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Abstract— Insects exhibit incredibly robust closed loop flight
dynamics in the face of uncertainties. A fundamental principle
contributing to this unparalleled behavior is rapid processing
and convergence of visual sensory information to flight motor
commands via spatial wide-field integration, accomplished by
retinal motion pattern sensitive interneurons (LPTCs) in the
lobula plate portion of the visual ganglia. Within a control-
theoretic framework, models for spatially continuous retinal
image flow and wide-field integration processing are developed,
establishing the connection between image flow kernels (retinal
motion pattern sensitivities) and the feedback terms they rep-
resent. It is shown that these outputs are sufficient to stabilize
speed regulation and terrain following tasks. Hence, extraction
of global retinal motion cues through computationally efficient
wide-field integration processing provides a novel and promis-
ing methodology for utilizing visual sensory information in
autonomous robotic navigation and flight control applications.

I. INTRODUCTION

Prevalent in many natural sensory systems is the phe-
nomenon of sensorimotor convergence, wherein signals from
arrays of spatially distributed and differentially tuned sensors
converge in vast numbers onto motor neurons responsible
for controlling locomotive behavior. A prime example occurs
in the processing of retinal image pattern movement (optic
flow) by the visuomotor systems of insects (Figure 2A).
Insect visual systems encode optic flow by combining motion
estimates from arrays of local movement detectors in a
way that preserves the spatial layout of the retina [1]. This
spatially preserved motion information is parsed by wide-
field motion sensitive interneurons in the lobula plate section
of the visual ganglia (called tangential cells, or LPTCs for
short). The output of these neurons is communicated via
decending neurons to the motor control centers, creating a
sensory processing front end that spatially integrates the optic
flow [2]. This visuomotor convergence technique, spatial
wide-field integration, is presumed to be used by insects
to extract behaviorally relevant information from optic flow
patterns to modulate the kinematics of flight [3].

Since optic flow was first recognized as a critical source
of information [4], there has been considerable interest in
adapting this type of sensory system for bio-inspired au-
tonomous navigation. One concept that has recently received
a significant amount of attention is that of the biological
matched filter [5], where the neural images formed from
sensory inputs are compared with pre-determined templates,
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Fig. 1. Motion Parallax Field Definitions

presumably to assist in determination of behavioral responses
[6]. As receptive field structure of particular tangential in-
terneurons (VS cells [7] and HS cells [8]) have revealed
similarites to the equivalent projected velocity fields for
certain cases of rotary self motion, it has been postulated
[9] that LPTCs extract particular types of self-motion from
optic flow fields.

In this paper we propose a more general functional role
for wide-field sensitive neurons in navigation and flight
control as well as a novel methodology for utilizing optic
flow sensory information in robotic applications. We show
how the spatial harmonics of planar optic flow, extracted
with motion-pattern sensitive kernels representing LPTCs
(Figure 2B), correspond to feedback terms which can be
used to stabilize navigational tasks. Section II develops the
equations that govern spherical motion parallax fields of
three dimensional environments. A model for wide-field
integration of planar retinal image flow is presented in
Section III, and the connection between image flow kernels
and the output feedback terms they represent is established.
In Section IV an output feedback methodology based on
wide-field integration sensory information is presented along
with simulations demonstrating speed regulation and terrain
following behavior for wheeled robot dynamics.

II. A SPATIALLY CONTINUOUS MODEL OF OPTIC FLOW

The basic set of equations that specify a general spatially
discrete optic flow field for a spherical retinal surface geom-
etry and an environment composed of j = 1 . . . N rigid
fiducial points (Figure 1) was developed in [10]:

Q̇j = −ω × Qj −
1
rj

[
v − 〈v,Qj〉Qj

]
. (1)

A fiducial point j is located with respect to the vantage
point, i.e., the origin of the rigidly attached body frame
coordinate system B = (êxb

, êyb
, êzb

), by a vector rj ∈ R
3
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Fig. 2. (A) Visuomotor system of insects. Wide-field retinal motion sensitive interneurons (tangential cells) parse spatially-preserved visual information
and transmit it to motor control centers. (B) WFI processing model. Spatial modes of optic flow are extracted by retinal motion sensitivity kernels.

