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A Control Barrier Perspective on Episodic Learning

via Projection-to-State Safety

Andrew J. Taylor, Andrew Singletary, Yisong Yue, Aaron D. Ames

Abstract—In this paper we seek to quantify the ability of
learning to improve safety guarantees endowed by Control
Barrier Functions (CBFs). In particular, we investigate how
model uncertainty in the time derivative of a CBF can be reduced
via learning, and how this leads to stronger statements on the safe
behavior of a system. To this end, we build upon the idea of Input-
to-State Safety (ISSf) to define Projection-to-State Safety (PSSf),
which characterizes degradation in safety in terms of a projected
disturbance. This enables the direct quantification of both how
learning can improve safety guarantees, and how bounds on
learning error translate to bounds on degradation in safety. We
demonstrate that a practical episodic learning approach can use
PSSf to reduce uncertainty and improve safety guarantees in
simulation and experimentally.

I. INTRODUCTION

Ensuring safety is of significant importance in the design

of many modern control systems, from autonomous driving

to industrial robotics. In practice, the models used in the

control design process are imperfect, with model uncertainty

arising due to parametric error and unmodeled dynamics.

This uncertainty can cause the controller to render the system

unsafe. As such, it is necessary to quantify how the desired

safety properties degrade with uncertainty.

Control Barrier Functions (CBFs) have become increasingly

popular [15], [21], [2] as a tool for synthesizing controllers

that provide safety via set invariance [6]. Safety guarantees

endowed by a controller synthesized via CBFs rely on an

accurate model of a system’s dynamics, and may degrade

in the presence of model uncertainty. The recently proposed

definition of Input-to-State Safety (ISSf) provides a tool for

quantifying the impact on safety guarantees of such uncer-

tainty or disturbances in the dynamics [13] by describing

changes in the set kept invariant.

Due to its flexibility, it is increasingly popular to incorporate

learning into safe controller synthesis [22], [8], [16], [5], [9].

Many of these approaches seek to provide statistical guarantees

on the safety via assumptions made on learning performance.

In practice however, limitations on learning performance arise

due to factors such as covariate shift [7], [14], limitations on

model capacity, and optimization error. Thus, it is critical to

understand the relationship between learning error and what

safety guarantees can be ensured.

In this paper, we study how introducing learning models

into safe controller synthesis done via CBFs can improve

safety guarantees, and what safety guarantees can be made in
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the presence of learning error. In particular, we consider the

episodic learning approach proposed in [20], where learning is

done directly on the time derivative of a CBF. We integrate this

approach with Input-to-State Safety to not only highlight how

learning can intuitively lead to improved safety guarantees, but

also provide a direct relationship between learning error and

the degradation of safety guarantees.

We make two main contributions in this paper. First, in-

spired by the idea of Projection-to-State Stability proposed

in [19], we formulate general definitions of projections and

projection compatible functions. Care must be taken to ensure

these definitions preserve important topological properties for

safety such as safe set membership. These definitions not

only capture the definitions established in [19] as a special

case, but allow us to define the notion of Projection-to-State

Safety (PSSf), which is a variant of the Input-to-State Safety

property. Like ISSf, PSSf provides a tool for characterizing the

degradation of safety in the presence of disturbances. Unlike

ISSf, PSSf considers disturbances in a projected environment,

allowing stronger guarantees on safe behavior. Second, we

demonstrate the utility of PSSf by characterizing how data-

driven learning models can improve safety guarantees, and

how learning error leads to degradation in safety guarantees.

Our paper is organized as follows. Section II provides a

review of Control Barrier Functions and Input-to-State Safety.

In Section III we define Projection-to-State Safety (PSSf) and

discuss how PSSf enables quantifying degradation of safety in

terms of a projected disturbance. Section IV defines a broad

class of model uncertainty and explores how learning can be

used to mitigate the impact of this uncertainty on safety. Lastly,

in Section V we present both simulation and experimental

results using PSSf to quantify the impact of learning error on

safety guarantees for a Segway system.

