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A Contraction Theory Approach to Stochastic
Incremental Stability

Quang-Cuong Pham, Nicolas Tabareau and Jean-Jacques Slotine

Abstract

We investigate the incremental stability properties of Itô stochastic dynamical systems. Specifically, we derive
a stochastic version of nonlinear contraction theory that provides a bound on the mean square distance between
any two trajectories of a stochastically contracting system. This bound can be expressed as a function of the noise
intensity and the contraction rate of the noise-free system. We illustrate these results in the contexts of nonlinear
observers design and stochastic synchronization.

Index Terms
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I. I NTRODUCTION

Nonlinear stability properties are often considered with respect to an equilibrium point or to a nominal
system trajectory (see e.g. [1]). By contrast,incrementalstability is concerned with the behavior of system
trajectorieswith respect to each other. From the triangle inequality, global exponential incremental stability
(any two trajectories tend to each other exponentially) is astronger property than global exponential
convergence to a single trajectory.

Historically, work on deterministic incremental stability can be traced back to the 1950’s [2; 3; 4]
(see e.g. [5; 6] for a more extensive list and historical discussion of related references). More recently,
and largely independently of these earlier studies, a number of works have put incremental stability
on a broader theoretical basis and have clarified the relations with more traditional stability approaches
[7; 8; 9; 10]. Furthermore, it has been shown that incremental stability is especially relevant in the study
of such problems as observer design or synchronization analysis.

While the above references are mostly concerned withdeterministicstability notions, stability theory
has also been extended tostochasticdynamical systems, see for instance [11; 12]. This includesimportant
recent developments in Lyapunov-like approaches [13; 14],as well as applications to standard problems
in systems and control [15; 16; 17]. However, stochastic versions of incremental stability have not yet
been systematically investigated.

The goal of this paper is to extend some concepts and results in incremental stability to stochastic dy-
namical systems. More specifically, we derive a stochastic version of contraction analysis in the specialized
context of state-independent metrics.

We prove in section II that the mean square distance between any two trajectories of a stochastically
contracting system is upper-bounded by a constant after exponential transients. In contrast with previous
works on incremental stochastic stability [18], we consider the case when the two trajectories are affected
by distinct and independent noises, as detailed in section II-B. This specificity enables our theory to
have a number of new and practically important applications. However, the fact that the noise does
not vanish as two trajectories get very close to each other will prevent us from obtaining asymptotic
almost-sure stability results (see section III-B). In section III-D, we show that results on combinations of
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deterministic contracting systems have simple analogues in the stochastic case. Finally, as illustrations of
our results, we study in section IV the convergence of contracting observers with noisy measurements,
and the synchronization of noisy FitzHugh-Nagumo oscillators.

II. T HE STOCHASTIC CONTRACTION THEOREM

A. Background: nonlinear contraction theory

Nonlinear contraction theory [8] provides a set of tools to analyze the incremental exponential stability of
nonlinear systems, and has been applied notably to observerdesign [19; 20], synchronization analysis [21;
22] and systems neuroscience modelling [23]. Nonlinear contracting systems enjoy desirable aggregation
properties, in that contraction is preserved under many types of system combinations given suitable simple
conditions [8].

While we shall derive global properties of nonlinear systems, many of our results can be expressed in
terms of eigenvalues of symmetric matrices [24]. Given a square matrixA, the symmetric part ofA is
denoted byAs. The smallest and largest eigenvalues ofAs are denoted byλmin(A) andλmax(A). Given
these notations, a matrixA is positive definite(denotedA > 0) if λmin(A) > 0. Finally, a time- and
state-dependent matrixA(x, t) is uniformly positive definite if

∃β > 0 ∀x, t λmin(A(x, t)) ≥ β

The basic theorem of contraction analysis, derived in [8], can be stated as follows
Theorem 1 (Deterministic contraction):Consider, inR

n, the deterministic system

ẋ = f(x, t) (II.1)

wheref is a smooth nonlinear function satifying standard conditions for the global existence and unique-
ness of solutions (for instance: for allT ∈ [0,∞), there are constantsM andL such that∀t ∈ [0, T ], ∀x ∈
R

n : ‖f(x, t)‖ ≤ M + L‖x‖ [4]).
Denote the Jacobian matrix off with respect to its first variable by∂f

