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ABSTRACT

The design of the ride-rings, or tyres, of industrial
rotary kilns is studied as a nonlinear programming problem.
The method of monotonicity analysis is employed to obtain
results of sufficient generality and utility to the designer.
A special-purpose algorithm for the location of the global
optimum is presented. A parametric study provides design
charts showing the range of criticallity for the various
design requirements.

. The article represents the type of modeling analysis
and subsequent solution, suitable for design problems which
must be solved many times with parameter changes larger than

those handled with the usual sensitivity analysis.



INTRODUCTION

Rotary kilns are widely used in the processing industries,
such as cement, ore-processing and chemical. The kiln (Fig. 1)
consists of a cylindrical shell slightly inclined from the
horizontal position and supported by ride-rings (often called
also tyres) riding on pairs of rollers. A gear rim and pinion
assembly rotates the entire system. Material enters the kiln
at the upper end and moves towards the lower end, with continuous
mixing and a supply of hot air. The desired chemical reaction
is completed at the lower end and thus the processing is
continuous. The kiln shell has a firebrick lining to protect
the steel outer shell from the high temperatures existing in-
side. The ride-ring is a cylindrical steel tyre connected to
the shell and rotating with it.

Economies of scale in the cement and ore-processing
industries have led to manufacturing of large-diameter units
resulting to loads of several hundred tons carried by the ride-

‘rings. The rings themselves weight several tens of tons. As
units become larger, it is important to review existing practices
and determine rationally the proper selection of design gquantities
so that maximum efficiency and minimum cost may be achieved.

As a contribution towards this goal, the present article examines
the rational design of a key component of the rotary kiln
system, i.e. the ride-ring, or tyre. The approach used is to
formulate a simple mathematical model of the design as a

nonlinear programming problem.
The design, manufacturing and operation of rotary kilns is

a mature subject. However, new analysis and computational tools
are finding increasingly more use, as evidenced by recent liter-
ature primarily of European and Japanese sources [l -11].

Other equipment similar to rotary kilns such as rotary
coolers and drum dryers, is designed under the same principles.
However, the heat load is lpwer and the dimensions are usually

smaller.



The ride-ring is an important component of the kiln
system. Theoretical and experimental investigation of shell
deformations using special instruments ("Shell tester" [1,

2]) shows that the greatest shell deformation occurs in the
vicinity of the ride-rings, so that rigidity of the structure
at those points is an important consideration. Surface con-
tact and bending stresses are also important and influence the
design of the shell and the supporting system. In traditional
design procedures one of these criteria} usually the contact
stress, is selected to be met fully by the design. Thus
material capabilities may not be fully utilized.

The present article poses the ride-ring design as an
optimization problem, the formulation being derived first.
Then the model is analyzed using the principles of monotonicity
analysis [13-19]. This method is chosen because the results

can be used to derive easily engineering insights about the
optimum., Iterative optimization methods, e.g. penalty
functions (SUMT) and sequential quadratic programming (VMCON),
were used and found in agreement with the results presented
here; however, their repeated application is tedious and

the numerical answers not globally conclusive, so no further
consideration is given to these methods here. Numerical
examples and parametric analysis of the optimal solution
follows the optimization analysis.

A computer program is described and design charts are
included. Thus the method presented can be used as a general
design procedure for any ride-ring with customary cross-
sectional shape and a variety of specifications.

The pfesent optimization study of the ride-ring is part
of a larger study of the entire rotary kiln design which

will be reported in a subsequent article.



PROBLEM FORMULATION

The purpose of the present analysis is to provide some
understanding of the appropriate selection of design variables
in the preliminary design stage. The ride-ring design is
modelled as a nonlinear programming (NLP) problem. The
model is kept quite simple, and liberal use of design experience
is included in order to account for design requirements that
require substantial modeling effort. This allows the ident-
ification of global solutions to the optimization problem.

