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Absfracf- Some extensions that allow new estimating and bounding 
techniques for certain sequences of random variables controlled by 
a large deviation principle are given. These results can be thought 
of as generalizations and extensions of the Chernoff Bound used in 
communications theory. 
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I. INTRODUCTION 

The problem of calculating the probability of a small probability 
event is a common one in signal detection. In hypothesis testing 
problems with i.i.d. or Markov alternatives, the problem of calculating 
the type I and I1 errors becomes the probability that an average 
of functionals of the observations exceeds a fixed threshold. For 
large numbers of observations, this probability will typically be 
small. Direct calculation of this test statistic's probability law is 
usually hopelessly complex thereby engendering the need of various 
bounding/estimating techniques for such situations. 

C h e r n o f s  Bound is the most frequently resorted to communica- 
tions theory technique for these sorts of situations. Chemoff's original 
paper [3] was concemed with the asymptotic discemibility of two 
i.i.d. sequences of random variables. He showed that the logarithmic 
rate of probability of error to zero was given by the now-called 
Chemoff entropy: 

1 
lim - log P(error given first n observations) = inf, log (If,), 

where H ( a )  = S ( d p / d w ) " ( d q / d ~ ~ ) ' - " d w ,  where p ,  q are the 
distributions of one element of the sequence under the two hypotheses 
and w is any measure dominating both of them. This result is 
considered to be one of the first large deviation theory theorems. 
As a consequence of the proof (in fact by application of Markov's 
inequality), one can show 

n-m n 

P(error given first n observations) 5 (inf, H ( a ) ) " .  

It is this last result that is typically known as Chemoff's Bound. 
However, this result is known to be somewhat pessimistic. In fact, it 
is known in the i.i.d. setting (under some mild technical conditions 
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[ l]), that the following limit holds: 

lim P(error given first R observations)fi/ 
n-CO 

(inf, H(a) ) "  = c > 0. 

Chernoff's result, with hindsight, can rightly be regarded as a 
particular application to the case of likelihood ratio tests of a large 
deviations theorem (due to CramCr). CramCr's theorem dealt with 
tail probabilities of sums of i.i.d. random variables. (The likelihood 
ratio in the i.i.d. setting can be expressed as such a sum and hence 
establish Chemoff's result.) CramCr's work was generalized to the 
Markov case by Miller [lo] and others. 

More recently a very general large deviation theorem was proved 
for sequences of random variables by considering only properties of 
the moment generating function sequence [5], [8]. In this correspon- 
dence, we consider the Chemoff/Cramtr Bound and its "square root 
n" refinements in the setting of these new theorems. In keeping with 
these new methodologies, all our technical conditions are specified 
in terms of the moment generating (or characteristic) functions of the 
sequence of interest. We present some novel examples that illustrate 
the use of these new techniques. 

11. PRELIMINARIES 

Lemma 1: Suppose we have a sequence of probability measures 
pn converging weakly to a probability measure p and a sequence 
of real valued functions f n  converging uniformly to f ,  a bounded 
continuous function. Then, 

/ f n d p n  + J f d p  ' 

Proof: By the uniform convergence and the finiteness of the 
probability measures we have that s I fn(x)  - f ( x ) l d p n ( z )  + 0. 
But this implies that 1s f n ( x ) d p n ( x )  - f ( x ) d p n ( x ) \  -+ 0. Since 
f (x) is bounded and continuous and p n  + p weakly, we have by 
the definition of weak convergence (see e.g., [2]) s f ( x ) d p n ( z )  + 

Let Yn be a sequence of W-valued random variables and define 

Al)  The limit limn-m 5 logMn(0) = c(0)  for all 0 E W 
(allowing +m as the limit in the case of divergence to +03 

or if M n ( 0 )  = +m for all large n), 

A2) C = (6' : c(0)  < 03)' # 8 (where E" denotes the interior 
of a set E).  

It is easy to see that c (0 )  is a convex function because it is the limit 
of convex functions. It follows that the derivative c'(0) exists for all 
but at most countably many points in C.  The following is a version 
of the Gartner-Ellis theorem.' 