with magnitude rj = ‖rj‖ along marker Qj = rj/rj . In
this formulation, the motion parallax Q̇j = Q̇ω,j + Q̇v,j

is defined as the time derivative of the marker Qj ∈ S2,
which has contributions from both the angular and linear
velocities ω,v ∈ R

3 of the body frame B with respect to an
inertial frame I = (êx, êy, êz). The rotational contribution,
Q̇ω,j = −ω ×Qj , produces a velocity field independent of
the distances to objects in the environment. The translational
contribution, Q̇v,j = 1

rj

[
v − 〈v,Qj〉Qj

]
, is the relative

linear velocity of the fiducial point, scaled inversely by the
distance, with the radial component removed. Collectively,
the set of markers and motion parallax vectors {Qj , Q̇j , j =
1 . . . N} compose a general spatially discrete optic flow field.

For a continuous representation of the spatial distribution
of the environment, the instantaneous set of distances to the
fiducial points {ri, i = 1 . . . N} becomes a function of the
azimuth and elevation angles r(γ, β) : [0, 2π] × [−π

2 , π
2 ] �→

(0,∞). Implicit to this definition, r also depends on the
particular environment as well as the vantage point config-
uration q(t), i.e., the position and orientation within that
environment. We expect this function to take on values from
(0,∞) and contain discontinuities, especially in a cluttered
object field. By explicitly disallowing contact r(γ, β,q) = 0,
we ensure that the reciprocal, defined as the nearness,

µ(γ, β,q) =
1

r(γ, β,q)
, (2)

is a bounded, piecewise continuous function with a finite
(countable) number of discontinuities and at each instant in
time is restricted to the space of square integrable functions
L2

(
[0, 2π] × [−π

2 , π
2 ]

)
A. Rotational Optic Flow

We would like to express the optic flow in terms of
quanities that are useful for feedback control; hence we
define the roll, pitch, and yaw rates as the projections of
the body frame angular velocity ω onto the unit directions
for B,

ω = ψ̇ êxb
+ φ̇ êyb

+ θ̇ êzb
. (3)

For this spatially continuous formulation, we express a
general point on the sphere Q ∈ S2 in terms of the azimuth

γ and elevation β angles in B (Figure 3A):

Q(γ, β) = cos γ cos β êxb
+ sin γ cos β êyb

+ sin β êzb
, (4)

Now considered as an operator Q̇ω : R
3 �→ R

3, the map
ω �→ −ω × Q is linear and has a skew-symmetric matrix
representation

Q̂ =

⎛
⎝ 0 − sin β sin γ cos β

sin β 0 − cos γ cos β
− sin γ cos β cos γ cos β 0

⎞
⎠ .

Hence, the rotational optic flow field in B coordinates is
given by

Q̇ω = Q̂ω. (5)

B. Translational Optic Flow

As in the rotational contribution, we define the forward,
lateral, and vertical velocities as projections of the body
frame linear velocity v onto the unit directions for B:

v = ẋb êxb
+ ẏb êyb

+ żb êzb
. (6)

Using the definition (4), the operator v �→ v − 〈v,Q〉Q can
be written compactly as

(
I − QQT

)
=

⎛
⎝ 1 − c2γc2β −c2βsγcγ −cγsβcβ

−cγsγc2β 1 − s2γc2β −sγsβcβ
−cγsβcβ −sγsβcβ 1 − s2β

⎞
⎠ ,

where sγ = sin γ and cβ = cos β. To obtain the translational
optic flow field in B coordinates, we scale by the nearness
function (2):

Q̇v = µ
(
I − QQT

)
v. (7)

C. Spherical Coordinates

The action of (7) is to extract the radial component from
the velocity field of stationary objects relative to the moving
body frame B. Therefore, for an arbitrary point Q(γ, β) ∈
S2 on a spherical sensor or retina, the resulting translational
optic flow vector at that location is the projection of the
relative velocity of the point on the nearest object along
direction Q into the tangent space TQS2 at the point Q,

i.e.,
(
I − QQT

)
: R

3 �→ TS2. The same result may be

concluded regarding the action of (5): Q̂ : R
3 �→ TS2.
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Fig. 3. Spherical retinal geometry. (A) Spherical coordinate definitions (B) Spherical optic flow components Q̇γ and Q̇β for planar applications.

Therefore, it makes sense to put (5) and (7) into spherical
coordinates, by applying the transformation from rectangular
coordinates

R =

⎛
⎝ cos γ cos β sin γ cos β sin β

− sin γ cos γ 0
− cos γ sin β − sin γ sin β cos β

⎞
⎠ .

