
A Contract-Based Formalism for the Specification of Heterogeneous Systems

Luca Benvenuti1,2, Alberto Ferrari2, Leonardo Mangeruca2,

Emanuele Mazzi3,2, Roberto Passerone4,2 and Christos Sofronis2

1Università di Roma “La Sapienza”, Italy 2PARADES, Roma, Italy

luca.benvenuti@uniroma1.it {leonardo, aferrari, sofronis}@parades.rm.cnr.it
3Università di Pisa, Italy 4Università di Trento, Italy

emanuele.mazzi@ing.unipi.it roby@disi.unitn.it

Abstract

We present the mathematical formalism and the verifi-

cation methodology of the contract-based model developed

in the framework of the SPEEDS project. SPEEDS aims at

developing methods and tools to support “speculative de-

sign”, a design methodology in which distributed designers

develop different aspects of the overall system, in a concur-

rent but controlled way. Our generic mathematical model of

contract supports this style of development. This is achieved

by focusing on behaviors, by supporting the notion of “rich

component” where functional and non-functional aspects of

the system can be considered and combined, by represent-

ing rich components via their set of associated contracts,

and by formalizing the process of component composition.

1. Introduction

In this paper we describe the semantic structure underly-

ing the metamodel of the SPEEDS integrated project [10],

and show an example of application in the field of hybrid

systems. SPEEDS is a concerted effort to define the new

generation of end-to-end methodologies, processes and sup-

porting tools for safety-critical embedded system design.

One of the technical pillars of the SPEEDS approach is the

definition of a semantic-based modeling method that sup-

ports the construction of complex embedded systems by

composing heterogeneous subsystems, and that enables the

sound integration of existing and new tools. At the basis of

this approach is the definition of a “rich-component” model

able to represent functional as well as architectural abstrac-

tions, such as timing, safety and other non-functional per-

formance metrics. These different viewpoints can be de-

veloped separately in the model, and then integrated and

evaluated together in order to derive the most efficient

component-based implementation of the system.

To assist this methodology, SPEEDS is developing a new

tool-supported process, called controlled speculative de-

sign, justified by the recent organizational changes and new

challenges in industries such as automotive and aerospace.

System integrators attempt to recover value from the supply

chain by maintaining ownership and focusing on those parts

of the design at the core of their competitive advantage,

while the rest of the system is centered around standard

platforms that could be developed and shared by otherwise

competitors. Examples of this trend are AUTOSAR in the

automotive industry [6], and the deployment of Integrated

Modular Avionics (IMA) in aerospace [4]. A lot of effort

has been devoted by the research community during the last

years to develop theories and methodologies of component

based development to be used in complex supply chains or

OEM/supplier organizations such as the ones above. The

most familiar case is building systems from component li-

braries. However, when the structure of the supply chain is

highly distributed, this approach is no longer effective, and

must be complemented by a precise separation of respon-

sibilities between the different actors of the OEM/supplier

chain. In SPEEDS, this is accomplished by establishing for-

mal “contracts” between inter- and intra-company design

groups. A contract is a model of a rich component that sets

forth the assumptions under which the component may be

used by its environment, and the corresponding promises

that are guaranteed under such correct use. OEMs can use

the contract mechanism to define and know precisely what

a given supplier is responsible for, by assigning a specific

goal in the form of a guarantee or promise. The other enti-

ties involved in the subsystem may be subject to other con-

straints that are thus offered to the supplier as assumptions.

Assumptions can be used by a supplier to satisfy its own

promises. This design style may include both functional

and non-functional viewpoints, making the design hetero-

geneous. This way, designers can more clearly establish

and keep track of roles and responsibilities for the develop-

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 142

ment of the system behavior, as well as for its deployment

onto optimized architectures.