Theorem 1 (Gartner-Ellis): Assume Al)-A2) and that there exists 

s f (x)dcL. 0 

Mn(0) = E{exp (OY,)}. Assume the following. 

a 0, E C n (0, m) such that ~ ' ( 8 , )  exists and c'(0,)  = a. Then, 

In the i.i.d. setting, the theorem and its conditions are somewhat 
less mysterious. Let { X , } ~ u = ,  be a collection of i.i.d. random variables 
with moment generating function M ( 0 ) .  Define Yn = E:=, X,. The 
AIn(@) = M ( 0 ) " ,  or c (0 )  = log(M(0)) which is, in fact, analytic 
on the open domain C. 

'This particular version follows from the remark about display (31) in [5]. 
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By convexity, notice that the assumption that 8, > 0 is equivalent 
to c’(0) < a.  In the i.i.d. sum case, this is just E { X , }  = c’(0) < a 
which by the law of large numbers is necessary for P (  5 2 a )  -+ 0. 

We will hereafter consider only the case a = 0, which by the 
transformation YL - a n  = Y, is no loss of generality and somewhat 
simplifies the notation in the following proofs. 

111. DEVELOPMENT 
Let Y,, M,(O) be as previously stated. We will always assume 

conditions Al)-A2) and c’(0) < 0. We further assume that c(&)  = 0 
for some BO > 0, and that ~ “ ( 8 , )  = U’ > 0. We are interested in 
precise estimates of the probability P(Yn/n  2 0). Let F,(z) denote 
the distribution of Y,. Define 

exp (8z)dFn(z) - exp(8s)dFn(z)  d F y ’ ( s )  = - 
Sexp (@Y)dFn(Y) M n ( 8 )  

as the “twisted” or “tilted” distribution. Let Yi’) be a random variable 
having FL” as its probability distribution. Let H,(a)  denote the 
distribution function of Y,‘eo’/f iu.  

Then, 
3c 

P(Yn / n  2 0 )  = / dF, ( T I  

0 
m 

= M , ( B ~ )  /erp(-Boz)dFL’o)(z) 
0 

= M , ( B o )  exp(-f iBozu)dH,(z) .  (1) 1 
We now need to consider the asymptotics of the integral 

m 

/ e x p ( - f i a z ) d H n ( z )  (2 )  

fiaJexp(-J;;..)rH..(z) - H,(O)]dz.  (3) 

0 

(for a > 0) which may be transformed by integration by parts to 

0 

Remark 1: In (2), we may upper bound exp ( - f i a z )  by 1 to 
find that an upper bound to .the integral is 1. This is the analog to 
the Chernoff Bound for i.i.d. sums. 
Let us define the sequence of complex functions 

We may now state one of our principal lemmas. 
Lemma 2: Suppose 

Then, 

“1 

(4) 

Proof: We note that $,(U) is the characteristic function of 
Y i e o ) / f i u .  The assumed L1 convergence implies that +,(U) is 
L1 (for large enough n)  and hence that Y i e ” / f i a  has a density 

function h,(z) ([4, p. 1551). The Fourier inversion formula then 
implies 

The L1 convergence of &(.J) to exp(-u?’/2) immediately implies 
uniform convergence of k,(s) to e x p ( - r 2 / 2 ) / G .  

We now define the sequence of probability measures p n ( d s )  = 
f i a e x p ( - f i a r ) d r .  It is easy to check that p, is a probability 
measure for every n and that the sequence converges weakly to 
p ( d z )  = S ( s ) d r ,  point mass at the origin. Therefore, in the integral, 
we may replace dH,,(;c) by h,(s)dr and by invoking Lemma 1, we 

U have completed the proof of the lemma. 

Theorem 2: If &(A) 5 exp(-d2/2) then, 

Proof: The theorem follows immediately from (1) and the 
previous lemma. (Note that with the stated assumptions &U # O.)O 

Corollary 1: Assume &(d) + exp(-d2/2) where the conver- 
gence is pointwise. Suppose 0, (d) is L1 (for all n sufficiently large) 
or alternatively suppose Y ~ ’ ” / f i  U has bounded density functions 
h,(.) (for all n sufficiently large). Then, 

Proof: For the first alternative, note that characteristic functions 
are bounded. Pointwise convergence and the dominated convergence 
theorem then imply the Lcl convergence needed as a condition of 
Theorem 2. 

