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54506 Vandœuvre-lès-Nancy Cedex, France),

and
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Abstract. In this paper, we give a control theoretic approach to the slow self-
propelled motion of a rigid body in a viscous fluid. The control of the system is the
relative velocity of the fluid with respect to the solid on the boundary of the rigid body
(the thrust). Our main results show that there exists a large class of finite-dimensional
input spaces for which the system is exactly controllable, i.e., one can find controls steer-
ing the rigid body into any final position with a prescribed velocity field. The equations
we use are motivated by models of swimming of micro-organisms like cilia. We give a
control theoretic interpretation of the swimming mechanism of these organisms, which
takes place at very low Reynolds numbers.

1. Introduction and main results. This paper is aimed at contributing to the
understanding of the mechanism of swimming of some microscopic organisms from a
control theoretic point of view. As already remarked in Taylor [20], for microscopic
organisms the inertia forces, “which are the essential element in self-propulsion of all
large living or mechanical bodies, are small compared with forces due to viscosity”.
The question of understanding the mechanism of swimming of microscopic organisms
received considerable attention from both biologists and specialists in fluid mechanics
(see, for instance, [20], Lighthill [13], Childress [5], Galdi [9] and the references therein).

An important example of swimming microscopic organisms is furnished by ciliata
(see, for instance, Blake [2] or Brennen [3]). We recall, following Galdi [8], [9], that these
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406 JORGE SAN MARTÍN, TAKÉO TAKAHASHI, AND MARIUS TUCSNAK

organisms can be seen as rigid bodies covered by a large number of hair-like organelles
called cilia which move in a rather complicated way (see Blake and Otto [1] or Brennen
and Winet [4]). In a commonly accepted model (the layer model), the rather complex
motion of cilia is replaced by a velocity field on a surface enclosing the layer of cilia (see,
for instance, Keller and Wu [11]).

In this work we propose a model of the motion of such micro-organisms consisting of
a dynamical system whose state at instant t is

Z(t) =

⎛⎜⎜⎝
ξ(t)
ω(t)
ζ(t)
R(t)

⎞⎟⎟⎠ , (1.1)

where ξ(t) (respectively ζ(t)) denotes the velocity (respectively the position) of the mass
center of the rigid body and ω(t) (respectively R(t)) represents the angular velocity
vector (respectively the rotation matrix with respect to a reference orientation) of the
rigid body at instant t.

The system is controlled by the velocity field induced by the motion of cilia. From
the mathematical point of view this control can be seen as the difference of the velocities
of the fluid and of the solid on the boundary of the rigid body (the thrust). In order
to be more precise, let us denote by S(t) ⊂ R

3 the open bounded set representing the
domain occupied by the moving organisms at instant t. The fact that the solid has a
rigid motion implies that there exists an open bounded set S ⊂ R

3 (which will be used
as a reference configuration of the solid) such that

S(t) = R(t)S + ζ(t)

for all t ≥ 0, where R(t) is an orthogonal matrix. We assume that the body is surrounded
by a viscous incompressible fluid that occupies the domain F (t) = R

3 \ S(t), and we
denote by v(y, t) the velocity field of the fluid written in a coordinate attached to the
rigid body (y ∈ F = R3 \ S). The input function u = (u1, . . . , uk) : [0,∞) → Rk acts via
the boundary condition on ∂S by

v(y, t) = ξ(t) + ω(t) × y +
k∑

i=1

ui(t)ψi(y) y ∈ ∂S, t ≥ 0. (1.2)

The family of functions Ψ = {ψ1, . . . , ψk} is supposed to be given and contained in one
of the following spaces:

U = {ϕ ∈ C2(∂S; R3)
∣∣ ϕ = 0 outside Γ}, (1.3)

V = {ϕ ∈ C2(∂S; R3)
∣∣ ϕ · n = 0 on ∂S}, (1.4)

W = U ∩ V , (1.5)

where Γ is an open subset of ∂S and where, for x ∈ ∂S, n(x) denotes the unit vector
normal to ∂S and oriented towards the interior of ∂S. This means that we are looking for
input functions with values in a finite-dimensional vector space and possibly satisfying
constraints (such as being tangential to ∂S or being supported in a subset Γ of ∂S). We
endow U , V and W with the usual C2 topology so that they become Banach spaces.
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In the next section, we introduce a simplified model of a self-propelled body based on
the above assumption (1.2) and on the balance laws of linear and angular momentum.
In this model the state trajectory Z, defined in (1.1), satisfies a first-order differential
system of the form

Ż(t) = f(Z(t)) + BΨu(t), t ≥ 0. (1.6)

Above f : R9 × SO(3) → R9 × M3(R) is a smooth function (depending only on S),
B : Rk → R9 × M3(R) is the input operator (depending on S and on the choice of the
family Ψ), and SO(3) denotes the group of rotations in R

3. The precise definitions of the
functions f and B will be given in the next section. For T ≥ 0, we recall that a system
of the form (1.6) is said to be controllable in time T if, for every Z0, Z1 ∈ R9 × SO(3)
there exists an input function u ∈ L2(0, T ; Rk) such that the solution Z of (1.6) satisfies

Z(0) = Z0, Z(T ) = Z1.

The first main result of this paper is the following.

Theorem 1.1. Assume that the boundary of S is of class C2, that Γ is an arbitrary
open subset of ∂S and that k = 6. Let Y1 be the subset of those Ψ = (ψ1, . . . , ψ6) ∈ U6

such that the system (1.6) is controllable in any time T > 0 and let Y2 be the subset
of those Ψ ∈ V6 such that the system (1.6) is controllable in any time T > 0. Then Y1

(respectively Y2) contains an open dense subset of U6 (respectively of V6).