The overall manufacturing cost of the ride-ring can be
considered as an increasing function of the weight, so minimum
weight is chosen as the objective of the NLP problem. The
constraint set includes contact and bending stresses limited
by the fatigue strength of the material, and deformations limited
by possible damage to the shell's brick lining. System require-
ments such as production rate, kiln length and support spacing
essentially determine the size of the inner diameter of the
ring. Therefore, it is the cross-Séction of the ring that
must be specified in the preliminary design, the ring being
viewed as a component of the system. Two configurations of
cross—-section will be examined, as most common: rectangular and
box type. This section describes the formulation of éhe NLP
model. The Nomenclature includes explanation of the symbols used.

Weight and Geometry of Cross-Section

For large ride-rings, a solid rectangular cross-section
(Fig. 2 a ) is used, primarily for easy manufacturing. The

weight of the ring is then

Gr = 27g T br h (1)

where

r, = (Dp+h)/2 (2)

For smaller ride-rings, a box-type cross-section is

used sometimes (Fig. 2 b ), for a lighter but rigid construction.



The meridional symmetry of the cross-section suggests that it.
may be decomposed into three significant parts so that the orig-
inal section can be compacted into an equivalent I section, as
in Fig. 3. Using the equivalent I section simplifies the
analytical expressions of the section properties. Thus the

weight may be expressed as

Gr = ngrcar + O.SgNdz(h—dz—Z.O)(br—a) (3)

where
ar = ah + (b-—a)dl + (br-a)d2 (4)
a = dl + d2 (5)

In (3), the second term represents weight of flanges with

thickness 0.5d, and N is an integer usually close to wdr/60.

The centroid lgcation is given by
c, = lan®+(b-a)a;” + (b_-a)d,(2n-d,)]1/2a_ (6)
c, = h—cl (7)
r, = Dp/z +cy (8)

Since the outer surface is subjected to wear, we should select

da,>d

5”4y it is usually suggested that

d = 0.65d (9)

1 2
and this relationship will be assumed here.
Thus, for the rectangular cross-section, the design
variables are simply h and b,, while for the box-type, d,

and b must be added also.

Stress Constraints

The service life of the ride-ring is usually taken as
20 years and the speed of rgtation is in the range of 0.5 -
3.0 rpm, depending on the working conditions. Thus cyclically
stressed parts are considered under fatigue conditions for a

total 108 cycles [12].



The outer fibers of the ring experience contact Hertz
stresses at the contact areas of the ring and the supporting
two rollers. Considering the case of two cylinders in parellel-

axis contact (Fig. 4a) the contact stress constraint is expressed

as [20]

_ -1 1/2
oy = 1.869[E(0+G ) (1.732b ) 1(a_+p)/a p 1% <o (10)

where

d. = D_ + 2h (11)
r p

and S is the working stress of the material. Experience in

design and maintenance of rings indicates that O is limited
within a narrow range near 400 MPa for medium-carbon structural
steels, in which fatigue and wear are considered together.

Note that the diameter of the roller, Dt’ is selected
through an appropriate ratio r of the outer ring diameter dr to
Dt' Usually r is taken in the range 3.0 - 3.8, while Dt must
be a standard size as 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0,...
(métérs). But with the inner diameter of the ride-ring known,
Dt can be treated as known, too.

The load of the kiln shell is transmitted to the ring
through the base plates welded on the outer surface of the shell
(Fig. 4b). There are about 20-40 base plates (washers) per
ring so that the pressure distribution on the ring can be
considered approximately as a continuous cosine function (Fig.
5a). At the top, there is always some clearance A between ring
and plates, so no pressure is exerted on the ring within the
initial angle o, Thus, the pressure on the inner ring fibers

is given by g = q, (cos a, - cos ¢), where

dg = (Q+Gr)/rc(ﬂ—a0+0.55in2ao) N/cm (12)

The calculation of bending moment distribution is a
statically indeterminate prgblem. Detailed analysis, using
e.g. Castigliano's Theorem, shows that the maximum moment
occurs in the contact areas (Fig. 5b) and depend on the initial

angle a, as shown below:



TABLE l: Maximum Bending Moment Versus Initial Angle

Og 0° 30° 45° 60° 90°

. / l
Mooy’ (QFG )T 0.0861 0.0847 0.0819 0.0773 0.0629

For the worst case, at a = 0 and no clearance between base
plates and ring (which never occurs in practice) we take the con-

servative estimate
Moax = 0.0861 (0+G )r (13)
Now the bending stress constraint is expressed as

