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A Control–Oriented Model of Underwater Snake Robots

E. Kelasidi, K. Y. Pettersen and J. T. Gravdahl

Abstract— In this paper we consider swimming underwater
snake robots that are fully immersed in water and moving in
a virtual horizontal plane. The main objective of the paper is
to develop a model that is well suited for control design and
stability analysis for swimming snake robots. The proposed
model is notably less complex than the existing models, while
significant parameters such as added mass effects, linear drag
forces, torques due to the added mass and linear drag forces,
are all taken into account in the modeling. An extensive analysis
of a previously proposed complex model of underwater snake
robots ([1]) is presented, and from this analysis a set of
essential properties that characterize the overall motion of
underwater snake robots is derived. The proposed control-
oriented modeling approach captures these essential properties,
resulting in a less complex model that is well suited for control
design, and at the same time has the same essential properties
as the complex model. A qualitative validation of this is given
by simulations that present a comparison of representative
parameters of the complex and the control-oriented models for
lateral undulation and eel-like motion.

I. INTRODUCTION

For centuries, engineers and scientists have gained in-

spiration from the natural world, while searching for ideal

solutions to technical problems. More recently, this process

has been termed as biomimetics. Every biological organism

living in an aquatic environment, swims by generating a

propulsive force through the interaction between the body

and the surrounding fluid that is created through a rhyth-

mic body movement. Generally, studies of hyper-redundant

mechanisms (HRMs), also known as snake robots, have

largely restricted themselves to land-based studies, for which

several models for snake robots have been proposed [2].

Empirical and analytic studies of snake locomotion were

reported by Gray [3], while, among the first attempts to

develop a snake prototype, the work of Hirose [4] is essential.

Recently, HRMs are presented that are suited for aquatic

propulsion as well [5], [6].

The underlying propulsive force generation mechanism

for underwater snake robots has been studied through ex-

ploration of the fluid dynamics surrounding the body. In

this field, several mathematical models of underwater snake

robots have been developed [7], [8], [5], [9], [6], [10], [11],

[12]. However, all these models are rather complex and
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thereby challenging to investigate analytically. In [13], a

simplified model of [12] is used to develop a feedback con-

troller that achieves the desired body oscillation, orientation,

and locomotion velocity. However, the added mass effects

and the torques due to the added mass and drag effects

are neglected [13]. In [1], the authors present a modeling

approach for underwater snake robots that results in a closed

form solution. This modeling approach takes into account

both the linear and the nonlinear drag forces (resistive fluid

forces), the added mass effect (reactive fluid forces), the fluid

moments and current effect.

It is well known that the hydrodynamic forces (fluid

forces) induced by the motion of a rigid body in an under-

water environment are very complex and highly nonlinear.

Therefore, the first contribution of this paper is conducting an

extensive analysis of the complex model of a fully immersed

underwater snake robot moving in a virtual horizontal plane

that was presented in [1]. Based on this analysis the hydro-

dynamic effects which are essential for the overall behavior

of the swimming snake robot are identified. These essential

properties form the basis of the second contribution of this

paper, which is a control-oriented model of underwater snake

robot locomotion aimed at control design and stability anal-

ysis purposes. In particular, we develop a control-oriented

model that is better suited for analysis and design, while

capturing these essential properties.

The development of the control-oriented model is inspired

by the modeling approach that was presented in [2], [14]

for a land-based snake robot. In these references the authors

developed a simplified modeling approach for a planar snake

robot describing the body shape dynamics in terms of the

translational motion of the links, something which is seen

to significantly simplify the equations of motion. Motivated

by this work, we will model the underwater snake robot

locomotion by the translational motion of each link, in order

to exploit that translational motion is generally less complex

to model than rotational one.

This paper is organized as follows. Section II gives a brief

description of the complex model of underwater snake robots

from [1]. This is followed in Section III by an analysis of

this model in order to identify the essential properties of

underwater snake robot. Section IV presents the development

of the control-oriented model of underwater snake robots. In

Section V simulation results are presented, comparing the

behavior of the complex and the control-oriented models, to

validate that the control-oriented model captures the essential

properties of swimming snake robot locomotion. Conclusions

and suggestions for future research are presented in Section

VI.



II. A COMPLEX MODEL OF THE ROBOT
This section gives a brief description of the complex model

of an underwater snake robot moving in a virtual horizontal

plane presented in [1]. For further details, please see [1].

A. Kinematics of the underwater snake robot

The underwater snake robot consists of N rigid links of

equal length l, interconnected by N − 1 joints. The mass

of each link is uniformly distributed so that the link CM

(center of mass) is located at its center point (at length l/2

from each side of the joint). All N links have the same

mass m and moment of inertia J. The total mass of the

snake robot is therefore Nm. The robot is assumed to move

in a virtual horizontal plane, fully immersed in water, and

has N+2 degrees of freedom (N link angles and the x-y

position of the robot). The position of the robot is denoted

by p = (px, py)∈R
2. The link angle of each link i ∈ 1, . . . ,N

of the snake robot is denoted by θi ∈R, while the joint angle

of joint i ∈ 1, . . . ,N −1 is given by φi = θi+1 −θi.

