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Abstract

The characterization of general control principles that underpin metabolic dynam-

ics is an important part of systems analysis in biology. It has been long argued

that many biological regulatory mechanisms have evolved so as to optimize cellular

adaptation in response to external stimuli. In this thesis we use an optimal con-

trol framework to solve dynamic optimization problems associated with metabolic

dynamics. The analysis is based on a nonlinear control-affine model of a metabolic

network with the enzyme concentrations as control inputs.

We consider the optimization of time-dependent enzyme concentrations to ac-

tivate an unbranched network and reach a prescribed metabolic flux. The solu-

tion accounts for time-resource optimality under constraints in the total enzymatic

abundance. We identify a temporal pattern in the solution that is consistent with

previous experimental and numerical observations. Our analysis suggests that this

behaviour may appear in a broader class of networks than previously considered.

In addition, we address the optimization of time-dependent enzyme expression

rates for a metabolic network coupled with a model of enzyme dynamics. The formu-

lation accounts for the transition between two metabolic steady states in networks

with arbitrary stoichiometries and enzyme kinetics. We consider a finite horizon

quadratic cost function that weighs the deviations of metabolites, enzymes and

their expression rates from their target values, together with the time-derivative

of the expression rates. The problem is recast as an iterative sequence of Linear

Quadratic Tracking problems, and we derive conditions under which the iterations

converge to a suboptimal solution of the original problem. Additionally, if constant

metabolite concentrations are enforced, the nonlinear system can be written as a

linear Differential-Algebraic system. In the infinite horizon case the problem can be

recast as a standard Linear Quadratic Regulator problem for a lower-dimensional

system, the solution of which is readily available.
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Chapter 1

Introduction

1.1 Motivation

A fundamental property of organisms is their ability to self-regulate and sustain their

functions under variable environmental conditions [1]. The regulatory mechanisms

that enable this robustness are complex and largely unknown, but their function-

ing can be conceptually compared to man-made control systems [2]. As scientists

gain more knowledge on the mechanisms that underlie cellular regulation, intricate

arrays of feedback structures are being revealed. An attractive idea is to analyze

these systems with methods from Systems and Control theory, the use of which has

gained strength in the field of Systems Biology [3, 4, 5] and, more recently, with the

emergence of Synthetic Biology [6].

The use of control-theoretic principles to analyze biological systems is certainly

not new and dates back several decades. In fact, some of the seminal works in Sys-

tems and Control theory by N. Wiener [2], L. von Bertalanffy [7] and M. Mesarović

[8] were inspired by biological problems. The resurgence of this trend has been

fostered by the availability of experimentally validated models, which is thanks to

the tremendous progress made in modern experimental methods. These models not

only provide a solid ground for carrying out control-theoretic analyses, but some of

their unique features also pose challenging new problems for Systems and Control

theory [9].

Since cellular processes rely on complex regulatory architectures, an important

goal is the identification of design principles that underlie this complexity [10, 11, 12].

One of the basic principles in evolutionary theory is that mutation and natural

selection favour phenotypes that benefit the fitness of an organism [13]. The idea

that biological regulation has evolved so as to improve fitness is the basis for using

optimization theory to understand the observed properties of organisms [14, 15].
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1.2. TOPIC OF THE THESIS

Traditional approaches have mostly aimed at macroscopic properties such as organ

sizes or feeding behaviour in animals [16, 17]. However, with the recent advent of

detailed mathematical models at a biochemical level, optimization techniques are

also being used for analyzing the biochemical “circuitry” that underpins cellular

dynamics [18].

1.2 Topic of the thesis

Cellular activity is determined by the interaction among a large number of chemical

species. These biochemical reactions do not occur in isolation and are interconnected

by sharing species as reactants or products. A collection of interacting reactions is

referred to as a biochemical network. Different types of chemical compounds take

part in these networks, with proteins being by far the most abundant [19]. Proteins

contribute to nearly all cellular functions and are synthesized via gene expression

according to the information encoded in the DNA [20].

Many cellular functions are commanded by changes in gene expression in re-

sponse to environmental stimuli. As illustrated in Figure 1.1, external stimuli are

sensed by receptor molecules in the cell membrane and trigger the transmission of

a signal to the nucleus. This information modulates gene expression so as to induce

specific cellular responses [20].

Figure 1.1. Biochemical networks in the cellular response to environmental stimuli.
In this thesis we study metabolic networks controlled by gene expression (solid lines).
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1.2. TOPIC OF THE THESIS

The interaction among the different networks in Figure 1.1 allows the regulation

of cellular activity according to the environmental conditions. In this thesis we

focus on the regulation of metabolic networks. These convert nutrients into usable

energy and synthesize a variety of chemical species required by the cell [20]. The

chemical species involved in a metabolic network are generally known as metabolites.

Metabolic networks support many cellular functions and their dynamics play a major

role in cell fitness. In addition, specific functions can be realized by alternative

networks [21], but it is not clear why a particular metabolic design is preferred over

the different alternatives [22]. This has led to postulate that present-day metabolic

systems have been optimized through evolutionary processes [18, 23, 24, 25]. In

this context, the fundamental premise of this thesis is that metabolic systems can

be rationalized as solutions of optimization problems which are coherent with the

cellular functions they support.

Metabolic reactions are enabled by a special type of proteins known as enzymes.

Enzymes are subject to degradation processes and hence their dynamics are governed

by the balance between gene expression and protein degradation. Although this is

a simplified view that overlooks relevant subprocesses of gene expression (such as

transcriptional and translational dynamics [20]), it facilitates the use of a Systems

and Control approach to treat metabolic dynamics. Moreover, some metabolites

can affect gene expression by interacting with intermediate molecules that are able

to attenuate or amplify the rate at which an enzyme is synthesized [26]. With this

in mind, we can regard metabolic networks as systems subject to feedback control

from gene expression, as shown in Figure 1.2.

expression metabolites

dynamics
metabolicenzyme

dynamicsdynamics

Figure 1.2. Genetic regulation of metabolic networks as a feedback control system.

Most studies in metabolic optimization neglect enzyme dynamics and consider

enzymatic concentrations as fixed parameters of the metabolic model. This sim-

plification is founded on the fact that genetic and enzyme dynamics occur in a

considerably slower time-scale than their metabolic counterpart [27]. Several recent

studies, however, have emphasized the importance of enzyme dynamics in the con-
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1.3. CONTRIBUTIONS AND OUTLINE OF THE THESIS

text of metabolic optimization, e.g. [28, 29]. The effect of gene expression becomes

important in cellular decisions subject to environmental changes. These may induce

a “genetic reprogramming” so as to adapt the metabolic activity by suppressing and

activating specific networks. An example of this is the adaptation of bacteria E. coli

to diverse nutritional conditions, either to avoid starvation under nutrient depletion

[30], maximize growth under nutrient abundance [31], or to choose a specific nutrient

source from a mixed medium [32].

In this thesis we address metabolic optimization within an optimal control frame-

work. A distinctive feature is the use of a nonlinear control-affine model to describe

the dynamics of metabolite concentrations in response to time-dependent enzyme

concentrations. This is done in two alternative ways:

(a) by regarding the enzymes as control inputs to the metabolic network, as shown

in Figure 1.3 (top),

(b) by regarding the enzyme expression rates as control inputs to a system composed

of a metabolic network coupled with a model for enzyme dynamics, as illustrated

in Figure 1.3 (bottom).

metabolicexpression

concentrations
enzyme metabolites

dynamics
metabolic

metabolitesenzyme
dynamics dynamicsrates

Figure 1.3. Top: metabolic network with enzyme concentrations as control inputs.
Bottom: coupled system for a metabolic network and enzyme dynamics, with the
enzyme expression rates as control inputs.

1.3 Contributions and outline of the thesis

In Chapter 2 we review ideas behind dynamic modeling of metabolic networks.

Most of this material is standard in the literature, but one contribution should be

remarked:

• The standard linear stoichiometric model is rewritten explicitly in terms of

the reaction kinetics with the enzyme concentrations as control inputs, as in

4



1.3. CONTRIBUTIONS AND OUTLINE OF THE THESIS

Figure 1.3 (top). This yields a novel nonlinear control-affine model that is

amenable to control-theoretic analysis.

In Chapter 3 we review the main existing methods for static and dynamic op-

timization of metabolic networks. Dynamic optimization approaches are not abun-

dant, and with the exception of few cases, optimal control methods have not been

used in their full potential.

The main results of this thesis are presented throughout Chapters 4, 5 and 6,

where we use the nonlinear control-affine model introduced in Chapter 2 for the

analysis of optimal control problems associated with metabolic dynamics.

In Chapter 4 we address a nonlinear optimal control problem for the activation

of unbranched networks under simplex-type constraints on the enzyme concentra-

tions. We use the setup of Figure 1.3 (top) and consider time-dependent enzyme

concentrations to minimize a combination of the time taken by the activation and

the integral of the enzyme trajectories. The contributions of this chapter are:

• The derivation of the general bang-bang form of the solution. The use of Pon-

tryagin’s Minimum Principle reveals a sequential pattern in the time courses of

the optimal enzyme profiles that is consistent with previous experimental and

numerical observations [28, 29]. In contrast to previous studies, the solution is

obtained for a general class of irreversible monomolecular enzyme kinetics that

includes, but is not limited to, the common Mass Action, Michaelis-Menten,

and Hill kinetics.

• An equivalent static nonlinear optimization problem that can be used to obtain

numerical solutions of the original optimal control problem.

• The derivation of a formula for the achievable supremum flux, which arises as

a consequence of the saturable enzyme kinetics and the enzymatic constraints.

• The sensitivity analysis of the optimal solution via numerical investigations of

cases studies. The sensitivity is shown to be consistent with the common as-

sertion that unbranched networks are more sensitive to those reactions located

toward the end of the reaction chain.

• A novel framework for integrating enzyme dynamics into the metabolic model.

This is realized by coupling the nonlinear control-affine system with a linear

5



1.3. CONTRIBUTIONS AND OUTLINE OF THE THESIS

model that describes the balance between gene expression and enzyme degra-

dation. As in Figure 1.3 (bottom), the enzyme expression rates are regarded

as control inputs.

The coupled model is used in Chapters 5 and 6 for the optimization of time-

dependent enzyme expression rates in networks with arbitrary topologies and ki-

netics. In both chapters we use the setup of Figure 1.3 (bottom) and consider the

minimization of a quadratic cost associated to the transition between two prescribed

steady states. The cost weighs the deviation of the state trajectories from their tar-

get values, together with the time-derivative of the expression rates representing the

genetic effort for enzyme synthesis.

In Chapter 5 we address the general nonlinear problem for a finite horizon cost

function. The contributions of this chapter are:

• An iterative algorithm for computing a suboptimal solution of the nonlinear

problem. The method is based on a global approximation of the nonlinear

dynamics by means of a sequence of linear time-variant systems. The original

problem can then be approximated by a sequence of Linear Quadratic Track-

ing problems, the solution of which can be readily computed using well-known

results. As opposed to previous studies [33], the iterative scheme relies on the

solution of a differential Lyapunov equation at each iteration. This may pro-

vide computational advantages over the traditional Riccati equation approach

for high-dimensional networks.

• The convergence analysis of the algorithm. Provided that the optimization

horizon is sufficiently small, the iterations are shown to converge to a unique

fixed-point for a broad range of kinetics and arbitrary stoichiometries.

In Chapter 6 we study a special case of the previous problem. We consider

an infinite horizon cost function and impose the additional constraint of constant

metabolite concentrations along the whole optimization interval. The contributions

of the chapter are:

• An equivalent Differential-Algebraic Equation (DAE) model for the enzyme

dynamics. It is shown that imposing constant metabolites translates into

algebraic constraints on the enzyme trajectories and expression rates.

• The reformulation of the problem as a Linear Quadratic Regulator (LQR)

problem for an unconstrained lower-dimensional linear system. We use a state
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1.4. RELATED WORK

transformation to decouple the algebraic and differential parts of the DAE

system. This allows for a parameterization of all controls that satisfy the

algebraic constraint in terms of a lower-dimensional control variable. Provided

that the weight matrices are positive definite, this problem is shown to satisfy

the stabilizability and detectability conditions of the standard LQR problem,

and thus its solution can be readily obtained.

We conclude in Chapter 7 summarizing the main ideas of the thesis and point-

ing out some open questions for future research. Some of the technical results used

in the thesis are briefly presented in the appendices: classic optimal control results

are described in Appendix A, and a fixed-point theorem that is used in Chapter

5 is presented in Appendix B.

Some of the results of this thesis have been presented in invited talks at the 3rd

Biennial Regional Meeting on Nonlinear Control and its Applications (University of

Waterloo, Canada, 2008), Stats & Control Meeting (Université de Montréal, Canada,

2008), and 3rd Conference of Young Chilean Scientists (Max Planck Institute for

Experimental Medicine, Göttingen, Germany, 2009). In addition, this thesis has led

to the following peer-reviewed publications:

• D. A. Oyarzún, B. P. Ingalls, R. H. Middleton, and D. Kalamatianos. Se-

quential activation of metabolic pathways: a dynamic optimization approach.

Bulletin of Mathematical Biology, vol. 71, no. 8, pp. 1851–1872, 2009.

• D. A. Oyarzún, B. P. Ingalls, R. H. Middleton, and D. Kalamatianos. Op-

timal metabolic pathway activation. In Proceedings of the 17th IFAC World

Congress, pp. 12587–12592, Seoul, Korea, 2008.

• D. A. Oyarzún, B. P. Ingalls, and D. Kalamatianos. Optimal metabolic

regulation by time varying enzyme activities: a control theoretic approach. In

Proceedings of Foundations of Systems Biology & Engineering, pp. 491–496,

Stuttgart, Germany, 2007.

1.4 Related work

As part of a collaboration with Ben-Fillippo Krippendorff and Dr. Wilhelm Huisinga

from the Computational Physiology Group at the Hamilton Institute, we have stud-

ied the dynamics of cell membrane receptor systems in response to inhibitory protein
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1.4. RELATED WORK

drugs. Therapeutic protein drugs have an increasing role in the treatment of cancer

and other complex diseases [34]. They repress signal transmission from the extra-

cellular medium to the nucleus (see Figure 1.1) by competitive binding to receptor

molecules, so as to prevent the natural ligand from triggering undesirable cellular

responses (such as uncontrolled growth in the case of cancer).

This research has been focused on the analysis of receptor dynamics at a single

cell level and their interaction with whole-body pharmacokinetic models. The re-

sults have been omitted from this thesis to avoid redundancies with the Ph.D. Thesis

of Ben-Fillippo Krippendorff [35]. Some of them have been presented in:

B. F. Krippendorff, D. A. Oyarzún, and W. Huisinga. Ligand accumulation coun-

teracts therapeutic inhibition in receptor systems. In Proceedings of Foundations of

Systems Biology & Engineering, pp. 173–176, Denver, USA, 2009.

B. F. Krippendorff, D. A. Oyarzún, and W. Huisinga. Optimizing the inhibition of

Receptor Tyrosine Kinases in cancer treatment. In BioSysBio Conference, Univer-

sity of Cambridge, UK, 2009.
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Chapter 2

Dynamic models of metabolic

networks

2.1 Introduction

As with any physical system, biochemical models are an approximation of the real

system and their accuracy will depend on the assumptions made in the model con-

struction. In the case of metabolic networks, the standard approach is to use de-

terministic models in the form of Ordinary Differential Equations (ODE)[36, 37].

Deterministic models perform generally well because the chemical species appear in

large molecular numbers and hence the stochastic effects average out [38].

In this chapter we present the main ideas behind ODE models of metabolic

networks. In these models the state variable is composed by the concentrations of

the different chemical species interacting in the network. The models are based on

the law of mass action, which is a basic principle for modeling biochemical systems.

The aim is to describe a metabolic network with models that are amenable for

control-theoretic analyses. We shall distinguish between models that only describe

the network topology, called stoichiometric models, and models that also include the

(possibly) nonlinear behaviour of each reaction, called kinetic models. We also stress

the importance of genetic regulation of metabolic networks, whereby gene expression

can be regarded as a feedback “controller” that drives the network between different

operating points.

The chapter is organized as follows: we begin in Section 2.2 by introducing

the law of mass action and deriving the models of saturable enzyme kinetics for

single biochemical reactions. These ideas are extended to whole reaction networks

in Section 2.3, where we also present some illustrative examples. We conclude in

Section 2.4 with a discussion on the regulation of metabolic network and its control-

9



2.2. MODELS OF SINGLE BIOCHEMICAL REACTIONS

theoretic interpretation.

2.2 Models of single biochemical reactions

2.2.1 The law of mass action

Consider the following reaction with n reactants and m products

n∑

i=1

αiRi

v
←→

m∑

i=1

βiPi. (2.2.1)

The constants αi, βi ∈ N denote the stoichiometric coefficients of the reactants and

products, respectively. The variables of interest are the time-dependent concentra-

tions of the different species, denoted as Ri(t) and Pi(t), together with the rate

at which the reaction occurs, denoted as v. We write the reactant and product

concentration vectors as

R =
[

R1 R2 . . . Rn

]T

,

P =
[

P1 P2 . . . Pn

]T

,

(2.2.2)

respectively. The concentrations are measured in molarity units [M] or [mol/l] and

the rate in units of molarity per time. The reaction rate can be expressed as a

function of the species concentrations, i.e. v = v(R,P ), so that the rate of change

of the species concentrations is given by

dRi

dt
= −αiv(R,P ), i = 1, 2, . . . , n,

dPi

dt
= βiv(R,P ), i = 1, 2, . . . ,m.

(2.2.3)

The reaction rate can be decomposed into forward (v+) and backward (v−) rates as

v(R,P ) = v+(R) + v−(P ). (2.2.4)

Assuming that the species are present in large molecular numbers and a spatially

homogeneous medium (also known as a “well-stirred” medium), the reaction rates

10



2.2. MODELS OF SINGLE BIOCHEMICAL REACTIONS

are proportional to the product of the reactant concentrations. Thus we write

v+(R) = k+

n∏

i=1

Rαi

i ,

v−(P ) = k−

m∏

i=1

P βi

i .

(2.2.5)

This is known as the law of mass action for biochemical reactions, see e.g. [36, 37].

The constants k+ > 0 and k− > 0 are known as the forward and backward kinetic

constants, respectively. When v = 0, it is said that the reaction is in chemical

equilibrium and

Keq =
k+

k−
=

∏m
i=1 P βi

i eq
∏n

i=1 Rαi

i eq

, (2.2.6)

is called the equilibrium constant of the reaction. Ri eq and Pi eq are the species con-

centrations when the equilibrium is reached. The equilibrium should be understood

in the sense that the forward and backward reaction rates are equal, and thus the

net rate is zero (this does not imply that the forward and backward reactions are

not occurring). Although all biochemical reactions are reversible (composed by a

forward and a backward reaction), when Keq ≫ 1 the forward reaction is strongly

favoured. In those cases, it is said that the reaction is irreversible and it is common

to assume that v− = 0 and write reaction (2.2.1) as

n∑

i=1

αiRi

v
−→

m∑

i=1

βiPi, (2.2.7)

with rate

v(R) = k+

n∏

i=1

Rαi

i . (2.2.8)

A broad range of biochemical reactions can be described with the law of mass action.

The transient behaviour of the reaction can then be obtained by solving the ODEs

in (2.2.3) for given initial conditions. In the context of metabolic networks we are

interested in a special class of reactions, namely those that are catalyzed by specific

enzymatic molecules. Although these can be readily described with the law of mass

action, their particular features demand the use of specialized dynamic models.
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2.2.2 Enzymatic reactions

Many of the biochemical reactions in a cell do not occur spontaneously in the envi-

ronment (that is, they have a very small equilibrium constant Keq). These “improb-

able” reactions can occur inside a cell due to enzyme molecules that catalyze them

with a high degree of specificity. Enzymes are proteins that remain unchanged by

the reactions they catalyze. The catalytic effect leads to rate accelerations of typ-

ically about 106 to 1012 fold as compared to the spontaneous reaction [37]. The

thermodynamic basis for this effect is related to the ability of an enzyme to de-

crease the free energy of the reaction, the details of which can be found in standard

textbooks such as [20]. The simplest mechanism for an enzymatic reaction is the

following

E + S
k1
−→ E + P. (2.2.9)

Reaction (2.2.9) is an irreversible monomolecular reaction that converts a substrate

S into a product P and is catalyzed by an enzyme E. Since the concentration of E

is unaffected by the reaction, the model for (2.2.9) is simply

dS

dt
= −v(S),

dP

dt
= v(S),

(2.2.10)

and E(t) = ET is the constant enzyme concentration. Using the law of mass action

we can write the reaction rate as a linear function of the substrate

v(S) = k1ETS. (2.2.11)

Enzymes have a specific number of sites to which the reactants can bind. When all

the binding sites are taken by molecules of S, the catalytic effect reaches a saturation

point and the enzyme cannot further accelerate the reaction. This saturation is not

captured by the mass action model in (2.2.11), and therefore a more detailed analysis

is required. Consider the following extended model of reaction (2.2.9)

E + S
v1
←→ ES

v2
−→ E + P, (2.2.12)

12
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where the intermediate reactions follows the mass action law, i.e. v1 = k1E · S −

k−1ES and v2 = k2ES . Reaction (2.2.12) extends (2.2.9) by explicitly considering

the enzyme-substrate binding. The compound ES denotes the enzyme-substrate

complex that forms after the binding of S to a substrate-specific site of the enzyme.

Assuming a quasi steady state of the complex ES , that is,

dES

dt
= 0, (2.2.13)

it can be shown [39] that reaction (2.2.12) is equivalent to

S
v
−→ P, (2.2.14)

with reaction rate

v(S) = k2ET
S

S + Km
. (2.2.15)

The constant Km is defined as

Km =
k−1 + k2

k1
, (2.2.16)

and ET = E + ES denotes the total concentration of enzyme (free and bound to

the substrate). Equation (2.2.15) is known as the Michaelis-Menten equation and

its plot can be seen in Figure 2.1 (left). The Michaelis-Menten model is a better

representation than the mass action model in (2.2.11) because it accounts for enzyme

saturation. In fact, as it can be seen from (2.2.15), for low substrate concentrations

(S ≪ Km) the rate behaves linearly as

v(S) ≈
k2ET

Km
S, (2.2.17)

whereas for high substrate concentrations it saturates to v ≈ k2ET.

Remark 2.1: In the literature, e.g. [39, 27, 36], it is common to find the rate

(2.2.15) written as

v(S) = Vmax
S

S + Km
, (2.2.18)

where Vmax = k2ET is the saturation rate or maximum reaction velocity. In this

13



2.2. MODELS OF SINGLE BIOCHEMICAL REACTIONS

thesis we do not adopt this convention because, as it will be clear later in this chapter,

the enzymatic concentrations are regarded as time-dependent variables rather than

fixed parameters of the model.

The specific mode of action of an enzyme is referred to as the enzyme kinetics.

Michaelis-menten kinetics in (2.2.15) are one of most common descriptions, but

depending on the particular properties of the enzyme, different expressions for the

reaction rate can be found. For example, some enzymes exhibit a phenomenon

known as cooperativity, which can be described by the so-called Hill kinetics

v(S) = khET
Sh

1 + khSh
, (2.2.19)

with kh > 0 and h > 0. As it can be seen in Figure 2.1 (right), Hill kinetics exhibit

sigmoidal behaviour, leading to a switch-like behaviour for sufficiently high h.
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Figure 2.1. Nonlinear enzyme kinetics. Left panel: Michaelis-Menten kinetics with
k2 = 1, ET = 1 and Km = 0.1 (blue) up to Km = 6.4 (dark red). Right panel: Hill
kinetics with kh = 1/3, ET = 1 and Hill coefficient h = 2 (blue) up to h = 10 (dark
red).

The reaction rate of an enzymatic reaction is generally a nonlinear function of

the reactants (see [39] for a good presentation of different enzyme kinetics and their

corresponding rate equations). The exception are linear kinetics following the mass

action law as in (2.2.11), but as discussed before, those models are very crude since

they do not account for enzyme saturation. Throughout the thesis we will make the

following assumption.

Assumption 2.1: The reaction rates are linear functions of the enzyme concentra-
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tion. Thus for the reaction

S
v
−→ P, (2.2.20)

we write

v = v(S, e) = g(S)e. (2.2.21)

The variable e = e(t) is the time-dependent enzyme concentration and the continuous

nonlinear function g(S) satisfies g(0) = 0 and is called the turnover rate, i.e. the

rate per unit of enzyme concentration.

This assumption is met by most commonly used enzyme kinetics, but exceptions

can be found as discussed in [39, 40]. The turnover rate describes the saturating

behaviour of the enzyme and, for example, in the case of Michaelis-Menten kinetics

in (2.2.15) is given by

g(S) =
k2S

Km + S
. (2.2.22)

Equation (2.2.21) is important for the purposes of this work. As it will be seen

in the next section, it allows us to regard a metabolic network as a control-affine

dynamical system with the enzyme concentrations as control inputs.

2.3 Metabolic network modeling

2.3.1 Stoichiometric and kinetic models

In the previous section we showed how to obtain dynamic models of single biochem-

ical reactions. We now extend this idea to whole networks of enzymatic reactions.

The reactions in a metabolic network share chemical species either as reactants or

products, and therefore it is not convenient to distinguish between these two classes.

We thus consider a network of n metabolites s1, s2, . . . , sn interacting in m reactions

with reaction rates v1, v2, . . . , vm. The chemical equation for the jth reaction is

n∑

i=1

αijsi

vj
←→

n∑

i=1

βijsi, j = 1, 2, . . . ,m, (2.3.1)

15



2.3. METABOLIC NETWORK MODELING

where αij , βij ∈ N are the stoichiometric coefficients of metabolite si in the jth

reaction. The rate of change of si is given by the balance between those reactions

that have si as a product and reactant. The ODE for the ith metabolite then reads

dsi

dt
=

m∑

j=1

Nijvj , i = 1, 2, . . . , n, (2.3.2)

where

Nij = βij − αij . (2.3.3)

Metabolite si is consumed (produced) in the jth reaction whenever Nij < 0 (Nij >

0). Equation (2.3.2) is also known as the mass balance equation for si and can be

written in vector form as

ds

dt
= Nv, (2.3.4)

where s =
[

s1 s2 . . . sn

]T

, v =
[

v1 v2 . . . vm

]T

and N ∈ Z
n×m is the

stoichiometric matrix of the network defined as

[N ]ij = Nij . (2.3.5)

We shall refer to (2.3.4) as the stoichiometric model of the network. If the reaction

rates are considered as control inputs and the metabolite concentration as state

vector, then (2.3.4) is a linear time-invariant system with zero state matrix (which

in turn can be seen as a network of integrators). For simplicity of notation, in the

sequel we will write ṡ = ds
dt

. The rate vector v depends on the metabolites of the

network and the enzyme concentrations. From the definitions in Remark 2.1, we

can write each reaction rate as

vi(s, ei) = gi(s)ei, i = 1, 2, . . . ,m, (2.3.6)

where ei = ei(t) denotes the concentration of enzyme catalyzing the ith reaction.