II. PRELIMINARIES

This section provides a review of Control Barrier Functions

(CBFs) and Input-to-State Safe Control Barrier Functions

(ISSf-CBFs). These tools will be used in Section III to define

the notion of Projection-to-State Safety.

Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n, u ∈ R

m, and f : R
n → R

n and g :
R

n → R
n×m are locally Lipschitz continuous on R

n. Given a

Lipschitz continuous state-feedback controller k : Rn → R
m,

the closed-loop system dynamics are:

ẋ = fcl(x) , f(x) + g(x)k(x). (2)

The assumption on local Lipschitz continuity of f and k

implies that fcl is locally Lipschitz continuous. Thus for any

ar
X

iv
:2

00
3.

08
02

8v
1 

 [
ee

ss
.S

Y
] 

 1
8 

M
ar

 2
02

0



2

initial condition x0 := x(0) ∈ R
n there exists a maximum

time interval I(x0) = [0, tmax) such that x(t) is the unique

solution to (2) on I(x0) [17]. In the case that fcl is forward

complete, tmax = ∞.

A continuous function α : [0, a) → R+, with a > 0, is said

to belong to class K (α ∈ K) if α(0) = 0 and α is strictly

monotonically increasing. If a = ∞ and limr→∞ α(r) = ∞,

then α is said to belong to class K∞ (α ∈ K∞). A continuous

function α : (−b, a) → R, with a, b > 0, is said to belong to

extended class K (α ∈ Ke) if α(0) = 0 and α is strictly

monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞,

and limr→−∞ α(r) = −∞, then α is said to belong to

extended class K∞ (α ∈ K∞,e)

The notion of safety that we consider is formalized by

specifying a safe set in the state space that the system must

remain in to be considered safe. In particular, consider a set

C ⊂ R
n defined as the 0-superlevel set of a continuously

differentiable function h : Rn → R, yielding:

C , {x ∈ R
n : h(x) ≥ 0} , (3)

∂C , {x ∈ R
n : h(x) = 0}, (4)

Int(C) , {x ∈ R
n : h(x) > 0}. (5)

We assume that C is nonempty and has no isolated points,

that is, Int(C) 6= ∅ and Int(C) = C. We refer to C as the safe

set. This construction motivates the following definitions of

forward invariant and safety:

Definition 1 (Forward Invariant & Safety). A set C ⊂ R
n is

forward invariant if for every x0 ∈ C, the solution x(t) to (2)

satisfies x(t) ∈ C for all t ∈ I(x0). The system (2) is safe on

the set C if the set C is forward invariant.

Certifying the safety of the closed-loop system (2) with

respect to a set C may be impossible if the controller k

was not chosen to enforce the safety of C. Control Barrier

Functions can serve as a synthesis tool for attaining the

forward invariance, and thus the safety of a set:

Definition 2 (Control Barrier Function (CBF), [4]). Let C ⊂
R

n be the 0-superlevel set of a continuously differentiable

function h : Rn → R with 0 a regular value. The function

h is a Control Barrier Function (CBF) for (1) on C if there

exists α ∈ K∞,e such that for all x ∈ R
n:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x) (f(x) + g(x)u) ≥ −α(h(x)). (6)

We note that this definition can be relaxed such that the

inequality only holds for all x ∈ E where E is an open

set satisfying C ⊂ E ⊂ R
n. Given a CBF h for (1) and a

corresponding α ∈ K∞,e, we can consider the point-wise set

of all control values that satisfy (6):

Kcbf(x) ,
{
u ∈ R

m
∣∣∣ ḣ(x,u) ≥ −α(h(x))

}
.

One of the main results in [1], [23] relates controllers taking

values in Kcbf(x) to the safety of (1) on C:

Theorem 1. Given a set C ⊂ R
n defined as the 0-superlevel

set of a continuously differentiable function h : R
n → R,

if h is a CBF for (1) on C, then any Lipschitz continuous

controller k : Rn → R
m, such that k(x) ∈ Kcbf(x) for all

x ∈ R
n, renders the system (1) safe with respect to the set C.