For the second alternative, note that if a probability density h, is 
0 

Remark 2: It is known from the proof of the Gartner-Ellis theorem 
that with the stated assumptions, Yn(’O)/n + 0, almost surely. 
This fact and the fact that M,(O) M .(e)- means that Y,(’“)/n 
is “behaving” as if it were the sample average of some random 
variables converging to a mean value. Hence the idea that by scaling 
with l / f i  instead of l / n ,  we may be able to have central limit 
theorem type behavior. The proof of Lemma 2 hinges on the fact 
that Y,(’O) / & U converges in distribution to a standard normal. 

Remark 3: As a consequence of the hypothesis of L I  convergence, 
we rule out “lattice type” random variables. From previous results 
for the i.i.d. [ l ]  and Markov [lo] cases, we know that these must be 
treated separately and have (in general) a limit dependent upon the 
lattice spacing. We consider this case in more detail in the following 
theorem. 

Remark 4: It may be suspected that L1 convergence of the charac- 
teristic functions is a rather stringent condition. Perhaps so, but some 
further assumption on the moment generating sequence is required 
other than the two conditions used to invoke the Gartner-Ellis 
theorem. For example, suppose Y, = X , ,  where the { X , }  
are independent Gaussian random variables with variance one. Sup- 
pose that E { X , }  = m,, where the {m,}  sequence is chosen so 
that x:=Iml/n + 0 and E:=, m , / f i  -+ m. It is easy to 
check that lim ,-=l/n log M,  (8) = c(8)  = 0 2 / 2 ,  which satisfies 
Al)-A2) and the other conditions for the Gartner-Ellis theorem 
hold. However, any fixed exponential shift merely corresponds to a 
fixed mean shift in this Gaussian setting. Hence, since m,/& + 

ca,Yy,(*O)/fiu does not converge in distribution for any B O .  

bounded, then its characteristic function Q ,  is L1. 
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We now consider the lattice random variable case. Suppose the 
{Y,} have support on the set {b + j d ;  j E , d  E ( O , c o ) , O <  b <  d } .  
Let d be the largest number with the property. Then d is called the 
span or lattice spacing. 

Lemma 3: Suppose 

Then, for a! > 0, 

6 Texp( -&az)dH, (z )  + 
d exp(- $) 

f i c ( 1 -  exp(- $)) ' 
0- 

Proof: Note that the {Yie)}  have support on the same lattice 
as the {Y,}. Thus, & ( U )  is periodic with fundamental period 
27 ra f i ld .  Now, let us consider the expression in (3) multiplied 
by fi: 

no1 T e x p ( - & a z )  [ H , ( z )  - H , ( O - ) ] d z  
0- 

[exp(- [kd + b]) - exp(- s [ ( k  + 1)d + b])]. 

We then note that 

j d + b  d ( k  + 1) 

J = O  

The uniform convergence implies that we may interchange limit with 
sum in the following expression: 

n-m lim n a / e x p ( - f i a z )  [ H , ( z )  - H n ( O - ) ] d z  

oc1 

0- 

x [exp(- [kd + b]) - exp(- [ ( k  + l ) d  + b])] 

= e x p ( - $ ) x  ~ d(k + 1) 
k=O U f i  

a! 
x [exp( - 7 M )  - exp( - ( k  + 1)d)l 

- d exp( - $-) 
- 

J z ; ; u ( l -  exp(- $)) (5) 

Proof: The corollary follows immediately from (1) and the 
preceding lemma. 0 

Remark 5: One can deduce from the above derivation that (for 
b = 0) 

Define t n ( z )  = P ( Y L o o ) / ( f i c )  = z). Then, from properties of 
characteristic functions (see e.g., [6, p. Sll]), 

Let n(.) denote the density function of a zero-mean, unit variance 
Gaussian random variable. Hence, 

The assumed C1 convergence then implies 

uniformly in I. 

Remark 6: Following an argument similar to that of ([6, p. 518]), 
we can show that the previous C1 convergence holds for sums of i.i.d. 
lattice type random variables. In this setting, YJeo) appears as a sum 
of zero-mean, unit variance, i.i.d. lattice type random variables. Let 
4(.) be the characteristic function of one of the summands. Then, 

It is easy to verify that #n ( 5 ) + exp(-w2/2). Consider the 
integral, 

We split the integration over three regions, (wI 5 a,  a 5 Iwl 5 6 6 ,  
and 6 f i  5 ( w I  5 f i7r /d .  The integral over the first region goes 
to zero by the convergence of q5"(w) and the dominated convergence 
theorem. Because of (6), it is possible to choose 6 > 0 so that 
4(w) 5 exp(-w2/4) for IwI < 6, which implies that the integrand 
over the second region can be made negligible by making a large. In 
the third region, sup{~$(w/fi) : 6 6  5 IwI 5 r f i / d }  = R < 1. 
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The contribution of the third integral is then less than 

One should be cautioned that in the i.i.d. lattice variable case, our 
result holds only for b = 0. The general lattice case has an n-varying 
coefficient ([l]) or ([7, p. 1921). 