Combining (2.3.4) and (2.3.6) we can write the model in vector form as
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ṡ = NG(s)e, (2.3.7)

where e =
[

e1 e2 . . . em

]T

and

G(s) =










g1(s) 0 · · · 0

0 g2(s)
. . . 0

0
. . .

. . .
...

0 · · · 0 gm(s)










(2.3.8)

Equation (2.3.7) is known as the kinetic model of the network. If the enzyme concen-

trations are taken as control inputs, the model (2.3.7) corresponds to a control-affine

nonlinear dynamical system.

2.3.2 Steady state analysis

Metabolic networks exchange mass with their surrounding and hence in steady state

the reactions do not reach their chemical equilibrium. Instead each metabolic reac-

tion reaches a so-called dynamic equilibrium, whereby the metabolites and reaction

rate have constant nonzero values [27].

The steady state of a metabolic network can be identified by inspecting the

stoichiometric matrix N [36, 41]. From the stoichiometric model in (2.3.4) it follows

that ṡ = 0 is attained by any rate vector v̄ ∈ R
m such that v̄ ∈ ker {N}. Therefore,

if K is a matrix such that its columns span the nullspace of N , i.e. K ∈ R
m×(m−d)

such that NK = 0 with d = rank {N}, any steady state rate vector can be written

as

v̄ = Kφ, (2.3.9)

where φ ∈ R
m−d. The rate vector v̄ is referred to as the steady state flux of the

network and depends solely on the network structure (represented by the stoichio-

metric matrix N). The stoichiometric model (2.3.4) does not include information

on the reversibility of the reactions, and therefore the vector φ may need to satisfy

additional constraints to guarantee that v̄ is compatible with the irreversible reac-
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tions. If the specific enzyme kinetics are known, as in the kinetic model (2.3.7),

then for each flux v̄ the steady state metabolites (s̄) and enzymes (ē) are given by

the solution of

G(s̄)ē = v̄. (2.3.10)

Equation (2.3.10) is a system of nonlinear algebraic equations. This system is un-

derdetermined (n + m unknowns and m equations) and therefore the steady state

concentrations cannot be fully identified unless n unknowns are given. If s̄ is known,

then ē is given by

ē = G−1(s̄)v̄. (2.3.11)

Conversely, if n components of ē are known, one can compute the corresponding

steady state metabolite concentrations. In this case, however, depending on the

nonlinearities in the model (included in the matrix G(s)), the system (2.3.10) can

also have multiple or no solutions.

2.3.3 Examples

We present two examples to illustrate the main ideas discussed so far.

Stoichiometric model

Consider the following network of irreversible reactions composed of n = 7 metabo-

lites, two products (P1 and P2), and m = 7 reactions:

S
v1
−→ s1 s3 + s5

v5
−→ s4 + s6

s1
v2
−→ s2 s4

v6
−→ P2

s2
v3
−→ P1 s6

v7
−→ s5

s1
v4
−→ 2s3

(2.3.12)

This network can be represented by the diagram in Figure 2.2.

The substrate S and the products are not included in the model so as to represent

the transfer of mass between the network and its surroundings. Moreover, it is

common to assume that the dynamics of the substrate S are much slower than

those of the network under consideration, and hence S is assumed constant. From
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v5

s5 s6

S s1v1

s2

v2

v4

2s3

v7

v3

s4

v6

Figure 2.2. Example metabolic network.

the mass balance equation in (2.3.2) we obtain the stoichiometric matrix

N =














1 −1 0 −1 0 0 0

0 1 −1 0 0 0 0

0 0 0 2 −1 0 0

0 0 0 0 1 −1 0

0 0 0 0 −1 0 1

0 0 0 0 1 0 −1














. (2.3.13)

The rank of N is d = 5 and the nullspace of N is spanned by the columns of

K =

[

1 1 1 0 0 0 0

0.5 0 0 0.5 1 1 1

]T

. (2.3.14)

Therefore, the steady state flux can be computed as v̄ = Kφ with φ =
[

φ1 φ2

]T

,

that is

v̄ =
















φ1 + 0.5φ2

φ1

φ1

0.5φ2

φ2

φ2

φ2
















, (2.3.15)
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for any φ1 > 0, φ2 > 0 (the positivity of φ1 and φ2 ensures that v̄ is compatible

with irreversible reactions). For φ1 6= 0 and φ2 = 0, the flux v̄ represents a steady

state flux through branch {v1, v2, v3}, whereas if φ1 = 0 and φ2 6= 0 the flux goes

through branch {v1, v4, v5, v6, v7}.

Kinetic model

We consider the simple unbranched network in Figure 2.3 to illustrate the nonlinear

behaviour of metabolic dynamics. We assume a constant substrate S with mass

v3
S s1 s2v1 v2

Figure 2.3. Example unbranched metabolic network.

action kinetics for v1 and Michaelis-Menten kinetics for v2 and v3:

v1 = kcat 1Se1, (2.3.16)

v2 =
kcat 2s1

Km 2 + s1
e2, (2.3.17)

v3 =
kcat 3s2

Km 3 + s2
e3. (2.3.18)

The saturation of enzyme kinetics is an important source of nonlinearities. To

illustrate this, Figure 2.4 shows unit step responses of the network for different ini-

tial conditions. As it was discussed in Section 2.2.2, Michaelis-Menten kinetics are

approximately linear for low metabolite concentrations and the saturation becomes

important only for higher concentrations, see (2.2.17) and Figure 2.1 (left). This be-

haviour is verified in Figure 2.4, where it can be seen that for large initial conditions,

the trajectories have nearly constant slopes for prolonged time intervals. Linear-like

behaviour (i.e. approximately exponential trajectories) appears only when the initial

conditions are chosen sufficiently small.

20



2.4. REGULATION OF METABOLIC NETWORKS

0 2 4 6 8 10
0

1

2

3

4

Time

C
o

n
c
e

n
tr

a
ti
o

n
 s

1

0 10 20 30 40
0

2

4

6

Time

C
o

n
c
e

n
tr

a
ti
o

n
 s

2

Figure 2.4. Metabolite responses of the network in Figure 2.3 for ei(t) = 1,∀t ≥
0, i = 1, 2, 3, and different initial conditions from si(0) = 0 (blue) up to si(0) = 4
(dark red), i = 1, 2. The parameter values are {kcat 1, kcat 2, kcat 3} = {0.1, 1, 0.5},
{Km 1, Km 2} = {1, 1} and S = 1.

2.4 Regulation of metabolic networks

The regulation of metabolic networks is implemented by a number of mechanisms

which, from a Control Engineering viewpoint, can be regarded as several nested

feedback loops. These work via different biochemical mechanisms and in a range of

time-scales[27, Section 1.3]. Two important types of regulation are metabolic and

genetic control of metabolic networks. Although this thesis is related to genetic

regulation, we first briefly describe the regulation at a metabolic level.

Regulation at a metabolic level

This regulatory action arises from biochemical interactions between an enzyme and

some metabolites that do not participate in the corresponding reaction. Specific

metabolites in the network can interact with an enzyme and have an effect on

its catalytic behaviour. A common example of this phenomenon are the so-called

allosteric enzymes. Consider a metabolite s and an allosteric enzyme that can be

modified by an inhibitor I and an activator A, which are both metabolites of the

network. In the irreversible case [37] the turnover rate of the reaction is modeled as

g(s, I, A) =

(
kcats

1 + KRs

)(
KR + KTL(I, A)f(s)q−1

1 + L(I, A)f(s)q

)

, (2.4.1)
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where

f(s) =
1 + KTs

1 + KRs
, (2.4.2)

L(I, A) = L∗
(

1 + KII

1 + KAA

)q

. (2.4.3)

All the parameters are positive and depend on the particular properties of the en-

zyme. The turnover rate g(s, I, A) in (2.4.1) can be understood as the combination

of Michaelis-Menten kinetics (compare the first factor of (2.4.1) with the Michaelis-

Menten equation in (2.2.15)) and a regulatory effect caused by the inhibitor and

activator metabolites. In general, there are various mechanisms for enzyme regu-

lation with different degrees of complexity [39]. However, for the purposes of this

thesis it suffices to note that these mechanisms, regardless their specific mode of

action, introduce additional nonlinearities to the kinetic model in (2.3.7).

Regulation at a genetic level

The enzymatic concentrations catalyzing a metabolic network are controlled by gene

expression mechanisms. Genetic regulation occurs at much slower time-scales than

regulation at the metabolic level; in fact, the time constants of genetic regulation are

of the order of minutes to hours, whereas those of metabolic interactions are within

seconds [27]. In addition, some metabolites can promote or repress the expression

of an enzyme, and hence in many cases gene regulation corresponds to a feedback

mechanism.

ṡ = NG(s)e

expression

enzyme

network

metabolicgene

dynamics

s
r = f(s)

r
ė = r − Λe

e

Figure 2.5. Closed-loop genetic regulation of metabolic networks.

This form of feedback control can be described by the block diagram in Figure

2.5, whereby enzyme concentrations are regarded as inputs to the control-affine ki-

netic model in (2.3.7). We describe enzyme dynamics with a mass balance model

for enzyme expression and degradation. If the degradation rates are assumed pro-
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portional to the enzyme concentration, then we can write

ė = r − Λe, (2.4.4)

where r ∈ R
m is the vector of enzyme expression rates and

Λ =










λ1 0 · · · 0

0 λ2
. . . 0

0
. . .

. . .
...

0 · · · 0 λm










. (2.4.5)

The constants λi > 0 can account not only for enzyme degradation, but also for

dilution effects due to cell growth.

The expression rates r can depend on the metabolites in the network. This

dependency is very complex and can be modeled with different degrees of detail.

Gene expression can be described, for example, via ODE models, piecewise linear

differential equations or boolean models [42]. The particular choice depends largely

on the phenomenological knowledge of the system under study. In some cases, such

as the Lac operon model [26], the biochemical mechanisms behind gene regulation

have been identified and one could integrate an ODE model for gene expression

with one for metabolic dynamics. However, in most cases the mechanisms are not

known and authors have proposed the use of empirical static models [43]. The

expression rate can then be described as a saturable Hill-type algebraic function

of intermediate effector molecules, the activation of which is triggered by specific

metabolites. For example, if metabolite sj activates an effector R, then according

to [29] its concentration can be described by

R =
RT

KR + sj
, (2.4.6)

with RT, KR > 0. Depending on whether the effector activates or represses the

23



2.4. REGULATION OF METABOLIC NETWORKS

expression of enzyme ei, its effect can be modeled as

fi(R) = βi
Rh/αi

1 + Rh/αi
(activation),

fi(R) =
βi

1 + Rh/αi
(repression).

(2.4.7)

The parameter βi > 0 is the maximal expression rate, αi > 0 is the strength of the

regulation, and h > 0 is the Hill coefficient. Note that the models (2.4.6)–(2.4.7)

can be lumped into a single expression of the form ri = fi(sj).

Following the analogy between genetic regulation and feedback control, the re-

lation r = f(s) in Figure 2.5 can be seen as a nonlinear feedback “controller” with

parameters αi, βi and h. Genetic regulation of metabolic networks can adjust enzy-

matic concentrations and drive the metabolic network between different operating

points. As will be seen later in Chapters 4–6, the main results of this thesis are the

solution of open loop optimal control problems for the system in Figure 2.5.
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Chapter 3

Metabolic network optimization

3.1 Introduction

In this chapter we review different approaches for metabolic network optimization

available in the literature. These are diverse in terms of their purposes: some

approaches aim at understanding metabolic dynamics, whereas others are concerned

with the intervention of metabolic systems. Studies on metabolic optimization also

differ in terms of the mathematical tools they use, and we shall classify them as

static or dynamic approaches depending on whether they address steady state or

transient properties, respectively. Recent reviews [44, 45] underline this diversity

and shows a number of different techniques and applications where optimization

has been used for the analysis and design of biochemical systems. We put special

attention on dynamic optimization, which is the core topic of this thesis and has a

straightforward control-theoretic interpretation. In particular, the articles by Klipp

et al. [28] and Zaslaver et al. [29] are the basis for the results presented later in

Chapter 4, and thus we shall discuss them in more detail.

The chapter is organized as follows: in Section 3.2 we briefly discuss the mo-

tivation and rationale behind metabolic optimization. The most relevant static

optimization approaches are presented in Section 3.3. We conclude in Section 3.4

by presenting some dynamic optimization techniques and, especially, the results in

[28, 29] which serve as preamble for next chapter.

3.2 Rationale behind metabolic optimization

The use of optimization techniques in metabolic networks has a two-fold motivation.

The first aims at understanding the structure and dynamics of metabolic systems,

also referred to as reverse engineering of metabolic networks. As discussed in Chap-

ter 1, metabolic networks enable many cellular functions and their dynamics play
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a major role in cell fitness. It has been argued that, from an evolutionary per-

spective, present-day metabolic systems are the outcome of stepwise improvements

in their operation [23]. In addition, specific cellular functions can be supported

by alternative metabolic networks [22], the implementation of which uses different

topologies, kinetics and/or regulatory mechanisms. It is not clear why a particular

metabolic design is preferred over the possible alternatives. These ideas have led to

the postulate that metabolic networks in organisms have been optimized through

evolutionary processes so as to improve their adaptation to environmental condi-

tions [18, 24]. The reader is referred to the reviews in [13, 14] for good presentations

of the drawbacks and advantages of optimization theory in general biological sys-

tems. Nevertheless, in this context the idea is to solve optimization problems in an

attempt to understand the properties of metabolic networks [23].

The second motivation behind metabolic optimization aims at the design of

metabolic networks for biotechnological purposes. This is the prime objective of

Metabolic Engineering [46, 47], whereby genetic alterations are introduced so as to

over-express or knock out enzymes in living cells and modify their existing networks

[48, 49]. A typical goal of metabolic design is to increase the rate at which a cell

synthesizes or secretes a commercially important compound, or even to enable the

synthesis of a substance that would not be produced by the wild-type cell. The role of

optimization theory is then to aid the analysis and design of metabolic interventions

by using quantitative criteria [50, 51].

In the following sections we review different metabolic optimization ideas that

have been reported in the literature. Regardless the purpose they were developed

for, we classify them according to whether they use static or dynamic optimization

techniques.

3.3 Static optimization approaches

3.3.1 Flux Balance Analysis

An optimization technique that has been successfully applied to metabolic networks

is Flux Balance Analysis (FBA), whereby the steady state flux of a stoichiometric

model is chosen to optimize a linear objective function [52]. Any vector that lies in

the nullspace of the stoichiometric matrix is a valid steady state flux (recall (2.3.9) in

the previous chapter). The steady state flux is, therefore, not uniquely determined

and the idea behind FBA is to single out a flux vector that optimizes a quantity
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representing the network’s function.

Consider a network with m reactions and the stoichiometric model

ṡ = Nv. (3.3.1)

In the FBA framework [53] the optimal flux distribution v∗ is computed as the

solution of the following linear program:

v∗ = arg max
v∈Rm

cT v,

subject to

Nv = 0,

vmin ≤ v ≤ vmax.

(3.3.2)

The vector c ∈ R
m defines the weight of each flux in the cost function, and the vectors

vmin, vmax ∈ R
m specify bounds for the flux (the inequality should be understood

component-wise). The constraints in (3.3.2) are the steady state condition and the

physical bounds that limit the flux. The bounds vmin and vmax arise from the limited

enzymatic availability and their corresponding saturating behaviour (as discussed

in Section 2.2.2).

Since the FBA formulation does not require knowledge of the reaction kinetics, it

is particularly useful in cases when only the stoichiometry of the network is known.

One of the major advantages of FBA is that it relies on a linear programming

framework, and therefore solutions can be efficiently computed even for systems of

very high dimensions. In [54], for example, FBA was used to analyze the metabolic

network of the yeast S. cerevisiae with m = 1175 metabolic reactions.

The selection of an appropriate cost function in (3.3.2) has a major impact on

the properties of the solution and is subject of active research [55, 56, 57]. In the case

of bacterial networks, a common choice is the maximization of the cellular growth

rate, which is assumed to be a function of certain fluxes [58]. Growth maximization

has been experimentally verified in a number of studies, see e.g. [59]. In this setup,

FBA has provided useful predictions of fluxes and growth in the bacterium E. coli

under different environmental conditions [60, 31].

With a slightly different formulation, the work in [24] presented an FBA-based

approach for the computation of the steady state fluxes in a metabolic network. In

this work the concept of flux minimization was introduced, whereby the flux vector
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is partitioned into an “internal” and a “target” component. The latter is defined

as those fluxes that have a direct effect on the network function, or in other words,

those fluxes that can be regarded as outputs of the network. The rationale is that

metabolic fluxes require an energy expenditure by the cell, and thus it is reasonable

to assume that the internal fluxes should be kept minimal, while the target fluxes

should be kept close to the nominal levels that are enough to sustain the network

function.

A number of other applications of the FBA framework have also been reported,

see the review in [61] and the references therein for a list of landmark works in

the development of FBA theory. A shortcoming is that FBA-based optimization

is based on models that do not include kinetic information, which makes them

unable to predict metabolite concentrations. An alternative to FBA is the S-system

formulation described next, which also relies on linear programming but allows the

approximate computation of metabolite concentrations.

3.3.2 S-system formulation

A number of optimization approaches are based on the so called S-system (from

“synergistic”) formalism. It was first introduced within the Biochemical Systems

Theory developed by Savageau [22] as a systematic tool for modeling biochemical

networks. Unlike the stoichiometric description in (2.3.4), S-system models do not

have a mechanistic interpretation, but are rather a power-law approximation to the

mass balance equations [62]. An important advantage of this approach is that the

steady state metabolite concentrations can be obtained as a solution of a linear

system of algebraic equations (compare with the nonlinear system that describes

the steady state of the kinetic model in (2.3.10)). This feature has been exploited

by several groups, especially in the biotechnology community, for solving a range

of optimization problems, see e.g. [47]. In particular, in [63] the authors used a

mixed-integer linear optimization program to determine regulatory mechanisms that

yield a substantial increase in metabolite concentrations, which is a typical goal

of metabolic engineering applications. Using similar ideas as in the FBA theory,

the authors in [64] proposed linear programming within the S-system formalism to

optimize a metabolic network according to multi-objective criteria, which accounts

for the fact that no single optimization criterion can be of general validity.
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3.3.3 Other optimization approaches

The FBA and S-system approaches are frameworks under which a number of static

optimization problems can be explored in a systematic fashion. There are also other

optimization studies that do not use a common framework for their formulation.

These are manifold and rather problem-specific in terms of the optimization criteria

and the decision variables to be optimized. Good reviews of other optimization

problems that have been proposed can be found in [18, 23]. A list of different cost

functions that have been used can also be found in [65, Section 1].

Different studies have addressed the optimization of enzyme kinetics, e.g. [23,

66, 67, 68]. In addition, since gene expression requires certain cellular effort, it

has been argued that observed enzyme concentrations can be understood as the

outcome of an optimization process. On the theoretical side, this problem has been

treated in [69] and [65], where optimal enzyme concentrations were determined

under a constraint on the total enzyme availability. On the experimental side, the

remarkable work in [70] showed that the observed expression levels of the enzyme

LacZ in E. coli matches the solution of a cost/benefit optimization problem. LacZ

is responsible for the uptake of lactose and its use for cellular growth. The cost

was measured as the reduction in cell growth due to the burden imposed by the

synthesis and maintenance of LacZ, whereas the benefit was defined as the gain

in growth rate due to the utilization of lactose. Optimal expression levels of LacZ

were theoretically computed, and experimental results showed that under different

extracellular lactose concentrations, the expression levels of LacZ evolved to match

their predicted optimal values.

3.4 Dynamic optimization approaches

A common feature of static optimization approaches is that they address the network

behaviour under static enzyme concentrations. However, the temporal distribution

of enzymatic activity affects pathway behaviour and thus metabolic responses can

be modulated by the timing of enzyme expression. Zaslaver et al. observed well

defined temporal patterns in enzyme expression data in the Serine, Methionine and

Arginine pathways in E. coli under extracellular medium shift [29, 71]. Additional

experimental evidence revealing temporal modulation in the Lysine pathway has

been recently reported in [72]. These experiments provide metabolic instances of the

generally accepted fact that specific temporal patterns in gene expression appear in
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the operation of a range of cellular functions, including complex molecular assemblies

[73] and organism development [74].

The work in [29] suggested that the temporal patterns observed in enzyme ex-

pression can be understood in terms of optimization principles. Any rigorous at-

tempt to further investigate this idea requires the use of dynamic optimization the-

ory. However, as pointed out in [47, p. 165], to date there have been relatively few

studies on dynamic optimization of metabolic networks. Next we review some of

the approaches that can be found in the literature.

3.4.1 Optimization of reaction rates

The works in [75, 76] present a dynamic optimization algorithm for homeostatic

regulation of metabolic networks. The formulation is based on the the so-called

cybernetic modeling framework [77]. The algorithm optimizes time-dependent reac-

tion rates for an appropriate regulation of the metabolites in the central nitrogen

metabolism of S. cerevisiae. The optimization was carried out by time discretization

and numerical solution of a nonlinear static optimization problem at each time step.

From a Control Engineering viewpoint this scheme is implemented as a tracking

controller that ensures that the metabolite concentrations follow the desired steady

state values.

Dynamic extensions of the FBA principle have also been reported in the liter-

ature. Notably, the work in [78] presents two optimization algorithms for growth

maximization in E. coli. Both approaches optimize the reaction rates and metabolite

concentrations such that the cell attains maximal growth under mixed nutritional

conditions of glucose and acetate. The first approach is similar to that in [75, 76]

in the sense that, after a time discretization, a collection of static optimization

problems is solved in each time step. It also allows for constraints on the time-

derivative of the reactions rates and relies on a sequence of linear programming

problems (which, as in FBA, makes it scalable to larger networks). The second ap-

proach corresponds to a dynamic optimization algorithm per se that can be solved

by numerical routines with an orthogonal point collocation method [79]. The results

showed good agreement with experimental data, supporting the idea that growth

maximization is a valid objective in bacterial metabolism not only under steady

state conditions (as in the application of FBA in [31]), but also when transient

phenomena are considered.

The works in [80, 81] address optimal homeostatic regulation within a Linear
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Quadratic Regulator framework (see Appendix A.2). The authors define the home-

ostatic objective function as a quadratic functional of the deviations of metabolites

and reaction rates from their steady state values. This approach has the consider-

able advantage of having an analytical solution via the Riccati equation, but on the

other hand it cannot account for constraints and requires a linear model.

3.4.2 Optimization of enzymatic concentrations

All the aforementioned studies on dynamic optimization [75, 76, 78, 80, 81] consider

the metabolites as state variables and the reaction rates as control inputs to be

optimized. This is useful since it only requires a stoichiometric model for the network

and, moreover, these models are linear in the reaction rates (recall the model in

(2.3.4)). However, as discussed in Section 2.2.2, the reaction rates are nonlinear

functions of the metabolites, and thus it is not accurate to regard the rates as

independent variables. A more precise approach is to directly optimize the enzymatic

concentrations for the kinetic model (2.3.7). In principle, the ideas presented in

[78, 80, 81] could be used for models that include reaction kinetics, but this has not

been explored so far.

Dynamic optimization of enzymatic concentrations was considered by Klipp and

co-workers in [28]. The problem under study was the activation of an unbranched

network from an “off” state, where only the network’s substrate is present, to a

state where all substrate has been converted into product. The authors computed

time-dependent enzyme profiles that drive the network between these two condi-

tions with minimal transition time. The transition time of a metabolic network is

defined as the average time needed to reach the steady state [82, 83]. A constraint

in the total enzyme concentration was included as a way of accounting for the lim-

ited gene expression capabilities of a cell. The formulation considered mass action

kinetics and was numerically solved by approximating the enzyme profiles as piece-

wise constant functions. It was found that the optimal enzyme profiles switch from

zero to maximal concentration and back to an intermediate level. The switching

sequence of the enzymes followed the same ordering as the reactions they catalyze

in the network. In addition, the optimal transition time was found to be always

smaller than the one achieved by choosing optimal constant enzyme concentrations,

which stresses the fact that dynamic manipulation of the enzymes can improve the

pathway performance.

The findings of [28] are in agreement with the experimental observations of
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Zaslaver et al. in [29]. There, a sequential or “just-in-time” pattern in enzyme

expression was found in unbranched pathways responsible for amino acid synthesis.

In order to explain these experimental results, the authors studied a model for

an unbranched network with three reactions exhibiting Michaelis-Menten kinetics.

The enzyme concentrations were assumed to be regulated by gene expression by a

repressor molecule, the activation of which was a function of the pathway product.

This corresponds to the genetic regulation mechanism described by Figure 2.5 in the

previous chapter. The gene regulatory parameters were computed so as to minimize

a mixed cost function accounting for the effort required by enzyme expression and

the deviation of the reaction rates from a target steady state flux. The optimized

parameters are equivalent to αi and βi in (2.4.7) and, interestingly, their optima were

such that the enzyme profiles showed a hierarchical structure. The optimal enzyme

profiles were found to be ordered in the same sequence as they act in the pathway.

This is illustrated in Figure 3.1, which shows the optimal enzymatic responses of

[29, Fig. 6].
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Figure 3.1. Optimal enzyme profiles computed in [29] normalized with respect to
their steady state values. Parameters values are the same as in [29, Fig. 6], with the
exception of the substrate S = 1 and RT = 1, which are not specified in the paper.

The sequential behaviour in the optimal enzymatic responses agrees qualitatively

with the gene expression data presented by the same authors. Their results support

the idea that genetic regulation of some metabolic networks may be underpinned by

an optimality principle. Conversely, the notion that sequential enzyme expression in

unbranched pathways arises from an optimality criterion is in accordance with what

had already been suggested in [28]. These observations motivate the development of
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a rigorous approach to the dynamic optimization of enzyme concentrations, which

is the topic of the next chapter.
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Chapter 4

Optimal activation of unbranched

networks

4.1 Introduction

The cellular response to environmental disturbances may include the activation or

inactivation of appropriate metabolic networks. As discussed in Chapter 3, exper-

imental observations of sequential enzyme expression patterns in the activation of

unbranched networks have been reported in the literature [29]. In these patterns,

enzymes are synthesized one after another following the same order as they act in the

network. Moreover, the analyses in [29, 28] suggest that this sequential behaviour

may be the outcome of an optimality principle underlying metabolic activation.

These analyses were carried out numerically, so it is unclear whether the sequential

patterns are inherent properties of metabolic activation or rather consequences of

specific kinetics and parameter values.

The purpose of this chapter is to examine the properties of optimal metabolic

activation in more general unbranched networks. To that end, we adopt a control-

theoretic framework and pose an optimal control problem that accounts for time-

resource minimization in metabolic activation under a constrained total enzyme

abundance. This constraint represents the limited capacity of the cell to synthesize

the enzymes. The optimized inputs are time-dependent enzyme concentrations that

rapidly drive the network to a prescribed steady state flux with moderate enzyme

usage.