B. Equations of motion of the complex model
In this study we choose to consider a fluid dynamic model

where only the added mass effect (reactive fluid forces),

linear drag forces (resistive fluid forces) and the fluid torques

due to the added mass and drag forces are considered. This

leads to simpler equation of motion compared to the full

hydrodynamic modeling approach described in [1].

Under anisotropic drag forces, a link has two drag fluid

coefficients, ct and cn, describing the resistive fluid force

in the tangential (along link x axis) and the normal (along

link y axis) direction of the link, respectively. The added

mass fluid coefficient in the the normal direction of the link

is denoted by µn. It worth mentioning that the added mass

effects are modeled under the assumption that the added mass

fluid parameter in the x direction is equal to zero (µt = 0),

because the added mass of a slender body in longitudinal

direction can be neglected compared to the body mass [1].

As shown in [1], the fluid forces on the link i, denoted by

fi ∈ R
2, can be written in terms of the link velocity, ẋi and

ẏi, and the link acceleration, ẍi and ÿi, as

fi =−

[

Fa
x (θi) Fa

xy(θi)

Fa
xy(θi) Fa

y (θi)

][

ẍi

ÿi

]

−

[

Fd
x (θi) Fd

xy(θi)

Fd
xy(θi) Fd

y (θi)

][

ẋi

ẏi

]

,

(1)
where Fa

x (θi) = µn sin2(θi) (2a)

Fa
xy(θi) =−µn sinθi cosθi (2b)

Fa
y (θi) = µn cos2(θi) (2c)

Fd
x (θi) = ct cos2(θi)+ cn sin2(θi) (2d)

Fd
xy(θi) = (ct − cn)sinθi cosθi (2e)

Fd
y (θi) = ct sin2(θi)+ cn cos2(θi) (2f)

It is shown in [1] that the equation of the motion of the
underwater snake robot in terms of link angles, θ ∈ R

N ,
the position of the CM of the underwater snake robot,
p = (px, py) ∈ R

2, and the joint torques, u ∈ R
N−1, can be

written as
θ̈ = g(θ , θ̇ , ṗx, ṗy,u) (3a)

Nmp̈x =
N

∑
i=1

fx,i (3b)

Nmp̈y =
N

∑
i=1

fy,i (3c)

where g(θ , θ̇ , ṗx, ṗy,u) ∈ R is a function of the state vector

and the joint torques. The model of the underwater snake

locomotion given by (3) is complex from a stability analysis

perspective. This complexity is the main motivation behind

the control-oriented model developed in Section IV.

III. ANALYSIS OF THE COMPLEX MODEL
In this section, the complex model given by (3) will

be analyzed in order to identify a set of properties that

characterize the motion of an underwater snake robot. These

properties will be used as a basis for the development of a

control-oriented model of an underwater snake robot moving

in a virtual horizontal plane in Section IV.

A. Analysis of propulsive forces
We begin by deriving an expression for the total force

propelling the CM of the underwater snake forward. We

choose the inertial coordinate system such that the forward

direction of the motion of the underwater snake robot is along

the global positive x axis, which means that the propulsive

force is simply the sum of all external forces on the robot in

the global x direction. Hence, the total force propelling the

CM of the robot forward is given (3b) as

Nmp̈x =
N

∑
i=1

fx,i =−
N

∑
i=1

Fa
x (θi)ẍi −

N

∑
i=1

Fa
xy(θi)ÿi

−
N

∑
i=1

Fd
x (θi)ẋi −

N

∑
i=1

Fd
xy(θi)ẏi.

(4)

From Eq. (4), we can see that the total propulsive force

consists of four components: a) first one involving the

linear acceleration of the link in the forward direction of

motion, Fa
x (θi)ẍi, b) the second one involving the linear

acceleration normal to the direction of motion, Fa
xy(θi)ÿi, c)

the third one involving the linear velocity of the link in the

forward direction of the motion, Fd
x (θi)ẋi, and d) the last

one involving the linear velocity of the link normal to the

direction of motion, Fd
xy(θi)ẏi. It is easily seen that, due to

the minus signs in (4), all the components (2a)-(2f) provide a

positive contribution to the propulsive force only if they are

negative. Considering that the fluid coefficients due to the

drag and the added mass effects are positive, ct , cn and µn,

are always positive, the expressions Fa
x (θi) (2a) and Fd

x (θi)
(2d) are also positive. Initially, we consider the case that

when the robot is moving in the forward direction with

ṗx > 0 and p̈x > 0, which means that ẋi > 0 and ẍi > 0,

and therefore the products Fa
x (θi)ẍi and Fd

x (θi)ẋi are always

positive. Hence, we can conclude that in this case these

products are not contributing to the forward propulsion of

the robot. In addition, it is easily seen that when the robot

is moving forward with ṗx > 0 and p̈x < 0, which means

that ẋi > 0 and ẍi < 0, the product Fa
x (θi)ẍi is contributing to

the forward propulsion of the robot. Note that the magnitude

of the propulsive force increases by decreasing the linear

acceleration of the link in the forward direction, ẍi.
Now, what remains is to analyse the effects of the products

