maintain local equilibrium, the chemical 

potential in the material just beneath the surface matches the prescribed value on the surface. 

 Following the established usage in mechanics, we intend the phrase “virtual power” to 

mean that Eq. (7) holds true provided all the kinematic relations are satisfied, and that no 

constitutive relations are assumed between the kinematic quantities and the force-like quantities.  

We could have as well followed an equivalent approach by invoking stress potential and strain 

rate potential [18].  This paper considers isothermal phenomena.  Were we interested in 

phenomena with nonuniform temperature fields, we would follow the practice of the 

nonequilibrium thermodynamics, working with the entropy production [19].     

 

4  Kinetics 

 Familiar isotropic kinetic laws are prescribed for diffusion and creep.  The diffusion flux is 

proportional the diffusion driving force: 

  
kT

DfJ i
i Ω
= , (13) 
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where D is the self-diffusion coefficient, k Boltzmann’s constant, and T the temperature.  The 

creep strain-rate relates to the deviatoric stresses as 

  dij
C =

sij

2η
, (14)  

where η  is the viscosity.  For linear creep, η  is constant.  For nonlinear creep, a standard 

approach is to assume that η  is a function of either the effective stress ( ) 2/12/3 ijije ss=σ , or the 

effective creep strain-rate ( ) 2/13/2 C
ij

C
ij

C
e ddd = .  The function ( )eση  or ( )C

edη  is determined by 

fitting to the relation between stress and strain-rate measured under a simple stress state.     

 

5  Governing Equations and Characteristic Length  

 Inserting the creep law (14) and creep strain-rate expression (6) into the force balance 

equation (9), we obtain that   

  0
3
2

,
,

,,, =+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+ i

j
ijkkijji vvv σδη . (15) 

Inserting the diffusion law (13) and diffusion driving force expression (11) into the kinematic 

constraint (2), we obtain that 

  ( )
k

kkkk F
kT
Dv

,
,, ⎥⎦
⎤

⎢⎣
⎡ Ω+−= σ . (16) 

When the diffusion flux divergence vanishes, the marker velocity divergence also vanishes, 

0, =kkv ; Eq. (15) reduces to Stokes’s equation for creep, and Eq. (16) reduces to Herring’s 

equation for self-diffusion. In general, 0, ≠kkv , and Eq. (15) and (16) are four coupled partial 

differential equations that govern the marker velocity iv  and the mean stress σ .  Each point on 

the material surface requires four boundary conditions:  three conditions of either velocities or 
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tractions, one condition of either chemical potential or the diffusion flux component normal to 

the surface. 

 The theory has a characteristic length.  When D and η  are constant, Eq. (15) and (16) are 

linear.  Let 0σ  be a representative stress scale in a boundary problem, and Λ  be the length scale 

to be determined.   Scale the stresses by 0σ , the velocities by ησ /0Λ , the wind forces by 

ΛΩ /0σ , and the spatial coordinates by Λ .  Eq. (15) and (16) become dimensionless and 

parameter-free provided  

  kTD /Ω=Λ η .   (17) 

The length characterizes the relative rate of diffusion and creep, and is independent of the scale 

of the stress.   

 For polycrystals, when creep is facilitated by diffusion, either through grains or along grain 

boundaries, the viscosity scales with the grain size gd as Ω= DkTdg 42/2η  [20], so that the 

characteristic length scales with the grain size, 42/gd=Λ .  For simple liquids, the self-

diffusivity is estimated by the Stokes-Einstein formula [12], ηπakTD 6/= , where a is atomic 

radius, so that the characteristic length scales with the atomic size, aπ6/Ω=Λ .  It is important 

to determine this length for more complex materials, such as amorphous metals and polymer 

melts. 