The resulting spherical coordinate representation Q̇ =
Q̇γ êγ + Q̇β êβ is given by

Q̇ = Aω + µBv. (8)

The matricies A(γ, β) = RQ̂ and B(γ, β) =
−R

(
I − QQT

)
, reflecting the spherical retina geometry,

are given by

A(γ, β) =
(

sin β cos γ sin β sin γ − cos β
sin γ cos γ 0

)

B(γ, β) =
( − sin γ cos γ 0

− sin β cos γ − sin β sin γ cos β

)
.

It is further assumed that the kinematics q̇ = (v,ω) of the
body frame B are bounded, piecewise-continuous functions
of time; hence the instantaneous optic flow components Q̇γ

and Q̇β , given by (8), are restricted to the function space
L2

(
[0, 2π] × [−π

2 , π
2 ]

)
.

D. Planar Applications

The tangential and normal optic flow components Q̇γ and
Q̇β for the circle defined by the intersection of S2 and the
plane β = 0 (Figure 3B) are given by

Q̇γ = −θ̇ + µ(γ, 0,q) (ẋb sin γ − ẏb cos γ) (9)

Q̇β = −ψ̇ sin γ + φ̇ cos γ − µ(γ, 0,q) żb (10)

For motion restricted to the plane β = 0, we define the ve-
hicle configuration q = (x, y, θ) and velocity q̇ = (ẋb, ẏb, θ̇)
with respect to an inertial (static) environment. Under these
conditions, the normal component Q̇β is zero, and the
tangential component Q̇γ becomes a 2π-periodic function
of the vehicle-referred viewing angle γ. Clearly for fixed t,
µ(γ, 0,q) ∈ L2[0, 2π] and therefore Q̇γ ∈ L2[0, 2π]. For
notational convenience we will refer to the planar nearness
function for the environment of interest as µ(γ,q), noting
the dependence on components of the configuration of the

vehicle. In addition we will drop the γ subscript and refer
to the tangential optic flow component as Q̇(γ,q, q̇), noting
the dependence on the vehicle’s configuration and velocity:

Q̇(γ,q, q̇) = −θ̇ + µ(γ,q) (ẋb sin γ − ẏb cos γ) . (11)

III. A MODEL FOR WIDE-FIELD INTEGRATION

PROCESSING OF IDEAL PLANAR OPTIC FLOW

For this treatment we will represent the lobula plate
tangential cells (or ispi- and contralateral pairs as may be
appropriate) by a general weight Fi(γ) ∈ L2[0, 2π], which
models their sensitivity to retinal motion patterns (Figure
2A). Weights Fi(γ) are essentially a spatially distributed set
static gains that are applied to the output at the correspond-
ing local motion detectors at retinal azumuthal positions
γ (Figure 2B). With the analysis presented here, we are
interested in characterizing the available information relevant
for use in closed loop feedback. We expect these retinal
motion pattern sensitivities to be piecewise continuous and
square-integrable; hence the restriction to the function space
L2[0, 2π]. For this analysis we will also assume that optic
flow estimation processing (photoreceptors and local motion
detectors) have negligible dynamics, that is, wide-field spatial
integration (henceforth WFI) can be modeled in entirety by a
transformation W , representing a spatial inner product over
the circle S1 with the optic flow kernel (11) which acts on
elements Fi(γ) to produce a sensor output signal zi(q, q̇),
hence W : Fi ∈ L2[0, 2π] �→ zi ∈ R. The transformation
W defined by zi = WFi can be represented as a linear
functional using the inner product structure available on
L2[0, 2π]:

zi(q, q̇) = 〈Q̇, Fi〉w =
1
π

∫ 2π

0

Q̇(γ,q, q̇) · Fi(γ) dγ. (12)

The inner product (12) has been defined with a factor of
1/π to be compatible with the typical Fourier harmonic
component definition so that later notation is simplified.