In this paper, we first review the fundamental semantic

concepts of the SPEEDS metamodel, including the notion

of contract and how the separation of responsibilities can

be captured by a relation of compatibility between contracts

(Section 2). Then, we present an example of application

of the contract formalism to the control of a hybrid model,

which is suitable for heterogeneous discrete and continuous

time designs (Section 3), and discuss how to complete its

verification (Section 4). Given the limited space, readers

interested in a more detailed account and a comparison with

related approaches are referred to our previous work [2, 3].

2. Contract model overview

Our model is based on the concept of component. A

component is a hierarchical entity that represents a unit

of design. Components are connected together by sharing

and agreeing on the values of certain ports and variables.

A component may include both implementations and con-

tracts. An implementation M is an instantiation of a com-

ponent and consists of a set P of ports and variables (in the

following, for simplicity, we will refer only to ports) and of

a set of behaviors, or runs, also denoted by M , which assign

a history of “values” to ports. Runs are generic and abstract,

since we do not need a predetermined form of behavior for

our basic definitions. The particular structure of the runs is

defined by specific instances of the model. In Section 3, we

show an example of a hybrid model, where runs are com-

posed of continuous flows and discrete jumps. Conversely,

an automata based model would represent behaviors as se-

quences of values or events. Our basic definitions will not

vary, and only the way operators are implemented is af-

fected. Because implementations and contracts may refer

to different viewpoints, we refer to the components in our

model as heterogeneous rich components (HRC).

We build the notion of a contract for a component as

a pair of assertions, which express its assumptions and

promises. An assertion E is modeled as a set of behav-

iors over ports, precisely as the set of behaviors that satisfy

it. An implementation M satisfies an assertion E whenever

they are defined over the same set of ports and all the be-

haviors of M satisfy the assertion, i.e., when M ⊆ E.

A contract is an assertion on the behaviors of a com-

ponent (the promise) subject to certain assumptions. We

therefore represent a contract C as a pair (A,G), where A
corresponds to the assumption, and G to the promise. An

implementation of a component satisfies a contract when-

ever it satisfies its promise, subject to the assumption. For-

mally, M ∩ A ⊆ G, where M and C have the same ports.

We write M |= C when M satisfies a contract C. There

exists a unique maximal (by behavior containment) imple-

mentation satisfying a contract C, namely MC = G ∪ ¬A,

where ¬A denotes the set of all runs that are not runs of A.

Clearly, M |= (A,G) if and only if M |= (A,MC), if and

only if M ⊆ MC . Because of this property, we can restrict

our attention to contracts of the form C = (A,MC), which

we say are in canonical form, without losing expressive-

ness. The operation of computing the canonical form, i.e.,

replacing G with G∪¬A, is well defined, since the maximal

implementation is unique, and it is idempotent. Working

with canonical forms simplifies the definition of our opera-

tors and relations, and provides a unique representation for

equivalent contracts.

Intuitively, an implementation can only provide promises

on the value of the ports it controls. On ports controlled

by the environment, instead, it may only declare assump-

tions. Therefore, we will distinguish between two kinds of

ports: those that are controlled and those that are uncon-

trolled. Uncontrollability can be formalized as a notion of

receptiveness: for E an assertion, and P ′ ⊆ P a subset of

its ports, E is said to be P ′-receptive if and only if for all

runs σ′ restricted to ports belonging to P ′, there exists a run

σ ∈ E such that σ′ and σ coincide over P ′. In words, E ac-

cepts any history offered to the subset P ′ of its ports. This

closely resembles the classical notion of inputs and outputs

in programs and HDLs; it is more general, however, as it en-

compasses not only horizontal compositions within a same

layer, but also cross-layer integration such as the integra-

tion between application and execution platform performed

at deployment. Contracts are therefore enriched with a pro-

file π = (u, c) that partitions its set of ports.