Fa
xy(θi)ÿi and Fd

xy(θi)ẏi. A plot of Fa
xy(θi) for different values

of µn is shown in Fig. 1a, while a plot of Fd
xy(θi) for different

values of cn and ct = 1 is shown in Fig. 1b. In each plot, the

angle between the link and the forward direction, θi, is varied

from −90o to 90o. We see that when cn = ct , i.e. the drag



coefficients are equal, there is no effect on the propulsive

force of the underwater snake robot due to the drag effect,

since this gives Fd
xy(θi) = 0. It is easily seen (Fig. 1b) that

when the cn > ct the component Fd
xy(θi) is negative as long

as θi is positive, and vice versa. This means that the product

Fd
xy(θi)ẏi is negative as long as sgn(θi) = sgn(ẏi). In addition,

from Fig. 1a it is seen that for any positive value of µn

the component Fa
xy(θi) is negative as long as θi is positive,

and vice versa. It should be noted that the only case that

Fa
xy(θi) = 0 is the case where the parameter µn = 0, i.e. the

case where the added mass effects are neglectable. Hence, we

can conclude that for any positive values of parameters µn

the product Fa
xy(θi)ÿi is negative as long as sgn(θi) = sgn(ÿi).

Additionally, we see that for a given ÿi and ẏi, a link

produces its highest propulsive force when it forms an

angle of ±45o with the forward direction of motion. It

should be noted that the magnitude of the propulsive force

becomes greater by increasing cn with respect to ct , or by

increasing the magnitude of the sideways link velocity, ẏi, by

increasing the parameter µn, or by increasing the magnitude

of the sideways link acceleration, ÿi and by increasing the

parameter µn, or by decreasing the linear acceleration of the

link in the forward direction, ẍi.
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Fig. 1: The mapping from the sideways link motion to the

forward propulsion for different fluid coefficients
Remark 1: In Fig. 1 we present the mapping from the

sideways link motion to the forward propulsion for some

fluid coefficients values without missing the generality of

the analysis [2].

Now, we can summarize the properties of an underwater

snake robot locomotion based on the previous analysis.

Property 1: For an underwater snake robot described

by (3) with cn > ct , µn > 0, ẋi > 0 and ẍi > 0 forward

propulsion is produced by link velocity and link acceleration

components that are normal to the forward direction.

Property 2: For an underwater snake robot described by

(3) with cn > ct , µn > 0, ẋi > 0 and ẍi > 0, the propulsive

force generated by the transversal motion of link i is positive

as long as sgn(θi) = sgn(ẏi) and sgn(θi) = sgn(ÿi).
Property 3: For an underwater snake robot described by

(3) with cn > ct , µn > 0, ẋi > 0 and ẍi > 0, the magnitude of

the propulsive force produced by link i increases when |θi|
increases as long as |θi|< 45o.

Property 4: For an underwater snake robot described

by (3) with cn > ct , µn > 0, ẋi > 0 and ẍi < 0 forward

propulsion is produced by link velocity and link acceleration

components that are normal to the forward direction and

also by the linear acceleration of the links in the forward

direction.

It is worth mentioning that these results are general,

because no assumptions have been made concerning the

actual motion pattern of the underwater snake robot.

B. Analysis of turning locomotion

In the previous subsection, we determined how propul-

sion is generally achieved with an underwater snake robot,

while in this subsection we will investigate how turning

motion is achieved through simulations. In particular, we

will investigate the turning motion for the two most common

locomotion patterns for swimming snakes: In the first case

the underwater snake robot moves by lateral undulation and

in the second case the robot moves by eel-like undulation.

Both gait patterns, lateral undulation and eel-like undulation,

consist of horizontal waves that are propagated backward

along the underwater snake body from head to tail, with

the difference that in the latter the amplitude of the wave

increases from the head to tail. The lateral undulation is

realized by controlling each joint of the robot according to

φ∗
i = α sin(ωt +(i−1)β )+φ0, i = 1, . . . ,n−1 , (5)

where the parameter α corresponds to the amplitude of the

serpentine wave that propagates along the body of the snake

robot, ω is the angular frequency of the sinusoidal joint

motion, β determines the phase shift between the sequential

joints, and φ0 is the joint offset that is used to control the

direction of the motion.

The eel-like motion is achieved by propagating lateral

axial undulations with increasing amplitude from nose to tail.

A simple equation is considered for the eel-like motion by

controlling each joint of the snake robot according to the

reference signal (see. e.g. [1])

φ∗
i = α

(

n− i

n+1

)

sin(ωt +(i−1)β )+φ0, i = 1, . . . ,n−1 , (6)

where the parameter α(n− i)/(n+1) corresponds to the

increasing amplitude, from nose to tail. In both cases, the

parameter φ0 is a joint angle offset value that controls the

overall direction of the locomotion. The effect of changing

this parameter is illustrated in Fig. 2 for lateral undulation

and eel-like motion. This presents the results of a simulation

of an underwater snake robot described by (3) with N = 10

links of length l = 0.14 m.

The trace of the head is shown in Fig. 2a-2b, while the

average joint angle, defined as φ̄ =∑
N−1
i=1 φi/(N−1), is shown

in Fig. 2c-2d. The underwater snake robot is controlled

according to lateral undulation, (5), and eel-like motion, (6),

with α = 30o, ω = 120o/s and β = 40o. In addition, the offset

angle is set to φ0 = 5o in the time interval t ∈ [20,30] and

φ0 = −10o in the time interval t ∈ [50,60], while the offset

angle is set to φ0 = 0o outside these two time intervals.

