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Abstract. This paper proposes a control-oriented approach to the tokamak plasma current

profile dynamics. It is established based on a consistent set of simplified relationships, in

particular for the microwave current drive sources, rather than exact physical modelling.

Assuming that a proper model for advanced control schemes can be established using the so-

called cylindrical approximation and neglecting the diamagnetic effects, we propose a model

that focuses on the flux diffusion (from which the current profile is inferred). Its inputs are

some real-time measurements available on modern tokamaks and the effects of some major

actuators, such as the magnetic coils, Lower Hybrid (LHCD), Electron and Ion Cyclotron

Frequency (ECCD and ICRH) systems, are particularly taken into account. More precisely,

the non-inductive current profile sources are modelled as 3-parameters functions of the control

inputs derived either from approximate theoretical formulae for the ECCD and bootstrap terms

or from experimental scaling laws specifically developed from Hard X-ray Tore Supra data for

the LHCD influence. The use of scaling laws in this model reflects the fact that the operation

of future reactors will certainly depend upon a great number of scaling laws and specific

engineering parameters. The discretisation issues are also specifically addressed, to ensure

the robustness with respect to discretisation errors and the efficiency (in terms of computation

time) of the associated algorithm. This model is compared with experimental results and the

CRONOS solver for Tore Supra Tokamak.
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1. Introduction

In the coming years the main challenge in the fusion community will be the development of

experimental scenarios for ITER, the International Tokamak Experimental Reactor. Amongst

them, the so-called advanced tokamak steady-state ones will play a significant role, since

they will allow to reproduce and study (on a smaller scale), the conditions that are expected

to be obtained in a fusion plant of reduced size and costs [1]. In these scenarios a particular

emphasis is given to the current density profile and to the way of producing the plasma current

IP: due to the intrinsic limited availability of magnetic flux in the fusion devices, needed

to sustain a purely inductive current, IP will have to be mainly generated by non-inductive

sources. In particular, the importance of the real-time safety factor profile (q-profile) control

is emphasized in [2], where an interesting overview on recent advances and key issues in

real-time tokamak plasma control is provided. A Proportional-Integral (PI) feedback control

strategy, based on a simple linear model, is also proposed and its efficiency is illustrated by

experimental results, which motivate further research developments in this direction.

The control of so-called “advanced” plasma regimes [1, 3, 4] for steady state high

performance tokamak operation is a challenge, in particular because of the non-linear coupling

between the current density and the pressure profiles. In a burning plasma, the alpha-particle

power will also be a strong function of these profiles, and, through its effect on the bootstrap

current, will be at the origin of a large (though ultra-slow) redistribution of the current density.

The possible destabilization of adverse Toroidal Alfvén Eigenmodes (TAE) - such as the drift

kinetic modes that are anticipated to appear at high values of the central safety factor [5] -

as well as potential thermal instabilities due to the ITB dynamics will further complicate the

issue. This motivates the need for further investigation of plasma profiles shaping to guarantee

and control steady-state operation of the plasmas.

As far as experiments are concerned, real-time control of the internal inductance

parameter (a measure of the current profile shape) has been achieved with LHCD on Tore

Supra [6]. Improvement of plasma performance through active modification of the current

density and pressure profiles in advanced plasma regimes with ITB’s, through heating

and current drive, or by inducing sheared plasma rotation, has also been the goal of

intense research for example on TFTR [7], JT-60U [8, 9, 10], DIII-D [11], Alcator C-Mod

[12] and JET [13, 14, 15]. Regarding the real-time (closed loop) control issues, some

experimental investigations were carried on JET, especially on the regulation of lumped

parameters characterizing the pressure profile in ITB discharges [16], for fixed magnetic

flux configuration, of the full safety factor profile during the ITB preforming phase [17, 18]

for non-inductive steady-state regime (using a linear relationship between the q-profile and

the actuators), and, more recently, of the full q-profile during the main heating phase of the

discharges.

The former control approaches have shown the interest of appropriate control methods to

improve the plasma performances. Nevertheless, they are based on identified linear models of

the plasma and/or semi-empirical tuning of the gains of a proportional-integrator controller,

rendering the real-time control particularly sensitive to the operating conditions. The aim
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of our work is then to propose a new, control-oriented model of the tokamak plasma that

best reproduces the main influence of power and voltage modulations on the dynamics of the

plasma profiles. This model does not pretend to have the accuracy of complex solvers (such

as CRONOS, EFIT or EQUINOX), but has to represent the main control inputs influences on

the plasma dynamics and to provide for some outputs of major interest for real-time control.

It is then a first step towards model-based control of the plasma profile.

We focus on the flux diffusion dynamics and include some key physical knowledge on

the tokamak plasma as well as the use of experimental results, which allows to represent

the plasma behaviour for a large range of operating conditions and provides for a simplified

and computationally efficient estimation of the main dynamics. Indeed, some approximate

formulas are used to compute the resistivity and bootstrap current while the temperature and

density profiles are estimated thanks to dedicated scaling laws. The non-inductive current

profile sources are modelled as Gaussian distributions depending on the control inputs derived

either from approximate theoretical formulas for ECCD or from experimental scaling laws

specifically developed from Hard X-ray Tore Supra data for the LH term. The input-output

relationships are detailed and special care is given to the discretisation issues. Such a model,

essential for the phase of controller design (similarly to the numerous works done on plasma

shape control), can then be used to quickly test some control laws for various operating

conditions, to investigate the influence of specific parameters and to provide for a real time

indication of not directly measurable quantities (such as the currents and q-factor profiles).

In order to keep the proposed plasma description as general as possible and to allow

for advanced control methods, the model is presented as a non-linear system. Indeed, non-

linear control and stability analysis is a field on intense research that can be drawn back

to the end of the 19th century, with Lyapunov stability theory [19]. Numerous results have

been obtained during the 20th century, on stability analysis (i.e. absolute stability, passivity

and small-gains theorems, or input-output stability) as well as constructive control approaches

(i.e. backstepping, non-linear adaptive control, feedforwarding or non-linear model-predictive

control). An interesting historical survey of these topics is presented in [20] and in [21], which

proposes an overview of non-linear model-predictive control (one of the most widely used

control method in industry). Nowadays, numerous textbooks are available, presenting non-

linear control from a global point of view [22, 23, 24] or focused on implementation issues

[25, 26], differential geometric analysis [27, 28] or specific control methods [29, 30, 31], to

cite some of the main references in this field. Our aim is then to propose a general input-

output simplified description that allows for different control strategies (including the non-

linear approaches) rather than focusing on a specific method.

This paper is organized as follows. First, the magnetic flux diffusion equation, with its

initial and boundary conditions, is presented in Section 2. The estimation of the temperature

and density profiles using some scaling laws based on experimental results is proposed in

Section 3. Section 4 details the influence of the previous profiles on the flux diffusion, through

the resistivity and the bootstrap current. The discretisation of the poloidal flux dynamics

is investigated in Section 5, where an implicit-explicit discretisation scheme in time with a

variable step in space is proposed. The inductive (magnetic coils) and non-inductive (ECCD
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Figure 1. Plasma coordinates and sign convention.

and LHCD systems) inputs are described in Section 6. Section 7 details the computation

of some model outputs of main interest. Finally, the numerical results obtained with the

simulator associated with this model are compared with some experimental data from Tore

Supra facility and with CRONOS code outputs in Section 8.

2. Magnetic flux diffusion

The notations and units of the main physical variables are summarized in Table 1. The

physical variable considered here is the flux ψ(R,Z) of the magnetic field B(R,Z) passing

through a disc centred on the toroidal axis at height Z and with a surface S = πR2, where R is

the large plasma radius, as depicted in Figure 1. It is defined in flux per radian as

ψ(R,Z) �
1

2π

∫

S

B(R,Z) · dS

The dynamics of the poloidal flux is set by a diffusion equation, obtained from [32, 33] as

∂ψ

∂t
(ρ, t) = D(ρ, t)

∂2ψ

∂ρ2
+G(ρ, t)

∂ψ

∂ρ
+ S (ρ, t) (1)

where D(ρ, t) and G(ρ, t) are transport coefficients, S (ρ, t) is a source term and ρ is the toroidal

flux coefficient indexing the magnetic surfaces, defined as ρ = (2φ/Bφ0
)1/2, where φ(ρ, t) is

the toroidal flux per radian and Bφ0
(t) is the central magnetic field. The transport coefficients

and the source term are given by‡

D(ρ, t) =
η∥C2

µ0C3

, G(ρ, t) =
η∥ρ

µ0C
2
3

∂

∂ρ

(

C2C3

ρ

)

and S (ρ, t) =
η∥V

′

FC3

〈jni · B〉 =
η∥V

′Bφ0

FC3

jni

where η∥(ρ, t) is the resistivity, µ0 = 4π × 10−7 H/m is the permeability of free space, jni(ρ, t)

is the non-inductive current source, including both the bootstrap effect and the microwave

current drive, F is the diamagnetic function, V(ρ, t) is the plasma volume and V ′ = ∂V/∂ρ.