 If the creep data under the uniaxial tensile stress state fit the power law, nC Bd 1111
σ= , where 

B and n are constants, the function η  is given by  

  ( ) 13
1

−= n
e

e Bσ
ση ,   or   ( ) ( ) nC

e
n

C
e

dB
d /11/13

1
−=η . (18) 
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For power-law creep, with a constant diffusivity D, the solution to Eq. (15) and (16) has a 

remarkable scaling structure.  Let *σ  be a representative stress scale in a boundary problem, 

nC Bd ** σ= , ( )** σηη = , and *Λ  be a length scale.  Scale the stress field by *σ , the strain-rate 

field by Cd* , the velocity field by ** Λ
Cd , the wind force field by ** /ΛΩσ , and the spatial 

coordinates by *Λ .  In terms of the dimensionless fields, the governing equations (15)-(17) have 

only one parameter, the power index n, provided we identify the length *Λ  with Eq. (17), and 

replace η  with *η  in the expression.  For a power-law creep material, the length depends on the 

stress level *σ .  For polycrystals this length relates to a length L identified by Needleman and 

Rice [15], gdL 3/3
* =Λ .  These authors also tabulated the experimental data for the length L 

for several metals. 

  

6  Examples 

 6.1  Flow in a Film Driven by Stress Gradient and Electron Wind.  In an interconnect 

line encapsulated in a dielectric, when the electron wind drives atoms to diffuse toward the 

anode, compression develops near the anode, and tension develops near the cathode.  The stress 

gradient drives atoms to flow toward the cathode, in the direction opposite to the electron wind.  

It was discovered that the stress gradient could counter the electron wind, so that net mass flow 

vanished [4].  This discovery has since become an effective means to avert electromigration 

failure; see recent reviews [21,22].  In their original paper [4], Blech and Herring asserted that 

mass flow stops when the driving force for diffusion vanishes, namely, 0=∇Ω+ σF , where F 

is the electron wind force, and σ∇  the stress gradient.  This assertion neglects a daily 

experience:  the stress gradient also drives creep flow in a channel (e.g., in pumping water 
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through a pipe).  Given that the stress gradient can drive both a creep flow and a diffusion flow, 

will creep flow be also significant enough to counter electromigration?   

 To answer this question, consider a conductor film, thickness H, sandwiched between two 

dielectrics (Fig. 3).  Let the axis 3x  be normal to the film, and the two faces of the film coincide 

with the planes 2/3 Hx ±= .  We will first analyze a steady flow subject to a constant electron 

wind force F and a constant stress gradient σ∇ .  For simplicity, we assume that both diffusivity 

and viscosity are constant. 

 In the steady flow, the only nonzero component of the marker velocity is in the flux 

direction, and varies in the thickness direction; that is, 032 == vv  and ( )311 xvv = .  Consequently, 

the velocity field has no divergence, and convection and diffusion decouple.  Of the pair of the 

governing equations, Eq. (16) is satisfied automatically, and Eq. (15) reduces to 

0/ 2
31

2 =∇+∂∂ ση xv .  This is an ordinary differential equation for the velocity profile ( )31 xv .  

The gradient in the hydrostatic stress can induce a shear stress.  Assuming the no-slip boundary 

condition at the conductor/dielectric interface, we obtain the familiar parabolic velocity profile: 

( )( ) ησ 2/2/ 2
3

2
1 ∇−= xHv .   

 The flow in the film has two contributions:  the creep flow ησ 12/32/

2/ 31 ∇== ∫
+

−
HdxvQ

H

H

C , 

and the diffusion flow ( )( )σ∇Ω+Ω== FkTDHHJQD /1 .  First consider flow under the stress 

gradient alone, in the absence of the wind force F.  The ratio of creep flow to diffusion flow is  

  22 12// Λ= HQQ DC ,  (19) 

where Λ  is the length defined by Eq. (17).  For a flow driven by the stress gradient, creep 

dominates in thick films, and diffusion dominates in thin films.  Recall that Λ  scales with the 

grain size for polycrystals, and with the atomic size for liquids.  
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 In the presence of both the wind force and the stress gradient, the combined flow due to 

creep and diffusion vanishes when  

  0
12

1 2

2

=∇Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Λ

++ σHF . (20) 

The contribution of creep in countering electromigration depends on the film thickness.  This 

effect is small in the exiting technology.  To enhance the creep effect, we have to accelerate 

creep relative to diffusion, so that the length Λ  becomes much smaller than the film thickness.  