The above result says that the motion of S can be controlled for a “large” choice of
Ψ with velocity fields that are supported in Γ or they are tangential to the boundary.
The second main result shows that, by assuming that ∂S is analytic we can control the
motion of S with velocity fields that are both tangential to the boundary and vanishing
outside Γ.

Theorem 1.2. Assume that the boundary of S is analytic, that Γ is an arbitrary open
subset of ∂S and that k = 6. Let Y3 be the subset of those Ψ ∈ W6 such that the system
(1.6) is controllable in any time T > 0. Then Y3 contains an open dense subset of W6.

Moreover, we give several examples of families Ψ that ensure the controllability prop-
erty.

The plan of this paper is as follows. In Section 2 we describe the mathematical model.
In Section 3 we show that our model reduces to a finite-dimensional dynamical system.
Section 4 contains the proof of our main results. Finally, in Section 5 we give some
examples of families Ψ for which the system (1.6) is controllable.

2. The mathematical model. The full system modelling the motion of a rigid body
into a viscous incompressible fluid is composed of the nonstationary Navier-Stokes equa-
tions for the fluid coupled to ordinary differential equations (coming from Newton’s laws)
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for the rigid body. More precisely the system is described by the following equations:

ρF

(
∂v

∂t
+ (v · ∇)v

)
− µ∆v + ∇p = 0, x ∈ F (t), t ∈ (0, T ), (2.1)

div v = 0, x ∈ F (t), t ∈ (0, T ), (2.2)

v(x, t) = ξ(t) + ω(t) × (x − ζ(t)) + U, x ∈ ∂S(t), t ∈ [0, T ], (2.3)

lim
|y|→∞

v(y) = 0, t ∈ (0, T ), (2.4)

mξ̇(t) = −
∫

∂S(t)

σ(v, p)n dΓ, t ∈ (0, T ), (2.5)

d
dt

(
Jω

)
(t) = −

∫
∂S(t)

y × σ(v, p)n dΓ, t ∈ (0, T ), (2.6)

ζ̇(t) = ξ(t), t ∈ (0, T ), (2.7)

Ṙ(t) = S(ω(t))R(t) t ∈ (0, T ). (2.8)

The domains S(t) and F (t) are defined by

S(t) = {x ∈ R
3 : x = R(t)y + ζ(t), y ∈ S}, F (t) = R

3 \ S(t).

We can assume, without loss of generality, that the mass center of S is located at the
origin. In this case, the unknowns ζ(t) ∈ R3, respectively R(t) ∈ SO(3), in the above
system stand for the position vector of the mass center, respectively the orientation
matrix, of the solid S(t). The other unknowns in the above system are the velocity field
of the fluid v, the pressure field in the fluid p, the linear velocity of the mass center of
the solid ξ and the angular velocity of the solid ω. Moreover, we have denoted by σ(v, p)
the stress tensor (also called the Cauchy stress), which is defined by

σ(v, p) = −pI3 + 2µD(v),

where I3 is the identity matrix of M3(R) and D(v) is the tensor field defined by

D(v)k,l =
1
2

(
∂vk

∂yl
+

∂vl

∂yk

)
.

The positive constant µ is the dynamical viscosity of the fluid. We have denoted by ρF

the positive density of the fluid. The constant m is the mass of the rigid body whereas
J denotes the inertia matrix of the rigid body. If we denote by ρ > 0 the density of the
solid, then we have that

m =
∫

S

ρ dx, J i,j =
∫

S(t)

ρ(ei × (x − ζ)) · (ej × (x − ζ)) dx.

Moreover, for any function w depending only on time, we have denoted by ẇ its time
derivative.

In (2.8) we have denoted

S(ω) =

⎛⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞⎠ (ω ∈ R
3). (2.9)
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It is well known that the application S is an isomorphism from R3 onto the space A(3)
of skew-symmetric matrices and that equation (2.8) could be equivalently written as

Ṙ(t)x = ω(t) × (R(t)x) (x ∈ R
3).

Equations (2.1)-(2.8) determine an infinite-dimensional nonlinear system. Moreover,
since the domain filled by the fluid is not a priori known, we have here a free boundary
problem. Therefore the study of (2.1)-(2.8) is a difficult mathematical question. The
wellposedness of this system has been extensively studied in recent literature (see, for
instance, [15], [17], or [19]). However, questions such as controllability or stabilizability
of (2.1)-(2.8) are (in the above infinite-dimensional setting) open questions. In order to
tackle these questions, we derive a simplified finite-dimensional model (still nonlinear)
aimed to approximate (2.1)-(2.8) in the case of slow motions (in a sense which will be
made precise later).

Since the equations (2.1)-(2.8) are not written in a cylindrical domain, it is classical
(see, for instance, Serre [16]) to use the following change of variables to transform the
equations for the fluid into a system written in the fixed domain F = R

3 \ S:

y = R∗(t)(x − ζ(t)),

v(y, t) = R∗(t)v(ζ(t) + R(t)y, t), p(y, t) = p(ζ(t) + R(t)y, t),

ξ(t) = R∗(t)ξ(t), ω(t) = R∗(t)ω(t).

The above functions satisfy the following problem:

ρF

(
∂v

∂t
+ ([v − ξ − ω × y] · ∇) v + ω × v

)
− µ∆v + ∇p = 0, y ∈ F, t ∈ (0, T ),

div v = 0, y ∈ F, t ∈ (0, T ),

v(y, t) = ξ(t) + ω(t) × y + U, y ∈ ∂S, t ∈ [0, T ],

lim
|y|→∞

v(y) = 0, t ∈ (0, T ),

mξ̇(t) = −
∫

∂S

σ(v, p)n dΓ − mω × ξ, t ∈ (0, T ),

Jω̇(t) = (Jω) × ω −
∫

∂S

y × σ(v, p)n dΓ, t ∈ (0, T ),

ζ̇(t) = R(t)ξ(t), t ∈ (0, T ),

Ṙ(t) = R(t)S(ω(t)) t ∈ (0, T ).