‡ In order to simplify the equations, the space and time dependencies are specified in the definitions of the

variables and omitted otherwise.
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Furthermore,

C2 = V ′
〈

||ρ||2

R2

〉

, C3 = V ′
〈

1

R2

〉

, jni(ρ, t) �
< jni · B >

Bφ0

and 〈A〉 �
∂

∂V

∫

V

A dV

where 〈A〉 denotes the average of A on the flux surface which contains V .

We suppose that the diamagnetic effect (due to the poloidal currents) can be neglected,

which implies that ρ can be considered as a geometric coefficient. We also assume that the

so-called cylindrical approximation of the plasma geometry (large aspect ration) can be used

as a basis to establish some control schemes using this model. The former approximation

implies that ρ << R0, V = 2π2ρ2R0 and V ′ = 4π2ρR0. Using both hypotheses, the transport

coefficients can be computed with

F �
µ0Itor

2π
≈ R0Bφ0

and C2 = C3 = 4π2 ρ

R0

were Itor is the toroidal coils current. Note that the cylindrical approximation could be relieved

using some approximate expressions for C2, C3 and V thanks to analytical formulas for shifted

circles or numerical computations based on the 2D equilibrium description.

Remark 1 A detailed analysis of this model, and more particularly concerning the choice

of the coordinates, is presented in [34]. Simulations of the diffusion equation expressed in

cylindrical and toroidal coordinates (taking into account the Shafranov shift) are compared

with some experimental results. This comparison is performed through the value of q(1, t)

and shows that the proposed model fits well with the experimental results (the cylindrical

approximation leads to a steady-state error of 10% and the toroidal model has an error of

2%). Other results show that the geometrical coefficients C2 and C3 are identical for both

approximations up to a normalized radius of 0.8 and differs when approaching the plasma

edge to reach a difference of 15%.

With the previous approximations, the dynamics (1) of ψ simplifies to

∂ψ

∂t
(ρ, t) =

η∥

µ0

∂2ψ

∂ρ2
+
η∥

µ0ρ

∂ψ

∂ρ
+ η∥R0 jni

where ψ, η∥ and jni are both space (through ρ) and time dependent. The spatial index

ρ ∈ [0, a], where a is the minor plasma radius corresponding to the Last Closed Magnetic

Surface (LCMS, constant if the diamagnetic effect is neglected) depicted in Figure 1, can be

replaced by the normalized variable x = ρ/a. The diffusion equation considered finally writes

as

∂ψ

∂t
(x, t) =

η∥(x, t)

µ0a2

(

∂2ψ

∂x2
+

1

x

∂ψ

∂x

)

+ η∥(x, t)R0 jni(x, t). (2)

The initial and boundary conditions of this equation are detailed in the next subsections.
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a radius of the LCMS m

Bφ toroidal magnetic field T

Bθ poloidal magnetic field T

Bφ0
toroidal magnetic field (at the centre of the plasma) T

CR conductivity reduction due to electron-electron collisions

c speed of light in free space, 3 × 108 m/s

e electron charge, 1.6022 × 10−19 C

ft fraction of trapped particles in the banana regime

F diamagnetic function T × m

I plasma current at x A

Ip total plasma current A

Itor toroidal coils current A

jni non inductive effective current density A/m2

lnΛ Coulomb logarithm

M average ion mass

me electron mass, 9.1096 × 10−31 kg

ne electron density profile m−3

n̄e electron line average density m−2

N∥ parallel refraction index

P loss power W

Pcd ECCD power W

Picrh ICRH power W

Plh LH power W

Ptot total input power W

R major plasma radius m

R0 magnetic centre location m

Te temperature profile eV

x normalized radius

Z̄ effective value of the plasma charge C

αe electron thermal speed m/s

αTi ratio of ion versus electron temperature

ǫ inverse aspect ratio (a/R0)

ǫ0 permittivity of free space, 8.854 × 10−12 F/m

η∥ plasma resistivity Ω × m

γi exponential peaking coefficient of the variable i

κ elongation

µ0 permeability of free space, 4π × 10−7 H/m

ν∗e electron collisionality parameter

φ magnetic flux of the toroidal field T/m2

ψ magnetic flux of the poloidal field T/m2

τe electron collision time s

τth thermal energy confinement time s

Table 1. Most relevant physical variables and units
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2.1. Initial value

The initial value of the poloidal flux ψ(x, t0) is determined from the initial safety factor profile

q(x, t0) as follows. Defining the toroidal flux φ(x, t) as the magnetic flux per radians (to be

consistent with the definition of ψ) passing through a poloidal surface centered at R0 and with

radius ρ, we have that

φ(x, t) �
1

2π

∫

S pol

B · dSpol = −
1

2π

∫

S pol

Bφ · dS pol ≈ −
Bφ0

a2x2

2
.

The safety factor is consequently defined as

q(x, t) �
dφ

dψ
=
∂φ/∂x

∂ψ/∂x
= −

Bφ0
a2x

∂ψ/∂x

and, integrating ∂ψ/∂ρ in space at time t0, we have that

ψ(x, t0) = a2Bφ0

∫ 1

x

r

q(r, t0)
dr + ψ(1, t0). (3)

The choice of the constant term is motivated by the fact that ψ(1, t) can be measured on the

LCMS and can also constitute a boundary condition. The initial safety factor profile is given

by

q(x, t0) = (q(0, t0) − q(1, t0)) (1 − xγq) + q(1, t0)

where q(1, t) is computed as follows. First, Ampere’s law is introduced to compute the plasma

current I(x, t) and q-profile as

I(x, t) = − 2πx

µ0R0

∂ψ

∂x
⇒ q(x, t) =

2πa2x2Bφ0

µ0R0I
. (4)

The safety factor on the LCMS is then q(1, t) =
(

2πa2Bφ0

)

/
(

µ0R0Ip

)

where Ip(t) � I(1, t) is

the total plasma current.

For simulation purposes, an arbitrary initial safety factor profile can be chosen and the

poloidal flux will converge to its actual value modulo a constant bias. The convergence

property is inherited from the stability property of the diffusion equation and the bias is of

minor importance since the variables of main interest (q and current profiles) depend on the

flux gradient ∂ψ/∂x. Further developments of this model for estimation purposes may use the

real-time measurements of ψ(1, t) to minimize the error between the modelled flux value on

the LCMS and the real one (this is equivalent to design an observer for the flux profile that

uses the measurements on the LCMS).

2.2. Boundary conditions

Specific boundary conditions have to be considered both at the plasma centre and on the

LCMS. At the centre of the plasma, the spatial variation of the flux is zero:

∂ψ

∂x
(0, t) = 0. (5)

On the LCMS two exclusive conditions can be considered:
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• on the flux variation, from (4),

∂ψ

∂x
(1, t) = −

R0µ0Ip(t)

2π
(6)

• on the flux rate

∂ψ

∂t
(1, t) = Vloop(t). (7)

The last two boundary conditions are set by the tension applied to the coils, since a local

control loop on the poloidal coil allows to set this tension according to the desired plasma

current Ip or the desired loop voltage Vloop. This will be detailed in subsection 6.1.

To summarize the main results of this section, under the hypotheses that

H1) the diamagnetic effect is neglected,

H2) the plasma is described in cylindrical coordinates (large aspect ratio approximation),

the dynamics of the poloidal flux is described by (2) with the initial condition (3), the central

boundary condition (5) and the edge boundary condition (6) or (7).

3. Temperature and density profiles

A first, classical approach to compute the temperature profile is based on the diffusion

equation (i.e. for the electron temperature Te(ρ, t) expressed in cylindrical coordinates [35])

3

2

∂

∂t
[neTe] =

1

ρ

∂

∂ρ

(

ρneχe(ρ, t)
∂Te

∂ρ

)

− 3neTe

2τd

+ S T (ρ, t)

where ne(ρ, t) is the electron density, χe(ρ, t) is the electron thermal diffusivity, τd is a constant

damping time modelling the losses and S T (ρ, t) is the source term. Denoting the electron

pressure profile as pe(x, t), a simplified model can be set thanks to the relationship [36]

χe = αB

Te

Bφ0

a∇pe

pe

q2

with αB = 2.5 × 10−4. The source term has an amplitude such that

∫ 1

0

S T s(x, t)dx = Ps

where the s subscript refers to the heating system considered (LHCD or ICRH) and Ps is the

associated power input.