The combination of contracts associated to different

components can be obtained through the operation of par-

allel composition. If C1 = (π1, A1, G1) and C2 =
(π2, A2, G2) are contracts (possibly over different sets of

ports), the composite must satisfy the guarantees of both,

implying an operation of intersection. The situation is more

subtle for assumptions. Suppose first that the two contracts

have disjoint sets of ports. Intuitively, the assumptions of

the composite should be simply the conjunction of the as-

sumptions of each contract, since the environment should

satisfy all the assumptions. In general, however, part of the

assumptions A1 will be already satisfied by composing C1

with C2, acting as a partial environment for C1. Therefore,

G2 can contribute to relaxing the assumptions A1. And

vice-versa. The assumption and the promise of the com-

posite contract C = (π,A, G) can therefore be computed

as follows:

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), (1)

G = G1 ∩ G2, (2)

which is consistent with similar definitions in other con-

texts [7, 8, 9]. For the profiles, we enforce the property

that each port should be controlled by at most one con-

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 143

tract. Hence, parallel composition is defined only if the

sets of controlled ports of the contracts are disjoint. Like-

wise, in the composite contract, a port is controlled exactly

when it is controlled by one of the component contracts.

More formally, parallel composition is defined if and only

if c1 ∩ c2 = ∅, and in that case the profile π is defined by

c = c1 ∪ c2 and u = (u1 ∪ u2) − (c1 ∪ c2).
Typically, C1 and C2 may have different ports. In that

case, we must extend the behaviors (but not the profiles) to

a common set of ports before applying (1) and (2). This can

be achieved by an operation of inverse projection. Projec-

tion, or elimination, in contracts requires handling assump-

tions and promises differently, in order to preserve their se-

mantics. For a contract C = (A,G) and a port p, the elimi-

nation of p in C is given by

[C]p = (∀p A, ∃p G) (3)

where A and G are seen as predicates. Elimination trivially

extends to finite sets of ports, denoted by [C]P , where P
is the considered set of ports. For inverse elimination in

parallel composition, the set of ports P to be considered is

the union of the ports P1 and P2 of the individual contracts.

Parallel composition can be used to construct complex

contracts out of simpler ones, and to combine contracts of

different components. Despite having to be satisfied si-

multaneously, however, multiple viewpoints associated to

the same component do not generally compose by parallel

composition. Take, for instance, a functional viewpoint Cf

and an orthogonal timed viewpoint Ct for a component M .

Contract Cf specifies allowed data pattern for the environ-

ment, and sets forth the corresponding behavioral property

that can be guaranteed. For instance, if the environment

alternates the values T,F,T, . . . on port a, then the value

carried by port b never exceeds x. Similarly, Ct sets tim-

ing requirements and guarantees on meeting deadlines. For

example, if the environment provides at least one data per

second on port a (1ds), then the component can issue at

least one data every two seconds (.5ds) on port b. Parallel

composition fails to capture their combination, because the

combined contract must accept environments that satisfy ei-

ther the functional assumptions, or the timing assumptions,

or both. In particular, parallel composition computes as-

sumptions that are too restrictive. We would like, instead,

to compute the conjunction ⊓ of the contracts, so that if

M |= Cf ⊓ Ct, then M |= Cf and M |= Ct. This can best

be achieved by first defining a partial order on contracts,

which formalizes a notion of substitutability, or refinement.

We say that C = (π,A, G) dominates C ′ = (π′, A′, G′),
written C � C ′, if and only if π = π′, A ⊇ A′ and G ⊆ G′.

Dominance amounts to relaxing assumptions and reinforc-

ing promises, therefore strengthening the contract. Clearly,

if M |= C and C � C ′, then M |= C ′.

Given the ordering of contracts, we can compute great-

est lower bounds and least upper bounds, which corre-

spond to taking the conjunction and disjunction of con-

tracts, respectively. For contracts C1 = (π,A1, G1) and

C2 = (π,A2, G2) (in canonical form), we have

C1 ⊓ C2 = (π,A1 ∪ A2, G1 ∩ G2), (4)

C1 ⊔ C2 = (π,A1 ∩ A2, G1 ∪ G2). (5)

The resulting contracts are in canonical form. Conjunction

of contracts amounts to taking the union of the assumptions,

as required, and can therefore be used to compute the over-

all contract for a component starting from the contracts re-

lated to multiple viewpoints.