The above system can be written in dimensionless variables. More precisely, follow-
ing [5], we consider some characteristic length L, some characteristic time τ , and some
characteristic speed V . We define the following dimensionless variables:

t∗ = τ−1t, y∗ = L−1y, v∗ = V −1v, p∗ = L(V µ)−1p,

ξ∗ = V −1ξ, ω∗ = LV −1ω, ζ∗ = L−1ζ,

m∗ = L−3m, J∗ = L−5J, T ∗ = τ−1T, U∗ = V −1U.
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Then the above system can be written as

Re Σ
∂v∗

∂t∗
+ Re (([v∗ − ξ∗ − ω∗ × y∗] · ∇∗) v∗ + ω∗ × v∗) − ∆v∗ + ∇∗p∗ = 0,

y∗ ∈ F ∗, t∗ ∈ (0, T ∗), (2.10)

div∗ v∗ = 0, y∗ ∈ F ∗, t∗ ∈ (0, T ∗), (2.11)

v∗(y∗, t∗) = ξ∗(t∗) + ω∗(t∗) × y∗ + U∗, y∗ ∈ ∂S∗, t∗ ∈ [0, T ∗], (2.12)

lim
|y∗|→∞

v∗(y∗) = 0, t∗ ∈ (0, T ∗), (2.13)

Re Σ
m∗

ρF
ξ̇∗(t∗) = −

∫
∂S∗

σ∗(v∗, p∗)n dΓ∗ − Re Σ
m∗

ρF
ω∗ × ξ∗, t∗ ∈ (0, T ∗), (2.14)

Re Σ
J∗

ρF
ω̇∗(t∗) = Re Σ

(
J∗

ρF
ω∗

)
× ω∗−

∫
∂S∗

y∗ × σ∗(v∗, p∗)n dΓ∗, t∗ ∈ (0, T ∗), (2.15)

Σζ̇∗(t∗) = R(t∗)ξ∗(t∗), t∗ ∈ (0, T ∗), (2.16)

Ṙ(t∗) = R(t∗)S(ω∗(t∗)), t∗ ∈ (0, T ∗). (2.17)

In the above system, we have used the following dimensionless parameters:

Σ =
L

τV
frequency parameter,

Re =
ρF V L

µ
Reynolds number.

In the case of the swimming of microscopic organisms, the above system can be simplified
by using the fact that the motion of the fluid is a very slow one: the Reynolds number
is, in this case, of the order of 10−1 and the frequency parameter of order 1 (see, for
instance, Childress [5, ch.2]). Therefore, we neglect the first two terms in the right-hand
side of (2.10) so that the motion of the fluid is modeled by the stationary linear Stokes
equations. This means that, although the flow field is time dependent, insofar as the
dynamics of the fluid is concerned, it is moving slowly (quasi-steady).

Concerning the solid part, depending on the relative magnitude of the density of the
microscopic organisms (with respect to the density of the fluid) the term corresponding
to the time derivative and the nonlinear terms in equations (2.14) and (2.15) could be
neglected or not. In this paper, we do not make any assumption on the density ρ of
the solid and so we will keep all these terms. The mathematical analysis of the models
obtained by neglecting these terms is quite similar to the analysis in the next sections so
that most of our results would also apply for these models.

For the sake of simplicity, in the remaining part of the paper we omit the exponent ∗,
we assume that Σ = 1 and we use the notation m and J for the parameters

m = Re
m∗

ρF
, J = Re

J∗

ρF
.
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With the above assumptions the system (2.10)-(2.17) simplifies to

− ∆v + ∇p = 0, in F × (0, T ), (2.18)

div v = 0, in F × (0, T ), (2.19)

v(y, t) = ξ(t) + ω(t) × y +
k∑

i=1

ui(t)ψi(y), y ∈ ∂S, t ∈ (0, T ), (2.20)

lim
|y|→∞

v(y) = 0, t ∈ (0, T ), (2.21)

mξ̇(t) = −
∫

∂S

σ(v, p)n dΓ + mω × ξ, t ∈ (0, T ), (2.22)

Jω̇(t) = −
∫

∂S

y × σ(v, p)n dΓ + (Jω) × ω, t ∈ (0, T ), (2.23)

ζ̇(t) = R(t)ξ(t), t ∈ (0, T ), (2.24)

Ṙ(t) = R(t)S(ω(t)), t ∈ (0, T ), (2.25)

ξ(0) = ξ0, ω(0) = ω0, y ∈ F, (2.26)

ζ(0) = ζ0, R(0) = R0, y ∈ F. (2.27)

The function u = (u1, . . . , uk) ∈ L2(0, T ; Rk) is the control of the system and Ψ =
{ψ1, . . . , ψk} is a fixed subset of C2

(
∂S; R3

)
. As shown in Section 3, equations (2.18)-

(2.27) determine a nonlinear finite-dimensional system. In the remaining part of this
paper we study the controllability of this system and we no longer consider the infinite-
dimensional system (2.1)-(2.8).

3. Dynamical system formulation. The simplifying assumption of neglecting the
term containing the derivative with respect to time in the fluid equation enables us to
write (2.18)-(2.27) as a dynamical system in R9 ×SO(3). In order to make this assertion
precise, we introduce some auxiliary fields (see [10, ch.5] or [8]). Assume that (ei) is an
orthonormal basis of R3. We define (h(i), p(i)) (respectively (H(i), P (i))) as the solution
of the following boundary value problem for the Stokes system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆h(i) + ∇p(i) = 0, in F,

div h(i) = 0, in F,

h(i)(y) = ei, y ∈ ∂S,

lim
|y|→∞

h(i)(y) = 0,

(3.1)

respectively ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆H(i) + ∇P (i) = 0, in F,

div H(i) = 0, in F,

H(i)(y) = ei × y, y ∈ ∂S,

lim
|y|→∞

H(i)(y) = 0.