From Fig. 2, we can see that the robot swims forward

without turning as long as the average joint angle, φ̄ , is

oscillates around zero, while the direction of the motion

changes when the average joint angle is non-zero. It is seen

(Fig. 2) that in the case of eel-like motion the average joint

angle oscillates with larger amplitude compared to lateral

undulation around the expected direction. The positive (resp.

negative) average joint angle produces a counterclockwise

(resp. clockwise) rotation of the underwater snake robot.



In addition, we can see that the speed of the directional

change is correlated with the amplitude of the average joint

angle. Moreover, Fig. 2a-2b show that the rate of directional

change is larger when the robot moves with larger forward

velocity (for ω = 120o/s). This indicates that the speed of the

directional change, for some fixed joint angle offset, becomes

greater by increasing the forward velocity of the underwater

snake robot. Through the simulation study based on the

complex model we observe a set of qualitative properties

and similar formulations as the ones that observed for the

ground snake robot locomotion presented in [2], [14]. We

will now summarize the observations of this simulation study

of the turning locomotion of an underwater snake robot.

Proposition 1: During both lateral undulation and eel-like
motion for an underwater snake robot described by (3) with

cn > ct and µn > 0, the overall direction of the locomotion

remains constant as long as the average joint angle is zero.

However, this will change in the counterclockwise (resp.

clockwise) direction when the average joint angle is positive

(resp. negative). The speed of directional change of the

locomotion becomes greater by increasing the amplitude of

the average joint angle and/or by increasing the forward

velocity (assuming that the average joint angle is non-zero).
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Fig. 2: Turning Locomotion Analysis

C. Analysis of link motion

From the analysis in Section III.A it is clear that un-

derwater snake locomotion consists of periodic body shape

changes that generate external forces that propel the robot

forward. According to the Property 1, the forward motion is

inducted by the motion of the links normal to the forward

direction. The above result led us to wonder if the body shape

changes can be characterized in terms of the translational

displacements of the links instead of the rotational joints

motion. This would be similar to the approach presented for

the ground snake robot in [2], [14]. Generally, the model

given by (3), which describes the rotational link motion of

an underwater snake robot, is quite complex.

In order to support this idea, we consider an underwater

snake robot described by (3) forced to move with lateral

undulation, (5), and eel-like motion, (6), along the global

x axis with φ0 = 0o. Fig. 3 show the relative displacement

between the CM of two arbitrarily chosen links (link 3 and

link 4) in the global x and y directions. These plots indicate

that, during both lateral undulation and eel-like motion, the

relative displacements between the CM of two adjacent links

along the forward direction of motion are approximately

constant, while the relative displacements normal to the

direction of motion oscillate around zero. Hence, based

on these simulation results we can compose the following

proposition.

Proposition 2: During both lateral undulation and eel-like

motion, the change in body shape consists mainly of relative

displacement of the CM of the links normal to the direction

of motion. In addition, the relative displacement of the CM

of the links along the forward direction can be approximated

as constant.

Remark 2: The analysis of the underwater snake robot

locomotion gives Property 1-4 and Proposition 1-2, which

are similar to the ones presented in [2], [14] for a ground

snake robot. However, in this paper, the properties are

developed under the assumption that the snake robot moves

according to lateral undulation and eel-like motion, and also

the hydrodynamic effects are analyzed.
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Fig. 3: Relative displacement of the CM of link 3 and 4

IV. A CONTROL–ORIENTED MODEL OF AN

UNDERWATER SNAKE ROBOT

Using the results from the previous section, we now

develop a control-oriented model of an underwater snake

robot moving in a virtual horizontal plane. The model is

derived for control design and stability analysis purposes.

A. Overview of the modeling approach

The idea behind the control-oriented model of underwater

snake robot locomotion is based on the simplified modeling

approach presented in [2], [14] for a ground snake robot. In

particular the idea is to describe the body shape changes of an

underwater snake robot as linear displacements of the links

with respect to each other instead of rotational displacements.

Proposition 2 indicates that these linear displacements should

be normal to the forward direction of the motion, while

Property 1 points out that these transversal displacements of

the links are that which propel the underwater snake robot

forward. This suggest that we can model the revolute joints of

an underwater snake robot as prismatic (translational) joints.

In the following subsections, the kinematics and dynamics

of the underwater snake robot will be modeled in terms of

the mathematical symbols described in Table I and illustrated

in Fig. 4a-4b. The following vectors and matrices are used

in order to derive the model.



TABLE I: Definition of mathematical terms
Symbol Description

N The number of links

l The length of a link

m Mass of each link

φi Normal direction distance between links i and i+1

υφ ,i Relative velocity between links i and i+1

θ Orientation of the underwater snake robot

υθ Angular velocity of the underwater snake robot

(ti,ni) Coordinates of the CM of link i in the t −n frame

(pt , pn) Coordinates of the CM of the robot in the t −n frame

(px, py) Coordinates of the CM of the robot in the global frame

(υt ,υn) Forward and normal direction velocity of the robot

ui Actuator force at joint i

( fx,i, fy,i) Fluid force on link i in the global frame

( ft,i, fn,i) Fluid force on link i in the t −n frame

θ
t

n
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y
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(a) The control-oriented model
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,

e =
[

1 . . . 1
]T

∈ R
N , ē =

[

1 . . . 1
]T

∈ R
N−1,

D̄ = DT
(

DDT
)−1

∈ R
N×N−1,

where A,D ∈ R
(N−1)×N .