A. Characterization of WFI Sensory Outputs

We are interested in characterizing the set of all possible
sensory outputs available within this model and their depen-
dency on vehicle motion and spatial distribution of objects in
the environment. Since L2[0, 2π] is a separable Hilbert space,
a countably infinite orthonormal basis {φn(γ)} exists. For
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Fig. 4. Connections between WFI outputs and µ. (A) Planar tunnel geometry and lateral/rotational perturbations of µ (B) µ-shaping in environments
with higher order spatial structure

every instant in time, the optic flow (11) resides in L2[0, 2π];
therefore, we are guaranteed a unique generalized Fourier
series expansion Q̇ =

∑
n cn φn, where cn = 〈Q̇, φn〉w. For

the orthonormal basis

Φ = {1/
√

2} ∪ {cos nγ : n ∈ Z
+} ∪ {sin nγ : n ∈ Z

+},
the expansion becomes

Q̇ =
a0

2
+

∞∑
n=1

an cos nγ +
∞∑

n=1

bn sin nγ,

where the Fourier coefficients of the optic flow, which are
functions of the configuration and velocity, are defined as

a0(q, q̇) = 〈Q̇, 1/
√

2〉w = 1
π

∫ 2π

0
Q̇(γ,q, q̇)/

√
2 dγ

an(q, q̇) = 〈Q̇, cos nγ〉w = 1
π

∫ 2π

0
Q̇(γ,q, q̇) · cos nγ dγ

bn(q, q̇) = 〈Q̇, sin nγ〉w = 1
π

∫ 2π

0
Q̇(γ,q, q̇) · sin nγ dγ.

With some manipulations, we can re-write these expressions
in terms of the vehicle velocity q̇ = (ẋb, ẏb, θ̇) and the spatial
harmonics {A0(q), Ak(q), Bk(q) : k ∈ Z

+} of the nearness
function µ(γ,q):

a0 = (−θ̇ + ẋbB1 − ẏbA1)/
√

2 (13)

an =
ẋb

2
(−Bn−1 + Bn+1) − ẏb

2
(An−1 + An+1)

bn =
ẋb

2
(An−1 − An+1) − ẏb

2
(Bn−1 + Bn+1) ,

where the nearness function has been expanded in the
orthonormal basis Φ:

µ =
A0

2
+

∞∑
k=1

Ak cos nγ +
∞∑

k=1

Bk sin nγ,

and whose configuration-dependent Fourier series coeffi-
cients are defined as

A0(q) = 〈µ, 1/
√

2〉w = 1
π

∫ 2π

0
µ(γ,q)/

√
2 dγ

Ak(q) = 〈µ, cos kγ〉w = 1
π

∫ 2π

0
µ(γ,q) · cos kγ dγ

Bk(q) = 〈µ, sin kγ〉w = 1
π

∫ 2π

0
µ(γ,q) · sin kγ dγ.

Now, under the interpretation

WΦ = {a0} ∪ {an : n ∈ Z
+} ∪ {bn : n ∈ Z

+},
the equations (13) define the action of the linear transforma-
tion W : L2[0, 2π] �→ R on a basis Φ for the domain, and as
such uniquely characterize the set of all possible wide-field
integration sensory outputs.

TABLE I

INTERPRETATION OF µ SPATIAL FOURIER HARMONICS Ak ,Bk

Mode Balanced General Tunnel Imbalance

A0
2

aπ
2a

π(a2−y2)
-

A1 0 y sin θ
(a2−y2)

Lateral + Rotary

B1 0 y cos θ
(a2−y2)

Lateral

A2,4,6,... − 4
aπ(k2−1)

− 4a cos kθ
π(a2−y2)(k2−1)

-

B2,4,6,... 0 − 4a sin kθ
π(a2−y2)(k2−1)

Rotary

A3,5,7,... 0 0 Lateral + Rotary

B3,5,7,... 0 0 Lateral

B. Interpretation of WFI Outputs

The relationships in (13) define how WFI outputs depend
on vehicle velocity q̇ = (ẋb, ẏb, θ̇) and object nearness
µ : {A0, Ak, Bk : k ∈ Z

+} with respect to the vantage point
configuration q, however the intuition required to utilize
them in closed loop feedback is not readily apparent. As a
motivational example, we consider a planar tunnel geometry
(Figure 4A), which provides a reasonable approximation
to flight between two obstacles. In this case the nearness
function µ(γ,q) is independent of the axial position x and
can be expressed in closed form as a function of the lateral
position y, body frame orientation θ, and the tunnel half-
width a:

µ(γ,q) =

⎧⎨
⎩

sin (γ+θ)
a−y 0 ≤ γ + θ < π

− sin (γ+θ)
a+y π ≤ γ + θ < 2π

. (14)

For a perfectly centered vehicle (y, θ) = (0, 0), (14) reduces
to |sin γ| /a, which has a Fourier series expansion

µ(γ,q)|y,θ=0 =
2
aπ

−
∞∑

k=2,4,6,...

