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Abstract— In this paper, we want to study how natural
and engineered systems could perform complex optimizations
with limited computational and communication capabilities.
We adopt a continuous-time dynamical system view rooted
in early work on optimization and more recently in network
protocol design, and merge it with the dynamic view of
distributed averaging systems. We obtain a general approach,
based on the control system viewpoint, that allows to analyze
and design (distributed) optimization systems converging to the
solution of given convex optimization problems. The control
system viewpoint provides many insights and new directions
of research. We apply the framework to a distributed optimal
location problem and demonstrate the natural tracking and
adaptation capabilities of the system to changing constraints.

I. INTRODUCTION

In recent years, there has been a renewed research interest

towards finding efficient algorithms for solving convex opti-

mization problems in parallel or distributed fashion [1]. This

trend has been mainly motivated by the explosion in size and

complexity of data-sets used in statistical machine learning

[2] and applications in modern communication networks [3]

and other applications in networked systems.

However, new applications are emerging where the

discrete-time algorithmic paradigm may no longer be ap-

propriate. These are situations where the computational

capability is elementary, severely limited, and distributed

among many nodes physically separated and connected over

(possibly noisy) networks, or where we want to analyze how

natural, social, and biological systems could collectively opti-

mize. In this paper, we depart from the classical algorithmic

view and focus on the control system view. We turn back

to early work on optimization done by economists [4] and

unfortunately neglected by most current optimization text-

books, which shows that there is a very natural continuous-

time optimization system associated with the Lagrangian of

the convex optimization problem at hand. Such dynamical

system is guaranteed to converge to an optimal solution

under mild conditions and can be studied as a feedback

control system. The control system viewpoint provides many

insights and new directions of research. In particular, we can

now study disturbance rejection properties of optimization

systems, the robustness to parameter and model uncertainty,

and discuss tracking and adaptation capabilities. We can also

envision designing controllers for optimization systems.

We demonstrate that the proposed approach can unveil the

natural distributed structure in the optimization problem by
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applying it to a basic Network Utility Maximization problem,

[5]–[8]. We then turn our attention to problems where the

distributed structure needs to be imposed as these problems

need to be solved over networks, [9]-[14]. We show that the

Laplacian of the available network interconnection, assumed

to be undirected and strongly connected, can be used to guar-

antee convergence. Expanding on our previous work [10],

we show that, differently from most available approaches,

the network needs to be used twice. This guarantees also

some good (communication) noise rejection properties of the

optimization system. The result can be seen as the natural

extension of [15] from dynamic distributed computation

of averages to dynamic distributed computation of optimal

solutions to convex optimization problems. This approach

contrasts with existing algorithmic methods which often use

dominated convex mixing with diminishing step-size, or

primal-dual methods where the primal step requires each

agent to solving an optimization problem often constrained.

Finally, we extend the framework to more general distributed

optimization problems and illustrate it by an application to

distributed location.

II. CENTRALIZED PROBLEMS WITH EQUALITY

CONSTRAINTS

Consider the following constrained optimization problem.

p∗ = min
x∈Rn

f(x)

s.t. Ax = b
(1)

where A ∈ R
m×n and b ∈ R

m. To provide the main idea

and to simplify the derivations, in this section, we assume

that A has full row rank, f : R
n → R is strictly convex

and differentiable, and that Problem (1) is feasible and has

a finite optimal cost −∞ < p∗ < ∞. We use x∗ to denote

the optimal solution to problem (1).

From the classical Lagrange multiplier theory, we con-

struct the Lagrangian function F (x, ν) : R
n × R

m → R

as

F (x, ν) = f(x) + νT (Ax − b)

We consider the following dual problem associated with the

primal Problem (1).

d∗ = max
ν∈Rm

min
x∈Rn

F (x, ν) (2)

Under current assumptions, F (x, ν) is convex in x and

concave in ν, and p∗ = d∗, i.e., the duality gap is zero.

To solve the problem, we consider the following dynami-

cal system which has been investigated in [4].

