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A Control Lyapunov Function Approach to
Multiagent Coordination
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Abstract—In this paper, the multiagent coordination problem is
studied. This problem is addressed for a class of robots for which
control Lyapunov functions can be found. The main result is a
suite of theorems about formation maintenance, task completion
time, and formation velocity. It is also shown how to moderate
the requirement that, for each individual robot, there exists a con-
trol Lyapunov function. An example is provided that illustrates the
soundness of the method.

Index Terms—Coordinated control, Lyapunov methods, mobile
robots, multirobot system, robot formation control.

I. INTRODUCTION

I N THIS PAPER, we investigate the problem of how to
coordinate a collection of robots in such a way that they

maintain a given formation relative to each other. The main
assumption about the dynamics of the individual robots that we
initially make in this paper is that they have control Lyapunov
functions (CLFs). Based on this assumption, an abstract and
theoretically sound coordination strategy can be developed.

Multiagent formation control problems have been extensively
studied in the literature, and our main contribution is that we use
CLFs to define the formation. By doing this, we convert the for-
mation control problem, typically a constrained motion control
problem of multiple systems, into a stabilization problem for
one single system. By this approach, we neither cast the problem
without real dynamics [2], nor with an explicit nonlinear robot
model [5]. Instead, we believe that by requiring the existence of
CLFs, we can capture at least some aspects of the platform dy-
namics, while not having to spend our main effort on nonlinear
robot control. Thus, we can focus on the coordination problem
at a higher level.

In addition to the CLF approach, we use the idea of virtual ve-
hicles discussed in [6]. Concepts of similar flavor are the “action
reference” suggested by Kanget al. [7] and the “dynamic coor-
dination variable” proposed by Beardet al. [3]. Furthermore, in
the terminology of Beardet al. in [9], our approach would fall
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into the category of “virtual structures.” The formation function
we introduce has similarities with the task function of [13], but
there is no connection with Lyapunov theory in that approach.

The motivation for studying this type of multiagent coordi-
nation problem mainly stems from the observation that there is
robustness and strength in numbers. If more than one agent is
asked to carry out a given task, e.g., search a disaster area, the
likelihood of success increases as more agents are included in
the mission. In other situations, cost and energy efficiency in-
dicates that using many small robots might be more beneficial
than using one big robot.

The outline of this paper is as follows. In Section II, we de-
fine what we mean by a formation, and show how this can be
formalized in terms of a formation function. We define a sub-
class called Lyapunov formation functions, and show how these
can be constructed. Next, in Section III, we add error feedback
to the time evolution of the formation. In Section IV, we then
prove a suite of theorems about bounded formation errors, task
completion times, and group velocities. We conclude, in Section
V, with an example, illustrating the usefulness of our proposed
method.

II. FORMATION FUNCTIONS

Our primary object of study is a collection of robots, whose
dynamics can be described by the following set of controlled
differential equations:

(1)

where , and .
Now, a desired formation in is simply a set

, and we define this set implicitly
through the null set of a so-called formation function.

Definition II.1—Formation Function:Given a formation
parameterized by a scalar.

We say that a positive definite, continuously differentiable
map is a formation function to the set

if gives a
unique for each choice of .

Example II.1: One choice is
. Clearly, implies a unique

for each , as demanded in the definition. But as we will see,
robot dynamics (Definition II.2) can be taken into account
when choosing .

In order to focus on the high-level coordination issues, we
connect the formation function with the concept of CLFs.

1042-296X/02$17.00 © 2002 IEEE



848 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

Definition II.2—Lyapunov Formation Function:A forma-
tion function is a Lyapunov formation function if there
exists a class function and a control , such that

Furthermore, the left-hand side of this expression goes to in-
finity as approaches zero.

A class function is a function , continuous,
strictly increasing, and satisfying
[11].

To set the stage for our main existence theorem on Lyapunov
formation functions, we now state two lemmas.

Lemma II.1—Locally Positive Definite (LPD) Implica-
tions: If the Lyapunov function is LPD and decresent and

is LPD, then the bound ofDefinition II.2 is fulfilled.
Proof: The conditions on implies [11] that there exist

class functions and , such that

Since the functions are of class, they are all invertible and
positive, and we have and

Note that this makes a class function. Now we have

and we can choose . Furthermore, if
the property only holds locally, i.e., when , then this
condition can be replaced by , since

.
Remark II.1: These are the standard Lyapunov assumptions

for showing that a system is asymptotically stable [11]. The case
of a semidefinite Lyapunov function for the whole formation is
discussed in [12].

Lemma II.2—Limit Property:Given a such that

The limit property ofDefinition II.2 will be fulfilled if we
choose a new .

Proof: Since the bound still holds. Furthermore

which clearly approaches infinity as .
Remark II.2: The local stability property ofDefinition II.2

in combination with the feedback of (3) in Section III will be
shown to guarantee successful traversal of the whole trajectory.

Remark II.3: In general, finding a CLF is an open problem,
however, it is known that CLFs exist for a large class of prac-

tically important systems [8], including feedback linearizable
systems (as will be seen in Section V). Note also the Artstein
Sonntag theorem on existence of CLFs [1].

We now go on to state and prove the main existence theorem
of Lyapunov formation functions.