OB = lOMmax/W = OBW (14)

where

w = brhz/c (15)

for rectangular section, while for box section where cl>c2 as a

consequence of dzédl, we»have
wo o= i/c; (16)
with
i = [bci—(b-a)hi+brc§—(br-a)hg]/3 (17)
.hl = c=4, , h, = c,4, (18,19)

Temperature Effects

The working temperature inside the kiln is in the range of
1000-1500 °C, the shell temperature is around 300°C and an
average temperature of the ride-ring is about 100°C., Thermal
stresses may -arise due to the following reasons: _

(i) Temperature gradients between inner and outer fibers.
A temperature difference of 30°C or higher may be expected
with resulting tensile stresses uniformly distributed around the
circumference. This assumes no temperature variations on the
shell itself due to uneven hot material distribution inside.

The allowable stresses chosen in (10) and (14) take this effect

into account.



(ii) Too small mounting clearances between shell and ring.
Uniform tensile stresses result again. This is generally
avoided by proper design.

(iii) Excessive heat transfer from the ring to the rollers.
This would result in fluctuating normal stresses essentially in-
phase with the contact stresses [1,21,22]. Detailed analysis
is not considered necessary for preliminary design and this
effect is included in the value of O uw in (10).

Deformation Constraints

An important design consideration is the radial deformation
of the ring. The stiffness of the iing is considerably larger
than that of the relatively thin shell. Near the support area,
it can be assumed that, the kiln shell deformation is nearly
the same as that of the ring. During rotation, deformations
will follow a pattern similar to the bending stress distribution
curve in Fig. 5b, Thus the firebrick wall inside the shell will
be damaged, with eventual collapse ahd interruption of the kiln
operation.

A measure of this deformation is given by the ellipticity

defined as the difference between the largest and smallest
diameter after loading. This ellipticity must be limiéed to
appropriate values. Deflections are derived in a similar
manner as the stresses. Due to symmetry, only top, bottom, and
horizontal points need be analyzed. The resulting deformation

constraint may be expressed as

3 \
e = O.8l4(Q+Gr)rC/E1r < e (20)

In a final note, it should be mentioned that finite element
analysis has been used to prove that the above stress and
deformation analytical expressions are fundamentally correct
and their simplicity makes them appropriate for design purposes.

The model is completed by including dimensional limits for

the box-type section:

(21,22)

0.8b_ < b < 1.1b , 0.28h < d
- - r - 2

-



Clearly, h < Dp/2 since Dp is large. 1In addition, limitations

such as 1.65d2 < h, h-d2-2.03 0, br-az 0, b-a> 0, and so on,
could be included. However, interesting designs should not have
these constraints active, as design experience indeed shows, and

therefore such limitations are excluded from the model.



OPTIMIZATION ANALYSIS

This section describes the solution of two nonlinear
programming problems, one for rectangular and another for box
type cross-sections. All intermediate variables and most equality
constraints are eliminated. Thus the first problem results to
three inequality constraints and two design variables, while
the second has 10 constraints and seven variables. Lack of
evident convexity suggests caution in the use of numerical
iterative methods, while the nonlinearities present discourage
classical analytical methods. Therefore, the problems are

treated by monotonicity analysis first, in order to identify the

active (i.e. critical) constraints and reduce the size of the
problem [13-19] to the point where a global solution can be
identified. The method is adequately described in the

references and is applied here directly.