To accommodate disturbances or model uncertainties, we

consider a disturbance space D ∈ R
n and a disturbed system:

ẋ = f(x) + g(x)u+ d. (7)

with d ∈ D. The disturbance may be time-varying, state and/or

input dependent. We will assume that when viewing d as

a signal, d(t), it is essentially bounded in time, and define

‖d‖∞ , ess supt≥0 ‖d(t)‖. Under a Lipschitz continuous

state-feedback controller k, the closed-loop dynamics are then

given by:

ẋ = fcl(x,d) , f(x) + g(x)k(x) + d. (8)

In the presence of disturbances, a controller k synthesized to

render the set C safe for the undisturbed dynamics (2) may fail

to render C safe for the disturbed dynamics (8). To quantify

how safety degrades, we consider the notion of input-to-state

safety [13]:

Definition 3 (Input-to-State Safety (ISSf)). The closed-loop

system (8) is input-to-state safe (ISSf) on a set C ⊂ R
n with

respect to disturbances d if there exists d > 0 and γ ∈ K∞

such that the set Cd ⊃ C defined as:

Cd , {x ∈ R
n : h(x) + γ(‖d‖∞) ≥ 0} , (9)

∂Cd , {x ∈ R
n : h(x) + γ(‖d‖∞) = 0}, (10)

Int(Cd) , {x ∈ R
n : h(x) + γ(‖d‖∞) > 0}, (11)

is forward invariant for all d satisfying ‖d‖∞ ≤ d.

We refer to C as an input-to-state safe set (ISSf set) if such

a set Cd exists. This definition implies that though the set C
may not be safe, a larger set Cd, depending on d, is safe. If

d ≡ 0, we recover that the set C is safe. C can be certified as

an ISSf set for the closed-loop system (8) with the following

definition:

Definition 4 (Input-to-State Safe Barrier Function (ISSf-BF)).

Let C ⊂ R
n be the 0-superlevel set of a continuously

differentiable function h : Rn → R with 0 a regular value.

The function h : Rn → R is an Input-to-State Safe Barrier

Function (ISSf-BF) for (8) on C if there exists d > 0,

α ∈ K∞,e, and ι ∈ K∞ such that:

∂h

∂x
(x)(f(x) + g(x)k(x) + d) ≥ −α(h(x))− ι(‖d‖), (12)

for all x ∈ R
n and d ∈ R

n such that ‖d‖ ≤ d.

As shown in [13], the existence of an ISSf-BF for (8) on

C implies C is an ISSf set. Similarly to the undisturbed case,

we can introduce the notion of a Control Barrier Function for

synthesizing controllers that ensure input-to-state safety:

Definition 5 (ISSf Control Barrier Function (ISSf-CBF)). Let

C ⊂ R
n be the 0-superlevel set of a continuously differentiable

function h : Rn → R with 0 a regular value. The function h

is an Input-to-State Safe Control Barrier Function (ISSf-CBF)

for (7) on C if there exists d > 0, α ∈ K∞,e, and ι ∈ K∞
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such that:

sup
u∈Rm

ḣ(x,u,d) ,
∂h

∂x
(x)(f(x) + g(x)u+ d)

≥ −α(h(x))− ι(‖d‖), (13)

for all x ∈ R
n and d ∈ R

n satisfying ‖d‖ ≤ d.

We note that this definition is a more general definition of

an ISSf-CBF compared to [13], where disturbances enter the

system with the inputs. We define the pointwise set:

Kissf(x) ,
{
u ∈ R

m
∣∣∣ ḣ(x,u,d) ≥ −α(h(x))− ι(‖d‖)

}
,

noting that for a fixed input the inequality must hold for all

d ∈ R
n satisfying ‖d‖ ≤ d. Given this result, we have the

following theorem:

Theorem 2. Given a set C ⊂ R
n defined as the 0-superlevel

set of a continuously differentiable function h : Rn → R, if

h is an ISSf-CBF for (7) on C, then any Lipschitz continuous

controller k : Rn → R
m, such that k(x) ∈ Kissf(x) for all

x ∈ R
n, renders the set C ISSf for (8).