A.  Examples 

1) Sum of Squares from a Gaussian Random Process: Let { N , }  
be a wide sense stationary Gaussian random process with continuous 
power spectrum f ( w ) , O  5 w 5 27r. We suppose f(w) 2 6 > 0 
for some 6 E R+. We also require as a technical condition that 
l i m T - l / ~ ~ ~ ~ ~ ~  s:* log(1 - y f ( w ) )  dw = 03. We are interested in 
the asymptotic of the "sum of squares" of this process, i.e., 

& ( U )  is L I  for n > 2 certainly. The pointwise convergence, Remark 
4, and Theorem 2 imply the following limit: 

\ 

2) Random Sums of i.i.d. Random Variables: Consider a random 

N A  

sum 

Yx = Ext, 
1=1 

where { X , }  are i.i.d. mean m < 0 random variables with moment 
generating function Mx(.) .  Take 0 < p < 1, X a positive integer and 
Nx to be a "shifted" geometric random variable with P(Nx = n )  = 
(1 - p)p"- ' (n  2 A )  and independent of the {Xt}. The characteristic 
function of Yx is 

(1 - p ) M x ( i w ) x .  
1 - Mx( iw)p  . Mx(iw) = 

We then obtain (for values of 8 such that M x ( 8 )  < l /p) ,  

1 
c (8 )  = lim - log(Mx(8)) = M x ( B ) ,  

A - 0 0  X 

and c(8)  = m, otherwise. Hence, c ' (80)  = Mf,(80) = 0 (as long as 
Mx(B0) < l/p) defines Bo and ~ " ( 8 ~ )  = Mg(80)  = o2 defines o. 
The characteristic function of interest is 

where we suppose 7 > E { N : ) .  Define yn = 
Then, 

(N:  - 7). 

MA ( e + 80) 

M x ( 8 o )  

M,(8) = E{exp(8Yn)} 

d x ( w )  = 

- - 
where {Xi" ' }  are the eigenvalues of the covariance matrix of 
(LV',N~,...,N,)~. Therefore, for 8 < l/(211fllm), 

1 
limn-- - log M,(8) = A - m  

By the arguments given in Remark 6, one can easily verify that 
Tlog(1 - 28f(w))dw = ~ ( 8 )  if M x (  1 + &)/(l - M x (  7 + 8 , ) ~ )  is L 1 ,  then the conditions -07 - 
n of Theorem 2\ hold. If XI is a lattice type random variable with span 4ir 

and c(8)  = cc for 8 outside this range. The convergence follows by 
the Toeplitz distribution theorem [9]. The technical condition implies 
that c(8)  -+ cc as 8 -+ l / ( 2 ~ ~ f ~ ~ 0 0 ) .  By convexity, it is simple to 
verify that a solution to the equation ~ ' ( 8 0 )  = 0 exists or 

2n 

(If f ( w )  = 1, then y = 1/(1 -280)  or 80 = (1 - l /y) /2 . )  
However, in general, this is a transcendental equation and such closed 
form solutions will not always be available. With some effort, we 
can check 

+ exp(- 7) c y e o ) w 2  
n-00 

where 

d, then the conditions of Theorem 3 automatically hold. 
3) Conditionally Independent Sums: We now give an example 

where P(Y, /n  > 0) N O ( T L - ~ / ' )  exp ( c ( & ) n ) ,  instead of the usual 
situation where the leading coefficient if O(n-' / ' ) .  