For example, Λ  approaches the atomic dimension for a liquid metal.  The effect of creep can 

probably be demonstrated in laboratories, but there is no clear way to implement the effect in the 

electronic industry.  Such an implementation would call for a material with both a large creep 

rate and a high electric conductivity.    

 6.2  Stress Generated by Electromigration through Film Thickness.  Fig. 4 illustrates a 

metal film sandwiched between two other conductors, with electric current through the film 

thickness.  The two outside conductors do not suffer electromigration, but the film does.  This 

setup idealizes a contact.  The electron wind force, F, now in the 3x  direction, causes atoms of 

the film to diffuse from one side to the other.  Consequently, a state of stress is generated, tensile 

on one side and compressive on the other.  The stress state is biaxial, 2211 σσ = ; all other stress 

components vanish.  The mean stress component is 3/2 11σσ = .  The stress is the function of the 

depth, ( )311 xσ , and is to be determined.   

 The diffusion flux is long the 3x  direction, given by 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂Ω

+
Ω

=
3

11
3 3

2
x

F
kT
DJ σ . (21) 
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Because the net atomic flux vanishes, the markers move in the direction opposite to the diffusion 

flux, 33 Jv Ω−= .  The diffusion flux induces a strain-rate ( ) 3311 /3/ xJd D ∂∂Ω−= .  The deviatoric 

stress component is 3/1111 σ=s .  The creep strain-rate is proportional to the deviatoric stress, 

ησ 6/1111 =
Cd .  The film is constrained by the refractory metals, so that the strain-rates vanish in 

the two lateral directions: 02211 == dd .  The strain-rate is the sum of that due to diffusion, and 

that due to creep.  The sum vanishes: 

  0
69

2 11
2
3

11
2

=+
∂
∂Ω

−
η
σσ

xkT
D . (22) 

This is a second order differential equation for ( )311 xσ .   

 Atoms do not diffuse in or out the refractory conductors, so that the diffusion flux vanishes 

at the two faces of the film.  Subject to these the boundary conditions, the solution to the 

differential equation is 

  ( ) ( )
( )lH

lxFlx
2/cosh2
/sinh3 3

311 Ω
−=σ . (23) 

The characteristic length is kTDl 3/4 Ω= η , which differs from the length identified in Section 

5 by a numerical factor.  The stress vanishes at the middle of the film, tensile on one side, and 

compressive on the other.  When the diffusivity or viscosity is large, electromigration is rapid, 

and the material creeps slowly, so that the magnitude of the stress is large.   

 6.3  The Effect of Elasticity.  When the electric current just starts, atoms have yet 

migrated much, and the stress in the film is negligible.  This time-dependence is absent in the 

above solution.  The problem arises because we have neglected elasticity.  In this case, the 

geometric change is small, and we can include elasticity easily.  The biaxial stress causes an 
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elastic strain-rate ( )[ ] tEd E ∂∂−= //1 1111 σν .  The combined strain-rate due to diffusion, creep and 

elasticity vanishes: 

  01
69

2 1111
2
3

11
2

=
∂
∂−

++
∂
∂Ω

−
tExkT

D σν
η
σσ . (24) 

The problem now has a time scale ( ) E/16 ηντ −= .  The stress no longer changes 

instantaneously, but builds up gradually.  The stress distribution given by (23) is the steady state, 

reached over the time scale τ .     