Consistency and Compatibility The notion of receptive-

ness and the distinction between controlled and uncon-

trolled ports is at the basis of our relations of consistency

and compatibility between contracts. Our first requirement

is that an implementations M with profile π = (u, c) be u-

receptive, formalizing the fact that an implementation has

no control over the values of ports set by the environment.

For a contract C, we say that C is consistent if G is u-

receptive, and compatible if A if c-receptive.

The sets A and G are not required to be receptive. How-

ever, if G is not u-receptive, then the promises constrain the

uncontrolled ports of the contract. In particular, the con-

tract admits no receptive implementation. This is against

our policy of separation of responsibilities, since we stated

that uncontrolled ports should remain entirely under the re-

sponsibility of the environment. Corresponding contracts

are therefore called inconsistent.

The situation is dual for assumptions. If A is not c-

receptive, then there exists a sequence of values on the

controlled ports that are refused by all acceptable environ-

ments. However, by our definition of satisfaction, imple-

mentations are allowed to output such sequence. Unrecep-

tiveness, in this case, implies that a hypothetical environ-

ment that wished to prevent a violation of the assumptions

should actually prevent the behavior altogether, something

it cannot do since the port is controlled by the contract.

Therefore, unreceptive assumptions denote the existence of

an incompatibility internal to the contract, that cannot be

avoided by any environment.

The notion of consistency and compatibility can be ex-

tended to pairs of contracts. We say that two contracts C1

and C2 are consistent or compatible whenever their parallel

composition is consistent or compatible.

3. A hybrid system example

To show how to perform the verification of contract com-

patibility, we consider a simple hybrid system control prob-

lem where we have to control the water level in a cylindric

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 144

tank (see Figure 1), with height H and section S, equipped

with an inlet pipe at the top and an outlet pipe at the bottom.

The outlet flow is assumed to be proportional to the water

Figure 1. The tank system

level, i.e.,

Fout(t) = kx(t) (6)

where x(t) denotes the water level in the tank and k is the

outlet flow constant. The inlet flow depends on the supply

inlet pressure p(t), that is Fin(t) = Sin

√

2p(t)/ρ where

Sin is the inlet pipe cross section and ρ is the liquid density.

The controller scheme considered in this section is

shown in Figure 2. The closed loop includes: (i) the water

Controller
Actuator:

valve

Plant:

tank
Sensor

command u(t) x(t)

xs(t)

x(0)α(0) p(t) e(t)

Figure 2. System diagram

tank; (ii) an actuator consisting of a flow rate valve; (iii) a

water level sensor; (iv) a controller that on the basis of sen-

sor readings and reference signal, actuates the valve. We

now introduce the contracts of each element of the configu-

ration and verify the compatibility of the connection.

The behavior of the tank can be described by a contract

Ctank = (Atank, Gtank) which defines all the possible in-

let and outlet flow behaviors. The evolution of the output

flow, that is the promise Gtank, can be described by the hy-

brid system shown in Figure 3 where the continuous state

variable x(t) represents the water level in the tank, the con-

tinuous input variable u(t) is equal to Fin(t)/S, and the

continuous output variable y(t) is the outlet flow Fout(t).
Initially, in location q1, there is no water overflow and the

water level x(t) evolves according to the differential equa-

tion associated to the location where λ = k/S. The system

remains in q1 as long as the water level x(t) is lower than

H . Location q2 describes the water overflow situation in

which the water level remains constant and equal to H . The

assumptions Atank restrict the range of acceptable input be-

haviors. In particular, the inlet flow is assumed to be non-

negative (Ad
tank = {u(t) ≥ 0}) and the initial value of the

x = H ∧ u ≤ λH

q1 q2

ẋ(t) = −λx(t) + u(t)

0 ≤ x ≤ H

ẋ(t) = 0

x = H

u > λH

x = H ∧ u > λH

Figure 3. Hybrid system Ht for Gtank

water level an admissible one (Aj,o
tank = {x(0) ∈ [0,H]}).