By identifying the form of the optimal solution, we show that sequential activa-

tion is a feature that indeed arises in a broad class of unbranched networks. The

analysis is based on the application of Pontryagin’s Minimum Principle (see Ap-

pendix A.1), which allows us to analytically characterize the form of the solution.
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The solution is a switching sequence that matches the topology of the network, thus

suggesting that the sequential activation appears in more general instances than

previously considered. In fact, the results hold for unbranched networks of arbi-

trary length with a class of irreversible kinetics that includes (but is not limited to)

mass action, Michaelis-Menten and Hill kinetics.

In addition, the structure of the switching sequence can be used to construct an

equivalent static optimization problem, the solution of which allows the computation

of the optimal switching times. Other features of the optimized activation are also

explored. Feasibility is addressed by deriving a general formula for the upper bound

on the achievable target flux in terms of the saturation velocities of the individual

reactions. Sensitivity analysis of the optimal solution is carried out numerically by

considering two case studies.

Finally, since gene expression dynamics are relatively slow, switching enzyme

concentrations are not realistic from a biological viewpoint. We explore the numer-

ical solution of a similar optimal control problem for a metabolic model coupled

with enzyme dynamics. Although such a numerical solution does not allow for gen-

eralizations, the results show a temporal sequence that agrees with our theoretical

analysis.

The chapter is organized as follows: the problem formulation and the form of

the optimal solution are presented in Section 4.2 and Section 4.3, respectively. The

derivation of the equivalent static optimization problem is discussed in Section 4.4,

and further results are presented in Section 4.5. We conclude with a discussion of

the results in Section 4.6.

4.2 Problem formulation

We consider unbranched metabolic networks with n metabolites and (n + 1) irre-

versible reactions as the one shown in Figure 4.1. In that scheme s0 denotes the

concentration of the substrate that feeds the pathway. As discussed in Chapter 2,

the pathway activity is presumed to have a negligible effect on the concentration of

substrate, so s0 is considered constant.

vn−1
s0 s1v0

· · · sn vnv1

Figure 4.1. Unbranched metabolic pathway.
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The kinetics of each reaction are assumed to be linear in the enzyme concentra-

tions (see Assumption 2.1 in Chapter 2), i.e.

vi(si, ei) = gi(si)ei, (4.2.1)

where si = si(t) and ei = ei(t) are the concentrations of the ith metabolite and en-

zyme, respectively. We consider a class of nonlinear monomolecular enzyme kinetics

satisfying the following assumption.

Assumption 4.1: The turnover rate functions gi(si) in (4.2.1) satisfy

∂gi(si)

∂si
> 0, for si > 0, i = 0, 1, . . . , n, (4.2.2)

Assumption 4.1 states that an increase in substrate si yields an increase in the reac-

tion rate, which can saturate for large substrate concentrations. This monotonicity

condition is satisfied by a broad class of enzyme dynamics that includes Mass Ac-

tion, Michaelis-Menten and Hill kinetics. The irreversibility of the reactions also

implies that gi(si) ≥ 0 for all si. In particular, as stated in Assumption 2.1, it also

holds that

gi(0) = 0. (4.2.3)

As in (2.3.2), the dynamic model for the unbranched network in Figure 4.1 is given

by mass balance as

ṡi = vi−1(si−1, ei−1) − vi(si, ei), i = 1, 2, . . . , n. (4.2.4)

The kinetic model is given by (2.3.7)

ṡ = NG(s)e, (4.2.5)

where the state and control are s =
[

s1 s2 . . . sn

]T

and e =
[

e0 e1 . . . en

]T

,

respectively, and G(s) = diag {g0(s), g1(s), . . . , gn(s)}. The stoichiometric matrix
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N ∈ Z
n×(n+1) is given by

N =









1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 1 −1









. (4.2.6)

We are interested in optimizing time-dependent enzyme concentrations that activate

the network from the origin (i.e. when the network is “off”) to a steady state with

a given metabolic flux. For clarity, we first give a precise definition of the notion of

pathway activation and then we describe each element of the optimization problem

itself: the cost function, the input constraints, and the terminal condition.

Metabolic pathway activation

Assuming that the pathway is initially inactive, i.e. e(0) = 0, s(0) = 0, we aim

at obtaining temporal enzymatic profiles that drive the pathway to a steady state

characterized by a pre-specified constant flux V > 0. From Figure 4.1 and (4.2.4),

the pathway reaches a steady state at t = tf when

vi(t) = V, for t ≥ tf , i = 0, 1, . . . , n. (4.2.7)

The time tf is the duration of the activation process and its value is regarded as an

outcome of the optimization.

Cost function

If the pathway to be activated has a critical impact on cellular fitness, then the

metabolic product has to be built rapidly and with efficient enzyme usage. To

quantitatively express this principle, the control e(t) should minimize a cost function

of the form

J =

∫ tf

0

(
1 + αT e(t)

)
dt, (4.2.8)

with a weighting vector α ∈ R
n+1
≥0 . The minimization of J implies a combined

optimization of: (i) the time taken to reach the new steady state, and (ii) a measure

of the enzyme usage. The weight vector α can be appropriately tuned to reflect

the relative biosynthetic cost of specific enzymes. If we choose α = 0 then J = tf ,
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which corresponds to the total activation time.

Input constraints

A cell can expend only a limited set of resources on the activation of any given

pathway. A simple and convenient way of taking those limitations into account is to

consider an upper bound on the total enzyme abundance [69, 28]. For that purpose,

we consider a control that is constrained as e(t) ∈ U for all t ∈ [0, tf ), where U is

the simplex defined as

U =

{

e ∈ R
n+1
≥0 :

n∑

i=0

ei ≤ ET

}

. (4.2.9)

The constant ET > 0 is the upper bound on the total enzymatic concentration that

can be allocated for the pathway activation.

Terminal condition

In principle, the terminal condition for the optimization problem is specified solely

by enforcing the steady state after time tf , which is described by (4.2.7). Once the

pathway has reached the steady state (i.e. after time tf ), the enzyme concentrations

must maintain the pathway flux. Combining the steady state condition in (4.2.7)

with the form of the reaction rates in (4.2.1), we get the required steady state enzyme

levels as

ei(t) =
V

gi(s
f
i )

, for t ≥ tf , i = 0, 1, . . . , n, (4.2.10)

where sf
i = si(tf ) is the ith component of the steady state metabolite vector sf =

s(tf ). Equation (4.2.10) specifies the steady state enzymatic concentrations that

are needed to sustain the target flux. However, this condition alone does not ensure

that those enzymatic levels are within the constraint set U after the optimization

period. Using the definition of U in (4.2.9) together with (4.2.10), it follows that

the steady state metabolite concentrations must satisfy sf ∈ S with

S =






sf ∈ R

n
>0 :

V

g0 (s0)
+

n∑

i=1

V

gi

(

sf
i

) ≤ ET






. (4.2.11)
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The terminal set S guarantees that the steady state is compatible with the upper

bound on total enzyme abundance. Rather than specifying the steady state as a

single point, S defines a surface where the terminal state must lie.

In summary, the optimal control problem for the metabolic network activation

reads as follows.

Problem 4.1: Consider the kinetic model (4.2.5) with N defined in (4.2.6), G(s)

satisfying Assumption 4.1, initial condition s(0) = 0 and a prescribed target flux

V > 0. Find a final time tf and a piecewise continuous control e(t) : [0, tf ) → U

that minimizes

J =

∫ tf

0

(
1 + αT e(t)

)
dt,

for a given α ∈ R
n+1
≥0 , and drives the system to a steady state s(tf ) ∈ S with S

defined in (4.2.11).

Problem 4.1 is a nonlinear optimal control problem with free final time, the solution

of which is described in the next section.

4.3 Optimal network activation

4.3.1 Form of the optimal activation

A suitable framework for solving optimal control problems such as Problem 4.1

is provided by Pontryagin’s Minimum Principle (PMP), see Appendix A.1. Ap-

plication of PMP typically results in the statement of a two-point boundary value

problem (BVP), so that any solution of the original optimization problem also solves

the BVP. In general, solving this BVP for systems with nonlinear dynamics can be

very challenging, and the analysis is typically carried out on a case-by-case basis.

An explicit solution to Problem 4.1 is not attainable through PMP since the BVP

does not admit a general solution. Even in a particular instance of the problem in

which the pathway length and kinetics were specified, the nonlinear dynamics would

typically lead to a BVP which can only be treated numerically. The main result of

this chapter is stated in the next theorem and describes properties of the solution

that can be used to compute the full solution without solving the associated BVP.

The proof is presented in Section 4.3.2.
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Theorem 4.1: There exists a set of switching times {t0, t1, . . . , tn−1}, with 0 <

ti < tj for i < j and tn−1 = tf that partition the optimization interval as

[0, tf ) =
n−1⋃

i=0

Ti, (4.3.1)

with T0 = [0, t0 ) and Ti = [ti−1, ti ) for i = 1, 2, . . . , n − 1, such that the solution

e∗(t) to Problem 4.1 satisfies

ei(t) =







ET, for t ∈ Ti,

0, for t /∈ Ti,
(4.3.2)

Equation (4.3.2) shows that the optimal control is a switching sequence between

0 and the maximal level ET. These “bang-bang” controls are a common feature

of solutions in classical time optimal control [84]. The bang-bang quality of the

solutions to Problem 4.1 is a consequence of the geometry of the constraint region

U and the fact that the dynamics and the cost depend linearly on the control e(t).

It is also observed that the form of the optimal solution does not depend on the

weight α. Therefore, variations in the biosynthetic costs for enzyme production will

be reflected only in the activation duration of the individual reactions, without any

effect in the activation sequence. The result of Theorem 4.1 can also be interpreted

as follows:

1) at any time t ∈ [0, tf ), only one enzyme is active (i.e. has a nonzero concentra-

tion);

2) the active enzyme is present at maximum concentration;

3) each enzyme is active over a single time interval;

4) the order of enzyme activation matches the order of reactions in the pathway.

This means that the optimal activation follows a sequential pattern, whereby the

reactions are activated one after another in the same order as they appear in the

network. The sequential behaviour holds for arbitrary pathway lengths (n) and a

broad class of irreversible monomolecular reaction kinetics, namely those that satisfy

the monotonicity condition in Assumption 4.1. Moreover, we find that the activation

sequence is a consequence of both the pathway structure and the reaction kinetics.
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From an intuitive point of view, the “pipeline” structure of the pathway implies

the ith metabolite cannot be produced unless the upstream portion of the pathway

has been activated. Moreover, the monotonicity condition on the kinetics (4.2.2)

precludes the optimality of activating an upstream reaction after the ith one has

already been activated (a fact that arises from (4.3.30) and (4.3.31) in the proof).

We also observe that the description of the optimal solution provided by Theorem

4.1 considerably simplifies the numerical computation of the optimal solutions. Since

the optimal control can be fully parameterized in terms of {t0, t1, . . . , tn−1}, one

needs only to optimize over the n switching times, rather than over the whole class

of admissible controls. This will be used later in Section 4.4 to obtain an equivalent

nonlinear static optimization problem that gives the complete numerical solution of

Problem 4.1.

The bang-bang solution of Theorem 4.1 resembles the previous results in [28],

whereby optimal enzyme inputs were numerically determined for networks with

mass action kinetics. It should be pointed out, however, that in [28] the authors

consider a thermodynamically closed network, i.e. the model does not include a

constant substrate pool. In that case the network reaches a nil steady state flux,

and therefore the problem is of different nature and our solution cannot be directly

applied. The reader is referred to [85] for an optimal control approach to the problem

in [28].

4.3.2 Proof of Theorem 4.1

The proof is based on Pontryagin’s Minimum Principle, the details of which are

presented in Appendix A.1. In what follows we use the standard control-theoretic

notation and define the state and control as x = s and u = e, respectively.

For Problem 4.1, the Hamiltonian in (A.1.3) is given by

H (x(t), u(t), p(t)) = 1 + αT u(t) + p(t)T ẋ(t), (4.3.3)

where p(t) =
[

p1(t) p2(t) . . . pn(t)
]T

is the co-state vector. From PMP the co-

state satisfies (A.1.5), and thus using the mass balance equations in (4.2.4) and the

property vi(xi, ui) = gi(xi)ui, the ODE for the ith co-state is

ṗi(t) = (pi(t) − pi+1(t))
∂gi

∂xi
ui(t), i = 1, 2, . . . , n. (4.3.4)
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In addition, the Hamiltonian can be written as

H (x(t), u(t), p(t)) = 1 +

n∑

i=0

hi(t)ui(t), (4.3.5)

The function hi(t) is called the ith switching function and is given by

hi(t) = αi + (pi+1(t) − pi(t))gi (xi(t)) , i = 0, 1, . . . , n, (4.3.6)

with p0(t) = 0 and pn+1(t) = 0.

For clarity, the proof is split in three parts. Firstly, we use geometric arguments

to show that the solution lies on a face of the simplex U for all t ∈ [0, tf ). Secondly,

we define some notation and derive a link between the values of the switching func-

tions and the optimal solution. Finally, by examining properties of ḣi(t) we show

that the optimal solution satisfies the claim.

Part 1:

Denote the set of vertices of the set U as V = {v0,v1, . . . ,vn} ∪ {0}, where vi has

ET in its (i + 1)st entry and 0 elsewhere. Similarly, the set of n-dimensional faces

of U is defined as

F = {F0, F1, . . . , Fn} ∪ {P} , (4.3.7)

where Fi and P are the faces defined by the hyperplanes

Fi = {u ∈ U : ui = 0} , (4.3.8)

P =

{

u ∈ U :

n∑

i=0

ui = ET

}

. (4.3.9)

In what follows we denote the optimal control that solves Problem 4.1 as u∗(t).

From condition (A.1.6) in PMP we know that the optimal control must minimize the

Hamiltonian. We notice in (4.3.5) that H (x(t), u(t), p(t)) is a linear function defined

over the simplex U . Therefore it follows that the optimal control is located in the

boundary of U for all t ∈ [0, tf ). Moreover, this implies that u∗(t) ∈ V, ∀t ∈ [0, tf )

and hence the optimal control can always be found at the vertices of U . As a

consequence, if the optimal control is not unique then it has to lie on a face of the
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U , i.e. the convex hull of a subset of V. We next present a simple fact that will be

used to preclude the optimality of the face Fi, i = 0, 1, . . . , n.

Lemma 4.1: Let f(u) : U → R be a linear function of u with U defined in (4.2.9).

Assume that the minimum of f(u) is not attained at vertex vj, then f(u) cannot

attain its minimum at any face of U that contains vj.

Proof:

The proof follows by contradiction. Let Q be any r-dimensional face of U with vertex

set VQ ⊆ V and r ≤ n + 1. Suppose VQ is partitioned as VQ = VQ+ ∪ VQ−, where

the subset VQ+ contains the vertices where f(u) is minimal and VQ− = VQ \ VQ+.

Let vj ∈ VQ− and assume that there exists y ∈ Q such that f(y) is minimal. Then,

if we define the index sets IQ+ = {i : vi ∈ VQ+} and IQ− = {i : vi ∈ VQ−}, there

exists βi ≥ 0 such that

y =
∑

i∈IQ−

βivi +
∑

i∈IQ+

βivi, (4.3.10)

with

∑

i∈IQ−∪IQ+

βi = 1. (4.3.11)

Linearity of f(u) implies that f(y) = f(vi), ∀i ∈ IQ+, and (4.3.10) yields



1 −
∑

i∈IQ+

βi



 f(y) =
∑

i∈IQ−

βif(vi),

∑

i∈IQ−

βif(y) =
∑

i∈IQ−

βif(vi), (4.3.12)

which is a contradiction because f(y) < f(vi) for all i ∈ IQ−.

���

The condition (A.1.8) in PMP implies that H must vanish along the optimal tra-

jectory, so that (4.3.5) implies u∗(t) 6= 0, ∀t ∈ [0, tf ). This precludes the optimality

of the origin, and thus we can use Lemma 4.1 to conclude that u∗(t) /∈ Fi \ V, ∀i.
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This implies that u∗(t) ∈ P and therefore the optimal solution satisfies

n∑

i=0

u∗i (t) = ET. (4.3.13)

Part 2:

Now suppose that we partition the interval [0, tf ) in subintervals {T0, T1, . . . , Tq}

such that T0 = [0, t0 ) and Ti = [ti−1, ti ) , ∀ i = 1, 2, . . . , q, with ti < tj , ∀ i < j and

tq = tf . Define the index set

Iℓ = {i : u∗i (t) 6= 0,∀t ∈ Tℓ} (4.3.14)

so that the set

U∗ℓ = {u∗i : i ∈ Iℓ} , (4.3.15)

contains all the components of u∗ that are nonzero during interval Tℓ. Note that

since x(0) = 0 and x(tf ) 6= 0 (recall the definition of the set S in (4.2.11)), the set

U∗ℓ is nonempty. Note that, without loss of generality, the partition {T0, T1, . . . , Tq}

is chosen so that U∗i 6= U∗i+1 for i = 0, 1, . . . , q − 1.

From (4.3.5), the condition (A.1.8) in PMP translates into

1 +
n∑

i=0

hi(t)u
∗
i (t) = 0, ∀t ∈ [0, tf ) . (4.3.16)

During interval Tℓ, the above equation becomes

1 +
∑

i∈Iℓ

hi(t)u
∗
i (t) = 0, ∀t ∈ Tℓ. (4.3.17)

In addition, the result in (4.3.13) implies that for all i ∈ Iℓ, ui satisfies

∑

i∈Iℓ

u∗i (t) = ET, ∀t ∈ Tℓ, (4.3.18)

which can also be written as

1 −
∑

i∈Iℓ

1

ET
u∗i (t) = 0, ∀t ∈ Tℓ. (4.3.19)
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Note also that because of the linear Hamiltonian, if for any time t ∈ [0, tf ) a point

ua ∈ P \ V is optimal, then any ub 6= ua such that ub ∈ P \ V is also optimal. This

means that equations (4.3.17) and (4.3.19) must be satisfied by any u∗ ∈ P, which

is only possible when

hj(t) = −
1

ET
< 0, ∀ j ∈ Iℓ, ∀ t ∈ Tℓ. (4.3.20)

Equation (4.3.20) allows to identify the elements of U∗ℓ (i.e. the nonzero controls in

interval Tℓ) by examining the trajectories of the switching functions.

Part 3:

With the previous definitions, the proof follows by showing that

U∗ℓ = {uℓ} ,∀ ℓ = 0, 1, . . . , q, (4.3.21)

q = n − 1. (4.3.22)

The claim can be proven with an inductive procedure based on the following lemma.

Lemma 4.2: Consider interval Tℓ, ℓ ≥ 2, and assume that

xi(tℓ) = 0, ∀ i > ℓ + 1, (4.3.23)

U∗j = {uj} , ∀ j ≤ ℓ. (4.3.24)

Then,

U∗ℓ+1 = {uℓ+1} . (4.3.25)

Proof:

We first note that since x(0) = 0 and gi(0) = 0, then (4.3.24) implies

xj(t) = 0, ∀t ∈

j−2
⋃

i=0

Ti, ∀ 2 ≤ j ≤ ℓ,
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which combined with (4.3.6) yields

hj(t) = αj , ∀t ∈

j−2
⋃

i=0

Ti, ∀ 2 ≤ j ≤ ℓ. (4.3.26)

From (4.2.4), (4.3.6), and (4.3.4), for all j it holds

ḣj(t) = (ṗj+1(t) − ṗj(t)) gj (xj(t)) + (pj+1(t) − pj(t))
∂gj

∂xj
ẋj(t)

= (pj+1(t) − pj+2(t))
∂gj+1

∂xj+1
gj (xj(t))uj+1(t) −

(pj(t) − pj+1(t))
∂gj

∂xj
gj−1 (xj−1(t))uj−1(t), (4.3.27)

where we define g−1 = 0. Since uj(t) = 0, ∀ j 6= ℓ, ∀ t ∈ Tℓ, (4.3.27) yields

ḣj(t) = 0, ∀ j /∈ {ℓ − 1, ℓ + 1} , ∀ t ∈ Tℓ. (4.3.28)

On the other hand, if j = ℓ − 1 then uj+1(t) = ET, uj−1(t) = 0, ∀ t ∈ Tℓ, which

after substituting in (4.3.27) yields

ḣℓ−1(t) = (pℓ(t) − pℓ+1(t))
∂gℓ

∂xℓ

gℓ−1 (xℓ−1(t))ET, ∀t ∈ Tℓ. (4.3.29)

Combining (4.3.29) and (4.3.6) with i = ℓ leads to

ḣℓ−1(t) =

(
αℓ − hℓ(t)

gℓ(xℓ(t))

)
∂gℓ

∂xℓ

gℓ−1 (xℓ−1(t))ET, ∀t ∈ Tℓ. (4.3.30)

Equation (4.3.6) with i = ℓ implies that gℓ(t) > 0, ∀ t ∈ Tℓ, since otherwise hℓ(t) =

αℓ ≥ 0 for some t ∈ Tℓ and (4.3.20) cannot be satisfied. This guarantees that

ḣℓ−1(t) in (4.3.30) is well defined in the interval Tℓ. Similarly, (4.3.24) implies that

gℓ−1 (xℓ−1(t)) > 0, ∀ t ∈ Tℓ−1 and ẋℓ−1(t) = 0, ∀ t ∈ Tℓ. Then, gℓ−1 (xℓ−1(t)) >

0, ∀ t ∈ Tℓ and thus, using (4.2.2) and (4.3.20) in (4.3.30) yields

ḣℓ−1(t) > 0, ∀ t ∈ Tℓ. (4.3.31)

Equations (4.3.20), (4.3.26), (4.3.28) and (4.3.31) provide information on the
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trajectory of the jth switching function. These can be summarized as

hj(t) =

{

αj , ∀ 2 ≤ j ≤ ℓ, ∀t ∈
⋃j−2

i=0 Ti,

− 1
ET

, ∀ j ≤ ℓ, ∀ t ∈ Tj ,
(4.3.32)

ḣj(t) > 0, ∀ j < ℓ, ∀ t ∈ Tj+1, (4.3.33)

ḣj(t) = 0, ∀ j < ℓ, ∀ t ∈
ℓ⋃

i=j+2

Ti. (4.3.34)

In order to clarify the idea, a schematic plot of the switching functions hℓ−2(t),

hℓ−1(t) and hℓ(t) is depicted in Figure 4.2.

hℓ−2(t)

tℓ−2

hℓ−1(t) hℓ(t)

αℓ

tℓ−1 tℓ tℓ+1 t

Tℓ−1 Tℓ Tℓ+1

− 1
ET

Figure 4.2. Sketch plot of switching functions hℓ−2(t), hℓ−1(t) and hℓ(t) satisfying
equations (4.3.32)–(4.3.34).

The idea is then to show that the form of the trajectories in Figure 4.2 implies

that the only enzyme that can be nonzero in Tℓ+1 is uℓ+1 (as expressed in (4.3.25)).

We proceed by analyzing the effect of enzyme uj being nonzero in interval Tℓ+1.

• Case j < ℓ:

Assume that uj ∈ U∗ℓ+1 for some j < ℓ. Then in order to satisfy (4.3.20),

(4.3.32)–(4.3.34) imply that hj(t) must be discontinuous at t = tℓ (see Figure

4.2), which from (4.3.6) is not possible since both x(t) and p(t) are continuous.
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Hence, it follows that

uj /∈ U∗ℓ+1, ∀ j < ℓ. (4.3.35)

• Case j > ℓ + 1:

From (4.3.23) we have that xi(tℓ) = 0, ∀ i > ℓ + 1 and hence using (4.2.4) we

conclude that xi(t) = 0, ∀ i > ℓ + 1, ∀ t ∈ Tℓ+1. The switching function in

(4.3.6) then becomes

hi(t) = αi ≥ 0, ∀ i > ℓ + 1, ∀ t ∈ Tℓ+1, (4.3.36)

which contradicts (4.3.20) and hence

uj /∈ U∗ℓ+1, ∀ j > ℓ + 1. (4.3.37)

• Case j ∈ {ℓ, ℓ + 1}:

Assume that U∗ℓ+1 = {uℓ, uℓ+1}. Using (4.3.35)–(4.3.37) in (4.3.27) yields

ḣℓ(t) = (pℓ+1(t) − pℓ+2)
∂gℓ+1

∂xℓ+1
gℓ (xℓ(t))uℓ+1(t), ∀t ∈ Tℓ+1, (4.3.38)

ḣℓ+1(t) = − (pℓ+1(t) − pℓ+2)
∂gℓ+1

∂xℓ+1
gℓ (xℓ(t))uℓ(t), ∀t ∈ Tℓ+1. (4.3.39)

Substituting (4.3.6) with i = ℓ + 1 in (4.3.38)–(4.3.39) leads to

ḣℓ(t) =

(
αℓ+1 − hℓ+1(t)

gℓ+1 (xℓ+1(t))

)
∂gℓ+1

∂xℓ+1
gℓ (xℓ(t))uℓ+1(t), ∀t ∈ Tℓ+1, (4.3.40)

ḣℓ+1(t) = −

(
αℓ+1 − hℓ+1(t)

gℓ+1 (xℓ+1(t))

)
∂gℓ+1

∂xℓ+1
gℓ (xℓ(t))uℓ(t), ∀t ∈ Tℓ+1. (4.3.41)

Since xℓ+1(t) 6= 0, ∀ t ∈ Tℓ+1, the right hand sides of (4.3.40)–(4.3.41) do

not have singularities. From (4.3.20), U∗ℓ+1 = {uℓ, uℓ+1} implies that ḣℓ(t) =

ḣℓ+1(t) = 0, ∀t ∈ Tℓ+1, but in view of (4.3.40)–(4.3.41), this can only hold

if uℓ(t) = uℓ+1(t) = 0, ∀t ∈ Tℓ+1, which contradicts the assumption that

U∗ℓ+1 = {uℓ, uℓ+1}. Moreover, if U∗ℓ+1 = {uℓ}, then U∗ℓ+1 = U∗ℓ , contradicting

the fact that U∗i 6= U∗i+1, ∀ i = 0, 1 . . . , q − 1. Thus, uℓ /∈ U∗ℓ+1 and since

U∗ℓ 6= ∅, we get the result in (4.3.25).
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���

To conclude the argument, next we show that U∗0 = {u0} and U∗1 = {u1}. These

imply that conditions (4.3.23)–(4.3.24) in Lemma 4.2 are satisfied for ℓ = 1, 2, and

hence the lemma can be used inductively to prove the claim in (4.3.21).