Considering the high level of uncertainty induced by diffusion models, such as the one

presented above, to compute the temperature profile, we choose to use the empirical model

proposed in [37], based on some experimental measurements. This model is established for

Tore Supra operating in L-Mode but could easily be extended to other tokamaks or operating

conditions by following the guidelines of the identification algorithm with appropriate

experimental data. The main idea is to first estimate the normalized (with respect to Te(0, t))

temperature profile shape with a set of sigmoid functions (these functions are close to 1 when
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x = 0 and close to 0 when x = 1), which shape parameters are related to the tokamak

global parameters with scaling laws. The thermal energy confinement is then introduced

to compute the confinement time τth with a scaling law similar to ITERL-96P(th) [38]. The

main advantage of this approach is to consider specifically the influence of LHCD and ICRH

systems on the profile shape, as well as to provide for a simplified and fast computation

method to estimate the global temperature behaviour. The resulting accuracy is sufficient for

the proposed control-oriented model. Indeed, from a physical point of view, the dynamics of ψ

(on which this paper is focused) has a time constant that is one order of magnitude larger than

the temperature one. This difference of time scales motivates the fact that the global energy

and steady-state variations are more important than the temperature transient behaviour in the

time-variation of ψ. For Tore Supra tokamak operating in L-mode, the temperature estimation

is described as follows.

The electron temperature profile is estimated with a sigmoid function as

Te(x, t) ≈ α(t)

1 + e−β(t)(x−γ(t))
ATe(t)

where the normalized shape of the profile Te(x, t)/Te(0, t) is estimated with a sigmoid function

defined by its amplitude α(t), dilatation β(t) and translation (inflection point) γ(t). The

amplitude of the profile is ATe(t) and computed from the plasma thermal energy, as detailed

below. The extra degree of freedom introduced in the time-variation of α (which would ideally

be 1) is motivated by the fact that, for the computation of the resistive properties of the plasma,

the minimization of the estimation error over the complete profile is more important than an

accurate estimation of the central temperature.

The shape parameters are set with the switched model

{α, β, γ} =














{αlh, βlh, γlh} if Plh , 0

{αω, βω, γω} else.

This model then distinguishes the LHCD heating effect from the ohmic and ICRH ones.

Selecting the most significant terms, the shape parameters are related to the global and

engineering parameters with























































αlh = e−0.87I−0.43
p B0.63

φ0
N0.25
∥

(

1 +
Picrh

Ptot

)0.15

βlh = −e3.88I0.31
p B−0.86

φ0
n̄−0.39

e N−1.15
∥

γlh = e1.77I1.40
p B−1.76

φ0
N−0.45
∥

(

1 +
Picrh

Ptot

)−0.54







































αω = e−0.37I−0.46
p B0.23

φ0
n̄0.22

e

βω = −e1.92I0.38
p n̄−0.33

e

γω = e−0.15I1.03
p B−0.51

φ0

(

1 +
Picrh

Ptot

)−0.46
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where N∥(t) is the parallel refraction index, Picrh(t) is the ICRH power, Plh(t) is the

LHCD power, Ptot(t) is the total input power and n̄e(t) is the electron line average density.

The units of the parameters used in the scaling laws are
[

s,MA, T, 1019 m−3, MW
]

for

[time, current, density, power]. Note that N∥ and Picrh have more effect on the profile shape

associated with LHCD than Plh, which still appears implicitly in Ptot. Indeed, identifying the

exponent parameters with either (1 + Picrh/Ptot) or (1 + Plh/Ptot) in the scaling law leads to

the conclusion that the first term gives the minimum cost function. This can be physically

explained by the fact that the presence (or absence) of ICRH has more effect on the shape

than some modulations in Plh. A more accurate model could be obtained by distinguishing

the case when LHCD is operated alone from the case when both LHCD and ICRH are used.

To determine the central temperature, the plasma thermal energy Wth(t) can be written as

Wth(t) = We(t) +Wi(t) =
3e

2

∫

V

(neTe + niTi) dV =
3e

2

∫

V

(1 + αTiαni) neTe dV

where ni(x, t) ≈ αni(t)ne(x, t) is the ions density, Ti(x, t) ≈ αTi(t)Te(x, t) is the ions temperature,

and Wth(t) and We,i(t) are the electrons and ions energies, respectively. The density ratio is

given αni(t) ≈ (7 − Z̄(t))/6, where Z̄(t) is the effective plasma charge, averaged on the small

plasma radius. The ratio of ion to electron temperature is established from measurements

taken at the centre of the plasma and obtained from the scaling law

αTi(t) ≈ 1 − 0.31

(

Ip

Bφ0

)−0.38

n̄−0.90
e

(

1 +
Picrh

Ptot

)−1.62 (

1 +
Plh

Ptot

)1.36

.

The electrons density ne(x, t) is approximated with

ne(x, t) ≈ γn + 1

γn

(1 − xγn)n̄e(t)

where γn is the density peaking. From the previous approximations and the cylindrical

coordinates hypothesis, the temperature profile amplitude is related to Wth thanks to the

relationship ATe(t) = A(t)Wth(t) with

A(t) �

[

6π2a2R0e(1 + αTiαni)

∫ 1

0

ne(x, t)x
α(t)

1 + e−β(t)(x−γ(t))
dx

]−1

and Wth is estimated with



































τth(t) = 0.135I0.94
p B−0.15

φ0
n̄0.78

e

(

1 +
Plh

Ptot

)0.13

P−0.78
tot

dWth

dt
= Ptot −

1

τth

Wth, Wth(0) = Ptot(0)τth(0)

where τth(t) is the thermal energy confinement time with the scaling law established in [37].

The scaling law ITERL-96P(th) is more general (based on measurements from different

tokamaks) and can also be used in this scheme. In that case, τth is given by

τth,IT ER = 0.14I0.96
p B0.03

φ0
n̄0.40

e P−0.73
tot .
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Remark 2 For a real-time use of this model, the temperature profile can also be accurately

measured directly from the Electron Cyclotron Emission (ECE diagnostic) for x = 0 − 0.8

and the density profile can be obtained from combined interferometers (these measurements

were used to set the proposed scaling laws). In this case, the model can be used to provide, in

real-time, for physical quantities that can not be measured directly, such as the safety factor,

currents and current densities (associated with the different sources), and induced voltage

profiles. The normalized inductance, confinement efficiency and Grad-Shafranov shift would

also be available, as detailed in Section 7.

4. Resistivity and bootstrap current

The diffusion term in (2) is provided by η∥ and the bootstrap current jbs(x, t) is an

autogenerated source that introduces a non-linearity in the diffusion equation. Both of them

introduce a coupling, which is varying in time and space, between the magnetic flux diffusion

presented in Section 2 and the temperature and density profiles of Section 3.

4.1. Resistivity model

This parameter is computed using the results on neoclassical conductivity proposed in [39],

where an approximate analytic approach is presented. First of all, the electron thermal velocity

and Braginskii time are computed from the temperature and density profiles as [40]

αe(x, t) =

√

eTe

me

and τe(x, t) =
12π3/2m

1/2
e ǫ2

0

e5/2
√

2

T
3/2
e

ne lnΛ

where e = 1.6022×10−19C is the electron charge, ǫ0 = 8.854×10−12F/m is the permittivity of

free space, me = 9.1096×10−31kg is the electron mass and lnΛ(x, t) is the Coulomb logarithm,

obtained from lnΛ(x, t) = 31.318 + ln
(

Te/
√

ne

)

. The parallel conductivity is then given by

σ∥(x, t)

σ0

= ΛE

(

1 − ft

1 + ξν∗e

) (

1 − CR ft

1 + ξν∗e

)

with

σ0(x, t) =
nee

2

me

τe, ΛE(Z̄) =
3.40

Z̄

(

1.13 + Z̄

2.67 + Z̄

)

, ν∗e(x, t) =
R0q

(xǫ)3/2αeτe

,

ft(x) = 1 − (1 − xǫ)2(1 − (xǫ)2)−1/2(1 + 1.46
√

xǫ)−1, ξ(Z̄) = 0.58 + 0.20Z̄

and CR(Z̄) =
0.56

Z̄

(

3.0 − Z̄

3.0 + Z̄

)

.

where ν∗e(x, t) is the electron collisionality parameter, ft(x) is the fraction of trapped particles

in banana regime and CR(Z̄) is the conductivity reduction due to electron-electron collisions.

The resistivity is finally inferred from σ∥ as η∥(x, t) � 1/σ∥.

Remark 3 The validity of this approach is investigated in [41], where various models of

conductivity (Hirsmann analytic formula, Hirshman formulation and Shaing formulation) are
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compared with experimental results. The model presented here (Hirshman analytic formula)

is valid for low density, for arbitrary aspect ratio and banana regime (the collisionality goes

to zero), or for finite collisionality and ǫ << 1.

