Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 540723, 13 pages
doi:10.1155/2010/540723

Research Article

A Contourlet-Based Image Watermarking Scheme with
High Resistance to Removal and Geometrical Attacks

Sirvan Khalighi,? Parisa Tirdad,! and Hamid R. Rabiee?

! Electical and Computer Engineering Department, Islamic Azad University of Qazvin, Iran
2AICTC Research Center, Department of Computer Engineering, Sharif University of Technology, Iran

Correspondence should be addressed to Sirvan Khalighi, khalighi@ce.sharif.edu

Received 16 August 2009; Revised 8 January 2010; Accepted 1 June 2010

Academic Editor: Yingzi Du

Copyright © 2010 Sirvan Khalighi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

We propose a new nonblind multiresolution watermarking method for still images based on the contourlet transform (CT). In
our approach, the watermark is a grayscale image which is embedded into the highest frequency subband of the host image in
its contourlet domain. We demonstrate that in comparison to other methods, this method enables us to embed more amounts of
data into the directional subbands of the host image without degrading its perceptibility. The experimental results show robustness
against several common watermarking attacks such as compression, adding noise, filtering, and geometrical transformations. Since
the proposed approach can embed considerable payload, while providing good perceptual transparency and resistance to many
attacks, it is a suitable algorithm for fingerprinting applications.

1. Introduction

Recent rapid growth of distributed networks such as Inter-
net enables the users and content providers to access,
manipulate, and distribute digital contents in high volumes.
In this situation, there is a strong need for techniques to
protect the copyright of the original data to prevent its
unauthorized duplication. One approach to address this
problem involves adding an invisible structure to a host
media to prove its copyright ownership. These structures
are known as digital watermarks. Digital watermarking is
performed upon various types of digital contents such as
images, audio, text, video, and 3D models. It is applied
to many applications, such as copyright protection, data
authentication, fingerprinting, and data hiding [1]. Current
methods of watermarking images, depending on whether
the original image is used during watermark extraction
process or not, could be divided into two categories:
blind and non-blind methods. Schemes reported in [2, 3]
are nonblind methods, while the methods in [4-9] are
categorized as blind methods. Most of the reported schemes
use an additive watermark to the image in the spatial

domain or in frequency domain. Recent works on digital
watermarking for still images are applied on frequency
domain.

Among the transform domain techniques, discrete
wavelet transform-(DWT-) based techniques are more pop-
ular, since DWT has a number of advantages over other
transforms including space-frequency localization, multires-
olution representation, superior HVS modeling, linear com-
plexity, and adaptivity [10]. In general, the DWT algorithms
try to locate regions of high frequency or middle frequency to
embed information, imperceptibly [11]. Even though DWT
is popular, powerful, and familiar among watermarking
techniques, it has its own limitations in capturing the
directional information such as smooth contours and the
directional edges of the image. This problem is addressed by
contourlet transform (CT) [12]. The contourlet transform
was developed as an improvement over wavelet where
the directional information is important. In addition to
multiscale and time-frequency localization proprieties of
wavelets, CT offers directionality and anisotropy.

Zaboli and Moin [2] used the human visual System
characteristics and an entropy-based approach to create an



efficient watermarking scheme. It decomposes the origi-
nal image in CT domain in four hierarchical levels and
watermarks it with a binary logo image which is scrambled
through a well-known PN sequence. They showed adding a
scrambled watermark to high-pass coefficients in an adaptive
way based on entropy results in a high performance detection
capability for watermark extraction.

Jayalakshmi et al. [3] proposed a non-blind watermark-
ing scheme using the pixels selected from high frequency
coefficients based on directional subband which doubles
at every level. They noted that contourlet-based methods
perform much better than wavelet-based methods in images
like maps. The watermark was a 1616 binary logo.

Duan et al. [4] proposed a watermarking algorithm
using nonredundant contourlet transform that exploits the
energy relations between parent and children coefficients.
This special relationship provides energy invariance before
and after the JPEG compression. They embedded a pseudo-
random binary watermark exploiting the modulation of the
energy relations.

Xiao et al. [5] proposed an adaptive watermarking
scheme based on texture and luminance features in the
CT domain, which uses the texture and luminance features
of the host image to find the positions in which the
watermark is embedded. Salahi et al. [6] presented a new
blind spread spectrum method in contourlet domain, where
the watermark is embedded through a PN sequence in the
selected contourlet coefficients of the cover image, and the
data embedding is performed in selected subbands providing
higher resiliency through better spread of spectrum com-
pared to the other subbands.