Let !I! be a continuous random variable with probability density 
function p q ( . )  on [0,1]. Take Y, = E:=, X ,  where the sequence 
{ X , }  is a conditionally i.i.d. given {@ = $}. Let M x ( 8 / $ )  = 
E[exp (8Xt)l@ = $1 denote the conditional moment generating func- 
tion of the summands. Then, 

Mn(8) = ] MX(@l$)"P*($) d 4 .  
0 

For a fixed 8, the previous integral behaves geometrically like 
M X  (@l$~)]". The conditions next ensure that the dominant 

value of $ is 4 = 0 for 8 2 0, and it will follow that c(8)  = 
log ( M x ( 8 ) ) .  We make the following assumptions: 

a) p q  (.) is bounded and 1imG-o p* (4) = p q  (0) > 0. 
b) There is a unique Bo E Cn (0, cc) such that ~ ' ( 8 , )  = 0 (where 

c(0)  = log(MX(@/O)) for 8 2 0 and C = ( 8  : c(0)  < 03)~). 

c) For each 8 E C, M X  (iv + 80 I$) is continuously jointly differ- 
entiable in v and $ up to order 3 and the third order derivative 
in v is uniformly bounded. 

d) For each 8 E C f l  (0 ,  CO), there exists a constant T(8) > 0 
such that 5 1 - 7 ( 8 ) $  for all $ E [0,1]. 
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in CI uniformly over $ E [0,1] (omit the indicator function 
in the nonlattice case). 

Now. consider 

Define 

and note that T ( @ )  2 F ( 8 )  > 0 by assumption d). For fixed C 2 0, 
and n 2 C, we have 

CI. We have 

From a previous argument, we note that the integral in the first 
term of the last expression converges to p ~ ( 0 ) / ~ ( 8 ~ ) .  It is now 
sufficient to show that the second term vanishes in C1. Using 
(Mx (6'01 &)/Mx(BolO))" 5 exp(-T(&)C), we have 

Using Fry = s ~ p ~ ~ [ ~ , ~ ~ p ~ ( $ )  and assumption d), we have the 
integrable dominating function 

Thus, by the dominated convergence theorem, 

and hence, Mn(8) N e Mx(8lO)" for 8 E C n (0, co). Clearly 
now, e ( @ )  = log(Mx(810)) for 8 2 0 as claimed. So, if we can 
verify the C1 convergence condition of Theorem 2 we will have 

for the lattice case. 

We have 
Now, consider what is needed for the C1 convergence condition. 

We have just shown that the denominator in the last expression con- 
verges to p ~ ( O ) / r ( @ ~ ) .  Hence, we need to show that the numerator 

nMn ( + + e o ) / ~ x ( ~ o l ~ ) n  + ( p v ( ~ ) / r ( ~ o ) )  exp(-w2/2) in 

Finally, we use the triangle inequality to write 

By assumption e), the first term vanishes in 131 uniformly in 6. 
(Evidently, the uniform convergence assumption can be weakened 
due to the exp(-T(@o)C) weighting factor.) Using assumption c), we 
can show that lp($)I 5 lil$ and I.'($) - u21 5 h'2$ for some 
constants K l ,  l i 2  < 03, and from this it follows that the integral of 
the second absolute difference against exp( -?(8o)C) also vanishes 
in C1. 

We remark that an interesting feature of this example is that 
c(8)  is actually not differentiable at 6 = 0. One finds that 
e ( @ )  = log(MX(@/l)) for 8 5 0,c-(0) = the left derivative = 
E[X,I@ = 11 and ~ ' ( 0 )  = the right derivative = EIXtl@ = 01 < 0. 

We also point out that, while some of our assumptions might be 
weakened, must have a continuous component. If the distribution of 
@ has a discrete probability mass at $ = 0, then P((Yn/n  2 0) N 

P((Yn/n  2 O I @  = o)P(* = 0) - o(n- ' /2 ) )exp(c(eo)n)  so we 
lose the O ( ~ Z - ~ / ' )  behavior. 

The case that .(eo) = 0 could also be analyzed using the 
second-order Taylor series of MX (8 1 ) . The conclusion is that 
Mn(8)  = O(n-'/')exp(c(O)n), and hence, P((YnIn 2 0) - 
O(n- ' )  exp(c(8o)n). 
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TABLE I 

PO b n P(Y, /n  2 0) Equation (9) exP(c(eo)n) 