This theorem follows from the fact that under the controller

k, h serves an ISSf-BF for (8) on C.

III. PROJECTION-TO-STATE SAFETY

Input-to-State Safety describes how the safe set C changes

in terms of the disturbance as it appears in the state dynamics

(see Definition 3 in Section II). This description does not easily

permit analysis of how safety degrades when the disturbance

is more easily characterized by its impact in a Barrier Function

derivative. This limitation motivates Projection-to-State Safety

(PSSf), which enables a characterization of safety in terms of

a projected disturbance.

We refer to a continuously differentiable function Π : Rn →
R

k as a projection, and denote y = Π(x). Considering the

system governed by (7), the associated projected system is

governed by the dynamics:

ẏ = DΠ(x) (f(x) + g(x)u) +DΠ(x)d, (14)

where DΠ : Rn → R
k×n denotes the Jacobian of Π. As will

be seen when quantifying the impact of model uncertainty and

learning error in Section IV, if the disturbance can be partially

characterized in terms of the state and input, we may rewrite

the projected dynamics as:

ẏ = fy(x) + gy(x)u+ δ, (15)

where fy : Rn → R
k and gy : Rn → R

k×m are Lipschitz

continuous on R
n, and δ ∈ R

k is referred to as the projected

disturbance. We note it is not explicitly necessary that the

relationships fy(x) = DΠ(x)f(x), gy(x) = DΠ(x)g(x),
and δ = DΠ(x)d hold, but are one possible relationship

between the terms in (14) and (15). For the following results,

we will assume that δ is essentially bounded in time and define

‖δ‖∞ , ess supt≥0 ‖δ(t)‖. We are interested in relating

behaviors of the projected system to the original system,

motivating the following definition:

Definition 6 (Projection-to-State Safety). The closed-loop

system (8) is projection-to-state safe (PSSf) on C with respect

to the projection Π and projected disturbances δ if there exists

δ > 0 and γ ∈ K∞ such that the set Cδ ⊃ C,

Cδ , {x ∈ R
n : h(x) + γ(‖δ‖∞) ≥ 0} , (16)

∂Cδ , {x ∈ R
n : h(x) + γ(‖δ‖∞) = 0}, (17)

Int(Cδ) , {x ∈ R
n : h(x) + γ(‖δ‖∞) > 0}, (18)

is forward invariant for all δ satisfying ‖δ‖∞ ≤ δ.

In contrast to the definition of ISSf which enlarges the safe

set in terms of the disturbance d, PSSf quantifies how the safe

set enlarges in terms of the projected disturbance δ. To utilize

safety guarantees implied by ISSf-CBFs for analyzing PSSf

behavior, we require the following definition:

Definition 7 (Compatible Projection). A function hΠ : Rk →
R is said to be a compatible projection for the function h :
R

n → R with respect to the projection Π : Rn → R
k if there

exists σ, σ ∈ K∞,e such that for all x ∈ R
n:

σ(h(x)) ≤ hΠ(Π(x)) ≤ σ(h(x)). (19)

Remark 1. If h and hΠ are norms on R
n and R

k, respectively,

then Π reduces to a dynamic projection as introduced in [19].

Whereas dynamic projections preserve the topological notion

of a point between the state and projected spaces, compatible

projections can preserve more interesting topological struc-

tures such as sets.

Remark 2. The definition of a compatible projection can

be abstractly viewed through the lens of category theory,

mirroring the idea that one proves a property by mapping a

system to the “simplist” type of system that has that property

[3]. For safety, these are dynamical systems defined on the

entire real line, with the safe set being the positive reals. Thus

hΠ is a compatible projection if the following diagram:

R
n

R

R
k

Π

h

hΠ

commutes up to class K functions, i.e., (19) being satisfied.