B. Kinematics of the underwater snake robot

The underwater snake robot is assumed to move in a

horizontal plane, fully immersed in water, and has N+2

degrees of freedom. The motion of the robot is defined with

respect to the fixed global frame, x− y, and the t −n frame

that is always aligned with the robot (Fig. 4a) The origin of

both frames are fixed and coincide. The direction of the t

axis is denoted as the tangential or forward direction of the

robot, and the direction of the n axis as the normal direction.

As shown in Fig. 4, the global frame position of the CM of

the underwater snake robot is denoted by (px, py)∈R
2, while

(pt , pn)∈R
2 is the t−n frame position. θ ∈R stands for the

global frame orientation and is expressed with respect to the

global x axis with counterclockwise positive direction. The

angle between the global x axis and the t axis is also θ since

the t −n frame is always aligned with the snake robot. The

relationship between the t −n frame position and the global

frame position is given by

pt = px cosθ + py sinθ , pn =−px sinθ + py cosθ (7)

The relationship between the global frame velocity of the

robot and the t −n frame velocities is given by

ṗx = υt cosθ −υn sinθ , ṗy = υt sinθ +υn cosθ , (8)

and the inverse relationship is given by

υt = ṗx cosθ + ṗy sinθ , υn =−ṗx sinθ + ṗy cosθ . (9)

Differentiating (7) with respect to time and inserting (9) gives

ṗt = υt + pnθ̇ , ṗn = υn − pt θ̇ . (10)

We denote the t −n frame position of the CM of the link i

by (ti,ni)∈R
2. The N−1 prismatic joints of the underwater

snake robot control the normal direction distance between the

links. As sees in the Fig. 4b, the normal direction distance

between the link i and link i+1 is given by

φi = ni+1 −ni (11)

and represents the coordinate of joint i. In the control-

oriented, we refer to φi as a joint coordinate instead of a

joint angle. The holonomic constraints is expressed in matrix

form for all links as
Dt+ lē = 0, Dn+φ = 0, (12)

where t = [t1, . . . , tN ] ∈ R
N , n = [n1, . . . ,nN ] ∈ R

N , and φ =
[φ1, . . . ,φN−1] ∈ R

N−1. The t − n frame position of the CM

of the underwater snake robot can be written in terms of the

link positions as
pt = eT t/N, pn = eT n/N, (13)

The link positions can be expressed as
t = pt e− lD̄ē, n = pne− D̄φ . (14)

By differentiating (14) with respect to time and inserting

(10), the individual link velocities are given as

ṫ = (υt + pnθ̇)e, ṅ = (υn − pt θ̇)e− D̄φ̇ . (15)

The kinematics of an underwater snake robot, described in

this subsection, is similar to that of a snake robot moving

on land. In this section we provide a brief presentation of

the kinematics for completeness. An extensive presentation

of the snake robot kinematics can be found in [2], [14].

Additionally, it is necessary to derive the equations of linear

accelerations of the links in order to express the fluid forces

below. Hence, the linear accelerations of the links are found

by differentiating the velocity of the individual links (15)

with respect to time, which gives

ẗ = (υ̇t + ṗnθ̇ + pnθ̈)e, n̈ = (υ̇n − ṗt θ̇ − pt θ̈)e− D̄φ̈ . (16)

C. Fluid dynamic model

In this subsection, we employ a fluid model that takes

into account the added mass effects and linear drag forces,

similar to the hydrodynamic model described in Section II.

The hydrodynamic forces, which act on the CM of each link,

must be defined so that Property 1-3 from Section III be also

applicable for the control-oriented model of the robot.
By assembling the forces in (1) on all links in vector form,

we can rewrite the global frame fluid forces on the links as

f =

[

fx

fy

]

=

[

fAx

fAy

]

+

[

fDx

fDy

]

, (17)

where fAx
and fAy

represent the effects from added mass

forces and are expressed as
[

fAx

fAy

]

=−





µn (Sθ )
2 −µnSθ Cθ

−µnSθ Cθ µn (Cθ )
2





[

Ẍ

Ÿ

]

, (18)

where Sθ = diag(sinθ) and Cθ = diag(cosθ) The vectors

fDx , fDy present the effects from the linear drag forces (19).
[

fDx

fDy

]

=−





ct (Cθ )
2 + cn (Sθ )

2 (ct − cn)Sθ Cθ

(ct − cn)Sθ Cθ ct (Sθ )
2 + cn (Cθ )

2





[

Ẋ

Ẏ

]

