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Abstract— We propose a fast and robust approach to the
detection and tracking of moving objects. Our method is based
on using lines computed by a gradient-based optical flow and an
edge detector. While it is known among researchers that gradient-
based optical flow and edges are well matched for accurate
computation of velocity, not much attention is paid to creating
systems for detecting and tracking objects using this feature.
In our method, extracted edges by using optical flow and the
edge detector are restored as lines, and background lines of the
previous frame are subtracted. Contours of objects are obtained
by using snakes to clustered lines. Detected objects are tracked,
and each tracked object has a state for handling occlusion and
interference. The experimental results on outdoor-scenes show
fast and robust performance of our method. The computation
time of our method is 0.089 s/frame on a 900 MHz processor.

I. INTRODUCTION

Detecting and tracking moving objects are widely used as
low-level tasks of computer vision applications, such as video
surveillance, robotics, authentication systems, user interfaces
by gestures, and a pre-stage of MPEG4 image compression.
Software development of low-level tasks is especially impor-
tant because it influences the performance of all higher levels
of various applications.

Motion detection is a well-studied problem in computer
vision. There are two types of approaches: the region-based
approachand the boundary-based approach.

In the case of motion detection without using any models,
the most popular region-based approaches are background
subtraction and optical flow. Background subtraction detects
moving objects by subtracting estimated background models
from images. This method is sensitive to illumination changes
and small movement in the background, e.g. leaves of trees.
Many techniques have been proposed to overcome this prob-
lem [1], [2], [3], [4]. The mixture of Gaussians [2] is a popular
and promising technique to estimate illumination changes and
small movement in the background. However, a common prob-
lem of background subtraction is that it requires a long time
for estimating the background models. It usually takes several
seconds for background model estimation because the speed of
illumination changes and small movement in the background
are very slow. Optical flow also has a problem caused by
illumination changes since its approximate constraint equation
basically ignores temporal illumination changes [5].

In the case of boundary-based approaches, many of them
use edge-based optical flow [6], [7], [8], level sets [9], and
active contours, such as snakes [10], balloons [11], and
geodesic active contours [12]. In [6], a method for detecting
moving edges is proposed. The zero-crossings at each pixel
are calculated from the convolution of the intensity history,
with the second-order temporal derivative of the Gaussian
function for detecting moving edges. The authors show the-
oretically and experimentally that this method is insensitive
to illumination changes. However, the results of this method
are inaccurate when the image is not smoothed sufficiently
because it computes velocity without using spatial information
of neighborhood pixels. In [13], a color segmentation and
a non-parametric approach for computing a dense disparity
map are used for detecting initial contours of moving objects
for snakes. The parameters for color segmentation have to
be tuned to the conditions of illumination. Geodesic active
contours and level sets are used in [14], but these techniques
are computationally too expensive for real-time applications.

In this paper, we present a method for detecting and tracking
moving objects which includes non-rigid objects. Our method
is robust because we use edge-based features which are
insensitive to illumination changes. The method is also fast
because the area of edge-based features is less than region-
based features. This paper is organized as follows: In Section
2, we give details of detecting moving edges by using a
gradient-based optical flow technique and an edge detector.
Methods of contour extraction from detected and restored line
segments are described in Section 3. Methods of tracking
detected objects are presented in Section 4. Experimental
results and conclusions are described in Sections 5 and 6,
respectively.

II. OPTICAL FLOW

For the computation of optical flow of 2D image motion,
the following approximation is used:

���� �� � ���� ��� �� ���� (1)

where ���� �� is the spatiotemporal function of image intensity.
Intensity of time � and �� �� is assumed to remain the same,
i.e., no illumination changes are supposed to occur. Equation



(1) can be expanded using Taylor series and ignoring higher
order terms as follows:

�� � � � � �� � �� (2)

where �� � ���� ���
� is the gradient, �� is the temporal

derivative of ���� ��, and � � ��� ��� is the image velocity,
respectively. However, one linear constraint equation is insuf-
ficient to determine two-dimensional velocity. This problem is
known as the aperture problem.