In the context of safety, if a set C ⊂ R
n is defined

via a continuously differentiable function h as in (3)-(5), a

compatible projection hΠ for the function h with respect to

Π defines a corresponding set CΠ ⊂ R
k:

CΠ ,
{
y ∈ R

k : hΠ(y) ≥ 0
}
, (20)

∂CΠ , {y ∈ R
k : hΠ(y) = 0}, (21)

Int(CΠ) , {y ∈ R
k : hΠ(y) > 0}. (22)

The inequalities in (19) preserve the notion of what states are

considered safe between the state space and projected space,

such that x ∈ C =⇒ Π(x) ∈ CΠ. The preceding implication

is also true of the boundaries and interiors of the two sets.

The following theorem allows us to extend ISSf properties of

the projected system on CΠ to PSSf properties of the original

system on C.
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Theorem 3. Let C ⊂ R
n be the 0-superlevel set of a

continuously differentiable function h : R
n → R with 0

a regular value. The disturbed system (7) can be rendered

PSSf on C with respect to the projection Π and projected

disturbances δ if there exists a compatible projection hΠ

for h with respect to Π and Lipschitz continuous controller

k : Rn → R
m such that hΠ is an ISSf-CBF for the projected

dynamics (15) on CΠ and k(x) ∈ Kissf(x) with:

Kissf(x) ,

{
u ∈ R

m

∣∣∣∣
ḣΠ(Π(x),u) ≥
−α(hΠ(Π(x)))− ι(‖δ‖)

}
,

Proof. As hΠ is an ISSf-CBF for (15) on CΠ and the state-

feedback controller satisfies k(x) ∈ Kissf(x), Theorem 2

implies that the controller k renders the set CΠ input-to-state

safe for all δ satisfying ‖δ‖∞ ≤ δ. In particular, there exists

γ ∈ K∞ such that the set:

CΠ,δ ,
{
y ∈ R

k | hΠ(y) + γ(‖δ‖∞) ≥ 0
}
, (23)

is safe. Let x0 ∈ R
n be such that y0 = Π(x0) ∈ CΠ,δ . With

x(0) = x0 (implying y(0) = y0), safety of CΠ,δ implies:

hΠ(Π(x(t))) + γ(‖δ‖∞) ≥ 0, (24)

for t ∈ I(x0). As hΠ is a compatible projection for h with

respect to Π, we have:

σ(h(x(t))) + γ(‖δ‖∞) ≥ 0, (25)

Multiplying both sides by 1
2 and using that σ ∈ K∞,e, it

follows that:

σ−1

(
1

2
σ(h(x(t))) +

1

2
γ(‖δ‖∞)

)
≥ 0, (26)

The triangle inequality for class K functions [12] implies:

h(x(t)) + σ−1(γ(‖δ‖∞))︸ ︷︷ ︸
γ′(‖δ‖∞)

≥ 0, (27)

for all t ∈ I(x0), implying the set Cδ defined as in (16)-

(18) using γ′ is forward invariant, and hence safe. Thus the

closed-loop system (7) is PSSf on C with respect to Π and

corresponding projected disturbances δ.

Corollary 1. Let C ⊂ R
n be the 0-superlevel set of a

continuously differentiable function h : R
n → R with 0 a

regular value. Viewing h as a projection such that y = h(x),
let the projected dynamics be given by:

ẏ = fy(x) + gy(x)u+ δ (28)

with projected disturbances δ ∈ R. If there exists a Lipschitz

continuous feedback controller k : Rn → R
m such that:

fy(x) + gy(x)k(x) ≥ −α(y), (29)

and there exists δ > 0 satisfying |δ| < δ, then the disturbed

system (7) can be rendered PSSf on C with respect to the

projection h and projected disturbances δ.

Proof. We first note that the identity map I : R → R is a

compatible projection for h:

h(x) ≤ I(h(x)) ≤ h(x) (30)

with σ(r) = σ(r) = r. Furthermore, the inequality in (29)

implies the identity map can be viewed as an ISSf-CBF for

the projected dynamics (28):

sup
u∈Rm

İ(x,u, δ) ≥ İ(x,k(x), δ) ≥ −α(I(y))− |δ|, (31)

for all x ∈ R
n and δ ∈ R satisfying |δ| ≤ δ. Therefore the

system (7) can be rendered PSSf on C with respect to the

projection h and projected disturbances δ by Theorem 3.