Shu et al. [7] proposed a blind HVS-based watermarking
algorithm in the translation invariant circular symmetric
contourlet transform. This approach shows good resistance
against Gaussian white noise attack. Lian et al. [8] pre-
sented a method based on nonsampled contourlet transform
(NSCT). The algorithm provides an HVS model in the NSCT
domain, exploiting the masking characteristics of the HVS
to embed the watermark adaptively. Wei et al. [9] presented
an adaptive watermarking method in the CT domain based
on clustering of the mean shift texture features. During
clustering, three texture features including energy, entropy,
and contrast are selected for mean shift fast clustering. The
watermark is directly embedded in the strong texture region
of the host image.

In [13], we proposed a new contourlet-based image
watermarking method which embeds a grayscale watermark
with as much as 25% of the host image size in the
16th directional subband of the host image. Since the
original image is required for watermark extraction, our
method is considered to be nonblind. In this paper, we
employ the method introduced in [13] with more details
and some improvement in our algorithm and provide
comprehensive experiments with more host images. The
remainder of the paper is organized as follows. In Section 2,
we present Contourlet Transform (CT). In Section 3, we
introduce the proposed approach. Experimental results
are discussed in Section 4. Final remarks are outlined in
Section 5.
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FIGURE 2: Laplacian pyramid scheme (a) analysis and (b) recon-
struction [12].

2. Discrete Contourlet Transform

The contourlet transform (CT) is a geometrical image-
based transform that was introduced in [12]. In contourlet
transform, the laplacian pyramid (LP) is first used to capture
point discontinuities. It is then followed by a directional
filter bank (DFB) to link point discontinuities into linear
structures [14]. As shown in Figure 1, the first stage is LP
decomposition and the second stage is DFB decomposition.
The overall result is an image expansion using basic elements
like contour segments, and thus called contourlet transform,
which is implemented by a pyramidal directional filter bank
(PDFB) [15]. At each level, the LP decomposition generates
a downsampled lowpass version of the original, and the
difference between the original and the prediction results in
a bandpass image. Figure 2 illustrates this process, where H
and G are called analysis and synthesis filters, respectively,
and M is the sampling matrix.

The bandpass image obtained in the LP decomposition is
further processed by a DFB. A DFB is designed to capture the
high-frequency content like smooth contours and directional
edges. The DFB is efficiently implemented via a K-level
binary tree decomposition that leads to 2K subbands with
wedge-shaped frequency partitioning as shown in Figure 3.
The contourlet decomposition is illustrated by using the Lena
test image of size 512x512 and its decomposition into four
levels, in Figure 4. At each successive level, the number of
directional subbands is 2, 4, 8, and 16.

Embedding the watermark in high frequency compo-
nents improves the perceptibility of the watermarked image.
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FiGgure 4: Contourlet decomposition of Lena.

Therefore, we have selected the highest frequency subband
which possesses the maximum energy for watermark embed-
ding (Figure 5). The Energy E of a subband s (i, j), 0 < i, j <
N is computed by

E=>sti, )" (1)
i

The majority of coefficients in the highest frequency
subband are significant values compared to the other sub-
bands of the same level, indicating the presence of directional
edges.

3. The Proposed Approach

We select contourlet transform for watermark embedding
because it captures the directional edges and smooth con-
tours better than other transforms. Since the human visual
system is less sensitive to the edges, embedding the water-
mark in the directional subband improves the perceptibility
of the watermarked image, but it is hardly robust. To
achieve robustness, we can embed the watermark in the
lowpass image of the contourlet decomposition. However,
the perceptibility of the watermarked image degrades. In
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FIGURE 5: Energy variation in the last level.

our scheme, although the watermark is embedded into the
highest frequency subbands, it is likely to be spread out
into all subbands when we reconstruct the watermarked
image, due to the special transform structure of laplacian
pyramid (LP) [16]. Because the high-frequency subbands
of the watermarked image contain the watermarking com-
ponents, the proposed scheme is highly robust against
various low-frequency attacks, which will remove the low
frequency component of the image. On the other hand,
some watermarking components can be preserved at the
low-frequency subbands. Thus, the scheme is expected to be
also robust to the high-frequency attacks, which will destroy
the high-frequency components of the image. Consequently,
the proposed watermarking scheme is robust to the widely
spectral attacks resulting from both the low-and high-
frequency processing techniques. The proposed approach is
presented in Section 3.1.