∂x
. If there exists a square matrix

Θ(x, t) such thatM = ΘTΘ is uniformly positive definite andF =
(

Θ̇ + Θ ∂f

∂x

)

Θ−1 is uniformly
negative definite, then all system trajectories converge exponentially to a single trajectory, with convergence
ratesup

x,t |λmax(F)| = λ > 0. The system is said to becontracting, F is called itsgeneralized Jacobian,
M its contractionmetric andλ its contractionrate.

B. Settings

Consider a noisy system described by an Itô stochastic differential equation
{

da = f(a, t)dt + σ(a, t)dW d

a(0) = ξ
(II.2)

wheref is aR
n×R

+ → R
n function,σ is aR

n×R
+ → R

nd matrix-valued function,W d is a standardd-
dimensional Wiener process andξ is a random variable independent of the noiseW d. To ensure existence
and uniqueness of solutions to equation (II.2), we assume that for all T ∈ [0,∞)

(Lipschitz condition)there exists a constantK1 > 0 such that∀t ∈ [0, T ], ∀a,b ∈ R
n

‖f(a, t) − f(b, t)| + ‖σ(a, t) − σ(b, t)‖ ≤ K1‖a − b‖
(restriction on growth)there exists a constantK2 > 0 such that∀t ∈ [0, T ], ∀a ∈ R

n

‖f(a, t)‖2 + ‖σ(a, t)‖2 ≤ K2(1 + ‖a‖2)

Under these conditions, one can show ([25], p. 105) that equation (II.2) has on[0,∞) a uniqueR
n-

valued solutiona(t), which is continuous with probability one.
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In order to investigate the incremental stability properties of system (II.2), consider now two system
trajectoriesa(t) andb(t). Our goal will consist of studying the trajectoriesa(t) andb(t) with respect to
each other. For this, we consider theaugmentedsystemx(t) = (a(t),b(t))T , which follows the equation















dx =

(

f(a, t)
f(b, t)

)

dt +

(

σ(a, t) 0
0 σ(b, t)

)(

dW d
1

dW d
2

)

=
⌢

f(x, t)dt +
⌢

σ(x, t)dW 2d

x(0) = (a(0),b(0)) = (ξ1, ξ2)

(II.3)

Important remark As stated in the introduction, the systemsa and b are driven bydistinct and
independent Wiener processesW d

1 and W d
2 . This makes our approach considerably different from [18],

where the authors studied two trajectories driven bythe sameWiener process.
Our approach enables us to study the stability of the system with respect to differences in initial

conditionsand to random perturbations: indeed, two trajectories of any real-life system are typically
affected bydistinct realizationsof the noise. In the deterministic domain, incremental stability with respect
to different initial conditionsand different deterministic inputs(incremental Input-to-State Stability or
δISS) has been studied in [9; 10; 26]. Besides, it should be noted that our approach leads very naturally to
nice results on the comparison of noisy and noise-free trajectories (cf. section III-C), which are particularly
useful in applications (cf. section IV).

However, because of the very fact that the two trajectories are driven by distinct Wiener processes,
one cannot expect the influence of the noise to vanish when thetwo trajectories get very close to each
other. This constrasts with [18], and more generally, with standard stochastic stability approaches, where
the noise is assumed to vanish near the origin. The consequences of this will be discussed in detail in
section III-B.