IV. INTEGRATION WITH LEARNING

In this section we consider a structured form of uncertainty

in affine control systems. We discuss the impact of this

uncertainty in a CBF time derivative, and on the PSSf behavior

of the system. We demonstrate how learning can be used to

mitigate the resulting impact on safety.

In practice, the system dynamics (1) are not known during

control design due to parametric error and unmodeled dynam-

ics. Instead, a nominal model of the system is utilized:

̂̇x = f̂(x) + ĝ(x)u, (32)

where f̂ : Rn → R
n and ĝ : Rn → R

n×m are assumed to be

Lipschitz continuous on R
n. By adding and subtracting (32)

to (1), the dynamics of the system can be expressed as:

ẋ = f̂(x) + ĝ(x)u+

d︷ ︸︸ ︷
f(x)− f̂(x)︸ ︷︷ ︸

b(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
A(x)

u, (33)

where the unknown disturbance d = b(x)+A(x)u is assumed

to be time invariant, but explicitly depends on the state and

input to the system.

If the function h : Rn → R is a CBF for the nominal model

(32) on C, the uncertainty in the dynamics directly manifests

in the time derivative of h:

ḣ(x,u) =

̂̇
h(x,u)︷ ︸︸ ︷

∂h

∂x
(x)(f̂(x) + ĝ(x)u)

+
∂h

∂x
(x)b(x)

︸ ︷︷ ︸
b(x)

+
∂h

∂x
(x)A(x)

︸ ︷︷ ︸
a(x)⊤

u. (34)

Given that h is a CBF for (32) on C, let k : Rn → R
m be a

Lipschitz continuous state-feedback controller such that:

sup
u∈Rm

̂̇
h(x,u) ≥ ̂̇

h(x,k(x)) ≥ −α(h(x)). (35)

Letting the projected disturbance be defined as:

δ = b(x) + a(x)⊤k(x), (36)

Corollary 1 implies that if there exists a δ > 0 such that

|b(x) + a(x)⊤k(x)| ≤ δ for all x ∈ R
n, the uncertain system

(1) can be rendered PSSf on C with respect to the projection

h and projected disturbances δ.

As in [20], we may wish to reduce the error between ḣ and
̂̇
h by utilizing data-driven models to estimate the functions
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Fig. 1. Simulation results with Segway platform demonstrating improvement in PSSf behavior. (Left) Robotic Segway platform model
used in simulation. (Center) Absolute value of the projected disturbance δ along the trajectory without learning models ((36),red) and with
learning models ((38), blue), with learning reducing the worse case projected disturbance (δ/α). (Right) The value of the barrier satisfies
the corresponding worst case lower bound with and without learning being used to compute δ. The worst case lower bound is raised with
learning (the blue dashed line lies above the red dashed line).

b and a. In particular, given Lipschitz continuous estimators

b̂ : Rn → R and â : Rn → R
m, (34) can be reformulated as:

ḣ(x,u) =

̂̇
h(x,u)︷ ︸︸ ︷

∂h

∂x
(x)(f̂(x) + ĝ(x)u) + b̂(x) + â(x)⊤u

+
∂h

∂x
(x)b(x)− b̂(x)

︸ ︷︷ ︸
b̃(x)

+

(
∂h

∂x
(x)A(x)− â(x)⊤

)

︸ ︷︷ ︸
ã(x)⊤

u.

(37)

Under the assumption that the introduction of the estimators

does not violate the CBF condition, such that there exists a

state-feedback controller k satisfying (35) with
̂̇
h defined as

in (37), we may define the projected disturbance as:

δ = b̃(x) + ã(x)⊤k(x) (38)

As before, if there exists δ > 0 such that |b̃(x)+ã(x)⊤k(x)| ≤
δ for all x ∈ R

n, Corollary 1 can be used to certify (1)

as PSSf on C with respect to the projection h and projected

disturbances δ. The preceding statements are formalized in the

following theorem:

Theorem 4. Let C ⊂ R
n be the 0-superlevel set of a

continuously differentiable function h : R
n → R with 0 a

regular value, and let ĥ : R
n → R be defined as in (34)

or (37). If there exists a Lipschitz continuous state-feedback

controller k : Rn → R
m satisfying (35), and δ > 0 such that

the corresponding projected disturbance defined as in (36) or

(38) satisfies |δ| ≤ δ, then (1) is PSSf on C with respect to the

projection h and projected disturbances δ.