(3.2)

We denote
g(i) = σ(h(i), p(i))n|∂F , i ∈ {1, 2, 3}, (3.3)

G(i) = σ(H(i), P (i))n|∂F , i ∈ {1, 2, 3}. (3.4)
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For homogeneous Sobolev spaces we use, following [7], the notation

Dl,q(F ) =
{

u ∈ L1
loc(F )

∣∣ ∂αu ∈ Lq(F ) for all α ∈ N
3, |α| = l

}
,

with l ∈ N, 1 ≤ q ≤ ∞.
The following result shows that the above systems are well posed.

Lemma 3.1. (1) Assume that the boundary ∂S is of class C2. Then the systems (3.1)
and (3.2) admit unique solutions such that

h(i), H(i) ∈ Ls(F ) ∩ D1,r(F ) ∩ D2,q(F ) ∩ C∞(F ),

p(i), P (i) ∈ Lr(F ) ∩ D1,q(F ) ∩ C∞(F )

for s ∈ (3,∞], r ∈ ( 3
2 ,∞], q ∈ (1,∞). Moreover, we have that

‖(1 + |y|)h(i)‖L∞(F ) < ∞,

‖(1 + |y|)H(i)‖L∞(F ) < ∞.

(2) Assume that the boundary ∂S is analytic. Then (h(i), p(i)) and (H(i), P (i)) are
analytic up to the boundary.

Proof. The first result comes from the classical wellposedness results for the Stokes
system (see, for instance, [7, Chapter V], [17]). For the analyticity we refer to Komatsu
[12] and Morrey [14]. �

We next introduce several matrices playing an important role in the remaining part
of the paper. For i, j ∈ {1, 2, 3} we denote

Ki,j = −
∫

∂S

g
(i)
j dΓ, Ci,j = −

∫
∂S

(
x × g(i)

)
j

dΓ, (3.5)

C̃i,j = −
∫

∂S

G
(i)
j dΓ, Ωi,j = −

∫
∂S

(
x × G(i)

)
j

dΓ. (3.6)

It is known (see, for instance, [10, ch.5]) that C̃ = C∗ and that the matrix A ∈ M6(R)
defined by

A =
(

m−1K m−1C

J−1C∗ J−1Ω

)
, (3.7)

is selfadjoint and negative-definite, provided that we endow R6 with the inner product

〈a, b〉 = m
3∑

q=1

aqbq +
3∑

p,q=1

Jp,qaq+3bp+3 .

We next introduce the matrices B(1), B(2) ∈ M3×k(R) and B ∈ M6×k defined by

B
(1)
i,j = −

∫
∂S

g(i) · ψj dΓ, i ∈ {1, 2, 3}, j ∈ {1, . . . , k}, (3.8)

B
(2)
i,j = −

∫
∂S

G(i) · ψj dΓ, i ∈ {1, 2, 3}, j ∈ {1, . . . , k}, (3.9)

B =
(

m−1B(1)

J−1B(2)

)
. (3.10)
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For given input functions u1, . . . , uk ∈ L2(0, T ; R), according to [7, Chapter V], there
exists a unique solution (U, Q) of

− ∆U + ∇Q = 0, in F × (0, T ), (3.11)

div U = 0, in F × (0, T ), (3.12)

U(y, t) =
k∑

i=1

ui(t)ψi(y), y ∈ ∂S, t ∈ (0, T ), (3.13)

lim
|y|→∞

U(y) = 0, t ∈ (0, T ) (3.14)

satisfying

U(·, t) ∈ Ls(F ) ∩ D1,r(F ) ∩ D2,q(F ) ∩ C∞(F ),

Q(·, t) ∈ Lr(F ) ∩ D1,q(F ) ∩ C∞(F )

for s ∈ (3,∞], r ∈ ( 3
2 ,∞], q ∈ (1,∞) and

ess sup
y∈F

(1 + |y|) |U(y, t)| < ∞,

for almost every t ∈ (0, T ).
For a, b ∈ R

3, we also set

E

((
a

b

))
=

(
b × a

J−1 ((Jb) × b)

)
. (3.15)

We are now in a position to prove that equations (2.18)-(2.27) determine a finite-
dimensional dynamical system.

Lemma 3.2. Assume that T > 0 and that u ∈ L2(0, T ; Rm). Then (v, p, ξ, ω, ζ, R) satisfy
(2.18)-(2.27) together with

v ∈ H1(0, T ; Ls(F ) ∩ D1,r(F ) ∩ D2,q(F ) ∩ C∞(F )), (3.16)

p ∈ H1(0, T ; Lr(F ) ∩ D1,q(F ) ∩ C∞(F )), (3.17)

ξ ∈ H1(0, T ; R3), ω ∈ H1(0, T ; R3), ζ ∈ C1([0, T ]; R3), R ∈ C1([0, T ]; SO(3)), (3.18)

for s ∈ (3,∞], r ∈ ( 3
2 ,∞], t ∈ (1,∞) if and only if(

ξ̇(t)
ω̇(t)

)
= A

(
ξ(t)
ω(t)

)
+ E

((
ξ(t)
ω(t)

))
+ Bu(t), (3.19)

ζ̇(t) = R(t)ξ(t), Ṙ(t) = R(t)S(ω(t)), (3.20)

ξ(0) = ξ0, ω(0) = ω0, ζ(0) = ζ0, R(0) = R0, (3.21)

v =
∑

i

ξih
(i) + ωiH

(i) + U, p =
∑

i

ξip
(i) + ωiP

(i) + Q, (3.22)

where A, B are the matrices defined by (3.7), (3.10), E(·) is defined by (3.15) and (U, Q)
is the solution of (3.11)-(3.14).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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Proof. Assume that (v, p, ξ, ω, ζ, R) satisfies (3.19)-(3.22). From (3.1), (3.2) and (3.11)-
(3.14), it is easy to check that (v, p) satisfies (2.18)-(2.20). From (3.19) and from the
definitions of A and B, it follows that for k ∈ {1, 2, 3} we have

mξ̇k = −
∫

∂F

3∑
i=1

(
ξig

(i)
k + ωiG

(i)
k

)
dΓ −

∫
∂S

3∑
j=1

ujψj · g(k)dΓ + m (ω × ξ)k , (3.23)

(Jω̇)k =−
∫

∂F

3∑
i=1

[
ξi(y×g(i))k+ωi(y×G(i))k

]
dΓ−

∫
∂S

3∑
j=1

ujψj · G(k)dΓ + [(Jω) × ω]k .