3.1. Watermark Embedding Technique. In the proposed algo-
rithm, the watermark which is a grayscale image, with as
much as 25% of the host image size, is embedded into
the gray level host image of size N X N. The host image
and the watermark are transformed into the contourlet
domain.Then, the CT coefficients of the last directional
subband of the host image are modified to embed the
watermark. The steps involved in watermark embedding are
shown in Figure 6. We use f(i, j) to denote the host image,
f'(i, j) the watermarked image, and w(i, j) the watermark.
The technique is comprised in three main steps as discussed
below.

Step 1. The host image f(i,j) of size N X N and the
watermark w(i, j) of size N/2 X N/2 are transformed into the
CT domain. An “n” level pyramidal structure is selected for
LP decomposition. At each level I, there are 2l directional
subbands, where k = 1,2,3,...,n. The highest frequency
subband of the host image is selected for watermark embed-
ding. Watermark decomposition results in two subbands wy,
w, and a lowpass image. Since w; and w, have the same
resolution, therefore we choose one of them, in addition to
the lowpass image for watermark embedding.
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Step 2. The coefficients of the selected subband are modified
as follows [17]:

fi i j) = fi (i, j) + - Wi j), (2)

Where fhi(i, j) represents Ith level, kth directional subband
coefficients, and « is a weighting factor which controls
robustness and perceptual quality.

Step 3. inverse contourlet transform (ICT) is applied by
considering the modified directional subbands to obtain the
watermarked image.

3.2. Watermark Extraction Process. For retrieving the water-
mark, we need a copy of the original image as a reference. By
using the inverse embedding formula (3), we can extract the
embedded watermark

) - ) =), 5

[o4

The extraction process consists of the following steps.

Step 1. Both watermarked and original images are trans-
formed into CT domain.

Step 2. The directional subband and the lowpass image of
the embedded watermark will be retrieved by subtracting
the highest frequency subbands of the original and the
watermarked image by using (3).

Step 3. For reconstructing the watermark, Laplacian Pyra-
mid requires both directional subbands (W;,W,) and the
lowpass image (L). Instead of inputting (L,W,W) we input
(L,W1,W;) into the LP.

The watermark extraction process is summarized in
Figure 7.

By increasing the levels of decomposition, the water-
marking capacity is also increased, and the quality of
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FIGURE 7: Extraction algorithm.

extracted watermark is improved. In order to achieve this
goal, after selecting a subband, we can use other directional
subbands which have the highest level of energy. The water-
marked image quality is measured by the PSNR between f
and f’, formulated by

2
PSNR = 10log,, (i/fsz) (dB),

| MN (4)
. 7 )2
MxNi:zlj;(f(”J)_f (i, j))".

MSE =

To evaluate the performance of watermark retrieval
process, normalized correlation (NC) is used. Here, W,
and W, are the original and recovered watermark signals,
respectively. The normalized correlation is calculated by

S0 o Wiy ) - Wali, )

(Vo S Wil 1)) - (Vo S50 Walis §)°)
(5)

NC =

4. Experimental Results

We have performed experiments with various watermarks
and popular host images such as Lena, Barbara, Baboon,
Cameraman, City, Couple, Man, Boat, Elaine, Peppers,
and Zelda of size 512x512. The watermark is a grayscale
fingerprint (.bmp) of size 128x128, which contains lots of
curves and significant details. Therefore, it can be a perfect
criterion for measuring the performance of the proposed
method. In addition, it can be used in fingerprinting
applications. In (2), @ was set to 0.1 to obtain a tradeoff
between perceptibility and robustness. In both LP and DFB
decomposition, “PKVA” filters [18] were used because of
their efficient implementation. We decomposed the host
image into four levels, and the watermark into one level.

4.1. Watermark Invisibility. Figures 8(a) and 8(b) provide
the comparison between the original Lena test image and its
corresponding watermarked image.The original watermark
and the extracted watermark are also shown in Figures 8(c)
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FIGURE 9: Recovered watermarks from Lena image after JPEG2000 compression. (a) Rate = 0.3 (b) Rate = 0.4 (c) Rate = 0.5 (d) Rate = 0.6
(e) Rate = 0.7 (f) Rate = 0.8 (g) Rate = 0.9.
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FIGURE 10: Normalized correlation results of different test images under different filtering attacks (window size = 3x3) (a) embedding the
watermark in the highest frequency subband of the host image (b) embedding the watermark in the 16th directional subband.
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FiGure 11: Normalized correlation results of different test images under image enhancement attacks (a) embedding the watermark in the
highest frequency subband of the host image (b) embedding the watermark in the 16th directional subband.

and 8(d), respectively. The results of embedding data in the
highest frequency subband of the host image are shown in
Table 1.