In the presence of estimators, this theorem defines a quanti-

tative relationship between the prediction error of the estima-

tors, |ḣ(x,k(x)) − ̂̇
h(x,k(x))| = |δ|, and the degradation of

the safety of the closed-loop system. As the prediction error is

reduced (via additional training data or more complex learning

models), the set kept safe more closely resembles C.

V. EXPERIMENTAL VALIDATION

To demonstrate the ability of learning to improve safety

guarantees via Projection-to-State Safety, we deployed the

episodic learning framework with CBFs established in [20]

on a robotic Segway platform, seen in Figure 1 and 2, in

simulation and experimentally. The planar, 4 dimensional, Seg-

way was considered, with states given by horizontal position,

horizontal velocity, pitch angle, and pitch angle rate. The input

the system is specified as a torque about the wheel at the base

of the Segway. In both cases a sequence of episodes were ran

to train estimators b̂ and â.

In each episode the Segway was set to track a desired

trajectory in the pitch angle space without violating a barrier

function on a portion of its state, using the safety-critical

control formulation in [11]. After the sequence of episodes,

the Segway was ran once more with a learning-informed con-

troller, and the projected disturbance δ as defined in (36) and

(38) was computed. The worst case disturbance δ was found,

and a lower bound on h for that trajectory was determined

using the fact h ≤ α−1(δ) =⇒ ḣ ≥ 0. In both simulation

and experimental results, α(r) = kr with k > 0.

In simulation, the Segway was given a bound on its po-

sition in space, forcing it to stay within one meter of its

starting location. The CBF was generated through the backup

controller method [10]. The value of the CBF is computed

at each time-step by integrating the system forward in time

under a backup control law. Sensitivity analysis along the

trajectory is used to compute the gradient of the CBF. This

simulation result highlights the ability of learning to reduce

worst case disturbances for complex CBFs that cannot be

expressed in closed-form. The simulation was done in a ROS-

based C++ environment [18]. The simulation environment

accurately simulates the physical system by adding input delay,

sensor noise, and state estimation. Experimentally, a simple

CBF was specified to limit the pitch angle and pitch angle rate

of the Segway to an ellipse about the Segway’s equilibrium

state. The desired pitch angle trajectory would lead to the

Segway tipping quickly, thereby violating the safety set in the

absence of the CBF and safety-critical control formulation.
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Fig. 2. Experimental results with Segway platform demonstrating improvement in PSSf behavior. (Left) Physical robotic Segway platform
used in experimentation. (Center) Absolute value of the projected disturbance δ along the trajectory without learning models ((36),red)
and with learning models ((38), blue), with learning reducing the worse case projected disturbance (δ/α). (Right) The value of the barrier
satisfies the corresponding worst case lower bound with and without learning being used to compute δ. The worst case lower bound is raised
with learning (the blue dashed line lies above the red dashed line).

In both cases, we see that introducing learning estimators

into the computation of the projected disturbance decreases

the worse case disturbance (δ > δl). This leads to a greater

lower bound on h, and thus a stronger guarantee on the PSSf

behavior of the system. We note that the conservative nature of

the lower bounds on h arise from the fact that the worst case

disturbance δ along the trajectory is used. If the worst case

disturbance can be reduced (by data-aware control synthesis),

stronger guarantees on safety can be made.

VI. CONCLUSIONS

We presented a novel method for assessing the impact of

disturbances on safety in a project environment via Projection-

to-State Safety, and considered how it can be utilized in

conjunction with learning to mitigate the impact of model

uncertainty on safety. We demonstrate the ability of learning

to improve the guarantees endowed by PSSf in simulation and

experimentally on a Segway platform. Future work includes

developing data-driven methods for quantifying the worst case

projected disturbance, and synthesizing data-aware controllers

that reduce the projected disturbance.