(3.24)

By using (3.3) and (3.13), the last term in the right-hand side of (3.23) can be written
as ∫

∂S

3∑
j=1

ujψj · g(k) dΓ =
∫

∂S

σ(h(k), p(k))n · U dΓ.

The above relation, combined to (3.30) (proved in Lemma 3.4), implies that∫
∂S

3∑
j=1

ujψj · g(k) dΓ =
[∫

∂S

σ(U, Q)n dΓ
]

k

. (3.25)

Relations (3.23) and (3.25) clearly imply that

mξ̇ = −
∫

∂F

3∑
i=1

(
ξig

(i) + ωiG
(i)

)
dΓ −

∫
∂F

σ(U, Q)n dΓ + mω × ξ. (3.26)

Similar calculations show that

Jω̇ = −
∫

∂F

3∑
i=1

[
ξi(y × g(i)) + ωi(y × G(i))

]
dΓ−

∫
∂S

y×σ(U, Q)n dΓ+(Jω)×ω. (3.27)

Relations (3.26) and (3.27) imply that (ξ, ω) satisfies (2.22)-(2.23). Then, by taking into
consideration the fact that (ζ, R) satisfy (2.24)-(2.27), we obtain that (v, p, ξ, ω, ζ, R)
satisfies (2.18)-(2.27).

The proof of the fact that any solution of (2.18)-(2.27) satisfies (3.19)-(3.22) is similar
and therefore we don’t give it here. �

From the above lemma it easily follows that the following result holds.

Corollary 3.3. Assume that T > 0 and that u ∈ L2(0, T ; Rk). Then there exists a
unique solution (v, p, ξ, ω, ζ, R) of the system (2.18)-(2.27) satisfying (3.16)-(3.18). More

precisely, if we denote z(t) =
(

ξ(t)
ω(t)

)
, then equations (2.18)-(2.27) determine a dynamical

system with input space R
k, state space R

9 × SO(3) and with the state equations

ż(t) = Az(t) + E(z(t)) + Bu(t), (3.28)

ζ̇(t) = R(t)ξ(t), Ṙ(t) = R(t)S(ω(t)). (3.29)
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Proof. The local-in-time existence follows from the Cauchy-Lipschitz Theorem. To
get the global-in-time existence it suffices to show that the solutions do not blow up in
finite time. It is easy to check that 〈E(z), z〉 = 0 for every z ∈ R

6. Therefore, by taking
the inner product of (3.28) with z(t) we have that

1
2

d

dt
‖z(t)‖2 = 〈Az(t), z(t)〉 + 〈Bu(t), z(t)〉.

The above relation and the fact that A is symmetric and negative-definite imply that

‖z(t)‖2 ≤ ‖z(0)‖2 +
∫ t

0

(
‖Bu(s)‖2 + ‖z(s)‖2

)
ds.

By the Gronwall lemma it follows that z does not blow up in finite time so that we have
proved the global existence result. �

We have used in the proof of Lemma 3.2 the following technical lemma.

Lemma 3.4. With the above notation, for i ∈ {1, 2, 3} and for almost every t ∈ (0, T ),
we have that ∫

∂S

σ(h(i), p(i))n · U dΓ =
[∫

∂S

σ(U, Q)n dΓ
]

i

, (3.30)∫
∂S

σ(H(i), P (i))n · U dΓ =
[∫

∂S

x × σ(U, Q)n dΓ
]

i

. (3.31)

Proof. By taking the inner product of (3.11) with h(i) we obtain that∫
F

div σ(U, Q) · h(i) dy = 0.

Using an integration by parts, the above relation implies that∫
∂S

σ(U, Q)n · h(i)dΓ =
∫

F

D(U) : D(h(i)) dy. (3.32)

Similarly, by taking the inner product of (3.1) with U we obtain that∫
F

div σ(h(i), p(i)) · U dy = 0.

Integrating by parts we get that∫
∂S

σ(h(i), p(i))n · UdΓ =
∫

F

D(U) : D(h(i)) dy. (3.33)

From (3.32) and (3.33) and the fact that h(i) = ei on ∂S, we conclude that (3.30)
holds true.

The proof of (3.31) is similar, so we skip it here. �
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4. Proof of the main results. The main ingredients of the proof of Theorem 1.1
are the following two lemmas.

Lemma 4.1. Assume that Γ is a nonempty open subset of ∂S (with respect to the induced
topology).

(1) Suppose that ∂S is of class C2. Then the family

F1 =
{

g(1), g(2), g(3), G(1), G(2), G(3)
}

is linearly independent in L2(Γ, R3) and the family

F2 =
{(

g(i) × n
)
× n,

(
G(i) × n

)
× n

∣∣∣ i ∈ {1, 2, 3}
}

is linearly independent in L2(∂S, R3).
(2) Suppose that ∂S is analytic. Then F2 is linearly independent in L2(Γ, R3).