Consider interval T0 and assume that vertex vj, j > 0, is optimal in T0, then

since x(0) = 0 it follows from (4.2.4) that x(t) = 0, ∀ t ∈ T0. From (4.2.3) and

(4.3.6), this yields hj(t) = αi ≥ 0, ∀ i > 0, which contradicts (4.3.20) and therefore

vj, j > 0, cannot be optimal in interval T0. Lemma 4.1 then yields

U∗0 = {u0} . (4.3.42)

We now consider interval T1. Assume vj, ∀j > 1, is optimal in interval T1, then

(4.3.42) implies xi(t0) = 0, ∀ i > 1 and hence (4.2.4) yields xi(t) = 0, ∀ i > 1, ∀ t ∈

T1. The switching function in (4.3.6) becomes

hi(t) = αi ≥ 0, ∀ i > 1, (4.3.43)

which contradicts (4.3.20) and therefore vj, j > 1, cannot be optimal in interval T1.

Thus, from Lemma 4.1 we conclude that uj /∈ U∗1 , ∀j > 1.

Now suppose that v0 and v1 are optimal in interval T1, then similarly as in case

j ∈ {ℓ, ℓ + 1} in the proof of Lemma 4.2 (take (4.3.38)–(4.3.41) with ℓ = 0), it can

be shown that ḣ0(t) = ḣ1(t) = 0, ∀t ∈ T1 only when u0(t) = u1(t) = 0, ∀t ∈ T1,

which contradicts the optimality of v0 and v1. Moreover, if v0 is optimal in T1,

then U∗1 = U∗0 , contradicting our hypothesis that U∗i 6= U∗i+1, ∀ i = 0, 1, . . . , q. Thus,

we conclude that u0 /∈ U∗1 , which together with the non-emptiness of U∗1 yields

U∗1 = {u1} . (4.3.44)

Equations (4.3.42) and (4.3.44) imply that xi(t1) = 0, ∀ i > 1 and therefore, we can

inductively use Lemma 4.2, to get the result (4.3.21).

To prove (4.3.22) it suffices to show that q 6= n. Assume that q = n and consider

interval Tn, so that from (4.3.21) it holds that U∗n = {un}. From (4.3.32)–(4.3.34)

it follows that there is no switching function hi such that condition (4.3.20) holds

for ℓ > n (this can also be seen from the trajectories for the switching functions

in Figure 4.2). Thus, U∗n = {un} implies that ẋn(t) < 0, ∀ t ≥ tn−1, which cannot

hold (if it were true, then limt→∞ xn(t) = 0 and thus x(tf ) /∈ S). This leads to the
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conclusion that q 6= n and (4.3.22) follows.

4.3.3 Example

As an illustrative example of the result in Theorem 4.1, we consider a network as in

Figure 4.1 of length n = 3, where all the reactions exhibit Michaelis-Menten kinetics

of the form

vi(si, ei) =
kcat isi(t)

Km i + si(t)
ei(t). (4.3.45)

The model parameters are {kcat 1, kcat 2, kcat 3, kcat 4} = {1, 2, 4, 3}, Km i = 1 for all i,

s0 = 5 and we set the enzymatic weights to αi = 1 for all i. The maximum enzyme

concentration is ET = 1. The solution of Problem 4.1 with V = 0.2 is shown in

Figure 4.3. The optimal switchings occur at t0 = 1.5, t1 = 2.1 and t2 = 2.4, and

the steady state concentrations of the metabolites are sf
1 = 0.65, sf

2 = 0.32 and

sf
3 = 0.29. The optimal solution is a sequence of switches that agrees with the

result of Theorem 4.1 and guarantees that the steady state is maintained after the

activation time (t ≥ t2). The terminal steady state enzyme levels are computed

directly from (4.2.10). We also notice that the last enzyme needs to be present only

after the activation period, which is required to achieve the steady state flux.

The numerical solution was obtained via an equivalent nonlinear static optimiza-

tion problem and the gradient-based routine fmincon available in the Optimization

Toolbox for Matlab R©. For clarity, the details of this equivalent optimization problem

are presented in the next section.

4.4 Equivalent nonlinear optimization problem

The result of Theorem 4.1 allows us to fully characterize the solution to Problem 4.1

in terms of the n switching times {t0, t1, . . . , tn−1}. Numerical solutions can thus be

obtained by considering the switching times as decision variables of an equivalent

static optimization problem. In this section we show how to translate Problem 4.1

into a static nonlinear optimization problem which can be solved with standard

software packages.
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Figure 4.3. Optimal activation for pathway of length n = 3 with Michaelis-Menten
kinetics.

Equivalent cost

Consider the statement of Theorem 4.1 and write the cost function in (4.2.8) as

J =

∫ t0

0

(
1 + αT e(t)

)
dt +

n−1∑

i=1

∫ ti

ti−1

(
1 + αT e(t)

)
dt. (4.4.1)

Substitution of the optimal control (4.3.2) in (4.4.1) yields

J =
n−1∑

i=0

βi∆i, (4.4.2)

where ∆i is the switching period of the ith control, i.e. ∆0 = t0 and ∆i = ti − ti−1.

The weights βi are defined as

βi = 1 + αiET, (4.4.3)
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so that the original cost function can be simply written as a linear function of the

switching periods. In vector form (4.4.2) reads

J = βT ∆, (4.4.4)

where ∆ =
[

∆0 ∆1 · · · ∆n−1

]T

and β =
[

β0 β1 . . . βn−1

]T

.

Explicit formulae for the switching periods

The optimization of (4.4.4) with the switching periods as decision variables requires

writing the nonlinear constraint (4.2.11) in terms of ∆. This is a difficult task, but

as it will be shown next, we can derive explicit formulae for the switching periods

in terms of the final state. This allows to carry out the optimization with the final

state as the decision variable and use the constraint (4.2.11) as it is.

Let {T0, T1, . . . , Tn−1} be the partition of the interval [0, tf ) described in The-

orem 4.1. We first note that substitution of the optimal control (4.3.2) in the

dynamics (4.2.4) yields

ṡj =







ETg0(s0), j = 1,

0, j 6= 1,
(4.4.5)

for all t ∈ T0 and

ṡj =







−ETgi(si), j = i,

ETgi(si), j = i + 1,

0, j /∈ {i, i + 1} ,

(4.4.6)

for all t ∈ Ti, i > 0. Thus, given a set of intervals {T0, T1, . . . , Tn−1}, the solution

of (4.4.5)–(4.4.6) with initial condition s(0) = 0 is the state trajectory of system

in (4.2.4) under the optimal bang-bang control. Let us now introduce a new state

variable

z = T s, (4.4.7)
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with T ∈ R
n×n defined as

T =









1 1 · · · 1

0 1 · · · 1
...

. . .
. . .

...

0 0 · · · 1









. (4.4.8)

Since the original state variable s is given by

si = zi − zi+1, (4.4.9)

the dynamics (4.4.5)–(4.4.6) can be written as

żj =







ETg0(s0), j = 1,

0, j 6= 1,
(4.4.10)

for all t ∈ T0, whereas

żj =







ETgi(zi − zi+1), j = i + 1,

0, j 6= i + 1,
(4.4.11)

for all t ∈ Ti, i > 0 and with initial condition z(0) = 0. The system (4.4.10)–(4.4.11)

has a simpler structure than (4.4.5)–(4.4.6). In fact, during the interval Ti every

component of z remains constant, except for zi+1. This also implies that

zj(t) =







zf
j , j ≤ i,

0 j > i + 1,
(4.4.12)

for all t ∈ Ti, i ≥ 0 and with zf = T sf .

As shown next, equations (4.4.10)–(4.4.12) allow the explicit computation of

the switching periods as a function of the final state zf . In the sequel we write

∆i = ∆i(z
f ) to denote the dependence of ∆i on the final state. Integrating (4.4.10)

from t = 0 up to t = t1 leads to

∆0(z
f ) =

zf
1

ETg0(s0)
. (4.4.13)
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The remaining switching periods can be computed as follows. Equation (4.4.12)

implies that zi(t) = zf
i for all t ∈ Ti, which can be substituted in (4.4.11) to obtain

żi+1(t) = ETgi(z
f
i − zi+1(t)), (4.4.14)

for all t ∈ Ti, i > 0,. Integration of (4.4.14) on the interval Ti yields

∆i(z
f ) =

1

ET

∫ zi+1(ti)

zi+1(ti−1)

1

gi(z
f
i − τ)

dτ, i > 0. (4.4.15)

In addition, from (4.4.12) we have zi+1(ti−1) = 0 and zi+1(ti) = zf
i+1, so that the

above equation becomes

∆i(z
f ) =

1

ET

∫ z
f
i+1

0

1

gi(z
f
i − τ)

dτ, i > 0. (4.4.16)

Equations (4.4.13) and (4.4.16) are explicit formulae for computing the switching

period ∆i in terms of the final state zf . We point out that since sf
i > 0, the change

of variables in (4.4.7) guarantees that zf
i > zf

i+1 and thus the integrand in (4.4.16)

has no singularities on the integration interval.

Equivalent optimization problem

The formulae for ∆i can be used to compute the equivalent cost (4.4.4) as a function

of the final state zf instead of the switching times. Using (4.4.9), the terminal set

S in (4.2.11) can be written in terms of zf as

Sz =






zf ∈ R

n
>0 :

V

g0(s0)
+

n∑

i=1

V

gi

(

zf
i − zf

i+1

) ≤ ET, zf
i > zf

i+1






. (4.4.17)

From the results in the previous section, the following lemma holds.

Lemma 4.3: Given sf ∈ R
n
>0, there exists a set of switching times {t0, t1, . . . , tn−1}

such that the optimal control in (4.3.2) drives the state from s(0) = 0 to s(tf ) = sf .

Proof:

For a given zf = T sf ∈ Sz, a unique set of switching periods {∆0, ∆1, . . . ,∆n−1}

can be computed with (4.4.13) and (4.4.16). Thus, given an arbitrary sf ∈ R
n
>0 we
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can always find a set of switching times {t0, t1, . . . , tn−1} such that s(tf ) = sf .

���

Lemma 4.3 guarantees that for any zf ∈ Sz, there is a set of switching times that

drive the state s from the origin to sf = T−1zf . Therefore, the minimization of the

equivalent cost in(4.4.4) can be carried out with the final state zf as the decision

variable. In addition, we have the next lemma.

Lemma 4.4: Let sf∗ ∈ R
n
>0 be the final state associated to the solution of Problem

4.1, then

V

g0 (s0)
+

n∑

i=1

V

gi

(

sf∗
i

) = ET. (4.4.18)

Proof:

The proof follows by contradiction. Since sf∗ is the terminal state of the optimal

solution, we have that sf∗ ∈ S with S defined in (4.2.11). Suppose that

V

g0 (s0)
+

n∑

i=1

V

gi(s
f∗
i )

< ET, (4.4.19)

then there exists ε > 0 such that

V

g0 (s0)
+

n∑

i=1

V

gi(s
f∗
i )

+ ε = ET. (4.4.20)

By taking the last term out of the sum, (4.4.20) can be written as

V

g0 (s0)
+

n−1∑

i=1

V

gi(s
f∗
i )

+
V

gn(sε
n)

= ET, (4.4.21)

where sε
n > 0 is such that

gn(sε
n) =

gn(sf∗
n )

1 + ε
V

gn(sf∗
n )

. (4.4.22)

From (4.4.22) it can be seen that gn (sε
n) < gn

(

sf∗
n

)

, which using the monotonicity

condition in Assumption 4.1 implies sε
n < sf∗

n . The optimal control (4.3.2) applied
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to system (4.2.4) implies that ṡn(t) > 0, ∀ t ∈ [tn−2, tn−1 ), so that there exists

tε < tn−1 such that sn(tε) = sε
n, which in turn from (4.4.4) means that a lower cost

is achieved, and hence sf∗ cannot be the terminal state for the optimal solution.

���

Equation (4.4.18) in Lemma 4.4 implies that the optimal solution enforces full

enzyme usage not only during the optimization interval [0, tn−1) , as stated by The-

orem 4.1, but also after the activation time (i.e. for t ≥ tn−1). We can thus rewrite

the set Sz in (4.4.17) as

Sz =






zf ∈ R

n
>0 :

V

g0(s0)
+

n∑

i=1

V

gi

(

zf
i − zf

i+1

) = ET, zf
i > zf

i+1






. (4.4.23)

We are now able to state the original optimal control problem as an equivalent

nonlinear static optimization problem.

Problem 4.2 (Equivalent static optimization problem) Find

zf∗ = arg min
zf

βT ∆(zf ) (4.4.24)

subject to (4.4.25)

zf ∈ Sz, (4.4.26)

where Sz is defined in (4.4.23) and the switching periods ∆(zf ) are computed from

(4.4.13) and (4.4.16).

The solution of Problem 4.2 can be obtained with standard routines for con-

strained nonlinear optimization. Once the solution zf∗ is found, the optimal switch-

ing periods can be obtained from (4.4.13) and (4.4.16), while the final state can be

computed from (4.4.9).

Remark 4.1: In order to recast Problem 4.1 as a static nonlinear optimization

problem, we introduced the change of variables z = T s defined in (4.4.7). This

simplifies the analysis, as seen in the system (4.4.10)–(4.4.11), and leads to simple

expressions for the switching periods in terms of the final state zf . However, the

change of variables is not mandatory and a similar analysis can be carried out in

the original state variable s, leading to slightly more complicated formulae for the

switching periods.
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4.5 Further analyses

4.5.1 Limit steady state flux

In the statement of Problem 4.1 we assumed that the network can reach any pre-

scribed flux V > 0. However, the flux achievable by the network is constrained

by the bound on the total enzyme abundance (4.2.9) and the saturating rates of

the reaction steps. From the form of the reaction rates in (4.2.1), we define the

saturating turnover rates ĝi as

ĝi = sup
si>0

gi(si) = sup
si>0

vi(si, 1). (4.5.1)

Note that since s0 is constant, ĝ0 = g0. The constraint (4.4.18) implies that a flux

V > 0 is achievable provided that

V

g0 (s0)
+

n∑

i=1

V

gi(s
f
i )

= ET, (4.5.2)

has a solution sf ∈ R
n
>0. If we denote as V̂ the supremum flux such that (4.5.2) has

a positive solution, then it follows

V̂ = ET



 inf
sf∈R

n
>0

1

g0(s0)
+

n∑

i=1

1

gi

(

sf
i

)





−1

,

= ET

(
n∑

i=0

1

ĝi

)−1

, (4.5.3)

where we interpret 1
∞

= 0 for the case of non-saturating kinetics (e.g. Mass Action

kinetics—such reactions do not constrain the achievable flux). Equation (4.5.3) gives

the maximal flux under which the optimization problem is feasible. This formula

also indicates how the total enzyme pool should be distributed to achieve maximal

flux. The flux V̂ will be reached only if the ratio ET

ĝi

(
∑n

i=0
1
ĝi

)−1
of enzymatic

activity is dedicated to enzyme ei. In the typical case that the saturating turnover

rates in (4.5.1) are not attained at finite metabolite concentrations, the upper bound

V̂ is not an achievable target. As shown in the next lemma, when the target flux V

approaches the value V̂ , the optimal cost becomes arbitrarily large.

57



4.5. FURTHER ANALYSES

Lemma 4.5: Denote the value of the optimal cost (as a function of V ) as

J ∗(V ) = min
e(·)∈U

J (V ), (4.5.4)

then

lim
V→V̂

J ∗(V ) = ∞, (4.5.5)

where V̂ is the supremum flux given in (4.5.3).

Proof:

Let the target steady state flux be V = V̂ −δ, δ > 0, so that the terminal constraint

(4.4.18) becomes

V̂

g0 (s0)
+

n∑

i=1

V̂

gi

(

sf∗
i

) − δ
n∑

i=0

1

gi

(

sf
i

) = ET. (4.5.6)

Substituting V̂ in (4.5.3) in the above equation and rearranging terms we obtain

ET

n∑

i=1




1

gi

(

sf
i

) −
1

ĝi



 = δ

n∑

i=0

1

ĝi




1

g0 (s0)
+

n∑

i=1

1

gi

(

sf
i

)



 . (4.5.7)

By definition ĝi ≥ gi

(

sf
i

)

for all sf
i > 0, which together with gi

(

sf
i

)

> 0 implies

that the left hand side of (4.5.7) is nonnegative. Therefore, when δ → 0 the terminal

set S is equal to set of positive solutions of the equation

n∑

i=0




1

gi

(

sf
i

) −
1

ĝi



 = 0. (4.5.8)

All the terms of the sum in (4.5.8) are positive and hence, the only positive solution

to (4.5.8) is obtained when

gi

(

sf
i

)

= ĝi, (4.5.9)

which implies that each reaction must be saturated. From the monotonicity con-

dition in Assumption 4.1, this means that the unique positive solution to (4.5.8) is
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sf
i = ∞ for all i. Thus, we concluded that if V → V̂ then the set S degenerates

into a single point at infinity. The claim (4.5.5) follows from the definition of J in

(4.2.8), where it is clear that the state can be driven to infinity only when tf = ∞.

���

The result of Lemma 4.5 implies that the maximal flux can only be reached by

saturating all the reactions in the pathway, which in turn would require an infinite

activation period.

4.5.2 Sensitivity of the solution

In this section we study the sensitivity properties of the optimal solution in Theorem

4.1 via two numerical case studies. We consider pathways of length n = 6 with

s0 = 1 and assume that all the reactions follow Michaelis-Menten kinetics of the

form (4.3.45). We adopt as nominal model parameters kcat i = 1 and Km i = 1.

The nominal values for the enzyme weights are chosen as αi = 5 and the numerical

solutions are obtained with the equivalent nonlinear optimization problem described

in Section 4.4 and the routine fmincon available in the Optimization Toolbox for

Matlab R©.

Sensitivity to kinetic parameters

In order to study the effect of kinetic parameters on the optimal activation, we

compare the sensitivity of the optimal cost with respect to parameters kcat i and

Km i of each reaction. Varying one constant at a time and setting the others to their

nominal values, we obtain optimal solutions for different values of kcat i and Km i

in a range of ±90% of their nominal values. The target flux is chosen as 80% of

the maximal flux V̂ (see (4.5.3)) for the parameter range. The results are shown in

Figure 4.4, where the optimal cost normalized with respect to its nominal value is

shown for kcat i between 10% and 25% of the nominal value, and Km i from 10% to

100% of its nominal value.
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Figure 4.4. Normalized optimal cost as a function of the kinetic parameters.

As expected the optimal activation takes longer as parameters kcat i decrease.

As shown in Figure 4.4, the optimal activation is less sensitive to the kcat parameter

of those reactions that are located toward the end of the pathway. For example,

reducing kcat 6 to 10% of its nominal value yields a five-fold increase in the optimal

cost, whereas the same reduction in kcat 1 yields almost an eight-fold increase. This

is a consequence of the fact that early reactions must process more material in order

to reach steady state. The overall trend is consistent with the commonly accepted

assertion [37] in the literature on Metabolic Control Analysis that the sensitivity of

the steady state flux with respect to a particular kcat i decreases as the reaction is

located toward the end of the pathway.

The sensitivity with respect to parameters Km i follows the opposite trend, with

increased sensitivity later in the pathway. This conclusion has more to do with in-

dividual kinetics than with the behaviour of the system as a whole. As mentioned,

the first reactions process more material and so operate at higher substrate con-

centrations than those downstream. The saturating nature of the Michaelis-Menten

kinetic implies that those reactions operating at high substrate concentrations are

less susceptible to variations in Km.

Sensitivity to enzyme weighting

As discussed earlier, the weighting vector α allows the optimization procedure to

reflect the relative biosynthetic costs of the enzymes in the pathway. To explore

the sensitivity of the optimal activation with respect to the enzyme weighting, we

consider the effect of αi on the activation period ∆i of enzyme ei. Changing one

enzyme weight at a time, we compute optimal solutions for αi in the range ±50%
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of the nominal value with a target flux that is 80% of the limit V̂ . The optimal

activation period normalized with respect to its nominal value is shown in Figure

4.5.
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Figure 4.5. Normalized optimal pulse width of each enzyme as a function of the
enzyme weight αi (in units of the nominal weight values).

It can be observed that the activation period decreases as the enzyme is more

strongly penalized. The reduction is larger for those enzymes acting close to the end

of the pathway. This implies that significant reductions in the use of early enzymes

can only be achieved with very large weights, while more freedom is available for the

ones toward the end of the pathway. For example, for enzyme e1 only a marginal

reduction can be achieved with a 50% increase in the weight, while for e5 a reduction

over 10% can be attained. This is a consequence of the pathway structure and

suggests, as in the previous case study, that the importance of a specific enzyme in

the activation dynamics is a decreasing function of its position in the pathway.

4.5.3 Effect of enzyme production dynamics

Throughout this chapter we have considered the enzyme concentrations as control

inputs to the metabolic network. As discussed in Chapter 2, enzyme production

is controlled by gene expression mechanisms. However, genetic dynamics are not

as fast as required by the switching enzyme concentrations of Theorem 4.1, and

therefore the solution of Problem 4.1 is unrealistic from a biological viewpoint. A

more accurate approach is to extend the metabolic model (4.2.5) to include enzyme
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dynamics and to consider the enzyme expression rates as control inputs to the

network.

In this section we address the question of whether the sequential behaviour

that arises in Problem 4.1 also appears in the optimal activation when the control

variables are the enzyme expression rates. As described in Section 2.4, we account

for enzyme dynamics with a linear expression/degradation model of the form

ė = r − Λe, (4.5.10)

where r =
[

r0 r1 · · · rn

]T

is the vector of time-dependent expression rates, and

Λ = diag {λ0, λ1, . . . , λn}. The constants λi > 0 account for enzyme degradation

rate and dilution by cell growth. If the expression rates are regarded as control

inputs, then the system can be described by the block diagram in Figure 4.6.

s
ṡ = NG(s)eė = r − Λe

er

Figure 4.6. Block diagram of metabolic network coupled with enzyme dynamics.

The system in Figure 4.6 is an open-loop version of the feedback scheme for gene

regulation shown in Figure 2.5 in Chapter 2. We are interested in an optimal control

problem that accounts for metabolic activation (as in Problem 4.1), but where the

optimization is carried out directly over the enzyme expression rates. In principle,

Problem 4.1 can be recast for the extended system, however, it is not possible to

obtain an analytic solution. As an alternative, we consider the numerical solution

of a problem that resembles Problem 4.1 and use the example in Section 4.3.3 as a

case study.

Consider a reformulation of Problem 4.1 for the metabolic network in (4.2.4)

coupled with the enzyme production dynamics in (4.5.10). In this setup the control

input to be optimized is the vector of expression rates r(t) ∈ R
m, whereas the

cost function remains unchanged and the constraint on the total enzyme abundance

(4.2.9) is replaced by simple box-type constraints of the form 0 ≤ ei ≤ ET and

0 ≤ ri ≤ 1. In addition, to make the results comparable with those of Problem 4.1,

we fix the terminal conditions to match those that solve Problem 4.1.

As an illustration, we revisit the example presented in Section 4.3.3. The un-
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branched network is of length n = 3 and has Michaelis-Menten kinetics with identical

parameters as in Section 4.3.3. The weights in the cost function are chosen as αi = 1

and the degradation rates in (4.5.10) are set to λi = 0.5 for all i. Numerical solutions

of this optimal control problem can be obtained with the pseudospectral optimal

control solver Tomlab/PROPT [86]. The optimal expression rates are shown in Figure

4.7, while the corresponding enzyme and metabolite concentrations are shown in

Figure 4.8. To facilitate the comparison with the result of Section 4.3.3, the enzyme

profiles of Figure 4.3 are included in dashed lines in Figure 4.8. The optimal ex-

pression rates follow a sequential switching pattern that matches the order of the

reactions in the network. The enzymes are thus expressed in the same sequence as

they act in the network, which leads to an optimal activation that resembles the

sequential features of the result in Theorem 4.1. In contrast to Figure 4.3, by includ-

ing the enzyme production model (4.5.10), the switching behaviour now appears in

the optimal expression rates, whereas the enzyme profiles are continuous functions

that can indeed be realized by gene expression dynamics. Although these results

are purely numerical, their good agreement with the previous theoretical analysis of

Problem 4.1 is promising.
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Figure 4.7. Optimal expression rates for network of Section 4.3.3 coupled with
enzyme dynamics as in Figure 4.6.
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4.6 Discussion

The regulation of metabolic activity accommodates resource allocation and product

formation in the face of varying external conditions. As discussed in Chapter 2, this

regulation is implemented through the genetic control of enzyme expression. We

studied such a control policy for the activation of an unbranched metabolic network

under the premise that it satisfies an optimality criterion. Under constraints on

the total enzyme availability, the objective is to optimize time-dependent enzyme

concentrations that drive the pathway from an “off” condition to a target steady

state flux. The cost function is a combined measure of the enzyme usage and the

duration of the activation process. The duration is measured as the “true” time

taken by the network to reach the steady state. This contrasts with other studies in

metabolic optimization that consider an averaged quantity known as the transition

time [28, 82, 83].

As a consequence of the reaction kinetics and network topology, in the optimal

solution each enzyme switches between zero and maximum concentration following

a temporal sequence that matches the network topology. The analysis is carried

out within a control-theoretic framework that allows to prove the optimality of the
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activation sequence for a generic class of monomolecular irreversible kinetics. The

enzyme kinetics are only required to be monotone in their reactants, and therefore

this class includes, for example, the common mass action, Michaelis-Menten and

Hill kinetics. The activation sequence is the same as the one reported in [28],

and resembles the “just-in-time” activation sequence described in [29]. However, in

contrast with those numerical approaches, our main result does not assume specific

kinetics or network length, and holds independently of the parameter values. The

result thus provides a theoretical justification of the sequential features previously

argued in the literature and, in particular, extends the conclusions of [28] to a much

broader class of unbranched metabolic networks. This suggests that a sequential

pattern in enzyme expression may be a common feature of metabolic regulation

that emerges from an underlying optimality principle.

The switching nature of the optimal enzymatic profiles allows us to recast the

optimal control problem as a static nonlinear optimization problem which can be

solved with standard numerical methods. The decision variables in the equivalent

problem are the switching times of each optimal profile, and the optimization is

carried out under the positivity constraints in both enzyme and metabolite con-

centrations. The terminal constraint (4.2.11) defines the set of steady states that

are compatible with the enzymatic constraint. In other optimization approaches,

such as Flux Balance Analysis [52] and S-system optimization [64], the constraints

on steady state concentrations and metabolic fluxes are specified individually. A

distinctive feature of a constraint such as (4.2.11) is that in accounting for the lim-

itation in total enzyme abundance, it addresses the steady state of the metabolites

and flux simultaneously. As shown by Lemma 4.4, the optimal solution enforces the

terminal constraint to be active, which implies that all available enzyme must be

allocated to sustain the target flux.

The saturating behaviour of most reaction kinetics imposes an upper bound on

the flux that can be achieved by the network. However, because of the constraint on

the total enzyme concentration, in steady state it is not possible to allocate all the

enzyme to a single reaction. The total enzyme available must then be distributed

among the reactions in such a way that the steady state flux is sustained (as ex-

pressed by (4.2.10)) and the constraints are not violated. As a consequence, the

network flux is limited not only by the saturation rates of the reactions, but also by

the enzymatic constraint which imposes a tighter bound to its limiting value (see

(4.5.3)). Moreover, the result of Lemma 4.5 implies that the limit flux can only be
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reached in an arbitrary large time, since to do so all the reactions need to be driven

to saturation.