REFERENCES

[1] A. Ames, J. Grizzle, and P. Tabuada. Control barrier function based
quadratic programs with application to adaptive cruise control. In
Conference on Decision & Control (CDC), pages 6271–6278. IEEE,
2014.

[2] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada. Control barrier functions: Theory and applications. In
European Control Conference (ECC), pages 3420–3431. IEEE, 2019.

[3] A. D. Ames, P. Tabuada, and S. Sastry. On the stability of zeno
equilibria. In International Workshop on Hybrid Systems: Computation

and Control (HSCC), pages 34–48. Springer, 2006.

[4] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE

Transactions on Automatic Control, 62(8):3861–3876, 2017.

[5] F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe controller
optimization for quadrotors with gaussian processes. In International

Conference on Robotics and Automation (ICRA), pages 491–496. IEEE,
2016.

[6] F. Blanchini and S. Miani. Set-theoretic methods in control. Springer,
2008.

[7] X. Chen, M. Monfort, A. Liu, and B. D. Ziebart. Robust covariate shift
regression. In Artificial Intelligence and Statistics (AISTATS), pages
1270–1279, 2016.

[8] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 3387–3395, 2019.
[9] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,

and C. J. Tomlin. A general safety framework for learning-based control
in uncertain robotic systems. IEEE Transactions on Automatic Control,
2018.

[10] T. Gurriet, M. Mote, A. D. Ames, and E. Feron. An online approach to
active set invariance. In Conference on Decision and Control (CDC),
pages 3592–3599. IEEE, 2018.

[11] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames.
Towards a framework for realizable safety critical control through active
set invariance. In International Conference on Cyber-Physical Systems,
pages 98–106. IEEE Press, 2018.

[12] C. M. Kellett. A compendium of comparison function results. Mathe-

matics of Control, Signals, and Systems, 26(3):339–374, 2014.
[13] S. Kolathaya and A. D. Ames. Input-to-state safety with control barrier

functions. IEEE Control Systems Letters, 3(1):108–113, 2018.
[14] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue. Robust

regression for safe exploration in control. In Conference on Learning

for Decision and Control (L4DC), 2020.
[15] Q. Nguyen and K. Sreenath. Exponential control barrier functions for

enforcing high relative-degree safety-critical constraints. In American

Control Conference (ACC), pages 322–328. IEEE, 2016.
[16] M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt. Barrier-certified

adaptive reinforcement learning with applications to brushbot navigation.
IEEE Transactions on Robotics, 35(5):1186–1205, 2019.

[17] L. Perko. Differential equations and dynamical systems, volume 7.
Springer Science & Business Media, 2013.

[18] A. Singletary, P. Nilsson, T. Gurriet, and A. D Ames. Online active safety
for robotic manipulators. In International Conference on Intelligent

Robots and Systems (IROS), pages 173–178. IEEE, 2019.
[19] A. J. Taylor, V. D. Dorobantu, M. Krishnamoorthy, H. M. Le, Y. Yue,

and A. D. Ames. A control lyapunov perspective on episodic learning
via projection to state stability. In Conference on Decision & Control

(CDC), pages 1448–1455. IEEE, 2019.
[20] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames. Learning for

safety-critical control with control barrier functions. In Conference on

Learning for Decision and Control (L4DC), 2020.
[21] L. Wang, A. D. Ames, and M. Egerstedt. Safety barrier certificates

for collisions-free multirobot systems. IEEE Transactions on Robotics,
33(3):661–674, 2017.

[22] L. Wang, E. A. Theodorou, and M. Egerstedt. Safe learning of quadrotor
dynamics using barrier certificates. In International Conference on

Robotics and Automation (ICRA), pages 2460–2465. IEEE, 2018.
[23] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of

control barrier functions for safety critical control. IFAC-PapersOnLine,
48(27):54–61, 2015.


	I Introduction
	II Preliminaries
	III Projection-to-State Safety
	IV Integration With Learning
	V Experimental Validation
	VI Conclusions
	References