Proof. (1) Let us consider γ, δ ∈ R3 such that∑
1≤i≤3

(
γig

(i) + δiG
(i)

)
= 0 on Γ. (4.1)

Then, we denote

H =
∑

1≤i≤3

(
γih

(i) + δiH
(i)

)
, P =

∑
1≤i≤3

(
γip

(i) + δiP
(i)

)
. (4.2)

From (4.1) it follows that

σ(H, P )n = 0 on Γ. (4.3)

Moreover, from the definitions (3.1) and (3.2) of (h(i), p(i)) and (H(i), P (i)) we have that
(H, P ) satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆H + ∇P = 0, in F,

div H = 0, in F,

H = γ + δ × y, y ∈ ∂S,

lim
|y|→∞

H(y) = 0.

(4.4)

We consider O ⊂ S to be an open set such that

O ∩ F ⊂ Γ.

We then define H̃ and P̃ on F ∪ O by the following formulas: H̃ = H − (γ + δ × y) for
all y ∈ F and H̃ = 0 for all y ∈ O and P̃ = P for all y ∈ F and P̃ = 0 for all y ∈ O. By
using (4.3) it follows that (H̃, P ) ∈ H1

loc(F ∪ O) × L2
loc(F ∪ O) and

−∆H̃ + ∇P̃ = 0, in F ∪ O,

div H̃ = 0, in F ∪ O,

H̃ = 0, in O.
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By using the unique continuation result of Fabre and Lebeau [6, Theorem 1], we deduce
that H̃ = 0, so that H = γ + δ × y for all y ∈ F . Since lim|y|→∞ H(y) = 0, we have that
γ = δ = 0. Consequently, the family F1 is linearly independent.

For the linear independence of F2 in L2(∂S, R3) we refer to Lemma 2.1 of [8].
(2) Let us consider γ, δ ∈ R3 such that

∑
1≤i≤3

(
γi(g(i) × n) × n + δi(G(i) × n) × n

)
= 0 on Γ. (4.5)

Then, since the function

x �→
3∑

i=1

[
γi(g(i) × n) × n + δi(G(i) × n) × n

]

is analytic on ∂S, it follows that

3∑
i=1

[
γi(g(i) × n) × n + δi(G(i) × n) × n

]
= 0, on ∂S.

The linear independence of F2 in L2(Γ, R3) follows now from the fact that F2 is linearly
independent in L2(∂S, R3). �

The result below shows that for k = 6 the mapping associating the matrix B to the
family {ψ1, . . . ψ6} via formulas (3.8)-(3.10) is, under quite general assumptions, onto.

Lemma 4.2. Assume that Γ is a nonempty open subset of ∂S (with respect to the induced
topology). Then the linear operator Λ : [L2(∂S; R3)]6 → M6×6(R), defined by

Λ

⎛⎜⎝ψ1

...
ψ6

⎞⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎝

(∫
∂S

g(i) · ψj dΓ
)

i∈{1,2,3},j∈{1,...,6}(∫
∂S

G(i) · ψj dΓ
)

i∈{1,2,3},j∈{1,...,6}

⎞⎟⎟⎟⎟⎟⎠ , (4.6)

is such that
(1) Λ

(
U6

)
= Λ

(
V6

)
= M6×6(R);

(2) if ∂S is analytic, then Λ
(
W6

)
= M6×6(R).

Proof. We first set

U = { (ϕi) ∈ L2(∂S; R3)6
∣∣ ϕi = 0 outside Γ, i ∈ {1, . . . , 6}},

V = { (ϕi) ∈ L2(∂S; R3)6
∣∣ ϕi · n = 0 on ∂S, i ∈ {1, . . . , 6}},
W = U ∩ V,
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and we denote by ΛU (respectively ΛV, ΛW) the restriction of Λ to U (respectively V,
W). Simple calculations show that for all C ∈ M6(R) we have

Λ∗
U
(C) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3∑
k=1

[
Ck,1g

(k) + Ck+3,1G
(k)

]
...

3∑
k=1

[
Ck,6g

(k) + Ck+3,6G
(k)

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
on Γ,

Λ∗
V
(C) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3∑
k=1

[
Ck,1(g(k) × n) × n + Ck+3,1(G(k) × n) × n

]
...

3∑
k=1

[
Ck,6(g(k) × n) × n + Ck+3,6(G(k) × n) × n

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
on ∂S,

Λ∗
W

(C) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3∑
k=1

[
Ck,1(g(k) × n) × n + Ck+3,1(G(k) × n) × n

]
...

3∑
k=1

[
Ck,6(g(k) × n) × n + Ck+3,6(G(k) × n) × n

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
on Γ.

We first prove that the restriction of Λ to U6 is onto. By using Lemma 4.1, it follows
that Λ∗

U
is one to one. Consequently, the range of ΛU is a dense subspace of M6(R). By

using the density of U6 in U we get that Λ
(
U6

)
is a dense subspace of M6(R). Since

M6(R) is finite dimensional, all its subspaces are closed so that Λ
(
U6

)
= M6(R).

Using again Lemma 4.1, we have that Λ∗
V

is one to one and if ∂S is analytic we have
that Λ∗

W
is one to one. Acting as for U , we easily conclude that Λ

(
V6

)
= M6(R) and

that for ∂S analytic we have that Λ
(
W6

)
= M6(R). �

We are now in a position to prove the main results.
Proof of Theorem 1.1. We only prove Theorem 1.1 for the set Y1. The proof for the

set Y2 is completely similar and it is omitted.
Let us define Ỹ1 to be the set of those Ψ for which the matrix B given by (3.8)-(3.9) is

invertible. We first check that Y1 contains Ỹ1 and then that Ỹ1 is an open dense subset
of U6. Indeed, assume that

Z0 =

⎛⎜⎜⎝
ξ0

ω0

ζ0

R0

⎞⎟⎟⎠ , Z1 =

⎛⎜⎜⎝
ξ1

ω1

ζ1

R1

⎞⎟⎟⎠ ∈ R
9 × SO(3).
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It is easy to check that there exist two C2 functions ζ̃ : [0, T ] → R3, R̃ : [0, T ] → SO(3)
such that

ξ̃(0) = ξ0, ω̃(0) = ω0, ζ̃(0) = ζ0, R̃(0) = R0,

ξ̃(T ) = ξ1, ω̃(T ) = ω1, ζ̃(T ) = ζ1, R̃(T ) = R1.