A one-state hybrid system can be used to capture these two

invariants.

The inlet flow to the container is controlled by the valve,

that takes a position command from a controller. In re-

sponse to a position command (open or close), the valve

aperture changes linearly in time at rate 1/T where T ∈
[Tm;TM] s. The inlet flow is proportional to the valve aper-

ture α(t), where 0 ≤ α ≤ 1. As a consequence, the input

u(t) to the tank is equal to

u(t) = α(t)
Sin

S

√

2p(t)

ρ
= α(t)f (p(t)) , (7)

where p(t) is the supply inlet pressure. The assumption of

the valve contract is

Ad
valve = {p(t) ≥ 0}×{T ∈ [Tm;TM]}×{α(0) ∈ [0; 1]}

while the promise Gvalve is defined on the output u(t) of

the valve and can be represented by the hybrid system de-

picted in Figure 4 where the initial location can be either p2

or p4. In location p1 the valve is closed and the output u(t)

p1 p2

p3p4

α = 0

σ ∈ {ε, close}

0 ≤ α ≤ 1

σ ∈ {ε, open}

α = 1

σ ∈ {ε, open}

σ = open

σ = close

α = 0 α = 1

σ = close

σ = open

α̇(t) = 0

u(t) = 0

α̇(t) = 1/T

u(t) = α(t)f(p(t))

α̇(t) = −1/T

u(t) = α(t)f(p(t))

α̇(t) = 0

u(t) = f(p(t))

0 ≤ α ≤ 1

σ ∈ {ε, close}

Figure 4. Hybrid system Hv for Gvalve

is constantly zero, regardless of the value of the inlet pres-

sure p(t). In locations p2 and p4 the valve is opening and

closing, respectively. The output u(t) depends on the inlet

pressure p(t) and the aperture of the valve α(t). In location

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 145

p3 the valve is open. In this case, the supply outlet flow u(t)
depends only on the inlet pressure p(t).

For the sensor, the input is the water level x(t) in the

tank, and the output is the measured signal xs(t) subject

to the sensor error e(t). Two invariants are taken as as-

sumptions: the error e(t) is bounded in a given interval

(Ad
sensor = {e(t) ∈ [−δ, δ]}); the water level is bounded

by the size of the tank (Aj,o
sensor = {x(t) ∈ [0,H]}).

The promise Gsensor of the sensor contract is defined

simply as the invariant xs(t) = x(t) + e(t).
The controller takes as input the measured water level

xs(t) provided by the sensor, and outputs the command sig-

nal open or close for the regulation of the valve position.

The control law, shown in Figure 5, is based on a hysteresis

loop, introduced to reduce the number of actuator commuta-

tions and prevent a chattering behavior of the system. When

the valve is closed and the water level is decreasing, the

controller produces the open command only for xs(t) ≤ l.
Conversely, when the valve is open and the water level is

increasing, the controller produces the close command only

for xs(t) ≥ h, with δ < l < h < H − δ. There are no as-

xs(t) > lxs(t) < h

xs ≥ h/

γ = close

c2 c3

c1

l < xs(t) < h

xs ≤ l/

γ = open

xs ≤ l/

γ = open

xs ≥ h/

γ = close

Figure 5. Hybrid system Hc for Gcontr

sumptions Acontr on the controller behavior, i.e., any value

for xs(t) is admissible.