ẋ = −∇xF (x, ν)
ν̇ = ∇νF (x, ν)

(3)
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where ∇x and ∇ν represent the gradients with respect to

x and ν respectively. Substituting F (x, ν) in the above

equations, we have

ẋ = −∇xf(x) − AT ν
ν̇ = Ax − b

(4)

It is important to note that the above dynamical system

always converges to the optimal solution x∗ under the current

assumptions.

Theorem 2.1: Consider system (4), for any initial values

of x and ν, we have limt→∞ x(t) = x∗.
Here, we present a modern version of the proof in [4], which

is not a readily available reference.

Proof. The equilibrium points of the system are the solutions

to the equations

0 = −∇xf(x̄) − AT ν̄
0 = Ax̄ − b

(5)

In other words, the equilibrium points satisfy the KKT condi-

tions(see, e.g., [16], Chap. 5). Under the current assumptions

we know that there is only one set of vectors (x∗, ν∗) which

satisfies the KKT conditions, namely the optimal primal and

dual solutions. Thus let (x̄, ν̄) = (x∗, ν∗).
Next, we study the stability property of the equilibrium

point. Let x̃ = x−x∗ and ν̃ = ν − ν∗. In the new variables,

the differential equations (4) can be written as follows

˙̃x = −∇xf(x) + ∇xf(x∗) − AT ν̃
˙̃ν = Ax̃

(6)

Consider the quadratic candidate Lyapunov Function

V (x̃, ν̃) = 1
2 x̃T x̃ + 1

2 ν̃T ν̃. Then

V̇ (x̃, ν̃) = x̃T ˙̃x + ν̃T ˙̃ν = −x̃T∇xf(x) + x̃T∇xf(x∗)

From the global under-estimator property of the gradient

[16], we know that

f(y) ≥ f(x) + ∇T
x f(x)(y − x), ∀x, y ∈ dom f

In particular, the inequality is strict when y �= x if f is

strictly convex.

Therefore, ∀x �= x∗,

f(x)− f(x∗) > ∇T
x f(x∗)x̃, f(x∗)− f(x) > −∇T

x f(x)x̃.

Adding both side of the equations, we have that

V̇ (x̃, ν̃) = −∇T
x f(x)x̃+∇T

x f(x∗)x̃ < 0, ∀x �= x∗, (x̃ �= 0)

However, V̇ (x̃, ν̃) = 0 on the set E = {x̃, ν̃ | x̃ = 0}.

To shows that the equilibrium point (x∗, ν∗) is globally

asymptotically stable, we need to invoke LaSalle invariant

principle and show that there are no trajectories of (6) in E
besides the equilibrium point x̃ = 0, ν̃ = 0.

When x̃ = 0, we have that (6) reduces to

˙̃x = −AT ν̃
˙̃ν = 0.

It follows that under the standard assumption that A has

full row rank, the only solution E is indeed (0, 0), which

completes the proof.

Fig. 1. The block diagram of system (4).

For a proof requiring twice differentiable cost and using

a different Lyapunov function see [7]. The result is quite

interesting as it links the global under-estimator property of

the gradient of a convex function with a dynamical property

of convex functions as dissipators. When we will apply this

result to distributed optimization problems, it will allow to

simple interconnected agents to solve complex optimization

problems with only local gradient sensing capabilities.

A. Control Perspective

It is instructive to consider the block diagram of the

dynamical system (4). Figure 1 shows the block diagram de-

scribing the interconnection among the various components.

This has allowed us to focus on the feedback system and

its properties. It shows fairly apparent that the dynamical

systems for convex optimization is subject to the fundamental

limitation of feedback. Note that how the vector b part

of the constraint can be interpreted as an input command

or disturbance to the dynamical system, as shown later in

Section VI-B. This naturally bears the question of dynamic

performance of the system like tracking and rejection. Note

that b can change over time and correspondingly the system

can adapt the convergence point leading to the possibility of

real-time adaptive optimization.

For the large class of quadratic programming problems

the cost function f(x) = xT Px + qT x + r where P > 0 is

positive definite. Then, ∇xf(x) = Px + q. In this case, the

system is Linear Time Invariant, and both b and q represent

exogenous inputs. The scheme can then be analyzed and

improved using the vast array of advanced analysis and

design methodologies from control theory. This may require

us to move away from the general purpose optimization

algorithms, which work for most problems, and will allow to

design special purpose algorithms for specific applications,

especially in the cases of network distributed optimization

problems.