4.2. Bootstrap current source

This current is generated by trapped particles and may be the main source of non inductive

current in specific scenarios (high bootstrap experiments). We present here the model derived

by Hirshman [42] and presented in a comparative perspective in [43]. It is a single ion,

collisionless regime model, which writes in our framework as

< j · B >bs

< B · ∇φ >
=

pe

< 1/R2 >

{

A1

[

1

pe

dpe

dψ
+

pi

pe

(

1

pi

dpi

dψ
− αi

1

Ti

dTi

dψ

)]

− A2

1

Te

dTe

dψ

}

where pi(x, t) is the pressure due to ions and

A1(x, t) = xt

[

0.754 + 2.21Z̄ + Z̄2 + xt

(

0.348 + 1.243Z̄ + Z̄2
)]

/De

A2(x, t) = xt

(

0.884 + 2.074Z̄
)

/De, αi(x) =
1.172

1.0 + 0.462xt

De(x, t) = 1.414Z̄ + Z̄2 + xt

(

0.754 + 2.657Z̄ + 2Z̄2
)

+ x2
t

(

0.348 + 1.243Z̄ + Z̄2
)

where xt(x) is the ratio of trapped to circulating particles ft/(1− ft). Considering the cylindrical

coordinates approximation and defining the bootstrap current as

jbs �
< j · B >bs

Bφ0

=
1

R0

< j · B >bs

< B · ∇φ >
we have

jbs(x, t) =
peR0

∂ψ/∂x

{

A1

[

1

pe

∂pe

∂x
+

pi

pe

(

1

pi

∂pi

∂x
− αi

1

Ti

∂Ti

∂x

)]

− A2

1

Te

∂Te

∂x

}

The relationships pe = eneTe and pi = eniTi are introduced to express the bootstrap current in

terms of temperature and density profiles as

jbs(x, t) =
eR0

∂ψ/∂x

{

(A1 − A2)ne

∂Te

∂x
+ A1Te

∂ne

∂x
+ A1(1 − αi)ni

∂Ti

∂x
+ A1Ti

∂ni

∂x

}

Another possibility is to estimate the fraction of the total current due to the bootstrap effect

with the fitting law proposed in [44].

5. Discretisation of the poloidal flux dynamics

Considering the dynamics obtained in (2), we wish to discretise

ψ̇(x, t) =
η∥(x, t)

µ0a2

(

ψ′′(x, t) +
1

x
ψ′(x, t)

)

+ η∥(x, t)R0 jni(x, t) (8)

where ψ̇ � ∂ψ/∂t and ψ′ � ∂ψ/∂x. Applying the spatial and temporal discretisation methods

(A.1)-(A.3) described in Appendix A, the previous equation writes as (i.e. in the explicit case)

ψ̇(xi, t)ex =
η∥ i, j

µ0a2

(

d2ψi+1, j − d3ψi, j + d4ψi−1, j

)

+
d1η∥ i, j

µ0a2xi

(

ψi+1, j − ψi−1, j

)

+ η∥ i, jR0 jni i, j

= η∥ i, j

(

e1ψi+1, j − e2ψi, j + e3ψi−1, j + R0 jni i, j

)
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with

e1(i) =
d2(i)xi + d1(i)

µ0a2xi

, e2(i) =
d3(i)

µ0a2
and e3(i) =

d4(i)xi − d1(i)

µ0a2xi

where the subscript i = 1 . . .N denotes the spatial discretisation points and j refers to the time

samples. Similarly, for the implicit case we have that

ψ̇(xi, t)im = η∥ i, j+1

(

e1ψi+1, j+1 − e2ψi, j+1 + e3ψi−1, j+1 + R0 jni i, j

)

.

Note that we used jni i, j instead of jni i, j+1 in the previous computation. This is motivated by

the fact that jni i, j is a non-linear function of ψ1...N, j (bootstrap effect and LH source when

the boundary condition is set on Vloop). A formulation with jni i, j+1 would then prevent the

use of a linear computation method that takes the sources at time j as an input. Taking the

time step sufficiently small compared to the system dynamics, this approximation introduces

a negligible error that is worth the computation simplification and is compensated by the fact

that the dynamics considered is stable.

Substituting the previous equalities into

(

ψi, j+1 − ψi, j

δt

)

= h ψ̇(xi, t)ex + (1 − h) ψ̇(xi, t)im

where h ∈ [0, 1] is the ratio of explicit to implicit time discretisation and δt is the sampling

time, a discretised version of (8) finally writes as

Ai,i+1, j ψi+1, j + Ai,i, j ψi, j + Ai,i−1, j ψi−1, j (9)

− Bi,i+1, j ψi+1, j+1 − Bi,i, j ψi, j+1 − Bi,i−1, j ψi−1, j+1 + S i, j = 0

where A j and B j are time-varying N ×N matrices. The notations Ai,k, j and Bi,k, j are introduced

to denote the values of the matrix elements (i, k) at the time sample j, and

Ai,i−1, j = η∥ i, j e3hδt, Ai,i, j = 1 − η∥ i, j e2hδt

Ai,i+1, j = η∥ i, j e1hδt, Bi,i−1, j = −η∥ i, j+1 e3(1 − h)δt

Bi,i, j = 1 + η∥ i, j+1 e2(1 − h)δt, Bi,i+1, j = −η∥ i, j+1 e1(1 − h)δt

S i, j = R0δt
[

hη∥ i, j + (1 − h)η∥ i, j+1

]

jni i, j

for i = 2, . . . ,N − 1 (the values at 1 and N are given by the boundary conditions) and where

δt is the sampling time. Writing the poloidal flux and the sources term in the vector form

ψ j = [ψ1, j ψ2, j . . . ψN, j]
T and S j = [S 1, j S 2, j . . . S N, j]

T

(9) can be expressed, equivalently, in the matrix form

A j ψ j − B j ψ j+1 + S j = 0 ⇔ ψ j+1 = B−1
j A j ψ j + B−1

j S j.

Note that the matrix B j is tridiagonal, by construction. An appropriate inversion method

such as the one proposed in [45] is therefore recommended to compute B−1
j with reduced

computational cost.

The boundary conditions presented in subsection 2.2 may induce some numerical

instability due to the discretisation scheme. Some appropriate specific discretisation methods

are described bellow.
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At the centre: the proposed discretisation method leads to an ill defined central value of the

flux dynamics when x1 = 0 since
ψ′(x1, t)

x1

→ 0

0
.

Consequently, we use the fact that the diffusion term close to the origin can be approximated

by

1

x

∂

∂x

[

x
∂ψ

∂x

]

≈ 1

δx2/4

(δx2/2) × ψ′
1/2

δx2/2
=

4

δx2

ψ′1/2 ≈
4

δx2
2

(ψ2 − ψ1)

with δxi = xi − xi−1 to set the central dynamics as

ψ̇(x1, t) ≈ η∥ 1(t)

[

4

µ0a2δx2
2

(ψ2 − ψ1) + R0 jni 1(t)

]

.

The central terms of (9) are then computed with

A1,2, j = ebc0hη∥ 1, j, A1,1, j = 1 − ebc0hη∥ 1, j, B1,2, j = −ebc0(1 − h)η∥ 1, j+1,

B1,1, j = 1 + ebc0(1 − h)η∥ 1, j+1 and S 1, j = δtR0

(

hη∥ 1, j jni 1, j + (1 − h)η∥ 1, j+1 jni 1, j+1

)

where ebc0 = 4δt/
(

µ0a2δx2
2

)

.

At the edge, with ψ′(1, t): the constraint on the flux variation ψ′(1, t) = u(t) implies that

ψN, j+1 − ψN−1, j+1

δxN

= u j+1 ⇔ −
ψN, j+1

δxN

+
ψN−1, j+1

δxN

+ u j+1 = 0.

The corresponding matrix coefficients are then

AN,N−1, j = AN,N, j = 0, BN,N−1, j = −BN,N, j = −
1

δxN

and S N, j = u j+1.

The computation of u(t) is directly obtained from (6) as u(t) = −R0µ0Ip/(2π).

At the edge, with ψ̇(1, t) a last possibility to set the edge boundary condition is to use

ψ̇(1, t) = Vloop(t). In this case we have

ψN, j+1 − ψN, j − δtVloop, j = 0

and the matrix coefficients are

AN−1,N, j = BN−1,N, j = AN,N−1, j = BN,N−1, j = 0, AN,N, j = BN,N, j = 1 and S N, j = δtVloop, j.

6. Model inputs

The model inputs considered in this work are the boundary conditions at the plasma edge

(ψ′(1, t) or ψ̇(1, t), see subsection 2.2) and the non inductive currents generated by the LHCD

and ECCD systems. Both systems current deposits can be roughly modelled with Gaussian

curves, described in Appendix B, whose shape depends on the global plasma parameters and

power inputs.
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6.1. Inductive current input

The magnetic flux at the boundary ψ̇(1, t) is set by the coils surrounding the plasma and

constitutes the inductive current input. This can be described by the classical transformer

model where the coils generate the primary circuit while the plasma is the secondary, modelled

as a single filament. The dynamics of the coils current Ic(t) is then set by [46]

Lc İc + Mİp + RcIc − Vc = 0

Mİc + Lp İp + Rp

(

Ip − INI

)

= 0

where Rc and Lc are the coils resistance and internal inductance, Rp and Lp are the plasma

resistance and inductance, M is the matrix of mutual inductances, Vc is the input voltage

applied to the coils and INI is the current generated by the non inductive sources. Note that

the values of Rc and Lc are given from the coil properties while M is obtained thanks to an

equilibrium code (i.e. CEDRES on Tore Supra). The magnetic flux at the plasma boundary

close to the coils ψac is then obtained with ψ̇ac = Mİc. Considering the effects of the plasma

current and inductance variations, the loop voltage Vloop is obtained from [47]

Vloop(t) = ψ̇(1, t) = − 1

Ip

∂

∂t













LpI2
p

2













+ ψ̇ac

where Lp = µ0R0li/2 and li is the normalized internal inductance. In practice, a local control

law is set on the poloidal coils to adjust the value of Vc according to a desired value of Vloop,

which can be measured with a Rogowski coil. If the reference is set on the plasma current Ip

instead, then Vc is such that the coils provide for the current necessary to complement the non

inductive sources.