4. Verification

In this section we analyze the compatibility and satisfac-

tion relation. To establish compatibility, we observe that

whenever the promises of a component over a certain port

are contained in the assumptions of another component for

the same port, then the assumptions are discharged. This

follows directly from our definition of composition (Equa-

tion 1). We will therefore proceed in steps through the cas-

cade composition of Figure 2. Frist, the controller and the

valve are compatible, since the valve has no assumptions on

the command signal. As a second step, consider the compo-

sition of the three components controller–valve–tank. The

assumptions of the valve ensure through its promise Gvalve,

that u(t) ≥ 0. Consequently, Gvalve ⊂ Aj,o
tank, so that

ẋ(t) = −λx(t)
α̇(t) = 0

l − δ < x(t) < H

α(t) = 0

ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = −1/T

l − δ < x(t) < H
0 ≤ α(t) ≤ 1

ẋ(t) = 0
α̇(t) = −1/T

x(t) = H
u > λH

0 ≤ α(t) ≤ 1

ẋ(t) = −λx(t) + α(t)f(p(t))
α̇(t) = 1/T

0 < x(t) < h + δ

0 ≤ α(t) ≤ 1

ẋ(t) = −λx(t) + f(p(t))
α̇(t) = 0

0 < x(t) < h + δ

α(t) = 1

l3 l15 l16

l6 l10

α = 0

x = H ∧

u > λH

x = H ∧

u ≤ λH

x ≥ h − δ

x ≤ l + δ

x ≥ h − δx ≤ l + δ

α = 1

x = H ∧

u > λH

x = H ∧

u > λH

Figure 6. Hybrid system H̃tscv for the system

the composition is compatible. Consider now the four-

component cascade composition. Also in this case, it is im-

mediate to check that the hybrid system describing the tank

behavior is such that x(t) ∈ [0,H]. Therefore, Gtank ⊂
Aj,o

sensor, which concludes compatibility verification of the

cascade composition.

As a final step, consider the composition obtained by

closing the loop. Since there are no assumption Acontr on

xs(t),
Gf = Gsensor ⊂ Acontr = Af

and the feedback composition is compatible. The entire sys-

tem has, however, some residual assumptions on the envi-

ronment, corresponding to the uncontrolled ports:

Ae = Ad
valve × Ad

tank × Ad
sensor (8)

To compute the global promises, we compose the con-

tracts defining the four blocks of Figure 2 to obtain the

contract of the closed–loop system. The result is shown

in Figure 6, which has been obtained by applying several

reduction techniques, that includes hiding internal signals,

eliminating locations with empty invariant conditions, and

by computing equivalent locations [3]. Locations l10 and l3
represent the open and closed valve situation, respectively.

Locations l6 and l15 reproduce the opening and closing dy-

namic of the valve. Finally, location l16 implements the

overflow condition.

To study the satisfaction relation, we define the desired

behavior of the closed loop system as a contract Cdes which

defines all the admissible inlet and outlet flow behaviors.

The aim of the tank, that is the promise Gdes, is that of

providing an outlet flow Fout(t) bounded in a given interval

y(t) = Fout(t) ∈ [Y m;Y M] = [1; 2] m3/s

at least after a settling time t̄ = 10 s from startup when the

inlet pressure p(t) is constant and equal to P = 50000 Pa
and the tank is empty at startup. In addition, no water over-

flow is allowed. Due to the algebraic Equation 6, specifi-

cations on the variable y(t) can be expressed in terms of

specifications on the state variable x(t).

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 146

The assumptions Ades on the desired behavior can be

stated as p(t) = P , x(0) = 0, and α(0) = 0. An imple-

mentation M of the closed–loop system is described by the

hybrid system H̃tscv with a particular choice of the physical

parameters. As an example, consider the implementation

corresponding to the set of parameters: tank - H = 9 m,

S = 19, 63 m2, λ = 0, 0255 s−1, Sin = 0, 5 m2,

ρ = 1000 Kg/m3; valve - T = 2 s sensor - δ = 0, 05 m
controller - l = 2, 2 m, h = 3, 8 m