Despite the ability of our framework to account for more general kinetics than

previous efforts [28, 29], we have only been able to complete this analysis with a very

simplified description of enzyme dynamics. An improved framework was considered

for Michaelis-Menten kinetics in [29] by including genetic feedback in the model.

Enzyme levels were set to be dependent on the metabolic product and thus the

optimization was carried out over the feedback strengths (more details can be found

in Section 3.4.2). In our case the enzyme profiles are considered as independent

functions of time and optimized over the class of piecewise continuous functions.

This allows switching profiles to be identified as optimal. The result is an activation

scheme in which the enzyme concentrations vary more quickly than the metabolite

concentrations, when in fact the reverse is a more accurate description of cellular

events. This could be addressed by including the rate of change of the enzyme

concentrations ė(t) in the cost function. This is a standard approach in control

engineering and has been used for dynamic optimization methods that consider the

reaction rates as control inputs [78, 81].

Another way to account for this is by extending the model with enzyme produc-

tion dynamics. Optimization can then be carried out by finding expression rates that

minimize a meaningful metabolic objective. The optimization is not only subject

to constraints in enzyme and metabolite levels, but bounds on the expression rates

should also be included. As suggested by the example of Section 4.5.3, the optimal

activation of the extended model can follow the same temporal pattern as the one

obtained from our theoretical analysis. In this extended formulation, the switching

behaviour appears in the optimal expression rates required for the activation. No-

tably, switching expression patterns are consistent with boolean models for genetic

networks, which are widely used for the analysis of gene expression dynamics, see

e.g. [87]. However, the numerical nature of the solution prevents us from charac-

terizing this behaviour as a general principle. This extended formulation allows the

derivation of numerical solutions, but presents major challenges for a general analy-

sis. Similar considerations arise when considering networks with more complicated

metabolic interactions such as allosteric feedback regulation (see Section 2.4).

In our efforts to develop a theoretical foundation for the sequential activation

of metabolic pathways, the analysis has been limited to unbranched networks. Se-

quential activation was experimentally shown in [29] for the Arginine pathway in E.
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coli. It was detected in each branch of the pathway, but no clear relation between

the activation of adjacent branches was identified. Extensions of our methodology

to branched pathways are not straightforward; in our formulation all the available

protein is allocated to a single reaction at a time, which is not realistic when dif-

ferent branches are working simultaneously. It seems that the study of branched

pathways should consider different enzymatic constraints and, possibly, a different

cost function. Nevertheless, complex topologies are a challenging scenario for other

cellular processes in which optimization may play an important role, such as cellular

growth [78] and homeostatic regulation [81].
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Chapter 5

Optimal expression rates for

general networks

5.1 Introduction

In the previous chapter we studied the optimal activation of an unbranched metabolic

network from the origin to a prescribed steady state. In that case the structure

and kinetics of the network allowed for a rigorous treatment of the optimal control

problem. An extension of such analysis to more general scenarios is a challenging

problem. This chapter addresses a nonlinear optimal control problem that accounts

for a broader class of metabolic networks and more general control objectives.

We consider driving a metabolic network between two arbitrary steady states

with time-dependent enzyme expression rates. The network model consists of a

metabolic network coupled with dynamics for enzyme synthesis. The problem for-

mulation is general in the sense that no restrictive assumptions on the stoichiometry

or enzyme kinetics are imposed. Enzyme synthesis is described as a linear expres-

sion/degradation model, where the expression rates are regarded as control inputs

to be optimized. The cost function measures the deviation of the species and ex-

pression rates from their target steady state values, together with time-derivative of

the expression rates. The latter accounts for the genetic “effort” required to drive

the network to the new steady state.

In contrast to Chapter 4, the optimization problem does not allow for an analyt-

ical solution. Instead we opt for a computational approach and tackle the problem

by exploiting the structure of the system dynamics and the quadratic form of the

cost function. By introducing a sequence of linear time-variant approximations of

the nonlinear system [88], the problem is recast as a sequence of finite horizon Linear

Quadratic Tracking (LQT) problems, the solution of which can be obtained with
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well-known results [89, 90]. The sequence of LQT problems is solved with an it-

erative scheme which is shown to converge to a unique suboptimal solution of the

original nonlinear problem. Convergence is achieved provided that the time hori-

zon is sufficiently small and the kinetics are globally Lipschitz continuous functions

of the metabolite vector. Since the latter condition is satisfied in the positive or-

thant by many nonlinear kinetics, the convergence result holds for a broad class of

metabolic models.

The chapter is organized as follows: the formulation of the optimization problem

is presented in Section 5.2 and the solution method in Section 5.3. Convergence of

the algorithm is analyzed in Section 5.4, and a numerical example is shown in Section

5.5. A discussion of the results is presented in Section 5.6.

5.2 Problem formulation

We consider a general metabolic network with n metabolites and m reactions de-

scribed by

ṡ = Nv, (5.2.1)

where N ∈ Z
n×m is the stoichiometric matrix, s ∈ R

n the metabolite vector and

v ∈ R
m the vector of reaction rates. As in Assumption 2.1 in Chapter 2, each rate is

assumed to be linear in the enzyme concentrations. We thus we write vi = gi(s)ei,

and the network can be described by its kinetic model (see Section 2.3)

ṡ = NG(s)e, (5.2.2)

with the enzyme vector defined as e ∈ R
m and G(s) = diag {g1(s), g2(s), . . . , gm(s)}.

As in Section 2.4, the kinetic model is coupled with an expression/degradation model

for the enzyme concentrations

ė = r − Λe, (5.2.3)

where r ∈ R
m is the vector of enzyme expression rates, and Λ = diag {λ1, λ2, . . . , λm}

with λi > 0 representing the rates of enzymatic degradation and dilution due to cell

growth. The time-dependent expression rates are regarded as control inputs that

optimally drive the network between two metabolic steady states. The complete

model can then be represented by the block diagram of Figure 5.1, which corre-
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sponds to an open loop version of the feedback system in Figure 2.5 of Chapter 2.

This scheme is the same as the one in Figure 4.6 of the previous chapter, but it is

repeated here for consistency.

s
ṡ = NG(s)eė = r − Λe

er

Figure 5.1. Block diagram of a metabolic network coupled with enzyme dynamics.

Initial and target steady states

For t ≤ 0 the network is assumed to be in an initial steady state given by the

triple (vi, si, ei) ∈ R
m × R

n
>0 × R

m
≥0. The objective is to drive the network to a

prescribed target steady state defined as (vf , sf , ef ) ∈ R
m × R

n
>0 × R

m
≥0. From the

enzyme dynamics (5.2.3) it follows that ei and ef uniquely specify the steady state

expression rates as

ri = Λei, (5.2.4)

rf = Λef . (5.2.5)

Since (vi, si, ei) and (vf , sf , ef ) define a steady state, they satisfy

Nvi = 0, ei = G(si)−1vi, (5.2.6)

Nvf = 0, ef = G(sf )−1vf . (5.2.7)

We aim at finding time-dependent expression rates, r(t) : [0, tf ] → R
m, that drive

the network from (vi, si, ei) to (vf , sf , ef ) while optimizing the cost function de-

scribed next.

Cost function

In what follows, to shorten the notation, we use the following definition

J(z, W ) =
1

2

∫ tf

0
zT W z dt, (5.2.8)
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where z(t) : [0, tf ] → R
q and W ∈ R

q×q is a positive semidefinite matrix. The cost

function to be minimized is

J = J+ + J− +
1

tf
Jf , (5.2.9)

where

J+ = J
(

s − sf ,Ws

)

+ J
(

e − ef ,We

)

+ J
(

r − rf ,Wr

)

, (5.2.10)

J− = J (ṙ,Wṙ) , (5.2.11)

Jf = J
(

s(tf ) − sf ,Wsf

)

+ J
(

e(tf ) − ef ,Wef

)

+ J
(

r(tf ) − rf ,Wrf

)

.

(5.2.12)

The cost J+ quantifies the deviation of the chemical species and expression rates

from their target values, whereas J− weighs the time-derivative of the expression

rates. Minimization of the total cost J therefore accounts for the combined opti-

mization of the transition to the target steady state together with the genetic effort

allocated to enzyme synthesis. The inclusion of J− in the cost function also pre-

vents ṙ from taking arbitrary large values, which would lead to discontinuities in

the expression rates.

The matrices in the functionals (5.2.10)–(5.2.12) have appropriate dimensions

and are assumed to be positive semidefinite, with the exception of Wṙ which is

assumed to be positive definite. The positive semidefiniteness of the weighting

matrices ensures that the integrands in J+, J− and Jf are nonnegative. The scaling

factor 1/tf is included to normalize Jf .

We remark that in this formulation the terminal variables s(tf ), e(tf ) and r(tf )

are not specified a priori and their particular values are an outcome of the opti-

mization. This contrasts with the formulation in Chapter 4, where s(tf ) was forced

to lie in a given surface. Thus, a possible drawback is that s(tf ), e(tf ) and r(tf ) are

distant from sf , ef and rf . This is accounted for by the terminal cost Jf , which

prevents them from being too far from their corresponding target values.

As in most optimization problems, the solution is highly dependent on the choice

of the weights in J . Intuitively, the solution depends on the norms of the weighting

matrices relative to each other. The cost function J quantifies the cost/benefit

relationship between enzyme expression and the transition to the target steady state.

A larger weight Wṙ implies a stronger penalization on the slope of the expression

71



5.3. ITERATIVE SOLUTION PROCEDURE

rates, and therefore yields a slower transition to the target. Conversely, if the relative

norm of the weights Ws,We,Wr with respect to Wṙ is large, the solution tends

to give faster responses. Likewise, choosing large terminal weights Wsf ,Wef , Wrf

has a similar role and helps narrowing the gap between the terminal state and the

target.

In summary, the optimal control problem reads as follows.

Problem 5.1: Let (vi, si, ei) and (vf , sf , ef ) be two steady states for the network

(5.2.2)–(5.2.3) associated to the steady state expression rates ri and rf , respec-

tively. Assume the network is in (vi, si, ei) for t ≤ 0. Given weighting matrices

Ws,Wsf , We,Wef , Wr,Wrf ≥ 0 and Wṙ > 0, find a piecewise continuous control

r(t) : [0, tf ] → R
m that minimizes

J = J+ + J− +
1

tf
Jf . (5.2.13)

The solution of Problem 5.1 is a difficult task. Using standard optimal control

methods such as Pontryagin’s Minimum Principle or the Hamilton-Jacobi-Bellman

equation [91] may be successful in special cases (i.e. for specific stoichiometries and

kinetics), but the general problem is usually intractable. Our approach to tackle

Problem 5.1 follows by exploiting the quadratic form of the cost function (5.2.13)

and the structure of the network dynamics.

5.3 Iterative solution procedure

5.3.1 Definitions

Since the cost J− weighs the rate of change of the expression rates, we extend the

state space with r and consider ṙ as the control input. The extended state variable

x ∈ R
n+2m is defined as

x =






s

e

r




 . (5.3.1)
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Adopting the standard control-theoretic notation, the control input u = u(t) ∈ R
m

is given by

u = ṙ. (5.3.2)

We also define the initial and target conditions as

xi =






si

ei

ri




 , xf =






sf

ef

rf




 . (5.3.3)

With these definitions, the functionals (5.2.10)–(5.2.12) become

J+ = J
(

x − xf ,Q
)

, (5.3.4)

J− = J (u, R) , (5.3.5)

Jf = J
(

x(tf ) − xf ,Qf

)

, (5.3.6)

where the weighting matrices Q, Qf ≥ 0 and R > 0 are

Q =






Ws 0 0

0 We 0

0 0 Wr




 , Qf =






Wsf 0 0

0 Wef 0

0 0 Wrf




 , R = Wṙ. (5.3.7)

The dynamics in (5.2.2)–(5.2.3) together with (5.3.2) can be written as

ẋ = A(x)x + Bu, x(0) = xi, (5.3.8)

where A(x) ∈ R
(n+2m)×(n+2m) and B ∈ R

(n+2m)×m are given by

A(x) =






0 NG(x) 0

0 −Λ I

0 0 0




 , B =






0

0

I




 , (5.3.9)

with G(x) = G(s). The vector xf can be seen as a signal that has to be tracked

by the state variable. The minimization of J in (5.2.13) for the extended system

(5.3.8) corresponds to a nonlinear version of the Linear Quadratic Tracking (LQT)

problem presented in Appendix A.2.1. This observation is the basis for the iterative
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procedure to be developed in the next section.

5.3.2 Derivation of the algorithm

The idea is to recast the original nonlinear problem as a sequence of standard LQT

problems. Assume that x(1)(t) ∈ R
n+2m and u(1)(t) ∈ R

m are given, and define

the sequences
{
x(k)

}
and

{
u(k)

}
for k ∈ N, with x(k) = x(k)(t) ∈ R

n+2m and

u(k) = u(k)(t) ∈ R
m. Consider an approximation of the extended nonlinear system

(5.3.8) by the following sequence of linear time-variant systems

ẋ(k) = A
(

x(k−1)
)

x(k) + Bu(k), x(k)(0) = xi, (5.3.10)

where each control u(k) minimizes the cost J (k) = J
(k)
+ + J

(k)
− + (1/tf )J

(k)
f , and

J
(k)
+ = J

(

x(k) − xf ,Q
)

, (5.3.11)

J
(k)
− = J

(

u(k),R
)

, (5.3.12)

J
(k)
f = J

(

x(k)(tf ) − xf ,Qf

)

. (5.3.13)

It is important to note that the state matrix in (5.3.10) is time-dependent, that

is, A
(
x(k−1)

)
is a matrix-valued function of time. To avoid confusion in the sequel

we write A(k)(t) = A
(
x(k)

)
and (5.3.10) becomes

ẋ(k)(t) = A(k−1)(t)x(k)(t) + Bu(k)(t), x(k)(0) = xi. (5.3.14)

The approximation of a nonlinear system by a sequence of linear time-variant

dynamics such as (5.3.14) has been previously studied in the context of Linear

Quadratic optimal control problems [88, 33]. Here we follow a similar approach and

use these approximations to build a sequence of LQT problems that can be readily

solved for each k ≥ 2 (the trajectories for k = 1 will be discussed later in this sec-

tion). If z(t) = xf is regarded as a signal to be tracked by the state variable, then

the problem of minimizing J (k) for the approximate dynamics in (5.3.14) is identi-

cal to the finite horizon LQT problem described in Appendix A.2.1. The results in

Appendix A.2.1 require the following assumption on the matrix A(k)(t).

Assumption 5.1: The entries of A(k)(t) are continuous functions of t ∈ [0, tf ].

For a broad class of metabolic networks, a sufficient condition for Assumption
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5.1 to hold is that x(k−1)(t) lies in the positive orthant for all t ∈ [0, tf ]; this is

further discussed in Section 5.6. From the results in Appendix A.2.1, for each k ≥ 2

the optimal control is given by

u(k)(t) = −R−1BT
(

P (k)(t)x(k)(t) − q(k)(t)
)

, (5.3.15)

where q(k)(t) ∈ R
n+2m is an element of the sequence

{
q(k)
}

for k ∈ N, and is the

solution of the differential equation

q̇(k)(t) = −
(

A(k−1)(t) − BR−1BT P (k)(t)
)T

q(k)(t) − Qxf , (5.3.16)

with terminal condition q(tf ) = Qfxf . The matrix P (k)(t) ∈ R
(n+2m)×(n+2m) be-

longs to the sequence
{
P (k)

}
and is the solution of the differential Riccati equation

−Ṗ (k)(t) = A(k−1)T
(t)P (k)(t) + P (k)(t)A(k−1)(t)

− P (k)(t)BR−1BT P (k)(t) + Q, (5.3.17)

with P (k)(tf ) = Qf . Equation (5.3.17) can be expanded as

−Ṗ (k)(t) =
(

A(k−1)(t) − B(t)R−1BT P (k)(t)
)T

P (k)(t)+

P (k)(t)
(

A(k−1)(t) − BR−1BT P (k)(t)
)

+
(

Q + P (k)(t)BR−1BT P (k)(t)
)

. (5.3.18)

By defining the matrices

Ã(k−1)(t) = A(k−1)(t) − BR−1BT P (k−1)(t),

Q̃(k−1)(t) = Q + P (k−1)(t)BR−1BT P (k−1)(t),

the solution of (5.3.18) is approximated by that of the differential Lyapunov equation

−Ṗ
(k)

(t) = Ã(k−1)T
(t)P (k)(t) + P (k)(t)Ã(k−1)(t) + Q̃(k−1)(t), (5.3.19)

with P (k)(tf ) = Qf . The control in (5.3.15) is then approximated by

u(k)(t) ≈ −R−1BT
(

P (k−1)(t)x(k)(t) − qk(t)
)

, (5.3.20)
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and q(k)(t) in (5.3.16) is approximated as the solution of

q̇(k)(t) = −Ã(k−1)T
(t)q(k)(t) − Qxf , (5.3.21)

with terminal condition q(k)(tf ) = Qfxf . Using the approximate system in (5.3.14)

and the control (5.3.20), the optimal state trajectory for the kth iteration can be

computed from

ẋ(k)(t) = Ã(k−1)(t)x(k)(t) + BR−1BT q(k)(t), x(k)(0) = xi. (5.3.22)

This procedure allows the computation of a control u(k) that minimizes J (k) for sys-

tem (5.3.14) for each value of k. The computation is iterative, with (5.3.19)–(5.3.22)

providing a means of computing u(k), q(k), x(k) and P (k)(t) from the previous solu-

tions x(k−1)(t) and P (k−1)(t). The algorithm is summarized next.

Algorithm 5.1: Consider the statement of Problem 5.1 and the definitions in Sec-

tion 5.3.1. Assume the initial trajectories x(1)(t) and P (1)(t) are given. Then, for

each iteration k ∈ N, k ≥ 2:

(i) Compute the matrices

A(k−1)(t) = A
(

x(k−1)
)

, (5.3.23)

Ã(k−1)(t) = A(k−1)(t) − BR−1BT P (k−1)(t), (5.3.24)

Q̃(k−1)(t) = Q + P (k−1)(t)BR−1BT P (k−1)(t). (5.3.25)

(ii) Solve the differential equations

q̇(k)(t) = −Ã(k−1)T
(t)q(k)(t) − Qxf , (5.3.26)

−Ṗ
(k)

(t) = Ã(k−1)T
(t)P (k)(t) + P (k)(t)Ã(k−1)(t) + Q̃(k−1)(t), (5.3.27)

with terminal conditions q(k)(tf ) = Qfxf and P (k)(tf ) = Qf .

(iii) Compute the state trajectory and control from

ẋ(k)(t) = Ã(k−1)(t)x(k)(t) + BR−1BT q(k), x(k)(0) = xi, (5.3.28)

u(k)(t) = −R−1BT
(

P (k−1)(t)x(k)(t) − qk(t)
)

. (5.3.29)
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To compute the initial trajectories x(1) and P (1), we follow the same idea as in the

derivation of Algorithm 5.1. By setting x(0)(t) = xi, the approximate system in

(5.3.10) for k = 1 becomes the linear time invariant system

ẋ(1) = A
(
xi
)
x(1) + Bu(1). (5.3.30)

Using the results in Appendix A.2.1 the optimal control for k = 1 is

u(1)(t) = −R−1BT
(

P (1)(t)x(1)(t) − q(1)(t)
)

, (5.3.31)

where

q̇(1)(t) = −
(

A
(
xi
)
− BR−1BT P (1)(t)

)T

q(1)(t) − Qxf , (5.3.32)

−Ṗ
(1)

(t) = AT
(
xi
)
P (1)(t) + P (1)(t)A

(
xi
)
− P (1)(t)BR−1BT P (1)(t) + Q,

(5.3.33)

with terminal conditions q(1)(tf ) = Qfxf and P (1)(tf ) = Qf . The state trajectory

x(1) is computed as the solution of

ẋ(1)(t) =
(

A
(
xi
)
− BR−1BT P (1)(t)

)

x(1)(t) + BR−1BT q(1)(t), x(1)(0) = xi.

(5.3.34)

The implementation of Algorithm 5.1 requires solving the three differential equa-

tions (5.3.26)–(5.3.28) in each iteration. The equation for x(k) is a standard initial

value problem, whereas q(k) and P (k) must be computed by solving (5.3.26)–(5.3.27)

backward in time. If the sequences
{
u(k)

}
,
{
x(k)

}
,
{
q(k)
}

and
{
P (k)

}
converge to a

fixed-point, denoted as (u∗, x∗, q∗, P ∗), then the species concentrations and enzyme

expression rates can be recovered from x∗ (recall the definition of the extended state

in (5.3.1)). In practice, it is enough to iterate Algorithm 5.1 until x(k) and x(k−1)

differ less than a prescribed accuracy. An appropriate stop criterion is

∣
∣
∣

∣
∣
∣x(k) − x(k−1)

∣
∣
∣

∣
∣
∣ ≤ ε, (5.3.35)

where ε > 0 is a pre-specified tolerance and ||·|| is the function norm defined in
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(B.1.1). In the limit for k → ∞ it holds

lim
k→∞

∣
∣
∣

∣
∣
∣Ã

k − Ã∗

∣
∣
∣

∣
∣
∣ = lim

k→∞

∣
∣
∣

∣
∣
∣Q̃

k − Q̃∗

∣
∣
∣

∣
∣
∣ = lim

k→∞

∣
∣
∣

∣
∣
∣P

(k) − P ∗
∣
∣
∣

∣
∣
∣ = 0. (5.3.36)

with

Ã∗ = A (x∗) − BR−1BT P ∗, (5.3.37)

Q̃∗ = Q − P ∗BR−1BT P ∗. (5.3.38)

Using these equations in (5.3.26)–(5.3.29), at the fixed-point the control and state

trajectory satisfy

u∗ = −R−1BT (P ∗x∗ − q∗) , (5.3.39)

ẋ∗ =
(
A (x∗) − BR−1BT P ∗

)
x∗ + BR−1BT q∗, x∗(0) = xi, (5.3.40)

where q∗ and P ∗ satisfy

q̇∗ = −
(
A (x∗) − BR−1BT P ∗

)T
q∗ − Qxf , (5.3.41)

−Ṗ ∗ = AT (x∗) P ∗ + P ∗A (x∗) − P ∗BR−1BT P ∗ + Q, (5.3.42)

with the terminal conditions q∗(tf ) = Qfxf and P ∗ = Qf . The coupled differen-

tial equations (5.3.40)–(5.3.42) can be regarded as a “state-dependent” version of

the LQT solution for linear systems presented in Appendix A.2.1. In general, the

solution of equations (5.3.39)–(5.3.42) does not satisfy the necessary conditions for

optimality provided by Pontryagin’s Minimum Principle, and hence Algorithm 5.1

gives a suboptimal solution to the nonlinear optimal control problem.

5.4 Convergence analysis

An iterative procedure such as Algorithm 5.1 is of little use if it is not convergent.

As we show next, under some assumptions the algorithm can be shown to converge

to a unique fixed-point. To improve readability, the convergence proof is presented

separately in Section 5.4.2.

5.4.1 Assumptions and convergence result

We make the following assumption on the enzyme kinetics.
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Assumption 5.2: The turnover rate functions gi(s) in (5.2.2) are globally Lipschitz

continuous, that is, for each i = 1, 2, . . . ,m, there exists Ki > 0 such that

|gi(sa) − gi(sb)| ≤ Ki ||sa − sb||E , (5.4.1)

for all sa, sb ∈ R
n and with ||·||E denoting the Euclidean norm. The smallest such

Ki, denoted as Li, is the Lipschitz constant of gi(s).

Since many reaction kinetics have bounded first derivatives for s ∈ R
n
≥0, As-

sumption 5.2 is not restrictive and is met by a broad range of kinetics. This is

the case, in particular, of the common Mass Action, Michaelis-Menten, Hill and

allosteric kinetics (and, in fact, many sigmoid-shaped kinetics).

Remark 5.1: It should be pointed out that in most cases enzyme kinetics have

bounded derivatives only in the positive orthant R
n
≥0, and thus strictly speaking,

Assumption 5.2 fails to hold. However, the need for Lipschitz continuity in whole

R
n is a consequence of Algorithm 5.1 not accounting for positivity constraints in the

state space. Additional discussions on this issue are presented later in Section 5.6.

The convergence of Algorithm 5.1 is characterized by the next theorem.

Theorem 5.1: Consider model (5.2.2)–(5.2.3) and the statement of Problem 5.1.

If (5.2.2) satisfies Assumption 5.2, there exists a sufficiently small tf > 0 such that

Algorithm 5.1 converges to a unique fixed-point.

Convergence of Algorithm 5.1 is thus guaranteed for a sufficiently small final time

tf . Unfortunately, we cannot provide an estimate of how small tf must be, and

whether a given tf ensures convergence will depend on the network dynamics, the

weighting matrices, and the initial and target conditions. The convergence result is

based on a contraction mapping argument (see Section 5.4.2), and hence in the limit

the sequence of linear time-variant systems (5.3.14) is a global approximation of the

nonlinear dynamics. This contrasts with local approximations based on linearization

of the dynamics, and implies that the state trajectory x∗ in the fixed-point of Algo-

rithm 5.1 is identical to that generated by the original nonlinear system (5.3.8) with

r∗ as control input. This also implies that the convergence result is independent of

the initial trajectories x(1) and P (1). Therefore, although in (5.3.33)–(5.3.34) we

have specified a way of computing these, faster convergence may be achieved by

using other starting trajectories (i.e. those that are closer to the fixed-point). We
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also point out that Theorem 5.1 provides a sufficient condition for convergence, and

thus it does not preclude convergence under less restrictive conditions.

5.4.2 Proof of Theorem 5.1.

We need to establish conditions under which the sequences
{
u(k)

}
,
{
x(k)

}
,
{
q(k)
}

and
{
P (k)

}
in Algorithm 5.1 are convergent. For that purpose we use the fixed-point

theorem presented in Appendix B (see also Remark B.1). In the following we use

the definitions and notation of Appendix B; let C ([0, tf ] , K) be the set of continuous

functions f(t) : [0, tf ] → K, and define two Banach spaces B1 = C
(
[0, tf ] , Rn+2m

)
,

B2 = C
(
[0, tf ] , R(n+2m)×(n+2m)

)
equipped with the function norms defined in (B.1.1)

and (B.1.2).