(19)
Assumption 1: When θi is small, the following approxi-

mations hold sin2 θi ≈ 0, cos2 θi ≈ 1 and sinθi cosθi ≈ θi (see

e.g. [14]).
Remark 3: Assumption 1 is valid for (| θi |< 20o) as it is

shown in [2], [14]. We will therefore approximate the added

mass and drag forces based on this assumption.
The velocities ẋi and ẏi correspond to the velocity of link

i in the tangential and normal directions of the underwater



snake robot, respectively, the forces fx,i and fy,i correspond to

the fluid forces on link i in the tangential and normal direc-

tions, respectively. By denoting the fluid force components

on link i in the t −n frame of the control-oriented model by

ft,i and fn,i, respectively and letting the t −n frame velocity

and acceleration components of link i be given by (ṫi, ṅi)
and (ẗi, n̈i), we then have that

ẋi = ṫi, ẏi = ṅi, ẍi = ẗi, ÿi = n̈i, fx,i = ft,i, fy,i = fn,i. (20)

Using Ass. 1 and θi ≈ (φi−1 +φi)/2l (see e.g. [2], [14]), the

fluid forces in the tangential, ft ∈ R
N , and normal, fn ∈ R

N ,

directions can be written as
[

ft

fn

]

=

[

fAt

fAn

]

+

[

fDt

fDn

]

, (21)

where
[

fAt

fAn

]

=−





0N×N −
µn

2l
diag(AT φ)

−
µn

2l
diag(AT φ) µnIN





[

ẗ

n̈

]

θ̇=0,θ̈=0

(22)
and

[

fDt

fDn

]

=

[

−ct IN cpdiag(AT φ)

cpdiag(AT φ) −cnIN

][

ṫ

ṅ

]

θ̇=0

. (23)

The parameter cp = (cn − ct)/2l is a propulsion coefficient

which maps the normal direction link velocities and the

joint coordinates into propulsive fluid forces in the forward

(tangential) direction of the underwater snake robot.

Remark 4: We can seen from (22) and (23) that the

propulsive force on link i that propel the robot forward are

produced by the normal direction link velocity, ṅi, and by the

normal direction link acceleration, n̈i, which is in agreement

with Property 1. Furthermore, we see from (22) and (23)

that the magnitude of the propulsive forces produced by

link i is increased by increasing | φi−1 + φi |, which from

θi ≈ (φi−1+φi)/2l, corresponds to increasing | θi |. This is in

agreement with Property 3. Finally, we can see from (22) and

(23) that the forward direction force components produced

by ṅi and n̈i is positive when sgn(φi−1 + φi) = sgn(ṅi) and

sgn(φi−1+φi)= sgn(n̈i), which is in agreement with Property

2. Hence, we conclude that the simplified/control-oriented

fluid model directly captures the Property 1-3 from Section

III.A, which means that we can argue that the simplified fluid

model in (22), (23) is qualitatively similar to the complex

fluid model in (17).

Remark 5: In this control-oriented modeling approach we

choose to disregard the link velocity components due to the

angular velocity θ̇ of the underwater snake robot and the

link acceleration components θ̈ , due to the angular velocity.

These are reasonable assumptions since the dynamics of the

angular motion of the underwater snake robot will generally

be much slower than the body shape dynamics. Furthermore,

these assumptions simplify the fluid model significantly.

Inserting (15) into (22) and (16) into (23) with θ̇ = 0 and

θ̈ = 0 the final expressions for the added mass effects and

linear drag forces can be written as
[

fAt

fAn

]

=−





0N×N −
µn

2l
diag(AT φ)e

−
µn

2l
diag(AT φ)e µnINe





[

υ̇t

υ̇n

]

−





0N×N −
µn

2l
diag(AT φ)

−
µn

2l
diag(AT φ) µnIN





[

0N

−D̄φ̈

]

(24)

and
[

fDt

fDn

]

=

[

−ct υt e+ cpdiag(AT φ)(υne− D̄φ̇)

−cnυne+ cnD̄φ̇ + cpυt diag(AT φ)e

]

. (25)

D. Dynamics of the underwater snake robot

This subsection presents the equations of motion for the

underwater snake robot. The forces and torques acting on

link i are visualized in Fig. 4b and the force balance for link

i in global frame coordinates is given by

mẗi = ft,i +ht,i −ht,i−1, mn̈i = fn,i −ui +ui−1 (26)

where ft,i and fn,i are the fluid forces, ht,i and ht,i−1 are

the joint constraint forces on link i from link i+1 and link

i−1, respectively, and ui and ui−1, produce relative motion

between the links in the normal direction. The force balance

equations for all links may be expressed in matrix form as

mẗ = ft +DT ht , (27)

mn̈ = fn −DT u, (28)

where ht = [ht,1, . . . ,ht,N−1]
T ∈ R

N−1 and u =
[u1, . . . ,uN−1]

T ∈ R
N−1. Premultiplying (28) by D/m

gives
Dn̈ =

1

m
Dfn −

1

m
DDT u. (29)

By differentiating (12) twice with respect to time, it is

seen that Dn̈ =−φ̈ . We can therefore write the body shape

dynamics of the underwater snake robot as

φ̈ =−
1

m
Dfn +

1

m
DDT u. (30)

Inserting (21) into (30) and using the easily verifiable rela-

tions De = 0, DD̄ = IN−1, Ddiag(AT φ)e =−ADT φ , we get

φ̈ =−
cn

m+µn
φ̇ +

1

m+µn
(

µn

2l
ADT υ̇t +cpADT υt)φ +

1

m+µn
DDT u. (31)