To verify whether M satisfies Cdes, one has to check

if the behavior of the implementation under the assump-

tion Ades satisfies the contract promises Gdes, that is

M ∩ Ades ⊂ Gdes. For this, an over approximation

R of the infinite–time reachable set of the hybrid system

H̃tscv is computed using the formal verification tool ARI-

ADNE [5, 1]. More in details, the first requirements on the

reached sets after 10 seconds from the startup is obtained by

computing the finite-time reachable set of the hybrid model

H̃tscv . Figure 7 shows the evolution of the water level, with

initial conditions corresponding to valve closed and empty

tank. The reached water level is greater than the required

threshold after 10 seconds from the startup. Figure 8 shows

!!"# ! !"# $ $"# % %"#
!!"%

!

!"%

!"&

!"'

!"(

$

$"%

)*+,-./,0,/.123

4
*
/0
,
.5
6
7
8+
86
9
.1
:
3

Figure 7. Finite time reachable set

the infinite time reachable set of the hybrid model com-

puted by ARIADNE, to verify if the liquid level is always

bounded by the interval [2; 4]m. The initial condition is the

water level and valve position reached after 10 seconds from

startup computed earlier. The regions indicated as B and D
are reached when the valve is constantly open and closed,

and only the water level x(t) evolves in time (discrete lo-

cations l10 and l3). Regions A and C are reached after an

open and close controller command, respectively. As the

figure makes clear, the water level x(t) is always bounded

in the interval [Xm, XM] = [2; 4] m. This means that the

implementation M satisfies the constraint on the outlet flow

(Equation 6).

! !"# $ $"# % %"# & &"# #
!'"$

'

'"$

'"&

'"(

'")

!

!"$

*+,-./0-1-0/234

5
+
01
-
/6
7
8
9,
97
:
/2
;
4

A

B

C

D

Figure 8. Infinite time reachable set

References

[1] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa,

and A. Sangiovanni-Vincentelli. Ariadne: a framework for

reachability analysis of hybrid automata. In Proceedings of

the 17th International Symposium on Mathematical Theory

of Networks and Systems, Kyoto, Japan, July 2006.

[2] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca,

R. Passerone, and C. Sofronis. Multiple viewpoint contract-

based specification and design. In Revised Lectures of

the Software Technologies Concertation on Formal Meth-

ods for Components and Objects (FMCO07), Lecture Notes

in Computer Science. Springer Verlag, Amsterdam, The

Netherlands, 2007. In preparation.

[3] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Sangiovanni-

Vincentelli. Contract-based design for computation and ver-

ification of a closed-loop hybrid system. In Proceedings of

the Hybrid System: Computation and Control (HSCC08),

St. Louis, MO, April 22–24, 2008.

[4] H. Butz. The Airbus approach to open Integrated Modu-

lar Avionics: technology, functions, industrial processes and

future development roadmap. In International Workshop on

Aircraft System Technologies, Hamburg, March 2007.

[5] P. Collins. Continuity and computability of reachable sets.

Theoretical Computer Science, 341:162–195, 2005.

[6] W. Damm. Embedded system development for automotive

applications: trends and challenges. In Proceedings of the

6
th ACM & IEEE International conference on Embedded

software (EMSOFT06), Seoul, Korea, October 22–25 2006.

[7] L. de Alfaro and T. A. Henzinger. Interface automata. In

Proceedings of the Ninth Annual Symposium on Foundations

of Software Engineering, pages 109–120. ACM Press, 2001.

[8] D. L. Dill. Trace Theory for Automatic Hierarchical Verifi-

cation of Speed-Independent Circuits. ACM Distinguished

Dissertations. MIT Press, 1989.

[9] R. Negulescu. Process spaces. In CONCUR, volume 1877 of

Lecture Notes in Computer Science. Springer-Verlag, 2000.

[10] SPEEDS. http://www.speeds.eu.com.

Forum on Specification and Design Languages 2008

978-1-4244-2265-4/08/$25.00 © 2008 IEEE Page 147