III. PROBLEMS WITH INEQUALITY CONSTRAINTS

In this section, we consider problem (1) with additional

inequality constraints defined by convex functions. We use

logarithmic barrier to handle the inequality constraints al-

though other approaches are possible. Consider the problem

p∗ = min
x∈Rn

f(x)

s.t. Ax = b
fi(x) ≤ 0, i = 1, . . . , p

(7)
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where each fi : R
n → R is a convex function. We assume

that there is an x which is strictly feasible and the slater’s

condition is satisfied [16], i.e., an x that satisfies the equality

and all strict inequality constraints, so the duality gap is zero.

Problem (7) can be approximated by the following one.

p∗(γ) = min
x∈Rn

f(x) −
1

γ

p
∑

i=1

log(−fi(x))

s.t. Ax = b

(8)

which reduces to the previous case. It is well known that

p∗(γ) → p∗ as γ → ∞ as p∗(γ) − p∗ < p/γ. Since

the inequality constraints are replaced by the barrier cost

function, the block diagram of Problem (8) is similar to that

of Figure 1. The inequality constraints affect the gradient

feedback loop in this case.

When fi(x) is linear in x, i.e., fi(x) = CT
i x, we can use

slack variables to obtain an equivalent form of Problem (8).

Namely:

p∗ = min
x∈Rn

f(x)

s.t. Ax = b
CT

i x + zi = 0, i = 1, . . . , p
zi ≥ 0

(9)

Then, the barrier function approximation for this problem is

the following one.

γp∗(γ) = min
x∈Rn

γf(x) −

p
∑

i=1

log(zi)

s.t. Ax = b
CT

i x + zi = 0, i = 1, . . . , p

(10)

which has the same optimal solution, x∗
γ , for γ > 0.

Let f0(x, z) = γf(x) −
∑p

i=1 log(zi). Then, ∇xf0(x) =
γ∇xf(x) and ∇zi

f0(x, z) = − 1
zi

. The new dynamical

system is then given, following (3), by

ẋ = −∇xF (x, z, ν, λ) = −γ∇xf(x) − AT ν − CT λ

ż = −∇zF (x, z, ν, λ) = vec

[

1
zi

]

− λ

ν̇ = ∇νF (x, z, ν, λ) = Ax − b

λ̇ = ∇λF (x, z, ν, λ) = Cx + z
(11)

We have the following result.

Theorem 3.1: Consider system (11) with γ > 0, for all

initial conditions z(0) > 0, x(0), limt→∞ x(t) = x∗
γ .

Note that λi and zi are coupled together for each i.
Moreover, the bank of integrators and the other diagonal

blocks that indicate that the variable updates are mostly

decoupled. The coupling can only come from the cost and the

constraints. This observation directly affects the derivation of

distributed solutions to certain optimization problems, as we

will see next.

IV. NATURALLY DISTRIBUTED PROBLEMS

The optimization system approach can unveil the funda-

mentally distributed nature of certain problems.

A. Network Utility Maximization

As an example, we consider a basic network utility max-

imization problem, which has attracted a lot interest from

networking community, see, e.g., [5]–[8]. The problem is to

find the optimal allocation of transmission rate which could

be deliverable by the network. This translates into affine

inequality constraints, subject to positive variables. Namely:

p∗ = max
x∈Rn

N
∑

j=1

fj(xj)

s.t. Cx ≤ d
xj ≥ 0

(12)

where fj(xj)s are strictly concave functions.

Because, f(x) =
∑N

j=1 fj(xj), ∇xf(x) is block diagonal,

where the size of each block is equal to the size of each

variable xj . C is a matrix of zeros and ones, where the ones

represent feasible relay nodes on a viable path. The nodes

is assumed to have information about the congestion on the

path, or in other words, the ith node has access to the ith

row of Cx − d.