6.2. ECCD deposit

The total EC current is the sum of several deposits due to several EC beams, which parameters

are denoted by the subscript m. Each current deposit is determined by the position of the

steering mirror (Rant,m,Zant,m), its orientation in the poloidal and toroidal plane (φpol,m, φtor,m),

and the emission power Pcd,m, as presented in Figure 2. The results presented in this section

are derived from [48] and [49]. The assumption is that the wave is absorbed by the plasma

(and generates current) for

Rc > R > R∗m

where

Rc = nh

eµ0nbnt

4π2me

Iind

f
and R∗m =

Rant,m√
2| sin φtor,m|

















1 −

√

1 −
4R2

c

R2
ant,m

sin2 φtor,m

















1/2

with nh = 1, 2 the harmonic considered, nb the number of toroidal coils, nt the number of wire

loops per coil, f the antenna frequency (in GHz ) and Iind the coil induction current. For high

magnetic field (O-mode) the first harmonic is absorbed (nh = 1) while for low magnetic field
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(Rant,Zant)

(Rabs,Zabs)

φpol

R∗Rc

R0
R

Z

Figure 2. Poloidal deposit of the ECCD antenna (one mirror).

(X-mode) the deposit is generated by the second harmonic. The maximum is considered to

happen at Rabs,m = (Rc + R∗m)/2 and the Z coordinate of each point is computed from

Zm(R) = Zant,m + (Rant,m − R) tan φpol,m

The flux coordinates of the deposit are then obtained from

ρm(R) =

∣

∣

∣

∣

∣

∣

R − R0

Zant,m + (Rant,m − R) tan φpol,m

∣

∣

∣

∣

∣

∣

.

The global efficiency factor γcd,m(t) is computed as

γcd,m(t) =
Γ1Te(xabs,m)

Te(xabs,m) + 105















1 − Γ2

[

ρm(Rabs,m) + Rabs,m − R0

Rabs,m

]Γ3














where

xabs,m = ρm

Rabs,m

a
, Γ1 =

6

5 + Z̄
, Γ2 =

4(2 + Z̄)

3(1 + Z̄)
and Γ3 =

5 + Z̄

2(1 + Z̄)

and the amplitude of the current deposit Icd,m(t) is obtained from

γcd,m =
Icd,m

Pcd,m

Ron̄e × 10−20 ⇔ Icd,m =
γcd,mPcd,m

Ron̄e × 10−20
= 2πa2

∫ 1

0

x jcd,m(x, t)dx

where jcd,m(x, t) is the current density induced by ECCD.

The next step is to express the coefficients of the Gaussian fitting curve

jcd,m = ϑcd,me−(µcd,m−x)2/2σcd,m

in terms of the engineering parameters derived previously. The mean and the variance are

obtained as

µcd,m =
ρm(Rabs,m)

a
and σcd,m = −

(µcd,m − ρm(Rc)/a)2

2 ln β
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where β is chosen such that jcd,m(xc) = ϑcd,mβ ≈ 0 (i.e. β = 1/10, which is equivalent to

set the Gaussian curve close to zero at Rc). The maximum value of the current deposit is

consequently computed as

ϑcd,m =
γcd,mPcd,m

Ron̄e

[

2πa2

∫ 1

0

xe−(µcd,m−x)2/2σcd,mdx

]−1

.

Finally, the ECCD source is positive if the antenna is directed against the plasma current

Ip (which means that it emits in the same direction as the plasma electrons) and the total

current density profile induced by ECCD is

jcd(x, t) =

6
∑

m=1

jcd,m(x, t) × sign(φtor,m).

Example 1 Tore Supra tokamak ECCD system is currently working with two beams. The

current deposit is set with

max(Pcd) = [250 300] × 103, Rant = [3.53 3.53] and Zant = [0 0.2].

Furthermore, Iind = 137 × Bφ0
R0, nB = 18 and nt = 2028.

6.3. LHCD deposit

The current profile generated by this system cannot be adequately described with an analytical

formula as it is the case for ECCD. Indeed, it strongly depends on the operating conditions

and current density profile [50]. A more realistic way to estimate this profile is to use the

emission of suprathermal electrons provided by the Hard X-Ray (HXR) measurements [51]

to build up a scaling law from engineering control parameters. A classical guess is to suppose

that the LH power deposit corresponds to the emission of electrons with an energy ranging

from 60 to 80 keV , which is measured with the HXR diagnostic. It is motivated by the fact

that LHCD system specifically generates a population of electron in this range of energies.

Neglecting the thermal effect, we then consider that the radial Hard X-Ray emission profile

corresponds to the current density profile jlh(x, t) [50].

The first step is to determine the shape of the current deposit from the HXR

measurements. This can be done empirically from the global parameters thanks to the curve

fitting approach described in Appendix C, where the width whxr(t) and centre of the deposit

µhxr(t) are estimated as

ŵhxr(t) = 0.53B−0.24
φ0

I 0.57
p n̄−0.08P 0.13

LH N 0.39
∥

µ̂hxr(t) = 0.20B−0.39
φ0

I 0.71
p n̄−0.02P 0.13

LH N 1.20
∥

where N∥ is the parallel refractive index that can be computed from phase difference

measurements. Note that a direct measurement of the parameters involved in the scaling

law is available in real-time for advanced control schemes.

The total current deposit Ilh(t) is computed from the plasma and LHCD parameters thanks

to the current drive efficiency ηlh(t) with the fitting laws proposed in [52] (for Tore Supra and
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Figure 3. Measured LH deposit vs. its Gaussian approximation.

JET)

ηlh(t) = 3.39D 0.26
n τ 0.46

th Z̄ −0.13 or ηlh(t) = 1.18D 0.55
n I 0.43

p Z̄ −0.24

where Dn(t) ≈ 2.03 − 0.63N∥ is the normalized directivity. The total current is then obtained

as Ilh(t) = ηlhPlh/ (n̄eR0). The LHCD profile jlh(x, t) is finally described by the Gaussian

approximation

jlh(x, t) = ϑlhe−(µhxr−x)2/2σlh

with

σlh(t) =
(µhxr − whxr)

2

2 ln 2
and ϑlh(t) = Ilh

[

2πa2

∫ 1

0

xe−(µhxr−x)2/2σlhdx

]−1

.

Note that the integral term can be computed using numerical integration techniques or with

the relationship
∫ 1

0

xe−(µhxr−x)2/2σlhdx = −σ
(

e−(1−µ)2/2σ − e−µ
2/2σ

)

+ µ

√

σπ

2

[

er f

(

1 − µ
√

2σ

)

− er f

(

−µ
√

2σ

)]

A comparison between the measured and estimated HXR emission profile is presented

on Figure 3, where Emax is the maximum emission value, for a typical LHCD pulse. The

uncertainty on the measured values close to the origin is high, which further supports the

choice of a Gaussian curve to fit the measurements.

6.4. Resulting model properties

To summarize the results obtained in the previous sections, the proposed model is mainly

based on a physical analysis of the plasma flux diffusion and current sources. This

analysis is completed with some scaling laws to compute the LHCD current deposit, and

possibly the temperature profiles. The shape of LHCD deposit is based on experimental

measurements carried on Tore Supra while its amplitude is established from both Tore Supra



A control-oriented model of the current profile in Tokamak plasma 19

and JET measurements. For control design purposes, the temperature profiles can be roughly

approximated thanks to the proposed scaling laws or an analytical model. Another possibility,

which should be preferred for advanced control design since it fully uses the available

diagnostics, is to consider the temperature profiles as some real-time inputs to the model,

provided by ECE.

The use of scaling laws, even if they imply that the model is not fully predictive, is

motivated by the fact that a large amount of experimental data is available for the actual

tokamaks and their use in the design of future facilities, as illustrated in [38]. The large

amount of physical properties included in the model allows reducing the error and operation

dependency induced by such laws to a level that is acceptable for control design purposes,

where global dependencies are more important then detailed models.