4
aπ(k2 − 1)

cos kγ. (15)

Note that the expansion is composed of a DC component and
even cosine harmonics {Ak : k = 0, 2, 4, . . .} of decreasing
amplitude only. Equation (15) represents the balanced or
equilibrium nearness shape (Figure 4A), as it corresponds to
a position and orientation along the centerline of the tunnel.
For lateral and rotary displacements, the spatial harmonics
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of the perturbed nearness function are computed in Table
I. From the linearizations with respect to the configuration
variables q = (y, θ) about about the point q0 = (0, 0) it is
clear that the B1 harmonic provides an estimate of the lateral
displacement while the B2 harmonic provides an estimate of
the rotary displacement.

These results can immediately be generalized to envi-
ronments with more complicated spatial structure (Figure
4B). We have defined even cosine harmonics {Ak : k =
0, 2, 4, . . .} to represent a balanced nearness function; thus,
the presence of even sine harmonics {Bk : k = 2, 4, . . .}
indicates a rotary imbalance, odd sine harmonics {Bk : k =
1, 3, 5, . . .} a lateral imbalance, and odd cosine harmonics
{Ak : k = 1, 3, 5, . . .} a coupled rotary/lateral imbalance.

IV. WFI-BASED STATIC OUTPUT FEEDBACK

In this section we demonstrate the utility of WFI sensory
outputs (13) through coupling with planar flight dynamics
via static output feedback (Figure 5). The WFI operator is

K

..

..

Fig. 5. Closed loop WFI output feedback

used to decompose the optic flow into spatial harmonics (13),
and force and torque control inputs u1, u2 are computed as
static combinations

ui = Ka
i0 a0 +

n∑
j=1

Ka
ij aj + Kb

ij bj , (16)

which correspond to motion sensitivity functions

Fui
= Ka

i0 +
n∑

j=1

Ka
ij cos jγ + Kb

ij sin jγ. (17)

For analysis and simulation purposes we will consider rolling
or wheeled vehicles of the unicycle type (Figure 4A), subject
to the nonholonomic constraint ẋ sin θ − ẏ cos θ = 0, which
enforces ẏb = 0. It is assumed that the two wheels providing
continuous contact with the ground are driven independently,
and the vehicle center of mass is located at the midpoint
along the axis between them. In the inertial configuration
(x, y, θ) the kinematic and dynamic equations describing the
motion are

ẋ = v cos θ

ẏ = v sin θ

mv̇ = (Ts + Tp) /rw (18)

Jθ̈ = r0 (Ts − Tp) /rw,

where starboard and port wheel torques are denoted by Ts

and Tp, r0 and rw denote the vehicle width and wheel radius,
and the vehicle mass and rotational inertia are given by m
and J .

A. Local Asymptotic Stability Analysis

The intent is to show feasibility of the proposed output
feedback methodology, hence a linearized control design
which guarentees local asymptotic stability of speed regula-
tion and obstacle avoidance responses in the nonlinear sys-
tem is discussed. It will be useful to introduce the following
state and input definitions v = ẋb, u1 = (Ts + Tp)/rw, and
u2 = r0(Ts − Tp)/rw. Assuming small states (other than v)
and control inputs, the linearized equations of motion for a
centerline flight trajectory become

mv̇ = u1

ẏ = v0θ (19)

Jθ̈ = u2

Equation (20) shows the resulting linearization z(x) =
z(x0) +

∑
i

∂z
∂xi

(x0) (xi − xi0), of outputs a0, a1, b1 and
a2 for the planar tunnel with respect to the kinematic
variables x = (v, y, θ, θ̇) along a reference trajectory x0 =
(v0, 0, 0, 0), corresponding to a centerline trajectory at a
constant velocity v0.⎛
⎜⎜⎝

zb1

za0

za1

za2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

8
3πa 0 0 0
0 v0√

2a2 0 −√
2

0 0 4v0
3πa 0

0 − v0
4a2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

v
y
θ

θ̇

⎞
⎟⎟⎠ (20)