Rectangular Solid Cross-Section

Assembling the results of the previous section we formulate

the following nonlinear programming statement

Problem 1

minimize
Gr = ﬂgbrh(Dp+h) (23)
subject to
(Q+mg(D_+h)b_h)E 1/2
Rl: 1.869 P r (;_ + 1 ) <1
OHW 1.732b D D_+2h
r t P
2
R2: 2.583(Q+wg(Dp+h)brh)(Dp+h)/brh o S 1

3

3
R,: l.221(Q+wg(Dp+h)brh)(Dp+h) /Ebrh ey < 1

3

The design variables are br' h and the remaining guantities
are the design parameters, i.e. constants for the model and
o R3 represent contact
stress, bending stress and deformation limits respectively.

inpﬁts for the problem. Constraints Rl' R

We start the analysis by observing that constraint Rl

alone cannot be active, because the objective requires lower
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bounds on both br and h, while Rl
but an upper bound on h. Therefore, the problem is bounded only

provides a lower bound on br"

if at least one of R2, R3 is also active. Thus, without any

assumption on activity for R, we should examine under what

1
conditions R2 or R3 can be active. To this end, we define
A 2,-1
u = (Q+ﬂg(Dp+h)brh)(Dp+h)(brh ) (24)
so that constraints R2, R3 can be rewritten as
Ry: u < (1/2.583)0,, = u, (25)
-2 _
R3. u < (l/l.221)Ehew(Dp+h) = uy (26)
Now we observe that if u, # uy at the optimum, then either R2
or R, will be redundant and so non-critical. Letting u, = u,
and rearranging, we get
2 2
h"-2(A,-D_)h+D = 0 (27
1p P )
where
A - -1
Al = 1.0577 EewcrBW (28)
The solution of the gnédratic in h eguation (27) is
_ _ _ 2 . 2,1/2
hl’h_z = (a Dp). t (A, Dp) D, ) (29)
with hl,h2 being the smaller, larger respectively roots. Since

for reasonable choices of parameters, Al >> DP' both hl and h2
will be real, positive and one of them much larger than Dp.
Thus we conclude that the following possibilities may occur:
(A) For h,

non-critical,

<h<h2 (u2<u3), constraint R2 is critical and R3 is

(B) For 0<hsh, (u,>u,), constraint R, is critical and R, is

redundant (in the egual case, R2 and R3 are equivalent)
(C) For hihz, no possible solution exists and this case can be
omitted.

- The above result is in agreement with an intuitive under-
standing of the trade-offs between bending and deformation

limitations: 1if e, is (relatively) large and © is small,

BW
then bending stress limitations are more important than defor-

mation limitations and the value of Al, eq. (28), is large while
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hl is small; the optimum will result in case A with bending
stress constraint R2 being critical. Similarly for the case B.
Further analysis in both cases A and B shows that for a
bounded problem, constraint Rl must be also active. Thus
the global optimum is found by solving the systems of equations
(Rl = 1, R2 = 1) and (Rl = 1, R3 = 1) for h and br and then
comparing the corresponding values of the objective Gr' Usually
only one of the cases is feasible. In summary, the solutions

are obtained as follows:
Case A: Solve the cubic equation for hA:

3 2 2
2cAhA + (CA(Dt+Dp)-2)hA-3DphA—Dp = 0 (36)

where
C. = 0.7807ED, 1o ~%c - (37)
A . £ CHW CBW

and admissible values in the range hl<hA<h2.

Case B: Solve the guartic eguation for hB:

4 3 2. 2 3 4
2(CB-1)hB + (CB(Dt+Dp)-7Dp)hB 9DphB—5DphB Dp = 0 (38)
where
: 2. -1 -2
= o

and admissible values 'in the range O<hBihl'

The identification of active constraint Rl in both cases allows

the use of a single expression for the calculation of the optimal

br’ ie. 2
: br _ Q—l 4.9596 W
-1
+
E(Dt + (Dp 2h)

-1 " wgh(Dp+h) (40)
)

where h is equal to hA or hB for case A or B respectively.

It should be noted that the above analysis is an example

of regional monotonicity [15].

Numerical Example: Given parametric values

D, = 264.4cm, D = 100cm, @ = B883KY, g = 0.0765N/cm>

E = 19.6(10%)MPa, e. = 0.5ecm, O = 392.4MPa,
W : HW
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O -
'GBW 49MPa (41)

we calculate Al = 2115, hl = 18.98cm, h2 = 3683cm. For case A,
solving (36) we get hA = 21.0cm in the acceptable range. From
(40) and (23) we get br = 31.65cm and’Gr = 45,6 kN. For case B,
solving (39) we get hB = 20.3cm which is outside the interval
(o,hl], so this case is discarded. Thus, the global optimum is

(br*, h*) = (31.7, 21.0).