0.1 0.1 5 
25 
50 

0.3 0.2 25 
50 
100 

0.01 0.005 4 
8 
16 

2.86 x lo-’ 1.41 x lo-’ 
1.26 x 10-7 4.59 x 10-8 
4.33 x 10-14 4.62 x 10-14 
7.52 x 10-3 6.63 x 10-3 
2.11 x 10-4 2.65 x 10-4 
1.06 x 1.21 x 10-6 
3.46 x 10-4 6.38 x 10-4 
2.64 x 1 0 - ~  3.54 x 10-7 
2.68 x 10-13 3.08 x 10-13 

7.78 x lo-’ 
2.84 x lop6 

1.13 x lo-’ 
1.28 x lo-’ 

8.08 x 10-l2 

1.64 x 10-4 
1.57 x 10-3 
2.46 x lop6 
6.05 x 10-l’ 

For a numerical example, suppose that X ,  = f l  with 
P ( X ,  = +1) = PO - b$ with PO < 1/2 and b 5 PO, and 9 is 
a uniform random variable on [0,1]. After a little work it can be 
shown that 

[ P p o ( k + l , n -  k + l ) - ~ p o - - b ( k + l r n - k + l ) ] ,  

where P z ( a , b )  is the incomplete beta function. This for- 
mula can be numerically evaluated using the BETDF sub- 
routine from the IMSL library. We also find that 190 = 

and ~ ( 8 , )  = b ( l  - 2p0)/[2po(l -PO)]. Table I compares some 
numerical values of the exact value P ( Y n / n  2 0), the asymptotically 
sharp approximation given in (9), and the crude exponential 
approximation exp(c(Oo)n). A similar comparison is carried out in 
the i.i.d. setting in ([7, pp. 129-1311). 

A practical situation where conditional i.i.d. sums arise is in the 
analysis of the correlator receiver for direct sequence spread spec- 
trum, multiple access communications systems. In this application, 
the random phases and timing delays of interfering spread spectrum 
signals play the role of the “nuisance variable” 9. A more detailed 
large deviations analysis of this receiver is given in [ l l ] .  

f log((1 -Po)/Po), 4 8 0 )  = l O K ( 2 ~ E z i T 2 )  ,a2 = 1 

IV. DISCUSSION 
We note that finding the asymptotics of M,(B0) can in of itself 

be a nontrivial problem. Our philosophy has been to assume that 
knowledge of the moment generating function sequence is complete. 
In the setting of the first example and in more general cases of 
the third, this can be a nontrivial task, even though the logarithmic 

[6] W. Feller, An Introduction to Probability Theory and Its Applica- 
tions-Vol. 11, 2nd ed. 

[7] R. Gallagher, Information Theory and Reliable Communication. New 
York Wiley, 1968. 

[SI J. Gartner, “On large deviations from the invariant measure,” Theory 
Probab. Appl., vol. 22, pp. 24-39, 1977. 

[9] R. M. Gray, “On the asymptotic eigenvalue distribution of Toeplitz 
matrices,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 767-800, 1972. 

[lo] H. Miller, “A convexity property in the theory of random variables on a 
finite Markov chain,”Ann. Math. Statist., vol. 32, pp. 1260-1270, 1961. 

I l l]  J. S .  Sadowsky and R. K. Bahr, “Direct sequence spread spectrum 
multiple access communications with random signature sequences: A 
large deviations analysis,” IEEE Trans. Inform. Theory, vol. 37, pt. I, 

New York Wiley, 1971. 
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The Asymptotic Risk in a Signal Parameter 
Estimation Problem 

Lawrence D. Brown and Richard C. Liu 

Abstract-In estimating the unknown location of a rectangular signal 
observed with white noise, the asymptotic risks of three important 
estimators are compared under L1/L2 losses. A different numerical 
scheme is used to improve the accuracy of Ibragimov/Hasminskii’s result, 
which also leads to further information and numerical comparisons about 
the problem. 

Index Terms- Rectangular signal, Bayes/minimax risks, squared/ 
absolute error losses, MLE. 

I. INTRODUCTION 

Consider an observed signal of the form 
behavior is known. 

d r ( t )  = ~ ( t  - 8)dt + adB( t ) ,  t E (0, T + l), (1) 
REFERENCES 
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where B ( . )  is Brownian motion, 8 E ( 0 , T )  is an unknown shift 
parameter, and s is the rectangular signal with S ( T )  = X[o,l~ (7). The 
objective is to estimate 8 under normalized squared error loss, Lz = 
~ - ~ ( d  - O ) ’ ,  or under normalized absolute loss, LI = a-’ld - 81. 
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