C. Statement and proof of the theorem

We first recall a Gronwall-type lemma
Lemma 1:Let g : [0,∞) → R be a continuous function,C a real number andλ a strictly positivereal

number. Assume that

∀u, t 0 ≤ u ≤ t g(t) − g(u) ≤
∫ t

u

−λg(s) + Cds (II.4)

Then

∀t ≥ 0 g(t) ≤ C

λ
+

[

g(0) − C

λ

]+

e−λt (II.5)

where[·]+ = max(0, ·).
Proof See [27]�
We now introduce two hypotheses
(H1) There exists a state-independent, uniformly positive definite metric M(t) = Θ(t)TΘ(t), with

the lower-boundβ > 0 (i.e. ∀x, t xTM(t)x ≥ β‖x‖2) and f is contracting in that metric, with
contraction rateλ, i.e. uniformly,

λmax

((

d

dt
Θ(t) + Θ(t)

∂f

∂a

)

Θ−1(t)

)

≤ −λ

or equivalently, uniformly,

M(t)
∂f

∂a
+

(

∂f

∂a

)T

M(t) +
d

dt
M(t) ≤ −2λM(t)

(H2) tr
(

σ(a, t)TM(t)σ(a, t)
)

is uniformly upper-bounded by a constantC
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Definition 1: A system that verifies(H1) and(H2) is said to bestochastically contractingin the metric
M(t), with rateλ and boundC.

Consider the Lyapunov-like functionV (x, t) = (a − b)TM(t)(a − b). Using(H1) and(H2), we derive
below an inequality onL V (x, t) whereL denotes the differential generator of the Itô processx(t) ([11],
p. 15).

Lemma 2:Under (H1) and (H2), one has

∀x, t L V (x, t) ≤ −2λV (x, t) + 2C (II.6)

Proof Let us compute firstL V

L V (x, t) =
∂V

∂t
+

∂V

∂x

⌢

f(x, t) +
1

2
tr

(

⌢

σ(x, t)T ∂2V

∂x2

⌢

σ(x, t)

)

= (a − b)T

(

d

dt
M(t)

)

(a − b)

+ 2(a − b)TM(t)(f(a, t) − f(b, t))

+ tr(σ(a, t)TM(t)σ(a, t)) + tr(σ(b, t)TM(t)σ(b, t))

Fix t > 0, then, according to [28], there existsc ∈ [a,b] such that

(a − b)T
(

d
dt
M(t)

)

(a − b) + 2(a − b)TM(t)(f(a) − f(b))

= (a − b)T
(

d
dt
M(t) + M(t) ∂f

∂a
(c, t) + ∂f

∂a
(c, t)TM(t)

)

(a − b)

≤ −2λ(a − b)TM(t)(a − b) = −2λV (x) (II.7)

where the inequality is obtained by using(H1).
Finally, combining equation (II.7) with(H2) allows to obtain the desired result�

We can now state the stochastic contraction theorem
Theorem 2 (Stochastic contraction):Assume that system (II.2) verifies(H1) and (H2). Let a(t) and

b(t) be two trajectories whose initial conditions are independent of the noise and given by a probability
distributionp(ξ1, ξ2). Then

∀t ≥ 0 E
(

(a(t) − b(t))TM(t)(a(t) − b(t))
)

≤
C

λ
+ e−2λt

∫
[

(a0 − b0)
TM(0)(a0 − b0) −

C

λ

]+

dp(a0,b0) (II.8)

In particular,∀t ≥ 0

E
(

‖a(t) − b(t)‖2
)

≤ 1

β

(

C

λ
+ E

(

(ξ1 − ξ2)
TM(0)(ξ1 − ξ2)

)

e−2λt

)

(II.9)

Proof Let x0 = (a0,b0) ∈ R
2n. By Dynkin’s formula ([11], p. 10)

Ex0
V (x(t), t) − V (x0, 0) = Ex0

∫ t

0

L V (x(s), s)ds

Thus one has∀u, t 0 ≤ u ≤ t < ∞

Ex0
V (x(t), t) − Ex0

V (x(u), u) = Ex0

∫ t

u

L V (x(s), s)ds

≤ Ex0

∫ t

u

(−2λV (x(s), s) + 2C)ds (II.10)
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=