Box Type Cross-Section

The nonlinear programming statement for this problem is
Problem 2

minimize Gr (42)

subject to

-1
Rl = {ZNg(O.5Dp+Cl)ar+0.5gNd2(h—d2-~2)(br-l.65d2)}Gr = 1
_ ‘ -1 _
R, = (1.65h+0.65b+br-2.7225d2)d2ar = 1
3 2 2 -1
R3 = (1.65h +O.4225bd2+2hbr-l.3d2h-brd2—0.047ld2)d2(2clar) = 1
_ -1 -1,,-1_ -2
R4 = 2.017E(Q+Gr)(Dt +(Dp+2h) lbr OHW < 1
R. = 0.861(0+G ) (0.5D +c.)c.i o "t < 1
5 : r TTp 177 1°x BW -
R = Jdbc3-(b-1.654.) (c.-0.65d.) +b_(h-c.) = (b_-1.653.) (h-c.-d.)"
6 . 1 : 2 1 > 2 r 1 r ~° 2 1 72
S
(3lr) = 1
R = 0.814(0+G ) (0.5D +C )3(Ee i )_l < 1
7 : r TTp 1 w'r -
R. = 0.8b b T < 1
8 r —
-1
R = 0.909 bb < 1
9 r C -
R. = 0.28 hd %Y < 1
10 : 2 _

The design variables are b,br,d the last four

2Ih; Grlarlcllirl
considered as intermediate variables defined by the equality

constraints Rl’RZ’R3 and R6 respectively. The remaining quantities

are considered constant. Constraints R4, R5, R7 express contact
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stress, bending stress and deformation limitations respectively,
while Ror Ry and Ry, are the dimensional limits (21) and (22).
This latter set of constraints express practical limitations
resulting from design experience and need not be satisfied in

a strict sense. In the optimization analysis they can be

considered non-critical a priori and an optimum design should

be sought initially under the physical limitations of R4, R, and R

- 5
The optimum solution thus obtained, if it exists, should be

checked against the practical limitations. If any of the
practical constraints is violated, the designer may choose to
include it in the model at this point and reexamine the location
of the new optimum. In this case, the new optimum will be in
fact limited by the model itself and further examination of the
model may be necessary in order to elucidate physical or
economic limitations not previously included.

To simplify matters, we observe that the weight Gr is
usually 5-8% of the design load Q, so the term Q+Gr appearing
and R, is substituted by the term 1.07Q without

4'Rs 7
significant loss of accuracy. Furthermore, since usually

in R

h << Dp we also have c
o = 0.5D+C; .
for the purpose-of monotonicity analysis.

l—h/2 << h, so we can approximately set

+ +
zO.S(Dp+h) = rc(h.) and take c; = ¢;(h’), but only

With the previous observations taken into account, we
arrive at the following expression of the problem in terms of

functional monotonicities,

minimize

subject to

Rglbpoh )<L (43)

) <1

where the equality constraints were used to eliminate the

variables Gr' a,r ¢y and ir’ and the practical constraints



14

are (temporarily) ignored.

In a similar manner as in Problem 1, we can find two

cases:
(A) For Cl<cl<C2, R5 is critical and R7 non-critical
(b) For O<cl§Cl, R7_is critical and‘R5 non-critical.
where
- _ _ 2 2,1/2
Cys C, = 0.5 {(Al DP) + (A Dp) Dp) } (44)

with Cl, C2 being the smaller, larger root respectively.
From (43) follows that one of these two constraints must be
active in order to bound the variable b. Using implicit
elimination of variables and applying the implicit function
theorem for monotone functions [17] it can be shown that, as in
Problem 1, in both cases constraint R4 must be active. Thus,
both cases are reduced to a problem with two degrees of freedom,
i.e. four variables and two active constraints. This problem
is quite complicated so it must be solved numerically with an
appropriate search method.