Such an approach is also motivated by the results obtained in [18] and similar works,

where encouraging closed-loop performances for the q-profile control were obtained using

a simple linearised model identified from experimental data. Even if linear approaches

structurally imply a strong dependency on the operating conditions, the previous results have

shown the interest of model-based control design to regulate the plasma profiles. Our aim is

then to contribute to further progresses in this direction by providing for a model with strong

physical dependencies and not restricted to the linear framework, that still allows for real-time

implementation and can be used in non-linear control schemes.

7. Model outputs

Several outputs of major interest for control applications are presented in this section, as

well as a practical method to compensate for the cylindrical approximation and estimate the

security factor and current densities profiles in toroidal coordinates.

7.1. Total current and effective current density

For an arbitrary current denoted with the subscript s to indicate the source (ohmic, LHCD,

ECCD or effective), the total current Is(x, t) is obtained, with the cylindrical approximation,

by integrating the current density js(x, t) on the surface πa2x2 as

Is(x, t) = 2πa2

∫ x

0

x js(x, t)dx.

The effective current density of the plasma jφ(x, t) is obtained from the spacial derivative of

the previous equality and Ampere’s law (4) as

jφ(x, t) =
1

2πa2x

∂I

∂x
=

1

2πa2x

∂

∂x

[

− 2πx

µ0R0

∂ψ

∂x

]

= − 1

µ0R0a2x

∂

∂x

[

x
∂ψ

∂x

]

.

Note that the toroidal current at the plasma edge jφ(1, t) can be used to estimate the model

precision since it is usually measured using a continuous Rogowski coil or a discrete set of

magnetic coils surrounding the plasma.
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7.2. Toroidal induced voltage

It is induced by changes in both the primary circuit current and plasma current, and writes as

V(x, t) = ∂ψ/∂t. It is computed using the results of Section 5 as

Vi, j = hη∥ i, j

(

e1ψi+1, j − e2ψi, j + e3ψi−1, j + R0 jni i, j

)

+ (1 − h)η∥ i, j+1

(

e1ψi+1, j+1 − e2ψi, j+1 + e3ψi−1, j+1 + R0 jni i, j+1

)

for i = 2 . . .N − 1 and with the appropriate boundary conditions for V1, j and VN, j. Note that

the voltage at the edge of the plasma V(1, t) is the loop voltage Vloop(t), which is measured

with a toroidal loop of wire parallel to the plasma.

7.3. Ohmic current

This current is usefull to analyse the various components of the total current profile and is

computed from

< j · B >Ω= σ∥ < E · B >= σ∥E∥Bφ0

where E(x, t) is the electric field. Introducing the voltage profile, we obtain, equivalently,

jΩ(x, t) =
< j · B >Ω

Bφ0

= −
σ∥

R
V(x, t) ≈ −

σ∥

R0

V(x, t).

7.4. Normalized internal inductance

Defined as [40]

li(x, t) �
B̄2
θ
(x, t)

B2
θ
(1)
=

2
∫ 1

0
B2
θ(x, t)xdx

B2
θ
(1)

it is expressed is terms of the poloidal flux using Biot-Savart law Bθ(x, t) = ψ′/(aR0) as

li(x, t) =
2
∫ 1

0
ψ′2(x, t)xdx

ψ′2(1, t)
=

8π2

µ2
0
R2

0
I2

p

∫ 1

0

ψ′2(x, t)xdx.

7.5. Confinement efficiency

This is a global parameter that evaluates the confinement of the plasma pressure by the

magnetic field. It is defined as the ratio between the average perpendicular pressure and the

edge poloidal magnetic pressure [53, 40]

βθ(t) �
< p >

B2
θ
(1, t)/2µ0

=
4

µ0R0I2
p

∫

V

p dV =
8Wth

3µ0R0I2
p

where the last equality is obtained from the cylindrical approximation.
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7.6. Grad-Shafranov (GS) shift and geometrical correction

An alternative to the computation of the GS equilibrium is to approximate the GS shift ∆(x, t)

from the global parameters defined above. This allows for a comparison between the profiles

obtained with the cylindrical approximation and those obtained in toroidal coordinates. The

central value of the GS shift ∆(0, t) is approximated with

∆(0, t) ≈ a2

2R0

(

βθ +
li

2

) (

1 − a

R0

)

.

Assigning a profile shape to the GS shift, it is computed as ∆(x, t) ≈ ∆(0, t)(1 − x2).

The GS shift can be used to estimate the q-profile in toroidal coordinates qtor(x, t).

Indeed, qtor is given by [34]

qtor(ρ, t) = −
Bφ0

R0

∂ψ/∂x















∆′ +
ρ − (R0 + ∆)∆′
√

(R0 + ∆)2 − ρ2















.

The toroidal approximation is then obtained thanks to the relationship

qtor(x, t) =
R0

ax















∆′ +
ax − (R0 + ∆)∆′

√

(R0 + ∆)2 − (ax)2















× q(x, t) (10)

where q(x, t) is the safety factor profile considered previously and computed from the

dynamics of ψ.

The effective plasma current density is more difficult to express in toroidal coordinates

with a GS shift. Indeed, this would require to compute

< jφ · Bφ >= −
FC2 tor

µ0V ′tor

(

∂2ψ

∂ρ2
+
∂ln(C2 tor)

∂ρ

∂ψ

∂ρ

)

with

C2 tor = 4π2















ρ
√

(R0 + ∆)2 − ρ2
− ∆′
√

1 − ∆′2















ρ

ρ − (R0 + ∆)∆′

and V ′tor = 4π2ρ (R0 + ∆ + ρ∆
′/2). A simpler way to take into account the geometry issues

is to use the definition of the effective current Iφ(x, t) = V ′ < B2
φ > /2πµ0 and the

ratio Iφ tor(1, t)/Iφ cyl(1, t) = 1 − ∆0(t)/2 to set the boundary condition (6) as ψ′(1, t) =

−R0µ0Ip(t)/2π × (1 − ∆0(t)/2).

8. Simulations and comparisons with experimental results

The control-oriented model derived in this paper is now compared with some experimental

measurements and the results obtained with the CRONOS code [54], an integrated modelling

tool that solves the transport equations along with the Grad-Shafranov equilibrium in toroidal

coordinates. The complexity of this solver prevents any real-time implementation but it is an

experimentally-based reference that we can use to validate our results. We refer to our model

results with ψsim, as name and subscript for the associated simulator, and compare them with

the experimental (exp) and CRONOS signals.
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This comparison does not intend to be exhaustive but focuses on two specific cases of

main interest. The first one is an ohmic shot with ICRH modulations and illustrates the

diffusive behaviour of the plasma model as well as some discretisation issues. The second

one is a LHCD shot, to illustrate the impact of the proposed scaling laws related to this

system and of a non-inductive current source. In both cases the boundary condition of the

diffusion equation is set with the plasma current Ip(t) and a test case with Vloop(t) illustrates

the LHCD shot. The simulations are carried with 20 uniformly distributed space steps and

with a sampling time of 10 ms.

8.1. Ohmic and bootstrap effects

We analyse here the model results on Tore Supra shot 33632, which doesn’t involve ECCD nor

LHCD. In this shot, the temperature and density profiles are modulated with the ICRH power

and the plasma has the following steady-state characteristics: Ip = 1.0 MA, Bφ0
= 3.19 T and

ne0 = 4.5 − 3.0 × 10−19 m−3.
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Figure 4. Comparison of ψsim (—) with experimental measurements (−−) and CRONOS

signals (−·−) for shot TS-33632, based on the loop voltage (top), the measurement of βθ+ li/2

(middle) and the safety factor at the edge of the plasma (bottom).

The first comparison is performed on the magnetic measurement and presented in

Figure 4, where the top part depicts the loop voltage, the middle part is βθ + li/2 and the

bottom part is the safety factor at the edge of the plasma qtor(1, t) (computed with the corrected



A control-oriented model of the current profile in Tokamak plasma 23

formula (10)). ψsim is run both using the temperature and density profiles measurements

(Figure 4(a)) and in a fully predictive way (Figure 4(b)). The later case means that ψsim has

only the global parameters of the plasma and Picrh as inputs but doesn’t use the temperature

and density measurements. The proposed shape scaling laws and ITERL-96P(th) (for the

thermal confinement time) set the temperature and density profiles. This test case is a worst-

case example since the central safety factor is less than one and there is a high frequency

saw tooth effect on the temperature profiles, which is not explicitly taken into account in the

temperature model.

The results of ψsim and CRONOS are equivalent for Vloop, except during the current ramp up

and ramp down (not represented here) phases, which imply some particular phenomena that

we didn’t consider. The magnetic measurement of βθ + li/2 is best represented with ψsim, even

in the predictive mode. The constant bias on q(1, t) due to the cylindrical approximation

(reported in [34]) is successfully compensated by the geometrical correction proposed in

Subsection 7.6.
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Figure 5. Comparison of ψsim (—) with CRONOS (− · −) for shot TS-33632 at t = 7 s,

based on the safety factor profiles (top) and the current densities (effective jφ and bootstrap

jbs) profiles (bottom).