Our experiments on the test images showed that the 16th
directional subbands have the highest priority for watermark
embedding. The results of embedding the watermark in the
16th directional subbands of the host images were as follows.
The watermark invisibility can be guaranteed at average
PSNR value of 46.96 dB for all the test images due to their
similar characteristics and the NC value of 0.9862 for all the
extracted watermarks except for the Man image, for which
the PSNR and NC values were 47.09 and 0.9838, respectively.

The results of hiding more amounts of data into the
highest and other directional subbands of the Lena test image
are shown in Table 2. The PSNR and NC values for other
subbands are also shown in columns 2 and 3 of the same
table, respectively. We used the 1st and the 4th directional
subbands that have the highest level of energy after the 16th
subband. In addition to embedding the watermark into the
16th directional subband, we hide another version of the
watermark into the 1st and the 4th subband, and thus we
could embed 34 KB of data into the host image without
degrading its perceptual quality. Embedding the watermark
in other subbands with lower energy than a given threshold
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FIGURE 12: Recovered watermarks from Lena image under various filtering and enhancement attacks (a) FMLR, (b) Gaussian LPE, (c) hard
thresholding (d) soft thresholding (e) reduce color (f) image sharpening (g) Wiener filtering (h) histogram equalization.
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FiGure 13: Normalized correlation results of different test images under noise attacks (a) embedding the watermark in the highest frequency
subband of the host image (b) embedding the watermark in the 16th directional subband.

will result in perceptual distortion in the watermarked image.
Table 3 shows the results of embedding data in the Lena test
image with different sizes. The size of the watermark is 25%
of the size of the host image.

4.2. Resistance to Various Attacks. It is known that embed-
ding the watermark at the high-frequency subbands of an
image is sensitive to many image processing algorithms

such as lowpass filtering, lossy compression, noise, and
geometrical distortion. On the other hand, the watermark
at low-frequency subbands of an image is sensitive to other
image processing algorithms such as histogram equalization
and cropping. As we mentioned in Section 3, although the
watermark is embedded into the highest frequency subbands,
it is likely to be spread out into all subbands when we
reconstruct the watermarked image, due to the special
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FIGURE 14: Recovered watermarks from Lena image after applying different noises (a) Salt and pepper (density = 0.0001) (b) Gaussian noise
(density = 0.0001) (c) Speckle noise (density = 0.0001) (d) Poisson noise.
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FiGURre 15: Normalized correlation results of different test images under geometrical attacks: (a) embedding in the highest frequency subband
of the host image (b) embedding the watermark in the 16th directional subband.

TaBLE 1: Results of embedding data in the highest frequency
subband of the host image.

Host image  Highest frequency subband ~ PSNR NC

Baboon 13 37.0757  0.986389
Barbara 6 36.7178  0.983328
Boat 36.7234  0.985742
Cameraman 45.7128  0.987057
City 13 37.0794  0.98637
Couple 13 37.0754  0.986388
Elaine 1 45.7083  0.987072
Lena 16 46.968  0.986253
Man 4 36.9369  0.98061
Peppers 4 36.7585  0.985308
Zelda 4 36.7616  0.985401

transform structure of the Laplacian Pyramid. In this section,
we attempt to show the robustness of our watermarking

TaBLE 2: Results of embedding more amounts of data into 16th and
another directional subband.

Subband PSNR NC
16&1 43.3194 NCis = 0.9596
NC; =0.9852
16&4 36.3084 NCy6 = 0.8954
NC,; = 0.9858

TABLE 3: Results of embedding data in Lena image with different
size.

Host image size ~ Watermark size PSNR (dB) NC

1024x1024 256x256 (65KB) 47.1197 0.996708
512x512 128128 (17 KB) 46.968 0.986253
256x256 64x64 (5.05KB) 36.9065 0.977844

scheme for both high-and low-frequency, signal processing
attacks. The MATLAB 7.0 and Checkmark 1.2 [19] were
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TaBLE 4: Normalized correlation coefficients after JPEG2000 compression on watermarked images in which the watermark is embedded in

the highest frequency subband.