Many methods have been proposed to add other constraints.
Barron et al. [5] evaluated several of them, and they show
quantitatively that the method proposed by Lucas and Kanade
[15] is one of the most reliable. This method is based on
minimizing a weighted sum-of-squares error function of a
spatial local region. All pixels in a region are supposed to have
the same velocity, and the equation of the error is written as:
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where � is a spatial local region and ���� is a positive weight
of each pixel of the region. To compute the least error of (3),
the first-order derivative with respect to � is computed. Then
the estimated velocity is obtained as:
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assuming that � is invertible. Horn and Schunk [16] applied
pre-smoothing to a global region in order to simplify the
optical flow problem.

Even though the method proposed in [15] has more relia-
bility than other comparable techniques, the approximation in
(1) is problematic when the illumination changes. Simoncelli
et al. [17] showed that uncertainty of the calculation of (2)
decreases nonlinearly in proportion to the trace of 
 of (5),
i.e., the magnitudes of the spatial gradients.

Our method is based on using features which have strong
magnitudes of the gradients. These features are extracted
by a Canny edge detector [18]. Edges are masked by the
thresholding velocity magnitude � for eliminating background
edges with little motion, i.e.,

���� ��� � �	 (6)

The Manhattan magnitude is used for simplifying the com-
putation. Unmasked edges are used for restoring lines and
extracting contours of objects in later phases.

III. CONTOUR EXTRACTION

Our method for extracting contours of moving objects
consists of 4 steps explained in the following sections: line
restoration, line-based background subtraction, clustering, and
active contours.

A. Line Restoration and Line-based Background Subtraction

Edges are sometimes incorrectly masked by (6) because
of the use of local regions for computing optical flow. This
locality causes two types of miscalculations:

1) No additional information for solving (2) exists in the
region (i.e., the aperture problem).

2) Moving edges are incorrectly considered as stationary
edges if stationary edges exist in the same region with
moving edges.

These miscalculations make detected edges fragmented
(shown in Fig. 1(c)). For restoring these fragments, masked
edges by (6) are restored as unmasked edges (i.e. moving
edges), if they are connected to points of moving edges
without including any cross-points. This restoration can be
easily calculated because moving edges are obtained as one
pixel wide lines by the edge detector [18]. As a result of this
restoration, many lines of moving objects are restored, and
their shapes become more clear (shown in Fig. 1(d)).

However, restored lines also include background edges
which are incorrectly detected as the motion for the following
reasons:

1) Blinked reflection causes miscalculation of the motion. It
appears on corners of buildings and waves, for instance,
and is detected as moving edges.

2) Background edges around moving objects are detected
as moving edges because the region-based optical flow
calculates velocity as the same in a region.

The noise as described above can be eliminated by subtracting
background edges of the previous frame (except for the
reflection of non-rigid objects). The detected and restored line
of the current frame is eliminated if the line belongs to a
background line (shown in Fig. 1(e)). We define a detected
and restored line of the current frame as ���� � � � ���� � ���,
and all background lines of the previous frame as � 	
. Then
the line of the current frame is considered as a background
line when it satisfies the following equation:��
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where ��� � � � �� is a constant, and
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B. Clustering

We use a nearest-neighbor clustering with respect to the
distance and velocity. We label two lines ���� � � � ���� � ��
and ���� � � � ���� � �� as the same, if they satisfy the
following constraints:
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where ���� ��� is the velocity of the position ���� ��� of point
�, and ��� ��� �� are thresholding constants.

We already eliminated most noise and made scenes low-
clutter on outdoor-scenes (Fig. 1(e)). In this case, the nearest-
neighbor clustering is the most effective method except for
the scenes which include interfering objects [19]. We handled
interfering objects in the phase of tracking.

C. Active Contours

Contours of the clustered lines are extracted by using snakes
[10], [19]. The discrete energy function of a snake of the
contour ���� � � � ���� � � is defined as:
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where ����� is the continuity energy, ����� is the smoothness
energy, ����
� is the edge-attraction energy, and ��� ��� �� 	 �
are weights of each energy, respectively. These energies are
defined as:
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For the computation of snakes, we calculate the convex hull
[20] for each cluster as the initial contour (shown in Fig. 1(f)).