 6.4  Stress Generated by Atomic Injection or Emission.  The chemical potential µ  on 

the surface can be varied in several ways, by applying a stress normal to the surface, by creating 

excess number of adatoms with an impinging flux, or by creating excess number of vacancies by 

oxidation.  A surplus or deficit in the chemical potential will motivate atoms to diffuse in or out 

the material, leading to biaxial compression or tension (Fig. 5).  Let the bulk of the material 

occupies the half space 03 <x .  The stress is prescribed by the chemical potential, 

Ω−== 2/32211 µσσ , on the surface, and vanishes as −∞→3x .  Eq. (22) governs the stress as a 

function of the depth, giving 

  ( ) ( )lxx /exp
2
3

3311 Ω
−=

µσ  . (25) 

The chemical potential of the surface atoms sets the magnitude of the stress field.  The stress 

decays exponentially over the length l. 

 6.5  Lateral Expansion or Contraction of a Free-standing Film.  Next consider a free-

standing thin film.  When the film thickness is on the order of the length l, the lateral constraint 

is partially relieved, and the film will expand or contract.  The lateral strain-rate 11d  is 
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independent of position 3x .  The strain-rate is the sum of that due to diffusion, and that due to 

creep: 

  
η
σσ
69

2 11
2
3

11
2

11 +
∂
∂Ω

−=
xkT

Dd . (26) 

Force balance requires that the resultant force vanish: ( ) 03311 =∫
+

−

H

H
dxxσ .  The solution to the 

ordinary differential equation is 

  ( ) ( ) ( ) ( )
( ) ( ) ( )lHlHlH

lHlxlHx
2/sinh2/cosh2/

2/sinh/cosh2/
2
3 3

311 −
−

⎟
⎠
⎞

⎜
⎝
⎛

Ω
−=

µσ . (27) 

The lateral strain-rate is 

  ( )
( ) ( ) ( )lHlHlH

lHd
2/sinh2/cosh2/

2/sinh
411 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

=
η
µ . (28) 

 If atoms emit or inject preferentially at one of the film surfaces, the film will bend.  The 

above analysis can be extended to calculate the rate at which the bending curvature increases. 

 6.6  Effect of Nonlinear Creep.  Again consider the stress generated in a semi-infinite 

material by atomic injection or emission at the surface.  Under the biaxial stress state, 2211 σσ = , 

the equivalent stress is 11σσ =e .  The lateral creep strain-rate is 11
1

1111 2
σσ −= nC Bd .  The 

combined strain-rate due to diffusion and creep vanishes: 

  0
29

2
11

1
112

3

11
2

=+
∂
∂Ω

− − σσσ nB
xkT

D . (29) 

The solution of the boundary value problem is 

  ( )
1

2

*

3
311 1

2
3 −

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Ω
−=

n

l
xx µσ , (30) 

with 
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  ( )
BkT
Dn

n
l n 1* 2/39

12
1

2
−Ω
Ω+

−
=

µ
. (31) 

This length differs from the length identified in Section 5 by a numerical factor.  Compared to 

the linear creep, the power-law creep modifies both the decay length and the decay function.  For 

a large value of n the stress is substantial over a depth several times *l . 

 

7.  Anisotropic Placement Rule 

 Eq. (5) has been called the isotropic placement rule [11].  We caution that this rule must be 

modified if atoms can be removed and inserted preferentially on some planes.  For example, Fig. 

6 illustrates a polycrystalline aluminum film, of columnar grain structure in the direction of the 

film thickness, and the native oxide covering the film surfaces.  Aluminum diffusion is fast along 

the grain boundaries, and negligible on the film surfaces.  Consequently the divergence in the 

self-diffusion flux will place atoms.  We now extend the theory on the basis of an anisotropic 

placement rule.   

 Recall that, according to Eq. (2), the divergence in the diffusion flux causes the divergence 

of the marker velocity field.  The issue is how to proportion this divergence in various directions.  