For the forward speed regulation task, we define a refer-
ence forward velocity r and corresponding scaling factor N
and close the loop by setting the thrust input

u1 = Kb
11(Nr − b1), (21)

where b1 = 〈Q̇, sin γ〉w, corresponding to the motion sensi-
tivity function

Fu1(γ) = Kb
11 sin γ. (22)

With r = v0, choose N = 8/(3πa) for zero steady-state
error, and the linearized closed loop dynamics become

v̇ = −N

m
Kb

11(v − v0). (23)

One can easily verify that with Kb
11 > 0, the closed loop

eigenvalue is in the open left-half plane, and therefore local
stability of the nonlinear system is achieved.

A quick check of the controllability and observability
matricies shows that the linearized system is completely
controllable and observable about the equilibrium point x0

as long as v0 �= 0. Therefore, due to the coupling of the
lateral to the rotational dynamics through the v0θ term in
(19), it is possible to accomplish stabilization of both modes
via static output feedback through the torque input, taken to
be

u2 = Ka
20a0 + Ka

21a1 + Ka
22a2. (24)
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Fig. 6. Simulations of WFI-based navigation. (A) Corridor navigation (B) Obstacle field navigation navigation

Hence u2 = 〈Q̇, Fu2〉w, corresponding to the motion sensi-
tivity function

Fu2(γ) = Ka
20 + Ka

21 cos γ + Ka
22 cos 2γ. (25)

With this choice of torque control, the characteristic equation
for the linearized closed loop dynamics is

s3 +
Ka

20

J
s2 − 8Ka

21v0

3Jπa
s +

v0(Ka
22 −

√
2Ka

20)
Ja2

= 0. (26)

The natural dynamics contain only inertial and viscous terms;
therefore to achieve a stable centering/obstacle avoidance
response, we require Ka

21 < 0 for rotational stiffness and
Ka

22 > 0 for lateral stiffness. Additionally, rotational damp-
ing can be added with Ka

20 > 0; however the linearization
of the DC component a0 of Q̇ also has a lateral imbalance
term (20), and hence we further need the restriction Ka

22 >√
2Ka

20 to provide the correctly signed lateral stiffness re-
quired for a stable centering response.

B. Simulation Results

Simulations were constructed based on the full nonlinear
planar flight dynamics (18) to study the performance of
the proposed WFI-based control methodology in general
environments composed of obstacles. Environments were
defined as bitmaps, and the instantaneous optic flow was
computed by estimating the depth at the current position and
orientation at 60 equally-spaced circumferential points and
combining it with the current kinematics according to (11).
WFI outputs are generated at each time instant by taking the
discrete inner product of the instantaneous optic flow with
weighting functions corresponding to (22) and (25). The WFI
output gains used in the simulation were chosen based on the
the performance index of maximizing the bandwidth of the
slow (lateral) mode in the linearized closed loop system (26).
The vehicle was directed to navigate a complicated corridor
(Figure 6A) and an obstacle field (Figure 6B). The response
of the first two cosine harmonics of the optic flow are shown.

V. CONCLUSIONS

A control-oriented analytical model for spatial wide-field
integration (WFI) of retinal image flow was developed. The
model provides a unique characterization of information
available for feedback from WFI sensory systems, and estab-
lishes the connection between global structure of optic flow
(retinal motion sensitivity patterns) and the control-relevant
information available for feedback.

The analysis presented suggests a more general functional
role for wide-field sensitive neurons in navigation and flight
control as well as a novel methodology for utilizing optic
flow in bio-inspired applications. Through the LPTC-inspired
wide-field integration approach developed in this paper,
additional information is available from optic flow that can
be used to significantly increase closed loop stability and
performance, as well as simplify sensory and actuation re-
quirements. Specifically, the lateral imbalance can be directly
estimated from a F (γ) = cos 2γ motion sensitivity function,
which eliminates the need for actively removing the rotation
term from the DC component and allows for the possibility
of injecting rotational damping using the F (γ) = 1/

√
2

motion sensitivity function. In addition, the orientation with
respect to a balanced nearness function can be determined
using a F (γ) = cos γ sensitivity, which can be used to add
rotational stiffness to the loop, and the global translational
image velocity can be extracted using the F (γ) = sin γ
sensitivity, which can be used in forward speed regulation.
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