∫ t

u

(−2λEx0
V (x(s), s) + 2C)ds (II.11)

where inequality (II.10) is obtained by using lemma 2 and equality (II.11) by using Fubini’s theorem
(sinces 7→ Ex0

V (x(s), s) is continuous on[u, t], one has
∫ t

u
| − 2λEx0

V (x(s), s) + 2C|ds < ∞).
Denote byg(t) thedeterministicquantityEx0

V (x(t)). As remarked above,g(t) is a continuous function
of t. It then satisfies the conditions of the Gronwall-type lemma1, and as a consequence

∀t ≥ 0 Ex0
V (x(t), t) ≤ C

λ
+

[

V (x0, 0) − C

λ

]+

e−2λt

which leads to (II.8) by integrating with respect to(a0,b0). Next, (II.9) follows from (II.8) by observing
that

∫
[

(a0 − b0)
TM(0)(a0 − b0) −

C

λ

]+

dp(a0,b0)

≤
∫

(a0 − b0)
TM(0)(a0 − b0)dp(a0,b0)

= E
(

(ξ1 − ξ2)
TM(0)(ξ1 − ξ2)

)

and
‖a(t) − b(t)‖2 ≤ 1

β
(a(t) − b(t))TM(t)(a(t) − b(t)) �

III. R EMARKS

A. “Optimality” of the mean square bound

Consider the following linear dynamical system, known as theOrnstein-Uhlenbeck (colored noise)
process

da = −λadt + σdW (III.1)

Clearly, the noise-free system is contracting with rateλ and the trace of the noise matrix is upper-
bounded byσ2. Let a(t) andb(t) be two system trajectories starting respectively ata0 andb0 (deterministic
initial conditions). Then by theorem 2, we have

∀t ≥ 0 E
(

(a(t) − b(t))2
)

≤ σ2

λ
+

[

(a0 − b0)
2 − σ2

λ

]+

e−2λt (III.2)

Let us assess the quality of this bound by solving directly equation (III.1). The solution of equation
(III.1) is ([25], p. 134)

a(t) = a0e
−λt + σ

∫ t

0

eλ(s−t)dW (s) (III.3)

Compute next the mean square distance between the two trajectoriesa(t) and b(t)

E((a(t) − b(t))2) = (a0 − b0)
2e−2λt

+ σ2
E

(

(
∫ t

0

eλ(s−t)dW1(s)

)2
)

+ σ2
E

(

(
∫ t

0

eλ(u−t)dW2(u)

)2
)

= (a0 − b0)
2e−2λt +

σ2

λ
(1 − e−2λt)
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≤ σ2

λ
+

[

(a0 − b0)
2 − σ2

λ

]+

e−2λt

The last inequality is in fact an equality when(a0 − b0)
2 ≥ σ2

λ
. Thus, this calculation shows that the

upper-bound (III.2) given by theorem 2 is optimal, in the sense that it can be attained.

B. No asymptotic almost-sure stability

From the explicit form (III.3) of the solutions, one can deduce that the distributions ofa(t) and b(t)

converge to the normal distributionN
(

0, σ2

2λ

)

([25], p. 135). Sincea(t) and b(t) are independent, the

distribution of the differencea(t) − b(t) will then converge toN
(

0, σ2

λ

)

. The last observation shows
that one cannot – in general – obtainalmost-surestability results.

Indeed, the main difference with the approaches in [16; 17; 18] lies in the term2C. This extra term
comes from the fact that the influence of the noise does not vanish when two trajectories get very close
to each other (cf. section II-B). It preventsL V (x(t)) from being always non-positive, and as a result,
V (x(t)) is not alwaysnon-increasing. Thus,V (x(t)) is not – in general – a supermartingale, and one
cannot then use the supermartingale inequality (or its variations) to obtain asymptotic almost-sure bounds,
as in ([11], pp. 47-48) or in [16; 17; 18].

However, if one is interested infinite timebounds then the supermartingale inequality is still applicable,
see ([11], p. 86) for details.