Theorem II.1—Lyapunov Formation Function:If the vehi-
cles have translationally invariant (in position coordinates) dy-
namics and LPD CLFs , with locally negative definite time
derivatives, then we can form a Lyapunov formation function
by a weighted sum of the parameterized CLFs

(2)

Proof: By Lemma II.1, the bound ofDefinition II.2 holds,
pointwise. The hypothesis that the vehicle dynamics are in-
variant with respect to position translations lets us parameterize
them with respect to , and we have that

where the are given by as inLemma II.1.
We have that

where

The second inequality above follows, since there exists asuch
that , and thus

The limit property follows fromLemma II.2.
Remark II.4: Note that the different vehicles in the forma-

tion can have completely different dynamics [and therefore
Lyapunov functions in (2)]. Furthermore, the choice
of coefficients in (2) reflects how large deviations from zero
are allowed for each .

III. COORDINATED CONTROL

By establishing these observations about the Lyapunov for-
mation functions derived from the individual CLFs, we can
now shift our attention to actually controlling the evolution of
the formation. The one parameter that we can control is the
parameter, i.e., the parameterization of the time evolution of
the desired positions. We do this by specifying the trajectory
that we want the so-calledvirtual leader, , to follow.
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This nonphysical leader is a reference point in the state space
with respect to which we can define the rest of the formation.
We denote the trajectory executed by the virtual leader by

. Intuitively, one might want to set .
But, due to robustness considerations, we incorporate error
feedback into the time evolution of (see, for example, [6])
and let be given by

(3)

Here, is a small positive constant that preventsfrom
becoming singular, and is the bound ofDefinition II.2 or
something smaller chosen by the user. It will be shown to be
an upper bound on the Lyapunov formation function .
The idea is to say that the formation is being respected as
long as . is the class function of Definition
II.2. Furthermore, is the nominal velocity that we want
the formation to move with, and as we will see later, it holds
that when is small.

IV. THEORETICAL PROPERTIES

In the following paragraphs we will investigate what the-
oretical properties the evolution of the multi-agent formation
exhibits when letting be given by (3). We will show that if

, then remains bounded by along
trajectories for all times greater than. We will also show that
if and if is governed by (3), then reaches

in finite time. We will conclude our theoretical investiga-
tions by showing that if the formation function
is small enough.

Theorem IV.1—Error Bound:If , then

i.e., the Lyapunov formation function will never exceed.
Proof: We directly have

To show that the set is in-
variant, we will note that for any such that

, we have

For such a , it holds that

and

This directly gives that if , then
along trajectories. Thus, the set

is invariant, i.e., if , then
for all .

Remark IV.1: In most cases, a careful choice of can guar-
antee collision avoidance.

Theorem IV.2—Finite Completion Time:If the trajectory is
given as an interval, , then by using the con-
troller in (3) we can find an upper bound , such that

In other words, there is an upper bound on the completion time.
Proof: Let the completion time be defined in such a way

that

If there exists a constant such that , then we
obviously have

The proof thus consists of finding such a lower bound on. Let

We have that

since . Thus

which concludes the proof.
Theorem IV.3—Formation Velocity:If the formation error is

small, and , then

i.e., the formation velocity is .
Proof: We will start by showing that the right-hand term

in the brackets of (3) grows to infinity as approaches zero

as
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by Assumption II.2. Thus, the left-hand term governswhen
is small. In that case, we have

V. SIMULATION EXAMPLES

We will now go on to illustrateTheorem IV.1andTheorem
IV.3, as well as the effect of measurement noise on our proposed
approach. In the following example, we model the robots using
the standard unicycle model (see, for example, [4] and [5]). Such
a model is applicable to the Nomadic Scout, which is the robot
we work with at the Royal Institute of Technology in Stock-
holm. It is, furthermore, adequate for most all-terrain caterpillar
vehicles as well.

The equations of motion are

where is the center of the wheel axis,is the directional
angle, and are forward and angular velocities. The controls

are the applied force and torque. We choose the output to
be the position of an off-axis point,

, perhaps the center of gravity.
It was shown in [9] that this model can be feedback linearized

to a two-dimensional double integrator . (This
property was also used implicitly in [5]). A parameterized CLF
and feedback control of a one-dimensional double integrator is

yielding . We note that there is some
flexibility in choosing the second term in , since the only hard
formation constraint is .

Now we can choose , as in (2), and
it is straightforward to check that
fulfills the bound and limit property ofDefinition II.2.

A formation of three feedback linearized dynamic unicycles
thus gives a 12–dimensional system (Fig. 1). In the first part
of the simulation, the three desired trajectories meet to form a
side-by-side formation. When the robots are close to horizontal
coordinate 6 m, we increase to . This will
drive the formation function close to, but not above, the upper
limit of . When this happens, the velocity is decreased to
a value below . Finally, in the last part, when passing
the 12–m mark, we introduce a stochastic measurement error
in the control of the topmost robot. Since we are already close
to the upper bound , the disturbance makes the whole
formation slow down when needed (as seen in the lowest plot)
to respect the bound. This is not guaranteed byTheorem IV.1,
since the proof is only valid in a deterministic setting. However,

(a)

(b)

(c)

Fig. 1. (a) Top view of the robot trajectories. (b) The formation function.
(c) The formation velocity. The horizontal axis of the two lower plots refer to
the horizontal position of the topmost robot.

the successful simulation does indicate some robustness of the
approach.

VI. CONCLUSION

In this paper, we propose a stable coordination strategy for
a team of formation constrained autonomous agents. A Lya-
punov formation function defined under standard assumptions
can be constructed from individual-CLFs. The Lyapunov for-
mation function is used to prove properties such as formation
maintenance, task completion time, and formation velocity. Fi-
nally, we present an example that illustrates the soundness of
our method.
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