IV. TRACKING DETECTED OBJECTS

To solve the correspondence problem for detected ojects in
different frames, we defined the similarity between an object
of the previous frame �������� and an object of the current
frame ������

��, using estimated positions of lines by optical
flow, i.e.,
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Then the similarity is defined as follows:
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where �� � is the number of elements in �� �, and
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Then these two objects �������� and ������
�� are consid-

ered as the same object if the similarity ������� is non-zero
value, i.e.,
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 ������
��� 	
 ������� �� �	 (15)

In addition, we defined following states of tracked objects
for handling them as special cases:

1) Occluded
If an object disappears without reaching the borders
of the frame, the object is considered to be occluded.
The center of the contour and velocity of the center
are registered to the list of occluded objects. Occluded

objects are deleted from the list when all estimated
positions of points of the contour get out of the frame.

2) Reappeared
Newly detected objects whose contours are inside the
frame (i.e., unattached to the borders of the frame) are
regarded as reappeared. The corresponding occluded
object is searched from the list. The center of each
occluded object is recalculated by using a Kalman filter
[21] from its tracked history of positions. Then the
closest object is considered as the same object.

3) Merged
If a detected object of the current frame includes es-
timated lines of two or more objects of the previous
frame, the detected object is regarded as merged; i.e.,
two or more objects of the previous frame satisfy (15)
with a single object of the current frame. Each velocity
of merged objects is stored for finding corresponding
objects when they separate again.

4) Separated
If two or more detected objects include estimated lines
of one object of the previous frame, these detected
objects are regarded as separated; i.e., a single object
of the previous frame satisfies (15) with two or more
objects of the current frame. If the object of the previous
frame is labeled as merged, corresponding objects are
found according to their velocity.

V. EXPERIMENTAL RESULTS

We tested our method on various sequences including cars
(Fig. 2(a)), pedestirans (Figs. 2(b) and 2(e)), approaching cars
(Fig. 2(c)), occluded cars (Fig. 2(d)), and interfering objects
(Fig. 2(e)). All sequences shown in Fig. 2 are recorded on
outdoor-scenes that include the sky, trees, buildings, grounds,
and snow. They include several kinds of noise caused by
illumination changes, small movement in the background, and
reflection. However, our results showed remarkable robustness
against these environments. Our method succeeded detecting
and tracking moving objects accurately in all video sequences
in Fig. 2, even though these sequences had many causes of
noise. For instance, Figs. 2(b) and 2(c) include the sky which
causes illumination changes. These sequences also include
trees and grass which cause noise of small movement in the
background. Figs. 2(b) and 2(e) include buildings and ground
covered by snow which causes reflection. We also succeeded
in tracking occluded cars and interfering pedestrians in Figs.
2(d) and 2(e), respectively.

Table I shows the composition of edges of each video
sequence in Fig. 2; i.e., what percentage of edges belongs
to detected objects or is removed as noise. The removed
edges are classified here as Masked Edges, Background Edges,
and Others. The edges masked by (6) are defined as Masked
Edges. Masked Edgesdo not include restored edges. The edges
subtracted as backgrounds from restored lines are defined as
Background Edges. Others represent edges of the removed
objects whose area is too small, e.g., fading-out and occluding
objects.
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Fig. 1. The flow of detecting objects. (a)Original image. (b)Masked image by (6). Many noise are detected in the image. (c)Masked edges.
(d)Restored lines. Several background lines are also restored. (e)Background lines of the previous frame are subtracted. (f)Convex hull. (g)Finally
detected contours.

We used video sequences of QVGA(320x240) on a
Pentium-M 900MHz and 512MB memory PC for the test. The
average computation time of our implementation was 0.089
s/frame.

In our experiments, we chose the following parameters. The
region size of optical flow was 5x5. � � �	� in (6). � � �	� in
(7). �� � ��� �� � �	�, and �� � �	� in (9), � � � � � � �	�
in (10), identical to all points.

VI. CONCLUSION

We proposed a new system for the detection and tracking
of moving objects. Our method is a contour-based detection,
which allows users to obtain more accurate information than

previous methods using rectangles or ellipses. The compu-
tation of our system required 0.089 s/frame on a 900 MHz
processor, which satisfies requirement as a real-time system.
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Fig. 2. Results of detection and tracking moving objects. (a)Cars. (b)A pedestrian. (c)Approaching cars. (d)Occluded cars. (e)Interfering pedestrians.