Our anisotropic placement rule stipulates that 

  kkij
D
ij Jd ,Ω−= β . (32) 

Here the coefficients ijβ  weigh the placement in different directions.  We require the tensor ijβ  

to be symmetric with a unit trace, 1=iiβ .  Consistent with this placement rule, the creep strain-

rate tensor relates to the marker velocity field as   

  ( ) kkijijji
C
ij vvvd ,,,2

1 β−+= . (33) 
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The creep strain-rate tensor is symmetric and traceless.   

 The statement of power balance still takes the form of Eq. (7).  However, the creep 

dissipation rate now becomes kkijijjiij
C
ijij vsvsds ,, β−= .  This will modify Eq. (8) by replacing 

ijijs λδ+  in the two places by ( ) ijpqpqij ss δβλ −+ ; the rest of Eq. (8) remains unchanged.  We 

now identify ( )pqpqsβλ −  as the mean stress σ , so that pqpqpqpqs σββσλ =+= .  It is the 

chemical potential pqpqσβΩ−  that enters Herring’s equations of diffusion driving force, Eq. (11) 

and (12). We may also wish to introduce anisotropy into the kinetic laws, Eq. (13) and (14), 

which we will not pursue here.  

 As an example, when diffusion flux divergence is placed equally in the 1x  and 2x  

directions, but not in 3x  direction, we let 2/12211 == ββ , and all other components vanish.  

Consequently, the chemical potential in the material becomes ( ) 2/2211 σσ +Ω− .  The work is 

done by the stresses acting in the direction where mass insertion or removal occurs. 

 

8  Summary 

 Both convection and diffusion contribute to mass transport.  Identify convection by the 

motion of markers dispersed in the material.  Creep and self-diffusion couple because the 

markers must move to compensate for the diffusion flux divergence, Eq. (2).  We stipulate rules 

to place the diffusion flux divergence to various planes; two versions are given:  isotropic rule 

Eq. (5) and anisotropic rule Eq. (33).  We define the driving force for creep and diffusion by a 

statement of power balance, Eq. (7), subject to the kinematic constraint.  The theory leads to 

partial differential equations for the marker velocity field and the chemical potential field, Eq. 

(15) and (16).  The pair of equations generalizes Stokes’s creep and Herring’s diffusion.  A 
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length characterizes the relative rate of diffusion and creep, Eq. (17).  Several boundary value 

problems illustrate the theory.  In particular, a stress gradient can drive both a diffusion flow and 

a creep flow.  Diffusion flow prevails in a thin channel, and creep flow prevails in a thick 

channel.  The transition occurs when the channel thickness is comparable to the characteristic 

length of the material.     
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Fig. 1  The marker velocity v defines the convection flux, Ω/v . We can also independently 
measure the net atomic flux N.  The atomic flux in excess of the convection flux defines the 
diffusion flux J. 
 

 

  

 

 

Fig. 2  The material is subject to three types of load:  the wind force iF  in the volume, the 
traction it  on the surface, and the chemical potential on the surface. 
 

 

 

 

 

 

Fig. 3  A conductor film, sandwiched between dielectrics, is subject to an electron wind force 
and a stress gradient.  The stress gradient can cause both a self-diffusion flux and a creep flow.
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Fig. 4  A thin conductor subject to a through-thickness wind force.  The diffusion flux is in the 
same direction as the wind force, and the marker velocity is in the opposite direction.  Tension is 
generated near one face of the film, and compression the other. 
 

 

 

 

 

 

 

Fig. 5  An excess of the chemical potential on the surface drives atoms to inject into the material, 
leading to compressive stress. 
 
 
  

 

 

 

 

 

Fig. 6  An aluminum film has a columnar grain structure, with top and bottom surfaces covered 
by the native oxide.  Under an electron wind force in the plane of the film, aluminum atoms 
diffuse fast on the grain boundaries, but negligibly on the film surfaces.  The divergence of the 
diffusion flux will place atoms in the 1x  and 2x  directions, but not in the 3x  direction. 
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