C. Noisy and noise-free trajectories

Consider the following augmented system

dx =

(

f(a, t)
f(b, t)

)

dt +

(

0 0
0 σ(b, t)

)(

dW 1
d

dW 2
d

)

=

⌢

f(x, t)dt +
⌢

σ(x, t)dW2d (III.4)

This equation is the same as equation (II.3) except that thea-system is not perturbed by noise. Thus
V (x) = ‖a − b‖2 represents the distance between a noise-free trajectory and a noisy one. All the
calculations are the same as in section II-C, withC being replaced byC/2. One can then derive the
following corollary (for simplicity, we consider the case of identity metric; the general case can be easily
adapted)

Corollary 1: Assume that system (II.2) verifies(H1) and (H2) with M = I. Let a(t) be anoise-free
trajectory starting ata0 and b(t) a noisy trajectory whose initial condition is independent of the noise
and given by a probability distributionp(ξ2). Then∀t ≥ 0

E
(

‖a(t) − b(t)‖2
)

≤ C

2λ
+ E

(

‖a0 − ξ2‖2
)

e−2λt (III.5)

Remarks
• One can note here that the derivation of corollary 1 is only permitted by our initial choice of

consideringdistinct driving Wiener process for thea- andb-systems (cf. section II-B).
• Corollary 1 provides a robustness result for contracting systems, in the sense that any contracting

system isautomaticallyprotected against noise, as quantified by (III.5). This robustness could be
related to the exponential nature of contraction stability.

D. Combination properties

Stochastic contraction inherits naturally from deterministic contraction [8] its convenient combination
properties. Because contraction is a state-space concept, such properties can be expressed in more general
forms than input-output analogues such as passivity-basedcombinations [29].
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It should be noted that, in the deterministic domain, combination properties have been obtained for
δISS systems [10; 26] (for the definition ofδISS, see section II-B).

Consider two connected systems
{

dx1 = f1(x1,x2, t)dt + σ1(x1, t)dW1

dx2 = f2(x1,x2, t)dt + σ2(x2, t)dW2

where systemi (i = 1, 2) is stochastically contracting with respect toMi = ΘT
i Θi, with rateλi and bound

Ci (here,Mi andΘi are set to be constant matrices for simplicity; the case of time-varying metrics can
be easily adapted).

Assume that these systems are connected bynegative feedback[30], i.e. the Jacobian of their coupling
matrices verifyΘ1J12Θ

−1
2 = −kΘ2J

T
21Θ

−1
1 , with k a positive constant. The Jacobian matrix of the

augmented noise-free system is given then by

J =

(

J1 −kΘ−1
1 Θ2J

T
21Θ

−1
1 Θ2

J21 J2

)

Consider the coordinate transformΘ =

(

Θ1 0

0
√

kΘ2

)

associated with the metricM = ΘTΘ > 0.

After some calculations, one has

(

ΘJΘ−1
)

s
=

(
(

Θ1J1Θ
−1
1

)

s
0

0
(

Θ2J2Θ
−1
2

)

s

)

≤ max(−λ1,−λ2)I uniformly (III.6)

The augmented system is thus stochastically contracting inthe metricM, with ratemin(λ1, λ2) and
boundC1 + kC2.

Similarly, one can show that (withsing(A) denoting the largest singular value ofA)
• Hierarchical combination: If J12 = 0 and sing2(Θ2J21Θ

−1
1 ) ≤ K, then the augmented system is

stochastically contracting in the metricMǫ, with rate 1
2
(λ1+λ2−

√

λ2
1 + λ2

2)) and boundC1+
2C2λ1λ2

K
,

whereǫ =
√

2λ1λ2

K
.

• Small gains: DefineBγ = 1
2

(√
γΘ2J21Θ

−1
1 + 1√

γ

(

Θ1J12Θ
−1
2

)T
)

. If there existsγ > 0 such that

sing2(Bγ) < λ1λ2 then the augmented system is stochastically contracting inthe metricMγ, with
boundC1 + γC2 and rateλ verifying

λ ≥ λ1 + λ2

2
−

√

(

λ1 − λ2

2

)2

+ sing2(Bγ) (III.7)

Taken together, the combination properties presented above allow one to build by recursion stochastically
contracting systems of arbitrary size.