We first note from (5.3.26) and (5.3.29) that convergence of
{
x(k)

}
and

{
P (k)

}

is sufficient for
{
q(k)
}

and
{
u(k)

}
to be convergent. Therefore, we only prove the

convergence of
{
x(k)

}
and

{
P (k)

}
and, to that end, we write the iterations in

operator form as

x(k) = T1

(

x(k−1), P (k−1)
)

, (5.4.2)

P (k) = T2

(

x(k−1), P (k−1)
)

, (5.4.3)

where the operators T1 and T2 are defined by the solution of the differential equations

in (5.3.28) and (5.3.27), respectively, and x(k) ∈ B1, P (k) ∈ B2 for all k ∈ N. Using

Theorem B.1, the proof follows by finding a matrix M ∈ R
2×2 with eigenvalues

strictly inside the unit circle such that the inequality

[ ∣
∣
∣
∣x(k+1) − x(k)

∣
∣
∣
∣

∣
∣
∣
∣P (k+1) − P (k)

∣
∣
∣
∣

]

≤ M

[ ∣
∣
∣
∣x(k) − x(k−1)

∣
∣
∣
∣

∣
∣
∣
∣P (k) − P (k−1)

∣
∣
∣
∣

]

, (5.4.4)

holds component-wise. For the sake of clarity, in the sequel we omit the argument t

when it is clear from the context and split the proof in two parts. Firstly, we obtain

analytic expressions for the differences x(k+1) − x(k) and P (k+1) − P (k). Secondly,

we derive bounds for their norms in terms of
∣
∣
∣
∣x(k) − x(k−1)

∣
∣
∣
∣ and

∣
∣
∣
∣P (k) − P (k−1)

∣
∣
∣
∣,

so as to find an explicit expression for M . The argument concludes by showing that

with a suitable choice of tf the eigenvalues of M can be made arbitrarily small.
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Part 1:

From the statement of Algorithm 5.1, we have that x(k+1) and q(k+1) are solutions

of the inhomogeneous linear time-variant systems

ẋ(k+1) = Ãk(t)x(k+1) + BR−1BT q(k+1), x(k+1)(0) = xi, (5.4.5)

q̇(k+1) = −Ã(k)T
q(k+1) − Qxf , q(k+1)(tf ) = Qfxf . (5.4.6)

By the variation of constants formula [92], x(k+1) is given by

x(k+1)(t) = Φ(k+1)(t, 0)xi +

∫ t

0
Φ(k+1)(t, τ)BR−1BT q(k+1)(τ) dτ, (5.4.7)

where Φ(k+1)(t, t0) ∈ B2 is the state transition matrix of (5.4.5). A basic property

of the transition matrix is

d

dt
Φ(k+1)(t, t0) = Ã(k)(t)Φ(k+1)(t, t0). (5.4.8)

From this property it can be shown that

d

dt
Φ(k+1)−1

(t, t0) = −Φ(k+1)−1
(t, t0)Ã

(k)(t), (5.4.9)

d

dt
Φ(k+1)T

(t, t0) = Φ(k+1)T
(t, t0)Ã

(k)T
(t). (5.4.10)

Equation (5.4.9) is obtained by differentiating the identity

Φ(k+1)(t, t0)Φ
(k+1)−1

(t, t0) = I, (5.4.11)

and then using (5.4.8), whereas (5.4.10) comes simply from transposing (5.4.8).

Using the differential equations for q(k) and x(k) in (5.3.26) and (5.3.28) we get

q̇(k+1) − q̇(k) = −Ã(k)T
(

q(k+1) − q(k)
)

− F
(k)
1

T
q(k), (5.4.12)

ẋ(k+1) − ẋ(k) = Ã(k)
(

x(k+1) − x(k)
)

+ F
(k)
1 x(k) + BR−1BT

(

q(k+1) − q(k)
)

,

(5.4.13)
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where F
(k)
1 = F

(k)
1 (t) is given by

F
(k)
1 = Ã(k) − Ã(k−1). (5.4.14)

We can combine (5.4.9)–(5.4.13) to obtain

d

dt

(

Φ(k+1)T
(t, t0)

(

q(k+1)(t) − q(k)(t)
))

= −Φ(k+1)T
(t, t0)F

(k)
1 (t)q(k)(t),

(5.4.15)

d

dt

(

Φ(k+1)−1
(t, t0)

(

x(k+1)(t) − x(k)(t)
))

= Φ(k+1)−1
(t, t0)×

(

F
(k)
1 (t)x(k)(t) + BR−1BT

(

q(k+1)(t) − q(k)(t)
))

. (5.4.16)

The right hand sides of (5.4.15) and (5.4.16) do not depend on q(k+1) − q(k) and

x(k+1) − x(k), respectively. Hence, these equations can be integrated from τ = tf to

τ = t (in the case of (5.4.15)) and from τ = 0 to τ = t (in the case of (5.4.16)).

This gives

q(k+1)(t) − q(k)(t) = Φ(k+1)−T
(t, t0)

∫ tf

t

Φ(k+1)T
(τ, t0)F

(k)
1 (τ)q(k)(τ) dτ,

(5.4.17)

x(k+1)(t) − x(k)(t) = Φ(k+1)(t, t0)

∫ t

0
Φ(k+1)−1

(τ, t0)
(

F
(k)
1 (τ)x(k)(τ)

+ BR−1BT
(

q(k+1)(τ) − q(k)(τ)
))

dτ, (5.4.18)

where we used the facts that q(k+1)(tf ) = q(k)(tf ) and x(k+1)(0) = x(k)(0). Equations

(5.4.17)–(5.4.18) are explicit expressions for the differences q(k+1)−q(k) and x(k+1)−

x(k). With a similar approach, an expression for P (k+1)−P (k) can also be derived.

From the differential Lyapunov equation (5.3.27) it follows that

d

dt

(

P (k+1) − P (k)
)

= −Ã(k)T
(

P (k+1) − P (k)
)

−
(

P (k+1) − P (k)
)

Ã(k) − F
(k)
2 , (5.4.19)

where F
(k)
2 = F

(k)
2 (t) is given by

F
(k)
2 = F

(k)
1

T
P (k) + P (k)F

(k)
1 +

(

Q̃(k) − Q̃(k−1)
)

. (5.4.20)
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From (5.4.19) it follows

d

dt

(

Φ(k+1)T
(t, t0)

(

P (k+1)(t) − P (k)(t)
)

Φ(k+1)(t, t0)
)

=

− Φ(k+1)T
(t, t0)F

(k)
2 Φ(k+1)(t, t0). (5.4.21)

Equation (5.4.21) follows upon differentiation of the product and then using (5.4.8),

(5.4.10) and (5.4.19) (the intermediate steps are omitted for brevity). Integration

of (5.4.21) from τ = tf to τ = t gives

P (k+1)(t) − P (k)(t) = Φ(k+1)−T
(t, t0)×

(∫ tf

t

Φ(k+1)T
(τ, t0)F

(k)
2 (τ)Φ(k+1)(τ, t0) dτ

)

Φ(k+1)−1
(t, t0), (5.4.22)

where we used P (k+1)(tf ) = P (k)(tf ).

Part 2:

The proof now proceeds by estimating the norms
∣
∣
∣
∣x(k+1) − x(k)

∣
∣
∣
∣ and

∣
∣
∣
∣P (k+1) − P (k)

∣
∣
∣
∣ from their corresponding expressions in (5.4.17), (5.4.18) and

(5.4.22). We first present the following simple result.

Lemma 5.1: Let h ∈ B1 or h ∈ B2, then the following bounds hold

∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0
h(τ) dτ

∣
∣
∣
∣

∣
∣
∣
∣
≤ tf ||h|| , (5.4.23)

∣
∣
∣
∣

∣
∣
∣
∣

∫ tf

t

h(τ) dτ

∣
∣
∣
∣

∣
∣
∣
∣
≤ tf ||h|| , (5.4.24)

where ||·|| is the function norm defined in (B.1.1) and (B.1.2).

Proof:

From the definition of ||·|| and standard norm properties it follows that

∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0
h(τ) dτ

∣
∣
∣
∣

∣
∣
∣
∣
≤ sup

t∈[0,tf ]

∫ t

0
||h(τ)||E dτ. (5.4.25)
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The integrand in the right hand side of (5.4.25) is nonnegative, hence the integral

is a non-decreasing function of t. Its supremum is attained at t = tf and thus

∣
∣
∣
∣

∣
∣
∣
∣

∫ t

0
h(τ) dτ

∣
∣
∣
∣

∣
∣
∣
∣
≤

∫ tf

0
||h(τ)||E dτ, (5.4.26)

≤ tf sup
t∈[0,tf ]

||h(t)||E , (5.4.27)

≤ tf ||h|| . (5.4.28)

The proof for (5.4.24) and the case h ∈ B2 follow similarly.

���

Lemma 5.1 and the Cauchy-Schwarz inequality can be used in the differences in

(5.4.17), (5.4.18) and (5.4.22) to get

∣
∣
∣

∣
∣
∣q(k+1) − q(k)

∣
∣
∣

∣
∣
∣ ≤ tf

∣
∣
∣

∣
∣
∣Φ(k+1)−T

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣Φ(k+1)T

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣F

(k)
1

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣q(k)

∣
∣
∣

∣
∣
∣ , (5.4.29)

∣
∣
∣

∣
∣
∣x(k+1) − x(k)

∣
∣
∣

∣
∣
∣ ≤ tfγ1

(∣
∣
∣

∣
∣
∣F

(k)
1

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣x(k)

∣
∣
∣

∣
∣
∣+
∣
∣
∣
∣BR−1BT

∣
∣
∣
∣

∣
∣
∣

∣
∣
∣q(k+1) − q(k)

∣
∣
∣

∣
∣
∣

)

,

(5.4.30)
∣
∣
∣

∣
∣
∣P

(k+1) − P (k)
∣
∣
∣

∣
∣
∣ ≤ tfγ2

1

∣
∣
∣

∣
∣
∣F

(k)
2

∣
∣
∣

∣
∣
∣ , (5.4.31)

where

γ1 =
∣
∣
∣

∣
∣
∣Φ(k+1)−1

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣Φ(k+1)

∣
∣
∣

∣
∣
∣ . (5.4.32)

Note that in (5.4.29)–(5.4.30) we have also used the fact that the matrix and vector

euclidean norms ||·||E are compatible, i.e. ||Az||E ≤ ||A||E ||z||E for all A ∈ R
n+2m

and z ∈ R
n+2m. In addition, since ||A||E =

∣
∣
∣
∣AT

∣
∣
∣
∣
E

we can write (5.4.29) as

∣
∣
∣

∣
∣
∣q(k+1) − q(k)

∣
∣
∣

∣
∣
∣ ≤ tfγ1

∣
∣
∣

∣
∣
∣F

(k)
1

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣q(k)

∣
∣
∣

∣
∣
∣ . (5.4.33)

Substitution of (5.4.33) in (5.4.30) and noting that
∣
∣
∣
∣BR−1BT

∣
∣
∣
∣ =

∣
∣
∣
∣R−1

∣
∣
∣
∣ (recall

the definition of B in (5.3.9)) yields

∣
∣
∣

∣
∣
∣x(k+1) − x(k)

∣
∣
∣

∣
∣
∣ ≤ tfγ1 (γ2 + tfγ1γ3)

∣
∣
∣

∣
∣
∣F

(k)
1

∣
∣
∣

∣
∣
∣ , (5.4.34)
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where

γ2 =
∣
∣
∣

∣
∣
∣x(k)

∣
∣
∣

∣
∣
∣ , (5.4.35)

γ3 =
∣
∣
∣
∣R−1

∣
∣
∣
∣

∣
∣
∣

∣
∣
∣q(k)

∣
∣
∣

∣
∣
∣ . (5.4.36)

The definitions of F
(k)
1 and F

(k)
2 in (5.4.14) and (5.4.20) imply

∣
∣
∣

∣
∣
∣F

(k)
1

∣
∣
∣

∣
∣
∣ =

∣
∣
∣

∣
∣
∣Ã

(k) − Ã(k−1)
∣
∣
∣

∣
∣
∣ , (5.4.37)

∣
∣
∣

∣
∣
∣F

(k)
2

∣
∣
∣

∣
∣
∣ ≤ 2

∣
∣
∣

∣
∣
∣P

(k)
∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣F

(k)
1

∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣Q̃

(k) − Q̃(k−1)
∣
∣
∣

∣
∣
∣ . (5.4.38)

Substituting (5.4.37)–(5.4.38) in (5.4.31) and (5.4.34) and arranging the terms in

matrix form, we can write

[ ∣
∣
∣
∣x(k+1) − x(k)

∣
∣
∣
∣

∣
∣
∣
∣P (k+1) − P (k)

∣
∣
∣
∣

]

≤ tf

[

γ1 (γ2 + tfγ1γ3) 0

γ2
1γ4 γ2

1

][∣
∣
∣
∣ Ã(k) − Ã(k−1)

∣
∣
∣
∣

∣
∣
∣
∣ Q̃(k) − Q̃(k−1)

∣
∣
∣
∣

]

, (5.4.39)

where the inequality is understood in a component-wise sense and

γ4 = 2
∣
∣
∣

∣
∣
∣P

(k)
∣
∣
∣

∣
∣
∣ . (5.4.40)

Moreover, Ã(k) in (5.3.24) implies

∣
∣
∣

∣
∣
∣Ã

(k) − Ã(k−1)
∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣A

(k) − A(k−1)
∣
∣
∣

∣
∣
∣+
∣
∣
∣
∣R−1

∣
∣
∣
∣

∣
∣
∣

∣
∣
∣P

(k) − P (k−1)
∣
∣
∣

∣
∣
∣ . (5.4.41)

A bound for
∣
∣
∣
∣A(k) − A(k−1)

∣
∣
∣
∣ follows directly from Assumption 5.2. This is stated

in the next lemma.

Lemma 5.2: Consider the network (5.2.2) satisfying Assumption 5.2. Let

LA =





n∑

i=1

m∑

j=1

|Nij |
2 L2

j





1

2

, (5.4.42)

where Nij is the (i, j)−entry of N and Lj is the Lipschitz constant of gj(s), then

∣
∣
∣

∣
∣
∣A

(k) − A(k−1)
∣
∣
∣

∣
∣
∣ ≤ LA

∣
∣
∣

∣
∣
∣x(k) − x(k−1)

∣
∣
∣

∣
∣
∣ . (5.4.43)
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Proof:

Since G(s) in the kinetic model (5.2.2) is diagonal, it can be shown that

||NG(sa) − NG(sb)||
2
E =

n∑

i=1

m∑

j=1

|Nij |
2 |gj(sa) − gj(sb)|

2 , (5.4.44)

for all sa, sb ∈ R
n. Using Assumption 5.2 in each term in the right hand side of

(5.4.44) yields

||NG(sa) − NG(sb)||E ≤ LA ||sa − sb||E . (5.4.45)

Using the definition of A(x) in (5.3.9) we get

||A(xa) − A(xb)||E = ||NG(xa) − NG(xb)||E , (5.4.46)

for all xa, xb ∈ R
n+2m. By definition G(s) = G(x) with x =

[

sT eT rT
]T

, and

thus we can combine (5.4.45)–(5.4.46) to get

||A(xa) − A(xb)||E ≤ LA ||xa − xb||E . (5.4.47)

If xa and xb depend on time so that xa, xb ∈ B1, then we can take the supremum

in (5.4.47) so that ||A(xa) − A(xb)|| ≤ LA ||xa − xb|| for all xa, xb ∈ B1. The result

follows by recalling that A(k) = A
(
x(k)

)
and taking xa = x(k) and xb = x(k−1).

���

Lemma 5.2 can be used to write the bound in (5.4.41) as

∣
∣
∣

∣
∣
∣Ã

(k) − Ã(k−1)
∣
∣
∣

∣
∣
∣ ≤ LA

∣
∣
∣

∣
∣
∣x(k) − x(k−1)

∣
∣
∣

∣
∣
∣+
∣
∣
∣
∣R−1

∣
∣
∣
∣

∣
∣
∣

∣
∣
∣P

(k) − P (k−1)
∣
∣
∣

∣
∣
∣ . (5.4.48)

In addition, a bound for
∣
∣
∣

∣
∣
∣Q̃(k) − Q̃(k−1)

∣
∣
∣

∣
∣
∣ can be obtained from the expression

for Q̃(k−1) in (5.3.25). We write

Q̃(k) − Q̃(k−1) =
(

P (k) + P (k−1)
)

BR−1BT
(

P (k) − P (k−1)
)

, (5.4.49)
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which follows by noting that both P (k−1) and P (k) are symmetric, and hence

P (k)BR−1BT P (k−1) also is. Thus, we have that

∣
∣
∣

∣
∣
∣Q̃

(k) − Q̃(k−1)
∣
∣
∣

∣
∣
∣ ≤ γ5

∣
∣
∣
∣R−1

∣
∣
∣
∣

∣
∣
∣

∣
∣
∣P

(k) − P (k−1)
∣
∣
∣

∣
∣
∣ , (5.4.50)

where γ5 =
∣
∣
∣
∣P (k) + P (k−1)

∣
∣
∣
∣.

The bounds in (5.4.48) and (5.4.50) can be written as the following component-

wise inequality

[∣
∣
∣
∣ Ã(k) − Ã(k−1)

∣
∣
∣
∣

∣
∣
∣
∣ Q̃(k) − Q̃(k−1)

∣
∣
∣
∣

]

≤

[

LA

∣
∣
∣
∣R−1

∣
∣
∣
∣

0 γ5

∣
∣
∣
∣R−1

∣
∣
∣
∣

] [ ∣
∣
∣
∣x(k) − x(k−1)

∣
∣
∣
∣

∣
∣
∣
∣P (k) − P (k−1)

∣
∣
∣
∣

]

. (5.4.51)

Substitution of (5.4.51) in (5.4.39) gives

[ ∣
∣
∣
∣x(k+1) − x(k)

∣
∣
∣
∣

∣
∣
∣
∣P (k+1) − P (k)

∣
∣
∣
∣

]

≤ M

[ ∣
∣
∣
∣x(k) − x(k−1)

∣
∣
∣
∣

∣
∣
∣
∣P (k) − P (k−1)

∣
∣
∣
∣

]

, (5.4.52)

with

M = tf

[

γ1 (γ2 + tfγ1γ3)LA γ1 (γ2 + tfγ1γ3)
∣
∣
∣
∣R−1

∣
∣
∣
∣

γ2
1γ4LA

(
γ2

1γ4 + γ2
1γ5

) ∣
∣
∣
∣R−1

∣
∣
∣
∣

]

(5.4.53)

Assumption 5.1 implies that the entries of A(k)(t) in [0, tf ] are bounded in [0, tf ]

and thus the norms in γ1, γ2, . . . , γ5 are finite. Hence, by choosing tf sufficiently

small, the eigenvalues of M can be made arbitrarily small, which by Theorem B.1

implies that the sequences
{
x(k)

}
and

{
P (k)

}
converge to a unique fixed-point. This

completes the proof.

���

5.5 Example

Consider the metabolic network of Figure 5.2.
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v6

SA s1v1

s2

s4

v5

s5

v7

v2

s3

v4v3

Figure 5.2. Example metabolic network with n = 5 metabolites and m = 7
reactions.

The stoichiometric matrix of this network is

N =











1 −1 0 0 −1 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 1 −1











. (5.5.1)

The enzyme kinetics are written as vi = gi(s)ei and are assumed to be of Michaelis-

Menten type:

g1 =
kcat 1SA

Km 1 + SA

, (5.5.2)

g2 =
kcat 2s1

Km 2 + s1
, g5 =

kcat 5s1

Km 5 + s1
,

g3 =
kcat 3s2

Km 3 + s2
, g6 =

kcat 6s4

Km 6 + s4
,

g4 =
kcat 4s3

Km 4 + s3
, g7 =

kcat 7s5

Km 7 + s5
.

The parameter values for the enzyme kinetics are given in Table 5.1. All the enzymes

are assumed to have an equal degradation constant λ = 1 and the external substrate

is assumed constant SA = 1.

Reaction v1 v2 v3 v4 v5 v6 v7

kcat i 1 2 1 3 4 1 2
Km i 1 1 1 1 1 1 1

Table 5.1. Parameters values for the metabolic network in Figure 5.2.

The weighting matrices are chosen as Ws = 10I and We = Wr = Wṙ = 10I.
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We also choose nonzero terminal weights Wsf = 10I and Wef = Wef = Wrf =

10I so as to force the terminal state to be close to the target. For t ≤ 0 the network

is assumed to be in the initial steady state

si =
[

1 1 1 1
]T

, (5.5.3)

vi =
[

1 0.5 0.5 0.5 0.5 0.5 0.5
]T

. (5.5.4)

As the target steady state we consider a 50% increase in the fluxes and metabolite

concentrations, i.e. vf = 1.5vi and sf = 1.5si. Note that the steady state enzyme

levels (ei and ef ) and expression rates (ri and rf ) can be computed directly from

(5.2.4)–(5.2.7). In this example solving Problem 5.1 requires the optimization of

seven control inputs for a nonlinear system with twelve state variables. We use

the iterative procedure of Algorithm 5.1 to compute the suboptimal responses in

the interval [0, 8] and a tolerance of ε = 10−4. The tolerance is reached after 165

iterations and the results for the final iteration are shown in Figures 5.3–5.4. The

trajectories show that the chosen horizon tf is large enough for the network to

approach the target steady state and yield satisfactory results.
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Figure 5.3. Metabolite concentrations for the network in Figure 5.2.
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Figure 5.4. Reaction rates, enzyme concentrations and their expression rates for
the network in Figure 5.2. The variables are normalized with respect to their initial
values vi

j , ei
j and ri

j , respectively.

5.6 Discussion

This chapter deals with the problem of determining time-dependent enzyme expres-

sion rates that drive a metabolic network between two different steady states while

satisfying an optimality criterion. The dynamical system under consideration is

composed of a nonlinear model for the metabolic network coupled with a linear ex-

pression/degradation model for enzyme synthesis. In this setup the enzyme expres-

sion rates are regarded as control inputs and we formulate Problem 5.1 as a way of

accounting for the combined minimization of the effort needed for enzyme synthesis

(as measured by the rate of change of the expression rates), together with the devi-
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ation of the species and expression rates from their target steady state values. No

restrictive assumptions are made on the stoichiometry and reaction kinetics, so the

formulation can include highly nonlinear networks with a large number of metabo-

lites and reactions. In addition, since the reaction rates are allowed to depend on

any number of metabolites, nonlinear regulatory phenomena such as allostery (see

Chapter 2) can also be accounted for.

Solving this optimal control problem is not easy, as standard theoretical ap-

proaches such as Pontryagin’s Minimum Principle or the Hamilton-Jacobi-Bellman

equation [91] yield problems that may be explicitly solved for particular cases, but

the general case with arbitrary stoichiometries and kinetics does not admit a general

solution. Numerical solutions can also be tried, but since metabolic networks usu-

ally have a large number of metabolites and reactions, the effectiveness of numerical

techniques can be impaired. This is aggravated by the fact that the metabolic net-

work is extended with a model for enzyme synthesis. Thus, for a network with n

metabolites and m reactions, the optimization problem involves m control inputs

and n + m state variables.

We formulate Algorithm 5.1 as an iterative procedure for computing suboptimal

solutions of the optimization problem. The algorithm is based on the observation

that the dynamics can be written in the following linear-like form

ẋ = A(x)x + Bu. (5.6.1)

From this representation one can build a sequence of linear time-variant approxi-

mations of the dynamics by evaluating A(x) along the state trajectory computed

at a previous iteration. The cost function is quadratic and has the same form as

those used in finite horizon Linear Quadratic optimal control. Moreover, the target

steady state can be regarded as an external signal to be tracked by the state vari-

able, and hence the original problem can be recast as a sequence of finite horizon

LQT problems. This kind of approximation technique has been used previously in

the literature for the optimal control of bilinear systems [93, 94], polynomial sys-

tems [95], and general nonlinear systems [88, 33]. All these approaches result in

iterative algorithms for computing the suboptimal solution and, with the exception

of [94], they rely on the solution of a differential Riccati equation at each iteration.

A possible drawback is that, since the Riccati equation is quadratic, it may become

computationally expensive for high-dimensional systems. Instead we opt for an ap-
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proach similar to [94] and build the iterative scheme in a way that only the solution

of a differential Lyapunov equation is required in each iteration. This equation is

linear and computationally less demanding, which makes it better suited for the

high-dimensional case. In this view, the method presented here corresponds to an

extension of the approach in [94] for more general nonlinear systems.

The algorithm is shown to converge provided that the optimization horizon tf is

sufficiently small and the kinetics are globally Lipschitz continuous functions of the

metabolites. Many common enzyme kinetics (such as Michaelis-Menten, Hill and

allosteric kinetics) are globally Lipschitz continuous in the positive orthant R
n
≥0.

Hence, convergence can be guaranteed for a quite general class of networks, both in

terms of stoichiometry and reaction kinetics. A limitation of this result is that for

some problems one may need to use a prohibitively small tf to ensure convergence.

This can lead to unsatisfactory solutions that do not drive the network close to the

target steady state. Although we cannot estimate a priori how small the horizon

must be, a possible way of avoiding the problem is to adjust the weights in the cost

function so as to generate faster responses that reach the target in a shorter time

interval.

A shortcoming of our method is that the optimization does not account for

constraints on the chemical species and expression rates. This can yield unrealistic

responses since in a real network concentrations and expression rates can only have

positive values and are also subject to upper bounds. Another consequence of this is

related to the solution of the sequence of LQT problems. Many reaction kinetics have

singularities for negative metabolite concentrations. For example, the irreversible

Michaelis-Menten kinetics

kcats

Km + s
e, (5.6.2)

have a singularity at s = −Km, and the same applies to other common cases such

as Hill or allosteric kinetics (see Chapter 2). These singularities also appear in

A(x) (recall is definition in (5.3.9)), and therefore in the absence of constraints

the sequence of LQT problems may involve a linear time-variant system with a

discontinuous state matrix, so that Assumption 5.1 fails to hold and this precludes

the use of the standard LQT solution.

The above discussion stresses the need to extend these kind of optimization

problems to account for constraints. The analysis presented in this chapter suggests
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that the use of linear time-variant approximations for nonlinear systems may prove

useful in this respect. They have the advantage of providing a global approximation

of the dynamics and, at the same time, give access to the extensive machinery

developed for linear systems, including constrained optimal control methods.
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Chapter 6

Optimal expression rates under

stoichiometric constraints

6.1 Introduction

It has been observed that large variations in metabolic fluxes can be accompanied

by comparatively small changes in the steady state metabolite concentrations [27].

In this chapter we study the limiting case of this scenario and address the optimal

transition between two steady states under constant metabolite concentrations.

The optimal control problem can be regarded as a special case of the nonlinear

problem treated in the previous chapter. We consider the optimization of an infinite

horizon version of the cost function of Chapter 5 and impose the additional con-

straint of constant metabolite concentrations along the whole optimization interval.

The resulting problem is linear and can be solved with the well-known results for

the infinite horizon Linear Quadratic Regulator (LQR) problem.

The steady state constraint on the metabolites translates into algebraic con-

straints on the enzyme trajectories and expression rates. These are related to the

network topology and can be regarded as a stoichiometric constraint on the linear

model for enzyme expression/degradation. The problem can thus be treated within

the LQR framework for a linear Differential-Algebraic Equation (DAE) system. By

exploiting the structure of the DAE system, the problem can be recast as a standard

LQR problem for a lower-dimensional linear system without algebraic constraints,

which can be readily solved via the classic LQR theory.