The second comparison is focused on the safety factor and current densities profiles.

There is no experimental measurements available for these physical variables so we compare

ψsim with CRONOS only. The difference between the use of the temperature and density

profiles, and the use of their approximation is also illustrated and is more significant than in

the first comparison. The q-profile is presented on top of Figure 5: we have an almost perfect

matching between CRONOS and ψsim when the measured profiles are used (Figure 5(a)) and



A control-oriented model of the current profile in Tokamak plasma 24

Mode Discretisation N eVloop
(%) Simulation time (s)

Meas. prof. Uniform 20 7.37 1.09

Predictive Uniform 100 5.56 8.53

Predictive Non-uniform 100 5.46 8.81

Predictive Uniform 20 5.84 1.77

Predictive Non-uniform 20 5.18 1.76

Predictive Uniform 10 5.64 1.30

Predictive Non-uniform 10 4.66 1.27

Table 2. Effect of the spatial distribution

a small difference, located at the centre of the plasma, for the predictive mode (Figure 5(b)).

The same conclusion is verified for the effective current density profile, with a more important

mismatching at the centre. This illustrates the influence of the temperature on the flux

diffusion, through η∥ (which is proportional the T
3/2
e ). Nevertheless, the accuracy of the q-

profile may be sufficient for most control applications, especially considering that this specific

case study includes saw teeth and that the model can be updated with real-time measurements

from the Hard X-rays in advanced control setups.

The impact of the spatial discretisation strategy is presented in Table 2. The non-uniform

distribution δxi = 2/N +
√

ai, where a is such that
∑

δxi = 1, is compared with the uniform

distribution for different numbers of discretisation points N thanks to the resulting error on

the loop voltage

eVloop
�

∫ t f

t0

(

Vloop−ψsim
(t) − Vloop−exp(t)

)2
dt

∫ t f

t0
V2

loop−exp
(t)dt

and to the simulation time (obtained when the simulator is built with Matlabr on an Intelr

2CPU - 2 GHz PC operated with Windows NTr). In each case, the non-uniform distribution

is performing better than the uniform one in terms of the error on Vloop, and increasing the

number of points does not necessarily decrease the error. This issue would clearly deserve

further analysis, as the optimal discretisation would depend on the system properties and

dynamics, but will not be investigated in this work. Instead, we proposed a discretisation

scheme that allows for various possibilities and refer to [55, 56], where the effects of PDE

models discretisation is thoroughly investigated.

8.2. Lower Hybrid effect

The LH system is now introduced in ψsim and compared with CRONOS and experimental

results. The simulator behaviour is tested for the operating conditions of Tore Supra shot

35109, which is characterized by some variations in N∥, a constant Ip (0.6 MA) and a constant

power input (1.8 MW).

The magnetic measurements Vloop(t), βθ + li/2 and q(1, t) are presented in Figure 6,

where experimental measurements, CRONOS and ψsim are compared. The cases with
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Figure 6. Comparison of ψsim (—) with experimental measurements (−−) and CRONOS

signals (−·−) for shot TS-35109, based on the loop voltage (top), the measurement of βθ+ li/2

(middle) and the safety factor at the edge of the plasma (bottom).

measured and estimated temperature profiles are both considered, in Figures 6(a) and 6(b),

respectively. In both cases there is no significant difference on Vloop(t) while q(1, t) is

slightly underestimated (the correction proposed in Subsection 7.6 only partially compensate

the cylindrical approximation effect). The main difference appears on βθ + li/2, which is

underestimated when the temperature profile is estimated.

The safety factor and current densities profiles for ψsim (run with measured and estimated

temperature profiles) and CRONOS are presented in Figure 7. The q-profile provided by

ψsim has a small difference with CRONOS close to the centre, especially on Figure 7(b). The

peculiar behaviour of CRONOS current profiles for x < 0.5 may be due to some computational

artefacts and should not be taken into account into this comparison. The profile of jlh is

reasonably well represented as well as the bootstrap profile, which is particularly accurate

when the measured temperatures and densities are available.

The last profiles, presented on Figure 8, are obtained using Vloop(t) to set the boundary

condition. While these profiles are not as close to CRONOS results as those obtained with

Ip(t), they are still consistent with the plasma behaviour. The difference between the two cases

(Ip and Vloop) mainly comes from the fact that the scaling laws are set with Ip, which means

that the computation error induced on the plasma current when it is considered as an output

is fed back into the model through the inputs and more specially in the predictive mode, as
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Figure 7. Comparison of ψsim (—) with CRONOS (− · −) for shot TS-35109 at t = 7 s, based

on the safety factor profiles (top) and the current densities (effective jφ, LH jlh, ohmic jω and

bootstrap jbs) profiles (bottom).

illustrated in Figure 8(b).

To conclude on this comparison between ψsim and experimental results or CRONOS,

the proposed model provide for some satisfactory results (accurate enough for control

applications), even with a long sampling time and a small number of discretisation points.

The effects of the main control inputs are well represented and the computation time is small

(5 s for shot TS-35109). Comparing the errors on the safety factor profiles introduced by the

use of the temperature scaling laws show that the model, at least for the q-profile, is not too

much sensible to these laws, as long as the orders of magnitude are suitably represented. For

the magnetic measurement βθ + li/2, the scaling laws introduce a constant bias.

9. Conclusions

We proposed in this work a new, control-oriented, model of the current diffusion in

tokamak plasma. The current profile dynamics was modelled by the 1D magnetic flux

diffusion equation, using approximate formulae of the neoclassical resistivity coefficient

and the bootstrap current. The non-inductive current sources were considered as Gaussian

distributions depending on the control inputs, which are derived either from approximate

theoretical formulae for the ECCD or from experimental scaling laws specifically developed

from Hard X-ray Tore Supra data for the LHCD term (the proposed method is detailed and can

easily be applied to other tokamaks, provided that Hard X-ray measurements are available).
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Figure 8. Comparison of ψsim using Vloop as a boundary condition (—) with CRONOS (− · −)

for shot TS-35109 at t = 28.2 s, based on the safety factor profiles (top) and the current

densities (effective jφ, LH jlh, ohmic jω and bootstrap jbs) profiles (bottom).

The input-output relationships and the discretisation issues (in time and space) were

detailed to provide for a model that is computationally efficient and robust, and particularly

suited for advanced control of the plasma profiles. For example, it can be used directly

to estimate the plasma evolution over a short time-range from real-time measurements and

included in model-based predictive control schemes. The model structure also suggests that

nonlinear analysis may be an interesting tool for further developments in plasma profile

control and to estimate the associated performance limitation.

A new simulation tool was developed according to this model, to allow for a comparison

with Tore Supra experimental data and CRONOS code outputs. Based on two different shots,

this comparison was carried out on the magnetic measurements as well as the safety factor

and current densities profiles. The precision of the model and its computational efficiency

have shown to be particularly satisfying for future control applications. Such a tool can also

estimate the safety factor, current densities, toroidal voltage and confinement efficiency in real

time from the global parameters and temperature profiles measurements.

Appendix A. Discretisation method

This section presents a discretisation method that has a variable step in the spatial domain and

is implicit-explicit in the temporal domain. The spatial discretisation method is motivated by

the fact that an improved resolution may be desired in specific regions (such as the plasma



A control-oriented model of the current profile in Tokamak plasma 28

centre) with a limited number of discretisation points. The choice of these points can be

determined by the actuators/sensors placement or by the control objectives. The temporal

discretisation method allows for a trade-off between numerical stability and precision. We

consider the function f (x, t) and denote by fi, j its value at xi, i = 1, . . . ,N, and at time jδt,

where δt is the sampling time and j ∈ N+ is the time index considered.

Appendix A.1. Variable-step spatial differentiation

The sampling interval is defined as δxi = xi − xi−1, with δx1 = x1 = 0. Using Taylor’s series,

we can write the general formula

f (x + ∆x, t) = f (x, t) + ∆x f ′(x, t) +
∆x2

2
f ′′(x, t) + O(3)

where f ′(·) � ∂ f (·)/∂x and O(3) denotes 3rd and higher order terms. At time jδt, we have that

fi+1, j = fi, j + δxi+1 f ′(xi, t) +
δx2

i+1

2
f ′′(xi, t) + O(3)

fi−1, j = fi, j − δxi f ′(xi, t) +
δx2

i

2
f ′′(xi, t) + O(3).

The first order spatial derivative of f (·) is then computed by subtracting fi+1, j from fi−1, j, which

gives

f ′(xi, t) =
fi+1, j − fi−1, j

δxi+1 + δxi

+ O(1).

Similarly, the second order derivative is obtained by adding fi+1, j and fi−1, j:

f ′′(xi, t) = 2
fi+1, j − 2 fi + fi−1, j − (δxi+1 − δxi) f ′(xi, t)

δx2
i+1
+ δx2

i

+ O(1).