If we set

u(t) = B−1
(

˙̃z − Az̃ − E(z̃)
)

with z̃(t) =

⎛⎝ R̃∗ ˙̃
ζ

S−1
(
R̃∗ ˙̃

R
)⎞⎠, then we clearly have Z(0) = Z0, Z(T ) = Z1; thus the

system is controllable in time T . We have shown that Y1 contains Ỹ1.
On the other hand, by comparing (3.8)-(3.9) and (4.6), we see that B = Λ(Ψ). Since

the mapping Λ is continuous from U6 to M6(R) and since the set of invertible matrices
is open in M6(R), we have that Ỹ1 is open in U6. We next check the density of Ỹ1. By
Lemma 4.2, there exists Ψ̃ ∈ U6 such that Λ(Ψ̃) = I6. For Ψ ∈ U6, we consider the
sequence

(
Ψ − 1

j Ψ̃
)

j∈N∗
, which converges to Ψ. It is easy to check that, excepting a

finite number of values of j the matrix Λ
(
Ψ − 1

j Ψ̃
)

is invertible. We have thus shown

that Y1 contains the set Ỹ1, which is open and dense in U6. �
Proof of Theorem 1.2. As in the above proof, we first introduce the set Ỹ3 of those Ψ

for which B given by (3.8) and (3.9) is invertible.
We can check that Y3 contains Ỹ3 as in the proof of Theorem 1.1. Moreover, using

the fact that B = Λ(Ψ), that the mapping Λ is continuous from W6 to M6(R) and that
the set of invertible matrices is open in M6(R), we get that Ỹ3 is open in W6. Finally, we
verify the density of Ỹ3. By using again Lemma 4.2, we obtain the existence of Ψ̃ ∈ W6

such that Λ(Ψ̃) = I6. Then, acting as in the above proof, we show that for all Ψ ∈ W6,
there exists a sequence Ψn ∈ Ỹ3 such Ψn converges toward Ψ. �

5. Examples. In this section, we give some examples of families Ψ of vector fields,
defined on ∂S, for which the system (2.18)-(2.27) is controllable. Denote

• F0 = {e1, e2, e3, e1 × y, e2 × y, e3 × y};
• F1 =

{
g(1), g(2), g(3), G(1), G(2), G(3)

}
;

• F2 =
{(

g(i) × n
)
× n,

(
G(i) × n

)
× n

∣∣ i ∈ {1, 2, 3}
}
.

We remark that the families F1 and F2 have already been used in the previous sections.
The main result of this section is

Proposition 5.1. If Ψ is one of the above families, then the system (2.18)-(2.27) is
exactly controllable in any time T > 0.

Proof. We first remark that it suffices to show that, for Ψ ∈ {F0,F1,F2} the matrix
B defined by (3.8)-(3.10) is invertible.

If Ψ = F0, then B = A so that B is clearly invertible.
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If Ψ = F1, then

B =
(

mI3 0
0 J

)−1 (
M N

N∗ O

)
, (5.1)

with

Mi,j = −
∫

∂S

g(i) · g(j) dΓ, Ni,j = −
∫

∂S

g(i) · G(j) dΓ, Oi,j = −
∫

∂S

G(i) · G(j) dΓ.

According to Lemma 4.1, the system of vector functions
{
g(i), G(i) | i ∈ {1, 2, 3}

}
is

linearly independent in L2(∂S; R3), so that the second matrix in the right-hand side of
(5.1) is invertible. Consequently B is invertible in the case Ψ = F1.

Assume then that Ψ = F2. Since, in this case, the vector fields belonging to Ψ are
tangential, formulas (3.8)-(3.10) yield

B =
(

mI3 0
0 J

)−1
(

M̃ Ñ

Ñ∗ Õ

)
, (5.2)

with

M̃i,j =
∫

∂S

[(
g(i) × n

)
× n

]
·
[(

g(j) × n
)
× n

]
dΓ ,

Ñi,j =
∫

∂S

[(
g(i) × n

)
× n

]
·
[(

G(j) × n
)
× n

]
dΓ ,

Õi,j =
∫

∂S

[(
G(i) × n

)
× n

]
·
[(

G(j) × n
)
× n

]
dΓ .

By using again Lemma 2.1 from [8] the system of vector functions{[(
g(i) × n

)
× n

]
,
[(

G(i) × n
)
× n

] ∣∣∣ i = 1, 3
}

is linearly independent in L2(∂S; R3), so that the second matrix in the right-hand side
of (5.2) is invertible. Consequently B is invertible for Ψ = F2. �

The fact that the above choice of the families F1 and F2 is physically relevant may
be motivated by the following result:

Proposition 5.2. Assume that Ψ = {ψi | i = 1, . . . , k} is a family of C2(∂S; R3). Then
we have that

(1) if Ψ ⊂ F⊥
1 (the orthogonal is taken in L2(∂S; (R3))6), then the system (3.28),

(3.29) is not controllable;
(2) if Ψ ⊂ V ∩ F⊥

2 , then the system (3.28), (3.29) is not controllable.
More precisely, in the above cases, the control u does not act on the system (3.28), (3.29).

Proof. From (3.8)-(3.10) it follows that B = 0; thus, in this case, the input function
has no influence on the state of the system. �

An interesting question is to know if the motion can be controlled by using less than
six scalar inputs. This question is open in the general case. A partial answer is given by
the two results below in the particular case where the rigid body is the unit ball.