IV. SOME EXAMPLES

A. Effect of measurement noise on contracting observers

Consider a nonlinear dynamical system
ẋ = f(x, t) (IV.1)

If a measurementy = y(x) is available, then it may be possible to choose an output injection matrix
K(t) such that the dynamics

˙̂x = f(x̂, t) + K(t)(ŷ − y) (IV.2)
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is contracting, withŷ = y(x̂). Since the actual statex is a particular solution of (IV.2), any solution̂x
of (IV.2) will then converge towardsx exponentially.

Assume now that the measurements are corrupted by additive “white noise”. In the case oflinear
measurement, the measurement equation becomesy = H(t)x + Σ(t)η(t) whereη(t) is a multidimensional
“white noise” andΣ(t) is the matrix of measurement noise intensities.

The observer equation is now given by the following Itô stochastic differential equation (using the
formal ruledW = ηdt)

dx̂ = (f(x̂, t) + K(t)(H(t)x − H(t)x̂))dt + K(t)Σ(t)dW (IV.3)

Next, remark that the solutionx of system (IV.1) is a also a solution of the noise-free version of system
(IV.3). By corollary 1, one then has, for any solutionx̂ of system (IV.3)

∀t ≥ 0 E
(

‖x̂(t) − x(t)‖2
)

≤ C

2λ
+ ‖x̂0 − x0‖2e−2λt (IV.4)

where

λ = inf
x,t

∣

∣

∣

∣

λmax

(

∂f(x, t)

∂x
− K(t)H(t)

)∣

∣

∣

∣

C = sup
t≥0

tr
(

Σ(t)TK(t)TK(t)Σ(t)
)

Remark The choice of the injection gainK(t) is governed by a trade-off between convergence speed
(λ) and noise sensitivity (C/λ) as quantified by (IV.4). More generally, the explicit computation of the
bound on the expected quadratic estimation error given by (IV.4) may open the possibility ofmeasurement
selectionin a way similar to the linear case. If several possible measurements or sets of measurements can
be performed, one may try at each instant (or at each step, in adiscrete version) to select the most relevant,
i.e., the measurement or set of measurements which will bestcontribute to improving the state estimate.
Similarly to the Kalman filters used in [31] for linear systems, this can be achieved by computing, along
with the state estimate itself, the corresponding bounds onthe expected quadratic estimation error, and
then selecting accordingly the measurement which will minimize it.

B. Synchronization of noisy FitzHugh-Nagumo oscillators

We analyze in this section the synchronization of two noisy FitzHugh-Nagumo oscillators (see [21] for
the references). The interested reader is referred to [32] for a more complete study.

The dynamics of two diffusively-coupled noisy FitzHugh-Nagumo oscillators is given by
{

dvi = (c(vi + wi − 1
3
v3

i + Ii) + k(v0 − vi))dt + σdWi

dwi = −1
c
(vi − a + bwi)dt

where i = 1, 2. Let x = (v1, w1, v2, w2)
T andV = 1√

2

(

1 0 −1 0
0 1 0 −1

)

. The Jacobian matrix of the

projected noise-free system is then given by
(

c − c(v2

1
+v2

2
)

2
− k c

−1/c −b/c

)

Thus, if the coupling strength verifiesk > c then the projected system will be stochastically con-
tracting in the diagonal metricM = diag(1, c) with rate min(k − c, b/c) and boundσ2. Hence, the
average absolute difference between the two membrane potentials |v1 − v2| will be upper-bounded by
σ/
√

min(1, c) min(k − c, b/c) after exponential transients (see Fig. 1 for a numerical simulation).
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Fig. 1. Synchronization of two noisy FitzHugh-Nagumo oscillators. Left plot: membrane potentials of two coupled noisy FN oscillators.
Right plot: absolute difference between the two membrane potentials.
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