The tangential and normal direction accelerations of the

CM of the underwater snake robot, denoted by υ̇t and υ̇n,

respectively, are given as the sum of all tangential and normal

direction forces on the links divided by its mass. This gives
[

υ̇t

υ̇n

]

=
1

Nm

[

eT 0N×N

0N×N eT

][

ft

fn

]

, (32)

where we can see that the joint constraint forces, ht , and

the actuator forces, u, are cancelled out when the link

accelerations are summed. Now, inserting (21) into (32)

and using easily verifiable relations, eT diag(AT φ)e = 2ēT φ ,

eT D̄ = 0, and eT diag(AT φ)D̄ = φ T AD̄, we get

υ̇t = k3

(

k12cp(ē
T φ)2 − k2ct N

)

υt + k3

(

k22cpēT φ − k1cnNēT φ
)

υn

− k3(k2
k1

2
φ T AD̄φ̈ + k2cpφ T AD̄φ̇)

(33)

υ̇n = k3

(

Nm2cpēT φ − k1ct NēT φ
)

υt + k3

(

k12cp(ē
T φ)2 −N2mcn

)

υn

− ēT φk3(k1cpφ T AD̄φ̇ +
k1

2

2
φ T AD̄φ̈)

(34)
where k1 = µn/l, k2 =Nm+Nµn and k3 =

1

Nmk2 − (k1ēT φ)2
.

We also need to model the dynamics of the snake robot

orientation. As mentioned in previous sections, the idea

behind the control-oriented modeling approach of the under-

water snake robot locomotion is to disregard the rotational

motion of the links and instead only consider the translational

displacements of the links. The orientation of the robot with

prismatic joints is defined as θ , which is also the angle of

all the links.
Proposition 1 states that the direction of the forward

motion changes when the average of the joint angles is



oscillates around a non-zero value and that the speed of

direction changes is increased by increasing the average of

the joint angles and/or by increasing the forward velocity.

This observation should also hold for the control-oriented

model. The direction of the forward motion in the control-

oriented model is given by the orientation θ , the forward

velocity is given by υt , and the average of the joint angles

corresponds to the average of the joint coordinates ēT φ/(N−
1). Hence, using Prop. 1, the overall torque that induces the

rotational motion of a snake robot should be

θ̈rotation = λ2υt
ēT φ

N −1
(35)

where λ2 is a constant parameter which gives the scaling of

the mapping from average coordinate and forward velocity

to rotational acceleration. The induced torque is multiplied

by υt since the snake robot otherwise would experience a

constant angular velocity, even in the case of a nonzero

average joint coordinate in the rest mode. Furthermore, fluid

forces act on the underwater snake robot in order to induce

fluid torques that oppose the rotational motion. Since the

fluid forces are the linear drag forces and added mass effects,

we can assume that the rotational fluid torques are obtained

due to the added mass and the linear drag forces. We choose

to model the torque due to the added mass effect as

θ̈am =−λ3θ̈ , (36)

where λ3 is a constant parameter which indicates the torque

coefficient due to the added mass effect. In addition, we

model the torque due to the linear drag forces as

θ̈drag =−λ1θ̇ , (37)

where λ1 is a constant parameter which determines the drag

torque opposing to the rotation of the underwater snake

robot. By combining (35), (36) and (37) we can write the

control-oriented model of the rotational dynamics of the

underwater snake robot as

θ̈ =−
λ1

1+λ3
θ̇ +

λ2

(N −1)(1+λ3)
υt ē

T φ , (38)

Remark 6: Although, the model of θ̈ is not based on first

principles of the rotational dynamics (see e.g. [2]) of an

underwater snake robot, we can presume that the behavior

of this model will be qualitatively similar to the behavior of

an underwater snake robot with revolute joints. It will also

be quantitatively similar when the rotation parameters λ1, λ2

and λ3 are properly chosen. This claim will be supported by

simulation results in the following section.

E. Complete control-oriented model

We now present the complete control-oriented model of

the underwater snake robot. The state vector of the model is

chosen as

x =
[

φ T ,θ , px, py,v
T
φ ,υθ ,υt ,υn

]T

∈ R
2N+4, (39)

where φ ∈ R
N−1 are the joint coordinates, θ ∈ R is the

absolute orientation, (px, py) ∈ R
2 is position of CM in the

the global frame, vφ = φ̇ ∈ R
N−1 are the joint velocities,

υθ = θ̇ ∈ R is the angular velocity, and (υt ,υn) ∈ R
2 are

the tangential and normal direction velocities of the robot.