The chapter is organized as follows: the problem is stated in Section 6.2 and

its solution is developed in Section 6.3. The results are illustrated with a simple

numerical example in Section 6.4. We conclude with a discussion of the results in

Section 6.5.
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6.2 Problem formulation

The formulation of the optimal control problem is essentially a special case of that

presented in the previous chapter (Problem 5.1). For completeness, we briefly recall

the notation and definitions from Section 5.2.

A metabolic network coupled with its enzyme dynamics can be described by

ṡ = NG(s)e, (6.2.1)

ė = r − Λe, (6.2.2)

where N ∈ Z
n×m is the stoichiometric matrix, s ∈ R

n the metabolite vector, e ∈ R
m

the vector of enzyme concentrations, and r ∈ R
m the vector of enzyme expression

rates. The matrix Λ = diag {λ1, λ2, . . . , λm} with λi > 0 accounts for linear enzy-

matic degradation, and G(s) = diag {g1(s), g2(s), . . . , gm(s)} comprises the enzyme

turnover rates and relates to the reaction rates v ∈ R
m by

v = G(s)e. (6.2.3)

The complete model is represented by the block diagram of Figure 5.1. We are

interested in finding optimal enzyme expression rates that drive the network between

two steady states under constant metabolite concentrations.

Initial and target steady states

Consider the constraint

s(t) = si, (6.2.4)

for all t ≥ 0, where si ∈ R
n
>0 is a vector of metabolite concentrations such that

Gi = G
(
si
)

is nonsingular. Under this constraint, the initial and target steady

states can be specified solely in terms of the network fluxes: Given an initial flux

vi ∈ R
m and target flux vf ∈ R

m, from (6.2.1)–(6.2.2) the corresponding steady

state enzyme concentrations and expression rates can be computed from

ei = Gi
−1vi, ef = Gi

−1vf , (6.2.5)

ri = Λei, rf = Λef . (6.2.6)
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Note that nonsingularity of Gi is required for ei and ef to be well defined.

Cost function

Consider an infinite horizon version of J(z,W ) defined in (5.2.8):

J(z,W ) =
1

2

∫ ∞

0
zT W z dt, (6.2.7)

where z(t) : [0,∞) → R
q and W ∈ R

q×q is a positive semidefinite matrix. We

consider the minimization of

J = J+ + J−, (6.2.8)

where

J+ = J
(

e − ef ,We

)

+ J
(

r − rf ,Wr

)

, (6.2.9)

J− = J (ṙ,Wṙ) . (6.2.10)

The matrices in the functionals (6.2.9)–(6.2.10) have appropriate dimensions and

are assumed to satisfy We, Wr ≥ 0 and Wṙ > 0. The cost J in (6.2.8) is an infinite

horizon version of the one used in Chapter 5. Its interpretation and the effect of the

weighting matrices are, therefore, the same as those discussed in Section 5.2. Note

that, in contrast to the previous chapter, it is not necessary to include a weight on

the terminal state in the definition of J . This is because for J(z, W ) to be finite,

it is necessary that limt→∞ z(t) = 0. Thus, if there exists an optimal r(t), it must

drive the state exactly to the target, i.e.

lim
t→∞

e(t) = ef , (6.2.11)

lim
t→∞

r(t) = rf . (6.2.12)

The optimization problem can be summarized as follows.

Problem 6.1: Let vi, vf ∈ R
m be two steady state fluxes for the network (6.2.1)–

(6.2.2) and let si ∈ R
n
>0 be a metabolite concentration vector such that Gi is non-

singular. Assume that the network is in steady state with s(t) = si, e(t) = ei and

r(t) = ri for all t ≤ 0, with ei and ri given in (6.2.5)–(6.2.6). Given weight matrices

We,Wr ≥ 0 and Wṙ > 0, find a piecewise continuous control r(t) : [0,∞) → R
m
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that minimizes

J = J+ + J−, (6.2.13)

subject to s(t) = si for all t ≥ 0.

Problem 6.1 has a considerable simpler structure as compared to the nonlinear

problem studied in the previous chapter. In fact, the nonlinearities in system (6.2.1)–

(6.2.2) only appear in the matrix function G(s), and hence the system is linear under

the constraint of constant metabolites. Unlike the finite horizon case, the solution

of Problem 6.1 must also guarantee asymptotic stability of (6.2.1)–(6.2.2) under the

optimal control. As we show in the next section, however, Problem 6.1 can be recast

as a Linear Quadratic Regulator problem and stability can be directly accounted

for.

6.3 Equivalent problem and solution

6.3.1 Differential-Algebraic system

The following lemma provides a useful characterization of the constraint s(t) = si

in Problem 6.1. This will allow us to recast the enzyme dynamics in (6.2.2) as a

linear Differential-Algebraic system.

Lemma 6.1: Consider the metabolic network (6.2.1) with s(t) = si ∈ R
n
>0 for all

t ≤ 0 and such that Gi is nonsingular. Define T1 = Gi
−1K ∈ R

m×(m−d) where

the columns of K ∈ R
m×(m−d) form a basis for the nullspace of N , i.e. NK = 0

with d = rank {N}. Then, s(t) = si for all t ≥ 0 if and only if e satisfies the

stoichiometric constraint

e = T1φ, (6.3.1)

for all φ = φ(t) ∈ R
m−d.

Proof:

Sufficiency follows by substituting (6.3.1) in the metabolic dynamics (6.2.1), which

yields

ṡ = NG(s)Gi
−1Kφ. (6.3.2)
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Evaluation of (6.3.2) at t = 0 implies that ṡ(0) = NKφ = 0 for all φ and hence

s(t) = si for all t ≥ 0. Necessity can be proven by noting that in (6.2.1), ṡ = 0 holds

only when

G(s)e = 0, ∀ t ≥ 0, (6.3.3)

or

e(t) ∈ ker {NG(s)} , ∀ t ≥ 0. (6.3.4)

Equation (6.3.3) holds if e = 0 (the trivial case) or G(s) = 0 for all t ≥ 0, which

can be discarded because G(s) is nonsingular at least for t = 0 (recall that Gi is

nonsingular). Moreover, s(t) = si for all t ≥ 0 implies that (6.3.4) only holds when

e(t) ∈ ker {NGi}, which is equivalent to (6.3.1) because the columns of T1 form a

basis for the nullspace of NGi.

���

The stoichiometric constraint in (6.3.1) parameterizes the enzyme vector e ∈ R
m

to guarantee the constraint s(t) = si to be satisfied. Substitution of (6.3.1) in the

enzyme dynamics (6.2.2) yields

T1φ̇ = −ΛT1φ + r. (6.3.5)

The matrices T1 and ΛT1 are rectangular, and thus the above system is a nonregular

linear Differential-Algebraic Equation (DAE) system. The term “nonregular” is used

to distinguish the DAE system from cases in which T1 and the state matrix are

square and T1 is singular [96, 97]. The DAE system in (6.3.5) is overdetermined,

since it contains m differential equations and only m − d state variables. The d

algebraic constraints in φ can be satisfied by constraining d degrees of freedom in e

and r, and leaving the remaining (m − d) as variables to be optimized.

Before proceeding with this approach, we note that the cost J includes a weight

on ṙ and so we extend the state space of (6.2.2) and consider ṙ as the control input

(this is the same idea we used for the nonlinear problem in Section 5.3). Define the

extended state variable x ∈ R
2m as

x =

[

e

r

]

, (6.3.6)
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with initial and target values

xi =

[

ei

ri

]

, xf =

[

ef

rf

]

. (6.3.7)

If u = ṙ is regarded as the control input, from the enzyme dynamics in (6.2.2) we

can describe the extended system as

ẋ =

[

−Λ I

0 0

]

x +

[

0

I

]

u, x(0) = xi. (6.3.8)

It is convenient to work with an incremental state variable

x̄ = x − xf . (6.3.9)

Using the steady state condition in (6.2.5), the system (6.3.8) becomes

˙̄x =

[

−Λ I

0 0

]

x̄ +

[

0

I

]

u, x̄(0) = xi − xf . (6.3.10)

The cost J in (6.2.13) can then be written as

J =
1

2

∫ ∞

0

(
x̄T Q̄x̄ + uT Wṙu

)
dt, (6.3.11)

where

Q̄ =

[

We 0

0 Wr

]

. (6.3.12)

The minimization of J for the dynamics in (6.3.10) corresponds to an infinite

horizon Linear Quadratic Regulator (LQR) problem. This is a considerable ad-

vantage since it enables us to apply the well-known results presented in Appendix

A.2.2.

We mentioned that, as a consequence of the stoichiometric constraint, the en-

zyme concentrations, e, and expression rates, r, have only (m − d) degrees of free-

dom. This implies that the extended state x̄ ∈ R
2m and control u = ṙ ∈ R

m have

2(m−d) and (m−d) degrees of freedom, respectively. Thus any x̄ that satisfies the
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stoichiometric constraint must be of the form

x̄ = Ez, (6.3.13)

where E ∈ R
2m×2(m−d) and z ∈ R

2(m−d). Note that in this case x̄ has exactly

rank {E} degrees of freedom, and so in order to avoid introducing further constraints

on x̄, the matrix E needs to have full column rank.

The form of the incremental model (6.3.10) and the stoichiometric constraint

can be exploited to choose the state transformation E such that the solution of

Problem 6.1 can be explicitly computed in terms of the system matrices (N , Gi,Λ)

and weights (We, Wr,Wṙ). Define the matrix T2 = ΛT1 ∈ R
m×(m−d) and pick E

as

E =

[

T1 0

T2 T1

]

. (6.3.14)

The matrix E has full column rank and we substitute x̄ = Ez in (6.3.10) to obtain

Eż = Az + Bu, z(0) = E+
(

xi − xf
)

, (6.3.15)

with A ∈ R
2m×2(m−d) and B ∈ R

2m×m defined as

A =

[

0 T1

0 0

]

, B =

[

0

I

]

, (6.3.16)

and E+ =
(
ET E

)−1
ET is the Moore-Penrose pseudoinverse of E. In next section

we use the structure of E to explicitly decouple the algebraic and differential parts

of the DAE system in (6.3.15).

6.3.2 Equivalent problem

Define the matrix E∗ ∈ R
2m×2m as

E∗ =

[

E⊥

E+

]

, (6.3.17)
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where E⊥ ∈ R
2d×2m is defined as

E⊥ =

[

NGi 0

−NΛGi NGi

]

. (6.3.18)

Note that E⊥E = 0 and E⊥E+T
= 0, which implies that the rows of E⊥ are

orthogonal to the ones of E+, and hence E∗ is nonsingular. Multiplication of the

DAE system in (6.3.15) by E∗ yields the equalities

0 = E⊥Az + E⊥Bu, (6.3.19)

ż = E+Az + E+Bu. (6.3.20)

The above equations are the algebraic and differential parts of the DAE system:

(6.3.19) consists of 2d algebraic equations, whereas (6.3.20) comprises 2(m − d)

differential equations in z. Equation (6.3.19) can be used to explicitly find the class

of controls that satisfy the stoichiometric constraint. The products E⊥A and E⊥B

are given by

E⊥A =

[

0 0

0 −NGiT2

]

, E⊥B =

[

0

NGi

]

, (6.3.21)

and thus (6.3.19) reduces to only d nontrivial equations

NGi (−Tuz + u) = 0, (6.3.22)

where Tu ∈ R
m×2(m−d) is given by Tu =

[

0 T2

]

. Equation (6.3.22) implies that if

a control u satisfies the algebraic constraint, then it also satisfies

(−Tuz + u) ∈ ker {NGi} . (6.3.23)

The columns of T1 span the nullspace of NGi, and thus any u satisfying (6.3.23)

has the form

u = Tuz + T1ω, (6.3.24)

for some ω ∈ R
m−d. We have obtained a parameterization of the original control u

in terms of a lower-dimensional control ω which guarantees that the stoichiometric
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constraint is satisfied (and hence it ensures constant metabolite concentrations). The

dynamics for z can be rewritten in terms of ω by substituting the parameterization

(6.3.24) in (6.3.20)

ż = E+ (A + BTu) z + E+BT1ω,

= E+

[

0 T1

0 T2

]

z + E+

[

0

T1

]

ω,

= E+E

[

0 I

0 0

]

︸ ︷︷ ︸

Az

z + E+E

[

0

I

]

︸︷︷︸

Bz

ω,

= Azz + Bzω, (6.3.25)

where Az ∈ R
2(m−d)×2(m−d) and Bz ∈ R

2(m−d)×(m−d). Since the constraint s(t) = si

for all t ≥ 0 is satisfied for any ω, the solution of Problem 6.1 can be obtained by

optimizing ω for system (6.3.25) without algebraic constraints. To that end, we

rewrite the cost J in (6.3.11) in terms of the new state z and control ω. Substituting

x̄ = Ez and (6.3.24) in the cost (6.3.11) yields

J =
1

2

∫ ∞

0

(
zT Qz + ωT Rω + 2zT Sω

)
dt, (6.3.26)

where

Q = ET Q̄E + Tu
T WṙTu, R = T1

T WṙT1, S = Tu
T WṙT1. (6.3.27)

The minimization of J in (6.3.26) for the linear system (6.3.25) has the standard

form of the LQR problem presented in Appendix A.2.2. It is worth noting that

the algebraic constraint on u in (6.3.24) translates into J having a mixed term

that weighs the product between state and control (via the weight matrix S ∈

R
2(m−d)×(m−d)). We also see that the dynamics of z in (6.3.25) are unstable, since

all the eigenvalues of Az are located at the origin. Therefore, in order to use

the LQR solution of Lemma A.2 we need to guarantee that the stabilizability and

detectability conditions in Assumption A.1 are satisfied. Next lemma tackles this

issue and gives the solution to Problem 6.1.

Lemma 6.2: Consider Az and Bz defined in (6.3.25) and Q, R, and S defined in

(6.3.27). Then:
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(i) the pair (Az,Bz) is stabilizable,

(ii) R > 0,

(iii) We,Wr > 0 implies that Q̃ = Q − SR−1ST > 0.

Provided that We,Wr > 0, the solution x∗ =

[

e∗

r∗

]

of Problem 6.1 is therefore given

by

x∗ = Ez∗ + xf , (6.3.28)

where z∗ satisfies

ż∗ =
(

Ãz − BzR−1Bz
T P
)

z∗, z∗(0) = E+
(

xi − xf
)

, (6.3.29)

and P ∈ R
2(m−d)×2(m−d) is the solution of the algebraic Riccati equation

Ãz
T
P + PÃz − PBzR−1BzP + Q̃ = 0, (6.3.30)

with Ãz = Az − BzR−1ST .

Proof:

To prove claim (i), we recall the definitions of Az and Bz in (6.3.25) to check that

[

Bz AzBz · · · Az
2(m−d)−1Bz

]

=

[

0 I 0 · · · 0

I 0 0 · · · 0

]

, (6.3.31)

and so

rank
{[

Bz AzBz · · · Az
2(m−d)−1Bz

]}

= 2(m − d), (6.3.32)

which means that the pair (Az,Bz) is completely controllable and therefore stabi-

lizable (see Definition A.1).

Claim (ii) follows by noting that T1 has full column rank, and so Wṙ > 0 implies

R = T1
T WṙT1 > 0 (see e.g. [98, p. 399]).

To prove claim (iii) we note that, provided that We,Wr > 0, we have Q̄ > 0

and so ET Q̄E > 0, which implies that Q = ET Q̄E + Tu
T WṙTu > 0 (note that

Tu
T WṙTu ≥ 0). Using Schur’s complement (see e.g. [98, p. 472]), this implies that
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Q̃ = Q − SR−1ST > 0 if and only if

Q̃′ =

[

Q S

ST R

]

> 0. (6.3.33)

From the definitions of Q, R and S in (6.3.27) we get

Q̃′ =

[

ET Q̄E + Tu
T WṙTu Tu

T WṙT1

T1
T WṙTu T1

T WṙT1

]

> 0. (6.3.34)

Let y =

[

ya

yb

]

with ya ∈ R
2(m−d) and yb ∈ R

m−d, then

yT Q̃′y = (Eya)
T

Q̄ (Eya) + (Tuya)
T

Wṙ (Tuya) + (T1yb)
T

Wṙ (T1yb)

+ 2 (Tuya)
T

Wṙ (T1yb) ,

= (Eya)
T

Q̄ (Eya) + (Tuya + T1yb)
T

Wṙ (Tuya + T1yb) . (6.3.35)

Since E has full column rank, Eya = 0 only for ya = 0, so that Q̄ > 0 implies

(Eya)
T

Q̄ (Eya) > 0 for all ya 6= 0. Moreover, Wṙ > 0 implies that the second term

in (6.3.35) is nonnegative, and hence we conclude that yT Q̃′y > 0 for all y 6= 0.

This implies Q̃′ > 0 and hence claim (iii) follows.

Claims (i)-(iii) imply that Assumption A.1 holds, and therefore the optimal

solution is given by Lemma A.2. The result (6.3.29) is a direct consequence of

(A.2.14) in Lemma A.2, whereas (6.3.28) follows from x̄ = Ez and the definition

x̄ = x − xf .

���

Lemma 6.2 gives the solution to Problem 6.1 provided that We,Wr > 0. This

is a sufficient condition for the matrix Q̃ to be positive definite, which in turn

guarantees that the detectability condition for the LQR solution of Lemma A.2 is

satisfied. This enables us to compute a stabilizing solution to Problem 6.1 using the

classic LQR results [90].

6.4 Example

We illustrate the result of Lemma 6.2 with the metabolic network in Figure 6.1.
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SB

SA s1v1

s2

s3

v5

v2

v4

v6

v3

Figure 6.1. Metabolic network with n = 3 metabolites and m = 6 reactions.

The stoichiometric matrix of this network is

N =






1 −1 0 0 −1 0

0 1 1 −1 0 0

0 0 0 0 1 −1




 . (6.4.1)

The enzyme kinetics are written as vi = gi(s)ei (recall Assumption 2.1 in Chapter

2) and are assumed to be of Michaelis-Menten type:

g1 =
kcat 1SA

Km 2 + SA

, g4 =
kcat 4s2

Km 4 + s2
,

g2 =
kcat 2s1

Km 2 + s1
, g5 =

kcat 5s1

Km 5 + s1
,

g3 =
kcat 3SB

Km 3 + SB

, g6 =
kcat 6s3

Km 6 + s3
.

The parameter values of the enzyme kinetics are given in Table 6.1. All enzymes are

assumed to have the same degradation constant λ = 0.1 and the external substrates

are assumed constant with SA = SB = 1.

Reaction v1 v2 v3 v4 v5 v6

kcat i 4 2 1 3 4 2
Km i 1 1 1 1 1 1

Table 6.1. Parameter values of the metabolic network in Figure 6.1.
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The weights are chosen as Wṙ = I and

We = Wr =














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 10 0 0

0 0 0 0 1 0

0 0 0 0 0 10














. (6.4.2)

This choice accounts for the need of fast transient responses in the “output” rates

of the network (v4 and v6). The metabolite vector is chosen as si =
[

1 1 1
]T

,

and the initial and target fluxes are

vi =
[

2 1.5 1 2.5 0.5 0.5
]T

,

vf =
[

3 2 1.5 3.5 1 1
]T

.

The enzyme concentrations (ei and ef ) and the expression rates (ri and rf ) can

be computed directly from (6.2.5)–(6.2.6). Figure 6.2 depicts the optimal enzyme

concentrations and expression rates as given by Lemma 6.2. The corresponding

reaction rates can be computed from v = Gie and satisfy ṡ = Nv = 0 for all t ≥ 0,

thus ensuring that the constraint of constant metabolite concentrations is satisfied.

6.5 Discussion

The nonlinearities in the model (6.2.1)–(6.2.2) appear only in the enzyme kinetics

contained in the matrix G(s). As a consequence, under the constraint of constant

metabolite concentrations the system is linear. This constraint is of stoichiometric

nature and is equivalent to parameterizing the enzyme vector in terms of a lower-

dimensional state variable. This can be used to recast the optimization as a LQR

problem for a nonregular linear DAE system. Linear DAE systems are also known as

descriptor systems in the control community [99, 100], and have been studied exten-

sively, see e.g. [96, 97]. The LQR problem for regular DAE systems was originally

treated in [101, 102], whereas the nonregular case has recently gathered interest,

see e.g. [103, 104] and the references therein. The idea behind these methods is

essentially to “regularize” the dynamics by introducing suitable state transforma-

tions that render a standard lower-dimensional system without algebraic constraints
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Figure 6.2. Optimal enzyme concentrations and their expression rates for the
network in Figure 6.1.

[105].

Here we follow a similar approach and use a state transformation to split the

algebraic and differential parts of the DAE system. The advantage is that in our case,

the structure of the problem allows us to build the state transformation explicitly in

terms of the nullspace of the stoichiometric matrix N , the kinetics in G(s), and the

matrix of degradation constants Λ. From the algebraic part, we can parameterize

every control input that satisfies the stoichiometric constraint, and thus reduce

the problem to an LQR problem for a purely differential lower-dimensional linear

system. The solution of this equivalent problem can be readily computed with the

classic results presented in Appendix A.2.2. Since we have not made any restrictive

assumption on the stoichiometry and reaction kinetics, the solution procedure can

be applied to a broad class of metabolic models.

The key step in our derivation is the parameterization of the enzyme vector so

as to ensure that the metabolic network (6.2.1) remains in equilibrium (see Lemma

6.1). This parameterization has been used before in the context of the “universal

method” for metabolic interventions proposed in [106]. Although a number of ex-

tensions to this idea have been described in the literature, see e.g. [107], to our best

knowledge these applications have only dealt with static problems. These aim at

determining constant enzyme concentrations associated to a prescribed metabolic
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flux in the network. Our results extend this idea to a dynamic context, whereby

enzyme trajectories guarantee constant metabolites for all t ≥ 0 and, at the same

time, can be optimized so as to drive the network between two given fluxes.

In this view, our approach may be combined with static optimization techniques

such as Flux Balance Analysis [52]. Such integration can be thought of as a two-

stage optimization process: Once optimal initial and target fluxes are identified via

Linear Programming (see Chapter 3), the transition between both can be realized by

time-dependent enzyme expression rates that are computed as solutions to Problem

6.1. In order to obtain meaningful solutions, however, the results presented here

should be extended to account for positivity and upper bound constraints on the

enzyme concentrations and expression rates.
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Chapter 7

Summary and outlook

7.1 Framework

Most approaches to dynamic optimization of metabolic networks are based on the

stoichiometric model

ṡ = Nv.

In this model the vector of metabolite concentrations s is the state variable, and

the reaction rates v are regarded as control inputs. Although the linearity of the

stoichiometric model is favourable for the formulation and solution of optimal control

problems, this description overlooks the dependency of the reaction rates on the

metabolites. The reaction rates are typically linear in the enzyme concentration

and nonlinear in the concentrations of the metabolites. They can thus be generally

written as

vi(s) = gi(s)ei,

with the nonlinear function gi(s) describing the saturable behaviour of enzyme ei.

The standard approach for studying metabolic dynamics assumes that the enzyme

concentration in the above equation is constant, see Chapter 2. In this thesis we

have considered time-dependent enzyme concentrations by describing the metabolic

network as the nonlinear control-affine system

ṡ = NG(s)e,
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where the nonlinearities of the enzyme kinetics are contained in the diagonal matrix

G(s) = diag {g1(s), g2(s), . . . , gm(s)} .

By regarding the enzyme vector e as a control input to the network, this model is

appropriate for carrying out control-theoretic analyses of metabolic networks. To our

surprise, although this description of a metabolic network offers certain advantages,

it has not been used elsewhere in the literature. Throughout the thesis we used this

nonlinear model and exploited its form to pose and solve optimal control problems

associated with metabolic dynamics.

7.2 Results and open questions

In Chapter 4 we solved a nonlinear optimal control problem for unbranched net-

works. The problem statement accounts for the optimal activation of the network

from the origin to a prescribed steady state flux under simplex-type constraints

on the enzyme concentrations. The optimal enzyme inputs minimize an integral

cost that quantifies enzyme usage and the duration of the activation. The cost is

linear in the control, and thus the bang-bang form of the solution can be derived

from geometric properties of the associated Hamiltonian. Two key elements in this

analysis are the network topology and the monotonicity of gi(si) with respect to si.

These allowed us to show that, for a whole class of monomolecular reaction kinetics,

each optimal enzyme input is a single square pulse between zero and the maximum

concentration and, moreover, the pulses occur one after another following the same

order as the reactions appear in the network.

Previous studies have suggested the optimality of this temporal pattern for spe-

cific reaction kinetics [28, 29]. Our results suggest that sequential activation may

also appear in more general unbranched networks. From a biological viewpoint,

however, switching enzyme concentrations can only be realized by infinitely fast

gene expression, and thus a realistic analysis must also take enzyme dynamics into

account.

Consequently, we further considered an extended system by coupling the non-

linear model with a linear model for enzyme dynamics

ė = r − Λe.
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This model accounts for the balance between enzyme expression and degradation,

with gene expression represented by a time-dependent vector of expression rates

(r), and the degradation assumed proportional to the enzyme concentrations (Λ is

a diagonal matrix formed by the degradation constants). In the last part of Chap-

ter 4 we explored the optimization of r under box-type constraints via a numerical

method for a particular case study. The optimal solution exhibits the same sequen-

tial pattern, but its numerical nature does not allow for generalizations. The analytic

treatment of this extended problem is an interesting topic for future research. In

addition, the analysis has been limited to unbranched networks, and whether other

temporal patterns can be identified in more complex topologies remains an open

question that deserves further investigation.

In Chapters 5 and 6 we addressed more general topologies and kinetics by con-

sidering a different class of optimal control problems. In Chapter 5 we considered

the optimization of enzyme expression rates for a quadratic integral cost accounting

for the transition between two arbitrary metabolic steady states. The cost func-

tion weighs the deviation of metabolites, enzymes and expression rates from their

prescribed target values. In contrast to Chapter 4, the problem formulation does

not include restrictive assumptions on the stoichiometry and enzyme kinetics. This

problem does not admit general solutions, but since the nonlinear model is affine in

the enzyme vector, the dynamics of the full model can be written as

ẋ = A(x)x + Bu.

Since the cost function also weighs the time-derivative of the expression rates, it is

convenient to choose the control as u = ṙ and define an extended state variable x

composed of the metabolites, enzymes and expression rates. We exploited the form

of the above system and introduced a sequence of linear time-variant approximations

of the nonlinear dynamics. If the sequence converges, the fixed-point provides a

global approximation of the dynamics, which is a considerable improvement over

traditional linearization methods. This technique has been used elsewhere for the

optimal control of nonlinear systems [33]. In that approach, for each element of the

sequence the problem is recast as a Linear Quadratic Tracking (LQT) problem, the

solution of which can be obtained by means of a differential Riccati equation. We

developed a modified version of this method by approximating the solution of the

Riccati equation with that of a differential Lyapunov equation, which is better suited
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for high-dimensional systems. The Lyapunov equation approach was proposed in

[94] for bilinear systems, and therefore our results extend this idea to a more general

class of nonlinear systems.