Employing the log barrier function with minor rearrange-

ment, we set to solve the approximation

γp∗(γ) = − min
x∈Rn

N
∑

j=1

(−γfj(xj) − log(xj)) −

M
∑

i=1

log(zi)

s.t. Cx + z − d = 0

and applying (3), we have the dynamical systems solver for

problem (12) as

ẋj = γ∇xfj(xj) + 1
xj

− [CT λ]j , j = 1, . . . , N

żi = 1
zi

− λi, j = 1, . . . , M

λ̇i = [Cx]i + zi − di

(13)

The reader should notice how the updates of x j and zi, and

λi depends only on local information. However, feedback

from the nodes on the path is needed to compute [C T λ]j .

Finally, we see the emergent natural separation between

access control and congestion control protocols. Further note

that we do not require each node to solve an optimization

problem at each step, as done in primal-dual algorithms e.g.,

[8], but only to move along a favorable direction. This last

point may have important implications, as we see that no

much intelligence or computational capabilities are required

at each node.

V. NETWORK DISTRIBUTED CONVEX OPTIMIZATION

The key feature of the problem in the previous section

is in the agent’s utility function, which only depends on

the agent’s local variables, i.e., fj(xj). In this section we

consider problems where the agent’s utility function depends

on a global variable, i.e. x. Of course, this is a generalization

of the previous case as the utility function may depend on

a smaller subset of the variables x. Thus, we consider the
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following problem:

p∗ = min
x∈Rn

N
∑

j=1

fj(x)

s.t. Ax = b
Cx ≤ d

(14)

The above problem without or with more general constraints

has been considered in [9]–[14] where most discrete time

algorithms adopt a local convex mixing and vanishing step

size on local gradient searching with exception of [10] that

uses constant step size in certain situations. Here, we extend

the computation model of [10] to solve constrained problem

(14) using the framework developed before.

Assumption 5.1: We make the following assumptions.

1) Each agent knows (or is subject to) a subset of the

constraints Ajx = bj and Cjx ≤ dj ;

2) The union of the agents’ constraints is given by Ax = b
and Cx ≤ d;

3) The sets of equality constraints for each agent may

overlap;

4) The agents/nodes are connected over a strongly con-

nected communication network, with graph Laplacian

L, assumed to be symmetric.

Related to the above optimization problem are the following

local problems

p∗j = min
x∈Rn

fj(x
j)

s.t. Ajx
j = bj

Cjx
j ≤ dj

(15)

where each agent solves a local optimization problem based

on the local constraints, and xj denotes the agent’s variables.

A key distinctive feature of our approach is that we use the

available network graph Laplacian to implicitly impose the

agreement among the various local xjs. It is not difficult to

verify the following formulation is equivalent to the original

Problem (14) under the current assumptions.

p∗d = min
x∈Rn

N
∑

j=1

fj(x
j)

s.t. Ajx
j = bj , j = 1, . . . , N

Cjx
j + zj = dj , j = 1, . . . , N

∑N
j=1 L:,jx

j = 0

zj ≥ 0 j = 1, . . . , N

(16)

where zj ≥ 0 is the slack variable, L:,j is the j column of L.

(with appropriate Kronecker product when x j has dimension

larger than 1). Note that the last constraint requires xj =
xi for all i, j ∈ {1 . . .N}. In the literature various other

approaches, based on the Method of Multipliers (MoM) [1],

have been proposed to impose these last constraints. The

approach in here, although related to MoM, is more natural

when a network interconnection is already in place and is

completely distributed as it does not require a global network

collector connected to all nodes as in [2].

(a)

PI compesator

(b)

Fig. 2. Augmented Lagrangian corresponds to a PI (instead of an Integrator)
feedback controller action

The dynamic equations of the approximate distributed

solver are the following ones.

ẋj = −γ∇xjfj(x
j) − AT

j νj − CT
j λj −

∑N

i=1 LT
ijη

i

żj = vec

[

1
z

j

i

]

− λj

ν̇j = Ajx
j − bj

λ̇j = Cjx
j + zj − dj

η̇j =
∑N

i=1 Lijx
i

(17)

Note that the only coupling in the dynamical equations comes

from the existing equality constraints, through A, and the

network L. System (17) may be better suited to describe

optimization behaviors in biological and social systems, and

it can be seen as the natural generalization of the dynamic

consensus system of [15].

Theorem 5.2: Consider system (17) with γ > 0, for all

initial conditions zj(0) = zj > 0, xj(0) = xj , j = 1, . . . , N ,

limt→∞ xj(t) = x∗
γ .