Host 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Baboon 0.907042 0.954985 0.973306 0.978915 0.983985 0.98639 0.98639
Barbara 0.971182 0.977175 0.980079 0.98293 0.983295 0.983295 0.983295
Boat 0.96877 0.976222 0.980652 0.985366 0.985643 0.985643 0.985643
Cameraman 0.983941 0.986697 0.987041 0.987041 0.987041 0.987041 0.987041
City 0.955788 0.973253 0.981524 0.984497 0.986288 0.986288 0.986288
Couple 0.971682 0.980032 0.983572 0.986312 0.986312 0.986312 0.986312
Elaine 0.964434 0.980293 0.984266 0.98591 0.986947 0.986947 0.986947
Lena 0.97721 0.982396 0.985192 0.986252 0.986252 0.986252 0.986252
Man 0.9623 0.971662 0.975141 0.980085 0.980611 0.980611 0.980611
Peppers 0.967675 0.977996 0.982511 0.985192 0.985192 0.985192 0.985192
Zelda 0.977523 0.980563 0.985064 0.985319 0.985319 0.985319 0.985319

TaBLE 5: Normalized correlation coefficients after JPEG2000 compression on watermarked images in which the watermark is embedded in

the 16th directional subband.

Host 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Baboon 0.9407 0.9770 0.9836 0.9854 0.9865 0.9871 0.9871
Barbara 0.9824 0.9846 0.9860 0.9869 0.9871 0.9871 0.9871
Boat 0.9766 0.9841 0.9863 0.9870 0.9872 0.9872 0.9872
Cameraman 0.9850 0.9864 0.9872 0.9872 0.9872 0.9872 0.9872
City 0.9730 0.9837 0.9852 0.9865 0.9872 0.9872 0.9872
Couple 0.9835 0.9849 0.9864 0.9872 0.9872 0.9872 0.9872
Elaine 0.9792 0.9850 0.9861 0.9869 0.9872 0.9872 0.9872
Lena 0.9842 0.9862 0.9869 0.9872 0.9872 0.9872 0.9872
Man 0.9697 0.9798 0.9832 0.9845 0.9848 0.9848 0.9848
Peppers 0.9832 0.9851 0.9864 0.9872 0.9872 0.9872 0.9872
Zelda 0.9840 0.9863 0.9869 0.9871 0.9871 0.9871 0.9871

TaBLE 6: Comparison of the proposed method with other domain
methods.

Proposed Elbasi & Wang &

Characteristic me 510 d Eskicioglu’s Pearmain
Method Method

Transform Contourlet Wavelet DCT
domain
Watermark type Gray scale PRN sequence  Binary
No. watermark
bits embedded 17 KB(128x128) — 910
PSNR in dB 46.97 40.86 39.21
No. reported
attacks 13 ? 4
Extraction type Nonblind Semiblind Blind

used for testing the robustness of the proposed method.
The wide class of existing attacks can be divided into
four main categories: removal attacks, geometrical attacks,

cryptographic attacks, and protocol attacks [20]. We inves-
tigate the robustness of our method against removal and
geometrical attacks.

4.2.1. Removal Attacks. Removal attacks aim at the complete
removal of the watermark information from the watermark
data without cracking the security of the watermarking
algorithm [20]. To test the robustness of our method against
removal attacks JPEG2000 compression, image enhance-
ment techniques, various noise, and filtering attacks were
used.

The JPEG2000 attack was tested using Jasper 1.900.1 [21].
Table 4 shows the results of applying JPEG2000 attack on the
watermarked images in which the watermark is embedded
in the highest frequency subband of the host image and
Table 5 shows the results of applying JPEG2000 attack on
watermarked images in which the watermark is embedded
in the 16th directional subband of the host image. The
results demonstrate an excellent robustness of our method
against JPEG2000 compression. Figure 9 shows the extracted
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FIGURE 16: Recovered watermarks from Lena image under geometric attacks (a) cropping half top (NC = 0.9759) (b) cropping 400x450
(NC = 0.9398) (c) cropping half right (NC = 0.6697) (d) cropping halfleft (NC = 0.7260) (e) rotation (angle = 20°) (f) scaling (factor = 2)

(g) cropping half down (NC = 0.1277).

watermarks after compressing Lena image with different
compression rates.

To assess the robustness of the proposed method to
various types of filtering and enhancement techniques, fre-
quency mode Laplacian removal, Gaussian lowpass filtering,
soft thresholding, hard thresholding, wiener filtering, image

sharpening, reduced color, and histogram equalization were
used.