The sequence of LQT solutions was shown to converge to a suboptimal solution

of the original problem. Convergence is ensured for a quite general class of kinetics

provided that the optimization horizon is sufficiently small. Unfortunately, in some

cases one may need a prohibitively small horizon in order to achieve convergence. An

open question is whether this limitation can be overcome by using receding horizon

optimization (such as Model Predictive Control techniques [108]) for each linear

time-variant system. A receding horizon approach would also allow the inclusion

of constraints on the state and control variables, the lack of which is one of the

shortcomings of our approach. Nevertheless, we find this approximation method

promising for metabolic optimization, since it provides a global approximation and,

at the same time, allows the application of methods from linear systems theory.

A special case of the nonlinear problem was addressed in Chapter 6. Under

the additional constraint of constant metabolite concentrations and with an infinite

time horizon, the problem was recast as a Linear Quadratic Regulator problem for

a differential-algebraic equation (DAE) system. This is realized by exploiting the

rank deficiency of the stoichiometric matrix, where we can explicitly identify the

class of enzyme trajectories that satisfy the constraint. With an appropriate state

transformation, the DAE system can be written as a purely differential system in

terms of lower-dimensional state and control variables. The solution is then readily

available with the classic results for the LQR problem. As in Chapter 5, the lack

of hard constraints on the state and control is a drawback of the method, and their

inclusion is a promising target for future research.

7.3 Concluding remarks

In this thesis we employed analytic methods from optimal control theory to tackle

dynamic optimization problems for metabolic networks. As opposed to numerical

approaches, an analytic treatment allows the identification of the solution properties

as inherent features of the network, rather than a consequence of fine-tuning the

model parameters. This is particularly evident in the results on metabolic activation

in Chapter 4, where the sequential behaviour was identified for a whole class of

networks.
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The application of optimal control methods to the nonlinear model for metabolic

dynamics typically yields problems that are analytically intractable for many cases

of practical importance. Explicit solutions may be sought using classic formulations

such as Pontryagin’s Minimum Principle or the Hamilton-Jacobi-Bellman equation.

Even if they can be posed as tractable problems, however, this would normally imply

constraining the network stoichiometry and kinetics to a few special cases.

We tackled this difficulty by exploiting properties of the model and cost func-

tions so as to recast the problems into tractable formulations. For example, the

monotonicity of the enzyme kinetics and the linearity of the cost are key aspects for

the results of Chapter 1. Likewise, the control-affine property of the nonlinear model

is the basis for Chapter 5, and we took advantage of its stoichiometric structure in

Chapter 6.

Apart from kinetic and structural properties, we believe that time-scale separa-

tion can also be useful in tackling metabolic optimization problems, because enzyme

dynamics operate on comparatively slower time-scales than their metabolic counter-

part. This idea has been the basis for optimization problems under constant enzyme

concentrations, like Flux Balance Analysis or the S-system formulation (see Chapter

3). We remark, however, that the time-scale separation can be used in the reverse

direction for dynamic optimization: one can pose an optimization problem for the

enzyme dynamics and approximate the fast metabolic dynamics by an algebraic

function of the enzyme trajectories. In this setup, one needs to optimize the linear

model for enzyme dynamics, and the metabolite trajectories can be computed as

solutions of the system of nonlinear algebraic equations

NG(s)e = 0.

It must also be pointed out that, given the large scale of real metabolic networks,

the use of dynamic optimization as a practical tool still requires the development

of appropriate numerical techniques that can efficiently cope with high-dimensional

problems, perhaps in the spirit of recent work in the field [78, 109]. Moreover, since

numerical methods typically allow for constraints in the optimization problems,

their development will probably become increasingly important for the design of

metabolic intervention strategies.

We conclude by observing that the use of Systems and Control ideas in biochem-

ical networks is accompanied by a number of difficulties, among which are the lack of
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plant/controller separation and knowledge of the control objectives. In this respect,

metabolic networks are amenable to control-theoretic analyses, as their dynamics

can be identified as a “plant” that is controlled by the enzyme concentrations. In

addition, evolutionary principles suggest optimality as a sensible choice for an un-

derlying control objective. We therefore believe that metabolic optimization is a

promising framework for new developments in optimal control theory and may, at

the same time, help in understanding biological design principles.
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Appendix A

Classical optimal control methods

A.1 Pontryagin’s Minimum Principle

In this section we present the necessary conditions for optimality provided by Pon-

tryagin’s Minimum Principle [84]. These results can be found in standard textbooks

on optimal control theory, e.g. [91]. Consider the system

ẋ = f (x, u) , x(0) = x0, (A.1.1)

with x ∈ R
n and u ∈ U ⊆ R

m. Assume that the state has to be driven to x(tf ) ∈

S ⊆ R
n in the time interval [0, tf ]. A general optimal control problem is to find a

piecewise continuous control u∗ : [0, tf ] → U that minimizes the cost

J =

∫ tf

0
L (x, u) dt, L (x, u) > 0. (A.1.2)

Define the Hamiltonian as

H (x, u, p) = L (x, u) + pT f (x, u) , (A.1.3)

where p ∈ R
n is the co-state vector. Pontryagin’s Minimum Principle states that, if

an optimal u∗ exists, then there exist nontrivial trajectories x∗ and p∗ such that:

(a) They satisfy the two-point boundary value problem

ẋ∗ =
∂

∂p
H (x∗, u∗, p∗) , (A.1.4)

ṗ∗ = −
∂

∂x
H (x∗, u∗, p∗) , (A.1.5)

subject to the boundary conditions x∗(0) = x0 and x∗(tf ) ∈ S.
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(b) The Hamiltonian is minimized by the optimal control for all t ∈ [t0, tf ], i.e.

H (x∗(t), u∗(t), p∗(t)) = min
u∈U

H (x∗(t), u(t), p∗(t)) , ∀t ∈ [t0, tf ] . (A.1.6)

(c) The co-state vector is transversal to S in the final time, i.e.

p∗T (tf ) (q − x∗(tf )) = 0, ∀q ∈ M (x∗(tf )) (A.1.7)

where M (x∗(tf )) is the tangent hyper-plane of S at x∗(tf ).

(d) The Hamiltonian evaluated at the optimal trajectory is constant for all t ∈ [0, tf ],

i.e.

H (x∗(t), u∗(t), p∗(t)) = C, ∀t ∈ [0, tf ] (A.1.8)

Moreover, if the final time tf is not specified a priori, but instead is an outcome

of the optimization then C = 0 in (A.1.8).

A.2 Linear Quadratic optimization

In this section we briefly present some results on Linear Quadratic optimal control.

These are classic results available in standard textbooks on optimal control, e.g. [89,

91, 90].

A.2.1 Finite horizon Linear Quadratic Tracking (LQT) problem

Consider the linear time-variant system

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, (A.2.1)

y(t) = C(t)x(t), (A.2.2)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, A(t) ∈ R

n×n, B(t) ∈ R
n×m, and C(t) ∈

R
p×n. The entries of A(t), B(t) and C(t) are assumed to be continuous. In the

finite horizon LQT problem one seeks for a control u∗(t), t ∈ [0, tf ], that minimizes

the cost

J =
1

2
x̃T (tf )Qf x̃(tf ) +

1

2

∫ tf

0

(
x̃T Qx̃ + uT Ru

)
dt, (A.2.3)
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where Qf ∈ R
n×n, Q = Q(t) ∈ R

n×n, R = R(t) ∈ R
m×m. The variable x̃ = y − z

is the deviation of the output with respect to a signal z that needs to be tracked.

Lemma A.1: Assume that Qf ,Q(t) ≥ 0, R(t) > 0 for all t ∈ [0, tf ]. The optimal

control u∗ is given by the linear state feedback

u∗(t) = −R−1(t)BT (t) (P (t)x(t) − q(t)) , (A.2.4)

where P (t) ∈ R
n×n is the solution of the differential Riccati equation

−Ṗ (t) = AT (t)P (t) + P (t)A(t) − P (t)B(t)R−1(t)BT (t)P (t) + CT (t)Q(t)C(t),

(A.2.5)

with the terminal condition P (tf ) = CT (tf )QfC(tf ). The vector q(t) ∈ R
n is a

feedforward term computed as the solution of the differential equation

q̇(t) = −
(
A(t) − B(t)R−1(t)BT (t)P (t)

)T
q(t) − CT (t)Q(t)z(t), (A.2.6)

with the terminal condition q(tf ) = CT (tf )Qfz(tf ). The optimal state trajectory

x∗ is then the solution of the inhomogeneous system

ẋ(t) =
(
A(t) − B(t)R−1(t)BT (t)P (t)

)
x(t) + B(t)R−1(t)BT (t)q(t), x(0) = x0.

(A.2.7)

A.2.2 Infinite horizon Linear Quadratic Regulator (LQR) problem

Consider the linear time-invariant system

ẋ = Ax + Bu, x(0) = x0, (A.2.8)

where x ∈ R
n, u ∈ R

m, A ∈ R
n×n, and B ∈ R

n×m. In the infinite horizon LQR

problem one seeks for a control u∗ : [0,∞) → R
m, that minimizes the quadratic

cost

J =
1

2

∫ ∞

0

(
xT Qx + uT Ru + 2xT Su

)
dt, (A.2.9)

where Q ∈ R
n×n, S ∈ R

n×m, and R ∈ R
m×m. This problem can be seen as a special

case of the finite horizon LQT problem of the previous section (by taking z = 0 and
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letting tf → ∞). In the infinite horizon case, however, the optimal solution must

also ensure asymptotic stability of (A.2.8) under the optimal control. This can be

done by imposing additional assumptions on the systems and weighting matrices.

To that end we need the following standard definitions.

Definition A.1: Let A ∈ R
n×n, B ∈ R

n×p, and C ∈ R
q×n.

(a) The pair (A,B) is completely controllable if and only if

rank
{[

B AB · · · An−1B

]}

= n. (A.2.10)

Likewise, the pair (A, C) is completely observable if and only if (AT ,CT ) is

completely controllable.

(b) If (A,B) is not completely controllable, then every λ ∈ R such that

rank
{[

λI − A B

]}

< n, (A.2.11)

is an uncontrollable mode of (A,B). The unobservable modes of the pair

(A,C) are defined analogously.

(c) The pair (A,B) is stabilizable if and only if every uncontrollable mode is stable

(Reλ < 0), and (A, C) is detectable if and only if, every unobservable mode

is stable (Reλ < 0). Note that complete controllability (observability) implies

stabilizability (detectability).

Assumption A.1: Define Ã = A − BR−1ST and Q̃ = Q − SR−1ST :

(a) R > 0 and Q̃ ≥ 0.

(b) The pair (A, B) is stabilizable.

(c) The pair (Ã, Q̃
1

2 ) is detectable, where Q̃
1

2 is such that Q̃
1

2

T

Q̃
1

2 = Q̃.

Note that if Q̃ > 0, (c) is automatically satisfied.

Lemma A.2: Under Assumption A.1, the optimal control u∗ is stabilizing and

given by the linear state feedback

u∗ = −R−1
(
BT P + ST

)
x, (A.2.12)
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where the matrix P ∈ R
n×n is the non-negative solution of the algebraic Riccati

equation

Ã
T
P + PÃ − PBR−1BT P + Q̃ = 0. (A.2.13)

The optimal state trajectory x∗ is then the solution of the homogeneous system

ẋ =
(

Ã − BR−1BT P
)

x, x(0) = x0. (A.2.14)
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Appendix B

Fixed-point theorem

In this appendix we present a fixed-point theorem that is used to study the conver-

gence properties of Algorithm 5.1 in Chapter 5. Let C ([0, tf ] , K) be the set of contin-

uous functions f(t) : [0, tf ] → K, and define two Banach spaces B1 = C ([0, tf ] , Rp),

B2 = ([0, tf ] , Rp×p) with the submultiplicative function norms

||f || = sup
t∈[0,tf ]

||f(t)||E , f ∈ B1, (B.1.1)

||F || = sup
t∈[0,tf ]

||F (t)||E , F ∈ B2, (B.1.2)

where ||·||E denotes the Euclidean norm for vectors, ||f(t)||E =
(
tr
{
fT (t)f(t)

}) 1

2 ,

or matrices ,||F (t)||E =
(
tr
{
F T (t)F (t)

}) 1

2 . We define the operators

T1 : B1 × B2 → B1, (B.1.3)

(x,P ) → T1(x,P ),

T2 : B1 × B2 → B2, (B.1.4)

(x,P ) → T2(x,P ), (B.1.5)

and the following properties.

Definition B.1:

(a) The subsets D1 ⊆ B1 and D2 ⊆ B2 are called invariant under T1 and T2 if

T1(x,P ) ∈ D1, (B.1.6)

T2(x,P ) ∈ D2, (B.1.7)
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for all x ∈ D1 and P ∈ D2.

(b) The operators T1 and T2 are called contractive in B1 × B2 if there exists M ∈

R
2×2 with eigenvalues |λi| < 1, i = 1, 2, such that the following inequality holds

component-wise

[

||T1(x1,P 1) − T1(x2,P2)||

||T2(x1,P 1) − T2(x2,P2)||

]

≤ M

[

||x1 − x2||

||P1 − P2||

]

, (B.1.8)

for all x1, x2 ∈ B1 and P1,P2 ∈ B2.

Theorem B.1: Consider the two operators T1 and T2 and assume that there exist

sets D1, D2 that are invariant under T1 and T2. Let x(0) ∈ D1 and P (0) ∈ D2. Then,

if T1 and T2 are contractive in B1 × B2, the iteration

x(k+1) = T1

(

x(k),P (k)
)

, (B.1.9)

P (k+1) = T2

(

x(k), P (k)
)

, (B.1.10)

is convergent and the sequences
{
x(k)

}
,
{
P (k)

}
converge to a unique fixed-point

(x∗, P ∗) ∈ D1 × D2, i.e.

lim
k→∞

∣
∣
∣

∣
∣
∣x(k) − x∗

∣
∣
∣

∣
∣
∣ = 0, T1 (x∗,P ∗) = x∗, (B.1.11)

lim
k→∞

∣
∣
∣

∣
∣
∣P

(k) − P ∗

∣
∣
∣

∣
∣
∣ = 0, T2 (x∗,P ∗) = P ∗. (B.1.12)

Proof:

The proof can be found in [93].

���

Remark B.1: For completeness, Theorem B.1 has been stated exactly as in the

original source [93]. However, for our purposes it suffices to take D1 = B1 and

D2 = B2, which by definition are the image sets of T1 and T2, and hence invariant.

In this case we can use Theorem B.1 without checking the existence of invariant

sets.
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Nomenclature

0 Zero matrix of appropriate dimensions.

Λ Diagonal matrix of enzyme degradation constants.

A > 0 Positive definite matrix.

A ≥ 0 Positive semidefinite matrix.

A+ Moore-Penrose pseudoinverse of A.

G(s) Diagonal matrix of enzyme turnover rates.

I Identity matrix of appropriate dimensions.

K Matrix with columns spanning the nullspace of N .

N Stoichiometric matrix of a metabolic network.

ker {A} Nullspace of A.

λi Degradation constant of enzyme ei.

R
n×m Set of n × m matrices with real entries.

R
n Set of n-dimensional vectors with real components.

R
n
>0 Set of n-dimensional vectors with real positive components.

R
n
≥0 Set of n-dimensional vectors with real nonnegative components.

Z
n×m Set of n × m matrices with integer entries.

tr {A} Trace of matrix A.
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Nomenclature

||A||E Euclidean norm of matrix A.

||x||E Euclidean norm of vector x.

||F || Norm of a matrix-valued function F (t), see (B.1.2).

||f || Norm of a vector-valued function f(t), see (B.1.1).

e Enzyme vector of a metabolic network.

gi Enzyme turnover rate of reaction vi.

r Vector of enzyme expression rates.

s Metabolite vector of a metabolic network.

v Reaction rate vector of a metabolic network.

123



References

[1] J. Stelling, U. Sauer, Z. Szallasi, F. Doyle, and J. Doyle, “Robustness of cellular

functions,” Cell, vol. 118, pp. 675–685, 2004.

[2] N. Wiener, Cybernetics. Wiley, 1948.

[3] E. D. Sontag, “Molecular systems biology and control,” European Journal of

Control, vol. 11, pp. 1–40, 2005.

[4] P. Wellstead, E. Bullinger, D. Kalamatianos, O. Mason, and M. Verwoerd, “The

role of control and systems theory in systems biology,” Annual reviews in control,

vol. 32, pp. 33–47, 2008.

[5] P. A. Iglesias and B. P. Ingalls, Eds., Control Theory and Systems Biology. MIT

Press, 2009.

[6] E. Andrianantoandro, S. Basu, D. Karig, and R. Weiss, “Synthetic biology: new

engineering rules for an emerging discipline,” Molecular Systems Biology, vol. 2,

2006.

[7] L. von Bertalanffy, “The theory of open systems in physics and biology,” Science,

vol. 111, no. 2872, pp. 23–29, 1950.
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[33] T. Çimen and S. P. Banks, “Nonlinear optimal tracking control with application

to super-tankers for autopilot design,” Automatica, vol. 40, pp. 1845–1863, 2004.

[34] B. Meibohm, Pharmacokinetics and Pharmacodynamics of Biotech Drugs: Prin-

ciples and Case Studies in Drug Development. Wiley VCH, 2006.

[35] B.-F. Krippendorff, Ph.D. dissertation, National University of Ireland Maynooth,

2009.

[36] R. Heinrich and S. Schuster, The regulation of cellular systems. Chapman &

Hall, 1996.

126



References

[37] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach, Systems Biology

in Practice: Concepts, Implementation and Application. Wiley-Vch, 2005.

[38] T. E. Turner, S. Schnell, and K. Burrage, “Stochastic approaches for modelling

in vivo reactions,” Computational Biology and Chemistry, vol. 28, pp. 165–178, 2004.

[39] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, 3rd ed. Portland Press,

2004.

[40] E. Meléndez-Hevia, N. Torres, and J. Sicilia, “A generalization of metabolic con-

trol analysis to conditions of no proportionality between activity and concentrations

of enzymes.” Journal of Theoretical Biology, vol. 142, pp. 443–451, 1990.

[41] B. Palsson, Systems Biology: Properties of reconstructed networks. Cambridge

University Press, 2006.

[42] H. de Jong, “Modeling and simulation of genetic regulatory systems: a literature

review,” Journal of Computational Biology, vol. 9, pp. 67–103, 2002.

[43] M. Ronen, R. Rosenberg, B. Shraiman, and U. Alon, “Assigning numbers to

the arrows: parameterizing a gene regulation network by using accurate expression

kinetics,” Proceedings of the National Academy of Sciences, vol. 99, pp. 10 555–

10 560, 2002.

[44] D. Lebiedz, “Exploiting optimal control for target-oriented manipulation of

(bio)chemical systems: A model-based approach to specific modification of self-

organized dynamics,” International Journal of Modern Physics B, vol. 19, no. 25,

pp. 3763–3798, 2005.

[45] J. R. Banga, “Optimization in computational systems biology,” BMC Systems

Biology, vol. 2, no. 47, 2008.

[46] G. Stephanopoulos, A. Aristidou, and J. Nielsen, Metabolic Engineering. Prin-

ciples and Methodologies. Academic Press, 1998.

[47] N. Torres and E. Voit, Pathway analysis and Optimization in Metabolic Engi-

neering. Cambridge University Press, 2002.

[48] J. E. Bailey, “Toward a science of metabolic engineering,” Science, vol. 252, no.

5013, pp. 1668–1675, 1991.

127



References

[49] “Metabolic engineering in the post genomic era,” B. N. Kholodenko and H. V.

Westerhoff, Eds. Horizon Biosciences, Norfolk, England, 2004.

[50] W. Wiechert, “Modeling and simulation: tools for metabolic engineering,” Jour-

nal of Biotechnology, vol. 94, pp. 37–63, 2002.

[51] A. P. Burgard, P. Pharkya, and C. D. Maranas, “Optknock: A bilevel pro-

gramming framework for identifying gene knockout strategies for microbial strain

optimization,” Biotechnology and Bioengineering, vol. 84, no. 6, pp. 647–657, 2003.

[52] A. Varma and B. Palsson, “Metabolic flux balancing: Basic concepts, scientific

and practical use,” Bio/Technology, vol. 12, pp. 994–998, 1994.

[53] J. M. Savinell and B. O. Palsson, “Network analysis of intermediary metabolism

using linear optimization. I. Development of mathematical formalism.” Journal of

Theoretical Biology, vol. 154, no. 4, pp. 421–454, 1992.

[54] I. Famili, J. Förster, J. Nielsen, and B. O. Palsson, “Saccharomyces cerevisiae

phenotypes can be predicted by using constraint-based analysis of a genome–scale

reconstructed metabolic network,” Proceedings of the National Academy of Sciences,

vol. 100, no. 23, pp. 13 134–13 139, 2003.

[55] R. Schuetz, L. Kuepfer, and U. Sauer, “Systematic evaluation of objective func-

tions for predicting intracellular fluxes in Escherichia coli,” Molecular Systems Bi-

ology, vol. 3, no. 119, 2007.

[56] J. Nielsen, “Principles of optimal network operation,” Molecular Systems Biol-

ogy, vol. 3, no. 126, 2007.

[57] S. Schuster, T. Pfeiffer, and D. Fell, “Is maximization of molar yield in metabolic

networks favoured by evolution?” Journal of Theoretical Biology, vol. 252, no. 3,

pp. 497–504, 2008.

[58] J. S. Edwards, R. U. Ibarra, and B. O. Palsson, “In silico predictions of Es-

cherichia coli metabolic capabilities are consistent with experimental data,” Nature

Biotechnology, vol. 19, pp. 125–130, 2001.

[59] T. F. Cooper, D. E. Rozen, and R. E. Lenski, “Parallel changes in gene expression

after 20,000 generations of evolution in Escherichia coli,” Proceedings of the National

Academy of Sciences, vol. 100, no. 3, pp. 1072–1077, 2003.

128



References

[60] A. Varma and B. O. Palsson, “Stoichiometric flux balance models quantitatively

predict growth and metabolic by-product secretion in wild-type Escherichia coli

W3110,” Applied Environmental Microbiology, vol. 60, no. 10, pp. 3724–3731, 1994.

[61] K. J. Kauffman, P. Prakash, and J. S. Edwards, “Advances in flux balance

analysis,” Current Opinion in Biotechnology, vol. 14, pp. 491–496, 2003.

[62] E. O. Voit, Computational Analysis of Biochemical Systems. A Practical Guide

for Biochemists and Molecular Biologists. Cambridge University Press, 2000.

[63] V. Hatzimanikatis, C. A. Floudas, and J. E. Bailey, “Optimization of regulatory

architectures in metabolic reaction networks,” Biotechnology and Bioengineering,

vol. 52, no. 4, pp. 485 – 500, 1996.

[64] J. Vera, P. de Atauri, M. Cascante, and N. Torres, “Multicriteria optimization of

biochemical systems by linear programming: application to production of ethanol by

Saccharomyces cerevisiae,” Biotechnology and Bioengineering, vol. 83, pp. 335–343,

2003.

[65] E. Klipp and R. Heinrich, “Competition for enzymes in metabolic pathways: Im-

plications for optimal distributions of enzyme concentrations and for the distribution

of flux control,” BioSystems, vol. 54, pp. 1–14, 1999.

[66] G. Pettersson, “Effect of evolution on the kinetic properties of enzymes,” Euro-

pean Journal of Biochemistry, vol. 184, pp. 561–566, 1989.

[67] E. Klipp and R. Heinrich, “Evolutionary optimisation of enzyme kinetic parame-

ters: the effect of constraints,” Journal of Theoretical Biology, vol. 171, pp. 309–323,

1994.

[68] B. S. Adiwijaya, P. I. Barton, and B. Tidor, “Biological network design strategies:

discovery through dynamic optimization,” Molecular BioSystems, vol. 2, pp. 650–

659, 2006.

[69] G. Brown, “Total cell protein concentration as an evolutionary constraint on the

metabolic control distribution in cells,” Journal of Theoretical Biology, vol. 153, pp.

195–203, 1991.

[70] E. Dekel and U. Alon, “Optimality and evolutionary tuning of the expression

level of a protein,” Nature, vol. 436, pp. 588–592, 2005.

129



References

[71] N. Campbell, “Timing is everything,” Nature Reviews Genetics, vol. 5, p. 405,

2004.

[72] J. Ou, T. Yamada, K. Nagahis, T. Hirasawa, C. Furusawa, T. Yomo, and

H. Shimizu, “Dynamic change in promoter activation during lysine biosynthesis

in Escherichia coli cells,” Molecular BioSystems, vol. 4, pp. 128–134, 2008.

[73] S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ronen, S. Leibler, M. G.

Surette, and U. Alon, “Ordering genes in a flagella pathway by analysis of expression

kinetics from living bacteria,” Science, vol. 292, pp. 2080–2083, 2001.

[74] X. Leng and H.-G. Müller, “Time ordering of gene coexpression,” Biostatistics,

vol. 7, no. 4, pp. 569–584, 2006.

[75] M. Giuseppin and N. van Riel, “Metabolic modeling of Saccharomyces cerevisiae

using the optimal control of homeostasis: A cybernetic model definition.” Metabolic

Engineering, vol. 2, pp. 14–33, 2000.

[76] N. van Riel, M. Giuseppin, and C. Verrips, “Dynamic optimal control of home-

ostasis: an integrative systems approach for modeling of the central nitrogen

metabolism in Saccharomyces cerevisiae,” Metabolic Engineering, vol. 2, pp. 14–33,

2000.

[77] J. Varner and D. Ramkrishna, “Metabolic engineering from a cybernetic per-

spective.1. Theoretical preliminaries,” Biotechnology Progress, vol. 15, pp. 407–425,

1999.

[78] R. Mahadevan, J. Edwards, and F. Doyle, “Dynamic flux balance analysis of

diauxic growth in Escherichia coli,” Biophysical Journal, vol. 83, pp. 1331–1340,

2002.

[79] J. E. Cuthrell and L. T. Biegler, “On the optimization of differential algebraic

process systems,” AIChE Journal, vol. 33, pp. 1257–1270, 1987.

[80] K. Uygun and Y. L. Huang, “A dynamic cybernetic approach: Optimal control

for predicting regulatory metabolism actions,” in Proceedings of the AIChE Annual

National Meeting, San Franciso, CA, 2003, pp. 16–21.

[81] K. Uygun, H. Matthew, and Y. Huang, “DFBA-LQR: An optimal control

approach to flux balance analysis,” Industrial & Engineering Chemical Research,

vol. 45, pp. 8554–8564, 2006.

130



References
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