A. Augmented Lagrangian and Control Interpretation

In the special case of unconstrained optimization, Problem

(16) reduces to

p∗d = min
x∈Rn

N
∑

j=1

fj(x
j)

∑N
j=1 L:,jx

j = 0

(18)

Therefore the associated dynamical system is

ẋ = vec
[

∇xj fj(x
j)

]

− Lη
η̇ = Lx

(19)

where we have used L = LT . Figure 2(a) shows the resulting

block diagram. In [10], the following dynamical system was

proposed to solve Problem (18) instead.

ẋ = vec
[

∇xj fj(x
j)

]

− Lx − Lη
η̇ = Lx

(20)

These equations were derived from a different approach than

the one proposed in this paper. It is interesting to note that

the extra term, namely Lx in the first equation is equal

to η̇ from the second equation. Therefore, the dynamical

system (20) includes a proportional action. Figure 2(b)
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shows the resulting scheme where the Proportional Integral

compensation is highlighted.

We next show that system (20) can be the result of the

approach proposed in this paper. Consider the following

optimization problem

p∗au = min
x∈Rn

N
∑

j=1

fj(x
j) +

1

2
xT Lx

∑N

j=1 L:,jx
j = 0

(21)

Clearly p∗au = p∗d since the constraint force Lx = 0, thus

the added extra cost is zero if the problem is feasible. This

technique is known as augmented lagrangian method, see,

e.g., [17]. It is easy to verify that the dynamical system for

solving the above problem is (20). From a control system

prospective, having a PI compensator instead of just an in-

tegrator in the loop, leads to improved stability/convergence

properties. The augmented lagrangian method is known for

its better convergence properties. We now see that these

properties are justified from the feedback control system

prospective.

Remark 5.3: 1) The augmented scheme, by introducing

extra damping, allows us to relax the assumption that the f i

be strictly convex to just convex. This property extends the

approach to solving distributed linear programs.

2) The PI compensation associated with the augmented

scheme generalizes to constrained problems (15). This leads

to the question of finding more general and powerful con-

trollers and points to a new research direction of controller

design for (distributed) optimization systems.

3) In contrast with the classical algorithmic methods, it may

now be possible to uncover these newly derived networked

structures with local gradient sensing (or others like them) in

biological networks and realize that some systems are indeed

cooperatively optimizing.

VI. MORE GENERAL DISTRIBUTED PROBLEMS

In this section we consider problems of the following form.

For simplicity we restrict our attention to unconstrained

optimization problems. Let J = {1, . . . , M}, and xj ∈ R
k,

j ∈ J . Also, let Ji ⊂ J , for i = 1, . . .N and yi =
vec[xj ]j∈Ji

. Consider

p∗ = min
xj∈Rk,j∈J

N
∑

i=1

fi(yi). (22)

In this case, each fi may be a function of a subset of

the xjs and for i �= k, fi and fn may share a subset of

variables. When Ji = J of all i = 1, . . .N , we have recover

problems of the form (14), while when J i = {i}, we recover

formulations like (12) (albeit the constraints).

Since xj may appear in several fi’s, Let Ij =
{i | fi is function of xj}, and let pj be the cardinality of Ij .

We then let each node/agent to be associated to one f i. The

agent is in charge of updating its variables y i. If fi is function

of xj for some j, then we denote the estimate of node i of

xj as xi
j . Then all the agents in Ij will have local estimates

of xj , which they need to reconcile through communication.

Fig. 3. Block diagram of the optimization system (24). The LTI network
distributed controller is in feedback with the gradient system.

We describe such network by Lj , the Laplacian of a strongly

connected and undirected graph. If p j ≥ 2, Lj has size pj , is

symmetric and has only one eigenvalue at zero and associate

eigenvector 1pj
. If pj = 1, indicating the variable is local to

only one of the fi’s, then Lj = []. To keep the exposition

simple and without loss of generality, we assume that no

variable is local to only one function.

Let Lj = Lj ⊗ 1k. Based on Lj we define L =
Diag [Lj]j∈J

. Let zj = vec[xi
j ]i∈Ij

and z = vec[zj]j∈J .