Figures 10 and 11 show the normalized correlation
coefficient results of applying filtering attacks with a 3x3
window size and image enhancement techniques on different
test images, respectively.
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FIGURE 18: The robustness comparison result of the proposed
method with [2, 3] under cropping attack (400x450).
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FIGURE 19: The robustness comparison result of the proposed
method with [2, 3] under rotation attack (angle = 6°).
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TasLE 7: Comparison of the proposed method with similar domain
methods.

- Proposed Method I &
Characteristic method CEW Method IT
Watermark type Gray scale Binary Binary
No. watermark .
bits embedded 17 KB(128x128) Not mentioned 16x16
PSNR in dB 46.97 Not mentioned ~47
No. reported
attacks 13 3 3
Extraction type Nonblind Nonblind Nonblind

Figure 12 shows the recovered watermarks of the Lena
test image under these attacks. The results show good
robustness properties of the proposed method against all
the tested attacks except for the thresholding and Wiener
filtering.

To test the robustness of our method under various
noise processes, Gaussian noise, salt & pepper noise, speckle
noise, and Poisson noise with a density of 0.0001 were
used. Figure 13 shows the normalized correlation coefficient
results of applying various noise attacks on different test
images. Figure 14 shows the recovered watermarks of the
Lena test image under different noise processes. Results
demonstrate excellent resistance of our method against
common noises.

4.2.2. Geometrical Attacks. In contrast to removal attacks,
geometrical attacks do not actually remove the embedded
watermark itself but intend to distort the watermark detector
synchronization with the embedded information [20]. The
most common geometrical attacks are rotation, scaling,
and cropping. The parameters used in these attacks are a
rotation angle of 20°, a scaling factor of 2, and cropping
size of 256 x 512 (the top half is removed). Figure 15
illustrates the normalized correlation coefficient results of
these attacks on different test images. Figure 16 shows the
extracted watermarks after applying geometric attacks on the
Lena test image. Results of cropping other parts of the Lena
test image are also shown in Figure 16. Results demonstrate
good resistance of our method against cropping and scaling
but poor resistance against rotation attack.

4.3. Comparison. The performance of the proposed method
was compared with 2 other methods with two different
decomposition types and the results are shown in Table 6.
Wang and Pearmain’s method [22] is a blind watermarking
technique based on the patch work estimation. A total
of 910 watermark bits were embedded in the Lena test
image by using DCT. The PSNR reported was 39.21 dB and
the numbers of attacks reported were only 4. Elbasi and
Eskicioglu’s method [23] is a semiblind DWT watermarking
technique which embeds a pseudorandom number (PRN)
sequence as a watermark in three bands of the image,
using coefficients that are higher than a given threshold.
The reported PSNR was 40.86dB and the numbers of
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attacks reported were 9. In the proposed method, 17 KB
are embedded and the obtained PSNR is 46.97 dB. The
Watermarked image in our method can survive many attacks,
and it is superior in terms of PSNR compared to these
methods. Furthermore, we compared our method with three
related works, which also used contourlet decomposition.
Method I and Method 1II are reported in [3], and CEW is
reported in [2]. Table 7 summarizes the comparison results
of the proposed method with these methods. Figures 17,
18 and 19 show the comparison results between Method 1,
Method II, CEW, and the proposed method on the popular
test images under the Gaussian noise, cropping, and rotation
attack, respectively. In the Gaussian noise and cropping
attacks, our method outperforms other methods but in
rotation attack (angle = 6°), the performance of CEW was
better.

5. Conclusion

In this paper, we proposed a new multiresolution water-
marking method using the contourlet transform. In this
method, a grayscale watermark was added to the highest
frequency subband of the host image. The quality of the
watermarked image was good in terms of perceptibility and
PSNR (average of 39.4107 dB) measures. We showed that
we can embed a remarkable amount of data (34 KB) using
other high frequency subbands in addition to the highest
frequency subband. Moreover, we showed that this method
was robust against various removal and geometrical attacks
such as JPEG2000 compression, salt and pepper noise,
Gaussian noise, speckle noise, Poisson noise, frequency
mode Laplacian removal, Gaussian lowpass filtering, reduced
color, image sharpening, cropping, scaling, and histogram
equalization. We compared the robustness of the proposed
method with 3 other contourlet methods under cropping,
Gaussian noise, and rotation attacks. Compared to the
DWT-based and DCT-based methods, the proposed method
is superior in terms of embedding capacity, PSNR and
survival to a number of image attacks. Considering the
good characteristics of our method such as imperceptibility,
robustness and non-blind extraction, it would be a suitable
choice for fingerprinting applications. Our future focus will
be on enhancing the robustness properties of the proposed
algorithm against various attacks.
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