We first show that by suppressing an appropriate element of one of the families F0,
F1 and F2 (the families introduced at the beginning of this section) the resulting system
is no longer controllable.
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Proposition 5.3. Assume that S is the unit ball in R3. Then, for every i ∈ {0, 1, 2}
there exists a set containing five elements Ψi ⊂ Fi such that the system (3.28), (3.29) is
not controllable.

Proof. With the assumption that S is the unit ball in R
3 the fields g(i), G(i) are

explicitly given (see, for instance, [10, pp. 163, 169]) by the formulas

g(i)(y) =
3
2
ei, G(i)(y) = 3ei × y, i ∈ {1, 2, 3} . (5.3)

In the next calculation we use the quantities εijk which are the components of the
classical permutation tensor, i.e., the quantities εijk are skew-symmetric with respect to
any couple of indexes and ε123 = 1.

We next inject the expressions (5.3) into the formulas (3.5) and (3.6) which define the
matrices K, C, S and Ω. We obtain

Ki,j = −3
2

∫
∂S

δij dΓ = −6πδij ∀i, j ∈ {1, 2, 3},

Ci,j = −3
2

∫
∂S

εjklykδil dΓ = 0 ∀i, j ∈ {1, 2, 3},

Ωi,j = −3
[∫

∂S

y × (ei × y)
]

j

= −3
∫

∂Ω

εjpqypεqrsδirys

= −4πεjpqεqrsδirδps

= −4πεjpqεrpqδir

= −8πδjrδir

= −8πδij .

Consequently we have

K = −6πI3, C = 0, Ω = −8πI3.

The above relations, combined with (3.7), imply that

A =

(
− 3

2ρI3 0
0 −15

ρ I3

)
. (5.4)

We next take Ψ = {e1, e2, e3, e1 × y, e2 × y}, which is a five-element subset of F0. With
the above choice of Ψ and by using (3.8)-(3.10) we obtain

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2ρ 0 0 0 0
0 − 3

2ρ 0 0 0
0 0 − 3

2ρ 0 0
0 0 0 −15

ρ 0
0 0 0 0 −15

ρ

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Moreover, since S is a ball its inertia matrix J is a scalar matrix so that the function E

defined by (3.15) reduces to

E

((
a

b

))
=

(
b × a

0

)
, a, b ∈ R

3.

By using the above form of A, B and E we see that the equation for ω3 in (3.28), (3.29)
reduces to

ω̇3 = −15
ρ

ω3,

which is independent of the control u. This clearly implies that the full system (3.28),
(3.29) is not controllable.

The cases in which the family Ψ is a subset of F1 or of F2 can be tackled in a similar
way, so we skip the corresponding calculations. �

The next result states that if we consider only the system (3.28) not involving the
position vector ζ and the rotation R and we assume that S is the unit ball of R3, we
can locally control the velocity field with only three scalar inputs. More precisely, the
following result holds.

Proposition 5.4. There exists an open and dense subset Y4 of W3 such that the system
(3.28) is locally controllable in a neighborhood of the origin for any family {ψ1, ψ2, ψ3}
⊂ Y4.

Proof. It is well known that the local controllability follows from the controllability of
the linearized system which, in our case, reduces to

ż(t) = Az(t) + Bu(t),

with the matrix A given by (5.4) and the matrix B ∈ M6×3(R) given by (3.10). The
eigenvectors of A have the form(

a

0

)
or

(
0
a

)
, a ∈ R

3 \ {0}.

By applying the Hautus test (see, for instance, Sontag [18, p. 94]) we obtain that (3.28)
is controllable if and only if the matrices B(1) and B(2) in (3.10) are invertible. In order
to finish the proof it suffices to show that the set of families {ψ1, ψ2, ψ3} ∈ W3 such that
the 3 × 3 matrices B(1) and B(2) defined by (3.8) and (3.9) are invertible is open and
dense. In order to do that, consider the linear operator Λ4 : W′ → [M3(R)]2,

Λ

⎛⎝ψ1

ψ2

ψ3

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝

(∫
∂S

g(i) · ψj dΓ
)

i,j∈{1,2,3}(∫
∂S

G(i) · ψj dΓ
)

i,j∈{1,2,3}

⎞⎟⎟⎟⎟⎟⎠ ,

where

W
′ = { (ϕi) ∈ L2(∂S; R3)3

∣∣ ϕi = 0 outside Γ, ϕi · n = 0 on ∂S, i ∈ {1, 2, 3}}.
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A simple calculation shows that for all (C, D) ∈ M3(R),

Λ∗
4

(
C

D

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3∑
k=1

(
Ck,1(g(k) × n) × n + Dk,1(G(k) × n) × n

)
3∑

k=1

(
Ck,2(g(k) × n) × n + Dk,2(G(k) × n) × n

)
3∑

k=1

(
Ck,3(g(k) × n) × n + Dk,3(G(k) × n) × n

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
on Γ.

Using Lemma 4.1(2), we deduce that Λ∗
4 is one to one. The end of the proof is completely

similar to the proof of Theorem 1.1. �

6. Concluding remarks. The results presented here illustrate the controllability
properties of a dynamical system modelling the motion of some ocean micro-organisms.
Within this model it would be interesting to study in a detailed way the influence of the
form of the micro-organism on the controllability properties of the system. We have seen
that for a micro-organism having the form of the ball at least six scalar controls seem
to be necessary. We conjecture that for less symmetric forms controllability of the full
system could be obtained with less than six scalar inputs. One of the major simplifying
assumptions in the present work is that we neglect the term containing the partial de-
rivative with respect to the time in the equations of the fluid. Further development is
therefore required to include this term in the analysis. This question seems difficult since
the introduction of this term makes the associated dynamical system genuinely infinite-
dimensional. An investigation using this more comprehensive model would provide more
insight into the swimming mechanism of micro-organisms.
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