Based on the above analysis, a computer program is written
for the box type problem. The flow chart is given in Fig. 6.
Cases A and B are represented by I = 1, I = 2 respectively.
Decision variables are h, d2 and state variables are b, br'
thus chosen for convenience of solution. The variables h and
d2 take discrete values at 5mm intervals, so a general purpose
NLP code is not appropriate. Instead, since the search range

for h and d, is guite narrow, an exhaustive search with very

2
limited number of steps is utilized. This search is so

inexpensive that no additional effort is justified for
using a more elaborate method, such as a Fibonacci search.
The practical constraints are included as well. The pro-
gram was run for several cases and converged rapidly. Some
results will be discussed in the next section. It should
be noted that the original problem was also solved using
iterative algorithms that required significantly more
computational effort, and in some cases no convergence was

achieved.
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DESIGN RESULTS

From the preceding analysis, it is evident that the procedure
can be applied for any set of specified parameters. It is
interesting to investigate in what ranges of parameters we
may have criticallity of bending versus deformation. As shown
earlier, the contact stress constraint is always critical which,
in fact, justifies formally the traditional design procedure.
Moreover, the value of the contact working stress will have
an inverse effect on the weight. Different combinations of
the bending working stress and working deformation will lead
to either of cases A and B. This event is represented by two
regions in Figures 7 and 8. These figures correspond to solid
and box type cross sections and show the location of the optimum
design influenced by changes in the bending and deformation
limits.

The two regions in the above figures emphasize the trade-
offs between the bending stress and deformation limitations.

Changes in ¢ would move the dividihg line only slightly

HW
(Fig. 7). 1In each region, the weight is affected by only

one of S and ey For example, if emphasis is put on a small

deformation ey in order to keep good stability of the firebrick
walls, any attempt for improvement in material quality'for
bending locad carrying capacity is unnecessary, yielding no
further improvement in weight reduction. In contrast, for
other applications without firebrick lining, such as coolers

and dryers, a relatively large e is allowed so that improvements

W
in bending load carrying capacity will reduce the weight of the

ring.
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CONCLUSION

A nonlinear programming formulation with minimum weight
objective was used for the ride-ring design problem. The
method of monotonicity analysis was used successfully to
investigate the criticallity of constraints and location of
the optimum.

The contact stress constraint was found always active
confirming the "full contact stress" - design procedures in
usé. Bending stress and deformation constraints may be
active, depending on the application and the range of their
relative importance was established. However, only one of
them need be used for weight reduction.

The location of the optimum is obtained globally with
a special-purpose algorithm that does not employ a descent
scheme but an exhaustive search in a very narrow range of
standard values of the design variables. Thus, efficiency
and reliability are guaranteed, which may not be achieved with

a general-purpose iterative method.

The design ihvestigation is currently being pursued
further by studying the design of the shell, rollers and
drive in addition to the ride-ring and formulating a system
optimization model that includes more components of thé
kiln.
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NOM‘ENCLATURE

a = total thickness of webs, cm

a,. = cross~-sectional area of ride ring, cm

b = total width of inner rims, cm -
br = width of outer rim, cm

cl = distance between centroid and inner surface, cm
c2 = distance between centroid and outer surface, cm
dl = thickness of inner rim, cm

d2 = thickness of outer rim, cm
D = inner diameter of ride ring, cm

di = outer diameter of ride ring, cm

Dt = diameter of suuport roller, cm

E = modulus of elasticity, kPa

e = ellipticity of ride ring after deformation, cm
ey = allowable ellipticity of ride ring,3cm

g = specific gravity of ride ring, N/cm

Gr = weight of ride ring, N

h = cross-sectionl height of ride ring, cm

hl = difference of cl—dl, cm

h2 = difference of c2—d2, cm

ir = moment of inertia of cross-sectional area of ri

Miox = maximum cross-sectional bending moment of ride

N = number of ribs
Q = load transmitted by ride ring, N

r = diameter ratio of dr to Dt

r = rgdius of centroid circle of cross-sectional area of ride
ring, cm

W = section modulus of ride-ring, cm3
Op = bending stress of ride ring, kPa
Ogy = working bending stress, kPa
0y = contact stress between roller and ride ring, kPa

o = working contact stress, kPa
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