Neglecting O(1), we finally write

f ′(xi, t) = d1( fi+1, j − fi−1, j) (A.1)

f ′′(xi, t) = d2 fi+1, j − d3 fi, j + d4 fi−1, j (A.2)

with

d1(i) =
1

δxi+1 + δxi

, d2(i) =
4δxi

(δx2
i+1
+ δx2

i
)(δxi+1 + δxi)

,

d3(i) =
4

δx2
i+1
+ δx2

i

and d4(i) =
4δxi+1

(δx2
i+1
+ δx2

i
)(δxi+1 + δxi)

.

Note that the same formulas hold if the discretisation grid is time-varying.

Appendix A.2. Variable-step spatial integration

The spatial integration of f (x, t) is performed based on the principle of Simpson’s rule, which

is to find a polynomial that fits the curve in three points. Such a polynomial is taken in

Lagrange basis and writes as

P(x) = fi, j

x − xi+1

xi − xi+1

x − xi+2

xi − xi+2

+ fi+1, j

x − xi

xi+1 − xi

x − xi+2

xi+1 − xi+2

+ fi+2, j

x − xi

xi+2 − xi

x − xi+1

xi+2 − xi+1

.
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The integral between two points xi and xi+2 is then
∫ xi+2

xi

f (x, t) dx ≈
∫ xi+2

xi

P(x) dx

≈ δxi+2 + δxi+1

6

[

2δxi+1 − δxi+2

δxi+1

fi, j +
(δxi+1 + δxi+2)2

δxi+1δxi+2

fi+1, j +
2δxi+2 − δxi+1

δxi+2

fi+2, j

]

.

For the general case where the integration is carried out between the two locations xm

and xn,
∫ xn

xm

f (x, t) dx ≈
αint−1
∑

k=0

∫ xm+2k+2

xm+2k

P(x) dx + βint

δxn

δxn + δxn+1

∫ xn+1

xn−1

P(x) dx

where














αint = (n − m)/2 and βint = 0 if (n − m) is even,

αint = (n − m − 1)/2 and βint = 1 if (n − m) is odd.

This integration method is particularly computationally efficient and useful from a

control point of view since it allows to approximate the integral operator with a linear operator

as

∫ xi

0

f (x, t) dt ≈ Mint(i, 1 : i)



























f1, j

...

fi, j



























where Mint ∈ RN×N is the integration matrix, constructed with the previous equations, and

Mint(i, 1 : i) denotes the columns 1 to i of row i.

Appendix A.3. Temporal differentiation

It is performed using an implicit-explicit scheme, as proposed in [33]. For the general case

where the function to be discretised writes as ḟ (x, t) = g(x, t), the time derivative ḟ (·) is

obtained with
(

fi, j+1 − fi, j

δt

)

= h

(

fi, j+1 − fi, j

δt

)

ex

+ (1 − h)

(

fi, j+1 − fi, j

δt

)

im

(A.3)

where h ∈ [0, 1] and
(

fi, j+1 − fi, j

δt

)

ex

= gi, j,

(

fi, j+1 − fi, j

δt

)

im

= gi, j+1.

Note that for the special case of the diffusion equation, g typically depends on f ′, f ′′ and the

source terms. The temporal discretisation method described here corresponds to the Crank-

Nicholson scheme if h = 0.5.

Appendix B. Gaussian distribution

The ECCD and LHCD systems generate distributed plasma current deposits, which are

represented as Gaussian distribution. The general equation describing such a distribution

is given by

j′ni(x, t) = jni(x, t)
µ(t) − x

σ(t)
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where, in the classical probabilistic terminology, µ(t) is the mean and σ(t) is the variance of

the function considered. Integrating the previous equation, we have

jni(x, t) = ϑ(t)e−(µ(t)−x)2/2σ(t)

where ϑ(t) sets the maximum value of jni(x, t) (at x = µ). A discretised version is obtained

thanks to the central difference method as

jni,i+1, j − jni,i−1, j

δxi+1 + δxi

= jni,i, j

µ j − xi

σ j

⇔ jni,i+1, j = (δxi+1 + δxi)
µ j − xi

σ j

jni,i, j + jni,i−1, j

with the boundary conditions

jni,1, j = ϑ j e
−µ2

j
/2σ j and jni,2, j = ϑ j e−(µ j−x2)2/2σ j

for both CD systems.

Appendix C. Optimal fitting method

Given a set of experimental measurements and an appropriate fitting function, this section

describes an optimal identification method to determine the fitting function parameters. Some

proper references on numerical solutions by iterative search and gradient methods can be

found in [57]. More specifically, a similar design method was used in [58] for the optimal

control of systems with stochastic components in the dynamics. We consider here the steady

state (time-invariant) behaviour of a physical quantity as a function described by a set of nm

measurements (i.e. the sampling times), which has to be large enough to ensure that the

resulting fitting function represents the physical phenomena. The set of measured inputs is

I =
{

I1, I2, . . . , Ini

}

∈ Rnm×ni

where ni is the number of physical quantities that influence the identified one, and the

measured outputs are denoted by y ∈ Rnm . The estimated output is then

ŷ(ϑ, i) = f (I (i), ϑ), i = 1 . . . nm

where f (·) is the fitting law, I (i) corresponds to the input measurements of the ith experiment

and ϑ is the vector of design parameters.

Appendix C.1. General formulation

A classical identification problem is to find ϑ that minimizes the difference between the

measured and estimated data. This is done in this section by choosing a cost function J

which reflects the variance of the estimation error from a given set of measurements:

J(ϑ) =
1

nm

nm
∑

i=1

||y(i) − ŷ(ϑ, i)||2
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The output error is then minimized for ϑ∗ satisfying

ϑ∗ = arg min
ϑ

J(ϑ)

This optimization problem can be solved with a descent algorithm, using the sensitivity of ŷ(i)

with respect to ϑ, expressed as S (ϑ, i) � ∂ŷ(i)/∂ϑ. The gradient writes as

∇J(ϑ) = − 2

nm

nm
∑

i=1

(y(i) − ŷ(ϑ, i))S (ϑ, i)

and the optimal parameter ϑ∗ is obtained by moving along the steepest slope −∇J(ϑ) with

a step α, which has to be small enough to ensure that ϑ̇ = −α∇J(ϑ) converges to ϑ∗. This

step is chosen according to Newton’s method and writes as α � (ΨJ(ϑ) + υI)−1, where υ is

a positive constant introduced to ensure strict positiveness and ΨJ(ϑ) is the pseudo-Hessian,

derived using the Gauss-Newton approximation as

ΨJ(ϑ) =
2

nm

nm
∑

i=1

S (ϑ, i)S (ϑ, i)T

The optimal set of fitting parameters is finally obtained with the variation law

ϑl+1 = ϑl − αl∇J(ϑl) (C.1)

αl = (ΨJ(ϑl) + υI)−1 (C.2)

for l sufficiently large.

Remark 4 The convergence speed of the algorithm is inversely proportional to the design

parameter υ but choosing this parameter too small may create some oscillations in the

algorithm.

Appendix C.2. Linear regression

The previous method is particularly efficient when the output is estimated with a linear

regression technique. Indeed, in that case we can write ŷ(ϑ, i) = f (I (i))×ϑ, i = 1 . . . nm, and

the sensitivity function is simplified as

S (ϑ, i) = S (i) = f (I (i)) (C.3)

Consequently, the pseudo-Hessian functionΨJ and α do not depend on the design parameters.

A commonly used fitting function is given by

Ô = α0I
α1

1
I
α2

2
I
α3

3
. . . I

αni
ni

The linear regression is then performed with the output
{

y = ln(O)

ŷ(ϑ) = ln(α0) + α1 ln(I1) + α2 ln(I2) + . . . + αni
ln(Ini

)

where O is the measured output, and the previous algorithm is applied with

α = [ln(α0) α1 α2 . . . αni
]T

f (I ) = [1nm
ln(I1) ln(I2) . . . ln(Ini

)] (C.4)

where 1nm
is a column vector of nm ones.
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Appendix C.3. LH deposit estimation

The proposed method is applied to the estimation of the lower hybrid current deposit width

Wx with the fitting function (with 6 parameters)

ŵhxr = α0B
α1

φ0
Iα2

p n̄α3 P
α4

LH
N
α5

∥

The optimal parameter vector is computed from the variation law (C.1)-(C.2) with the

sensitivity function (C.3)-(C.4). A set of 111 averaged measurements, performed on Tore

Supra shots ranging between the shot numbers 34496 and 36165, determines the values of I

and O. This optimal parameter determination method is also applied to estimate the centre

of the deposit profile (radial position of the maximum value) and provide for the coefficients

α0, . . . , α5 of the relationship

µ̂hxr = α
′
0B

α′
1

φ0
I
α′

2
p n̄α

′
3 P

α′
4

LH
N
α′

5

∥
.
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