Finally, we introduce a permutation operator mapping y =
vec [yi]i∈I

to z. z = Πy. Consider the following optimiza-

tion problem equivalent to (22)

p∗ = min
xj∈Rk,j∈J

N
∑

i=1

fi(yi) +
1

2
yT ΠT LΠy

s.t. LΠy = 0

(23)

Then we have the following dynamical system described in

Figure 3.

ẏ = −ΠT LΠy − ΠT Lη − vec [∇yi
fi(yi)]

N

i=1
η̇ = LΠy.

(24)

which converges to the optimal solution of Problem (22).

Note how the resulting block diagram is a generalization of

that of Figure 2(b), and reduces to it when L j = L for all

j = 1, . . .N .

A. Network Distributed Placement and Location

The above derivation directly applies to the optimal loca-

tion and placement problems [16]. Consider

p∗ = min
xj∈Rk,j∈J

∑

(i,j)∈A

fij(xi, xj)

s.t. xℓ = bℓ, ℓ ∈ F ⊂ J

(25)

where bℓs are fixed locations (anchors), A is the set of all

links in a graph (see Figure 4(a)) and f ij : R
k × R

k → R

is associated with the length of the arc (i, j). When k = 2
or 3, xi represents the location of node i. F is a subset of

the nodes representing those nodes that are at fixed locations.

The anchors could represent targets to be monitored. We will

later allow the constraints (target locations) to change.

Assume we have 4 mobile nodes in the plane x1, . . . , x4,

and 5 anchors at b1 . . . , b5. Let the length of each arc in the
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Fig. 4. An example of distributed placement/location problem.

graph be the squared Euclidian norm. Define

g1(x1, x2) = ‖x1 − b1‖
2
2 + ‖x1 − b2‖

2
2 + ‖x1 − x2‖

2
2

g2(x2, x3, x4) = ‖x2 − b3‖
2
2 + ‖x2 − x3‖

2
2 + ‖x2 − x4‖

2
2

g3(x3, x1) = ‖x3 − b1‖
2
2 + ‖x3 − b4‖

2
2 + ‖x3 − x1‖

2
2

g4(x4, x3) = ‖x4 − b5‖
2
2 + ‖x4 − x3‖

2
2.

This association, consistent with the graph, respects the

information available to each mobile node. We then want

to minimize g1 + g2 + g3 + g4. In this case, we have

N = M = 4, y1 = [x1
1, x

1
2]

T , y2 = [x2
2, x

2
3, x

2
4]

T , y3 =
[x3

3, x
3
1]

T , y4 = [x4
4, x

4
3]

T , and I1 = {1, 3}, I2 = {1, 2},

I3 = {2, 3, 4}, I4 = {2, 4}. We have chosen the Laplacian

for each j to be L1 = L2 = L4 = circul[1, −1] and L3 =
circul[2, −1, −1] where circul denotes a circulant matrix.

Figure 4(a) shows the location of the anchors (squares) and

the optimal placement of the four nodes circles.

B. Tracking changing constraints

Since the optimization is a least square problem, the

optimization system is LTI with the bis as inputs coming

from constant term of the gradient. Therefore, the inputs can

be changed over time and the system is expected to track,

within its bandwidth, the set of optimal trajectories, as the

anchors now move.

Figure 4(b) shows the traces of the four agents. The circles

represent the optimal locations corresponding to those of

Figure 4(a) obtained when the anchors are kept fixed.

After the first 10 seconds, the anchors are all rotated

by 135 degrees at constant speed for another 10 seconds.

The triangles represent the locations of the agents after 20
seconds. Finally, the squares represent the final location of

the agents after the movement of the anchors is stopped for

other 10 seconds. Note how the triangles and the squares are

close to each others denoting the good tracking properties

in this case. The time evolution of the locations is shown in

Figure 4(c).

VII. CONCLUSIONS

The ideas and results presented in this paper provide a

theory for agents with simple dynamics and local gradient

sensing abilities to collaboratively solve complicated convex

optimization problems through simple nearest neighbor inter-

actions. We hope they could help the discovery of naturally

emerging optimization systems in biological, social, and

economical systems and the engineering of new cooperative

networked systems.
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