As illustrated in Fig. 4b, each link is influenced by fluid

forces, linear drag forces and the added mass effects, and

constraint forces that hold the joints together. The complete

control-oriented model of the robot can be written as
φ̇ = vφ (40a)

θ̇ = υθ (40b)

ṗx = υt cosθ −υn sinθ (40c)

ṗy = υt sinθ +υn cosθ (40d)

v̇φ =−
cnN

k2
vφ +

N

k2
(

k1

2
ADT υ̇t + cpADT υt)φ +

N

k2
DDT u (40e)

υ̇θ =−
λ1

1+λ3
υθ +

λ2

(N −1)(1+λ3)
υt ē

T φ (40f)

υ̇t = k3

(

k12cp(ē
T φ)2 − k2ct N

)

υt + k3

(

k22cpēT φ − k1cnNēT φ
)

υn

− k3(k2
k1

2
φ T AD̄v̇φ + k2cpφ T AD̄vφ )

(40g)

υ̇n = k3

(

Nm2cpēT φ − k1ct NēT φ
)

υt + k3

(

k12cp(ē
T φ)2 −N2mcn

)

υn

− ēT φk3(k1cpφ T AD̄vφ +
k1

2

2
φ T AD̄v̇φ )

(40h)

where u ∈ R
N−1 are the transformed actuator forces at the

joints.
Remark 7: It should be noted that in this paper the control-

oriented model is derived based on Property 1-3 and the

Proposition 1-2. This modeling approach is not able to

capture the results in the case pointed in Property 4.

V. COMPARISON BETWEEN THE COMPLEX AND

THE CONTROL–ORIENTED MODEL

This section presents simulation results for lateral undu-

lation and eel-like motion in order to compare the complex

underwater snake robot model given by (3) and the control-

oriented model given by (40). Both models were imple-

mented and simulated in Matlab R2011b. The dynamics was

calculated using ode45 solver in Matlab with a relative and

absolute error tolerance of 10−6.

A. Simulation parameters

We consider an underwater snake robot has N = 10 links

of length l = 0.14 m. The mass of each link is m = 0.6597

kg and it chosen to fulfil the neutrally buoyant assumption

(cf. [1]). Furthermore, we choose the fluid forces and torque

coefficients as ct = 0.2639, cn = 4.2, µn = 0.3957, λ1 =
2.2988×10−7, λ2 = 4.3103×10−4, for the complex model

and ct = 0.45, cn = 5, µn = 0.4, λ1 = 0.5, λ2 = 20, λ3 =
0.01 for the control-oriented. Please note that defining a

general mapping between the fluid coefficients in the two

models remains a topic of future work. The coefficients

here are chosen through trial and error. The joint reference

coordinates were calculated according to the motion pattern

lateral undulation and eel-like motion, defined in (5) and (6),

respectively. The values of the controller parameters are set

ω = 120o/s, β = 40o in both models, while the values of

parameter α are presented with each simulation results. In

addition, the joint offset angle was set to φ0 = α/6 in the

time interval t ∈ [40,70], φ0 = −α/6 in the time interval

t ∈ [130,160] and φ0 = 0 outside of these two time intervals.

Both models are simulated with the initial values set to

zero. Furthermore, in order to achieve the desired locomotion

patterns given in (5) and (6) we use the following PD-

controller for both complex and control-oriented model:

u = φ̈∗+ kd(φ̇
∗− φ̇)+ kp(φ

∗−φ), (41)

with the controller gains kp = 200 and kd = 50.



B. Simulation results

Simulation results for lateral undulation and eel-like mo-

tion of the underwater snake robot are presented. In partic-

ular, the amplitude of (5) and (6) is set to the values 13.9o,

for the complex model and 4.3 cm for the control-oriented

model. These amplitudes correspond to the link angle θi =
20o (cf. [2] for details about how to transform between

angular and translational link motion). The simulation results

are shown in Fig. 5 for lateral undulation, while simulation

results for eel-like motion are shown in Fig. 6. In all figures,

the motion of CM for both models is presented in subfigure

(a), while subfigures (b) and (c) show the CM velocity of

the underwater snake robots in the global x and y direction,

respectively. Furthermore, subfigure (d) shows the orientation

of the underwater snake robots, which is given by θ in the

control-oriented model, and is estimated as the average of the

link angles in the complex model, i.e. as θ̄ = (1/N)∑
N
i=1 θi.

The simulation results, for both lateral undulation and eel-

like motion, indicate that the qualitative behavior of the

underwater robot expected by the control-oriented model

is similar to the behavior corresponding to the complex

model. In addition, choosing the presented values for the

fluid coefficients, we also achieved a good quantitative

similarity between the two models. The similar behavior of

the two models confirms that the control-oriented model can

capture all the effects that determine the overall motion of

the underwater snake robot. Hence, the proposed control-

oriented modeling approach could be used to develop a

general analysis and control design, in order to get results

that would be applicable for the complex model.
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Fig. 5: Simulation results for lateral undulation

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a model of the kinematics and

dynamics of a planar, underwater snake robot, aimed at

control design and stability analysis purposes. The model,

which takes into account the added mass effects, the linear

drag forces, the torques due to the added mass and linear

drag forces, is significantly less complex than the existing

models on underwater snake robots. An extensive analysis

of the complex model has been presented and a set of

essential properties that characterize the overall motion of

an underwater snake robot was derived. Simulation results

for lateral undulation and eel-like motion indicate that the
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Fig. 6: Simulation results for eel-like motion

proposed control-oriented model captures these essential

properties, and that the control-oriented and the original

model have similar qualitative and quantitative behavior. In

future work, this modeling approach will be the base for the

development and analysis of controllers for underwater snake

robot locomotion.
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