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Abstract
The lucrative features of cloud computing such as pay-as-you-go pricing model and dynamic resource provisioning

(elasticity) attract clients to host their applications over the cloud to save up-front capital expenditure and to reduce the

operational cost of the system. However, the efficient management of hired computational resources is a challenging task.

Over the last decade, researchers and practitioners made use of various techniques to propose new methods to address

cloud elasticity. Amongst many such techniques, control theory emerges as one of the popular methods to implement

elasticity. A plethora of research has been undertaken on cloud elasticity including several review papers that summarise

various aspects of elasticity. However, the scope of the existing review articles is broad and focused mostly on the high-

level view of the overall research works rather than on the specific details of a particular implementation technique. While

considering the importance, suitability and abundance of control theoretical approaches, this paper is a step forward

towards a stand-alone review of control theoretic aspects of cloud elasticity. This paper provides a detailed taxonomy

comprising of relevant attributes defining the following two perspectives, i.e., control-theory as an implementation

technique as well as cloud elasticity as a target application domain. We carry out an exhaustive review of the literature by

classifying the existing elasticity solutions using the attributes of control theoretic perspective. The summarized results are

further presented by clustering them with respect to the type of control solutions, thus helping in comparison of the related

control solutions. In last, a discussion summarizing the pros and cons of each type of control solutions are presented. This

discussion is followed by the detail description of various open research challenges in the field.

Keywords Cloud elasticity � Elastic feedback controllers � Control theory � Dynamic cloud resource provisioning �
Cloud resource management

1 Introduction

Elasticity is the most promising feature of cloud comput-

ing, which enables the readjustment of the underlying

computational resources at runtime to meet application

demands. This helps to avoid the degradation of system

performance, to reduce operational cost and to minimize

the energy consumption of the system [1]. An elastic policy

is usually required to exploit the elastic architecture of

cloud computing. This policy is responsible for maintain-

ing the performance of the system at an acceptable level

with the lowest cost possible. However, providing such an

efficient policy is a challenging task.

Over the years with the rise in popularity of Internet

based applications, the notion of providing better elasticity

management has increased. This has proportional effects
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on cloud elasticity literature, where researchers and prac-

titioners made use of various techniques ranging from

simple ‘‘if-then’’ kind of rules to complex machine learning

based algorithms. Control theory is one of such techniques

that provides a systematic method to design feedback

controllers to implement cloud elasticity. Such feedback

controllers are designed to be stable in order to avoid

oscillation and settle quickly to the steady state by appro-

priately responding to disturbances. They are better for

achieving service level objectives, such as response time or

throughput [2]. The use of control theory is not limited to

the advent of cloud computing or elasticity. In the past,

control theory has been a well-recognized approach to

achieve the desired QoS needs of computing systems. For

example, feedback controllers are exploited to achieve the

target performance objectives of computing systems like

Webservers [3, 4], database servers [5], cache servers [6],

etc.

Many research undertakings are carried out on cloud

elasticity, and its various aspects are explored. There are

also several survey papers available that provide a concise

review of different aspects of cloud elasticity. Lorido-Bo-

tran et al. [7] classified the overall elasticity proposals

based on the underlying implementation techniques,

whereas Naskos et al. [8] distributed the literature based on

the decision-making mechanism, and Coutinho et al. [9] on

the other hand provided a systematic review of utilised

performance metrics, measurements tools and evaluation.

The scopes of all these papers have been broad where they

mainly focused on the high-level view of overall elasticity

research rather than the specific details on one implemen-

tation technique. In this work, considering the importance,

suitability and abundance of control theoretical approaches

in the context of cloud elasticity, a standalone review paper

is targeted, focusing only on control theoretical methods of

cloud elasticity.

The main contributions of this paper include (1) the

proposition of a taxonomy that includes characteristics

from both (i.e., elasticity and control theory) perspectives,

(2) an exhaustive, up-to-date survey of the literature in

accordance with the taxonomy, and (3) an overview of the

open issues and research challenges. This paper however,

does not cover the following aspects of elasticity domain

including the commonly used experimental platforms, real

workloads’ data, monitoring tools, application benchmarks.

The key reason behind is that these important aspects are

already fully covered in various related survey papers such

as [7, 10].

This paper will help researchers of the target area to

understand the various related concepts of cloud elasticity

including control theoretic approaches, different possible

types of control solutions, how these are used to implement

cloud elasticity, their pros and cons and the open research

challenges. This paper consolidates the available research

works using a large set of attributes highlighting the

important aspects from both, i.e., the application domain

(elasticity) and implementation technique (control-theo-

retic) perspectives. The inclusion of these large set of

attributes help to better analyse and compare the related

approaches. This paper clusters the existing approaches

based on the type of feedback controllers. Such a classifi-

cation will help the researchers in analysing and bench-

marking the control solutions of a particular type.

The rest of the paper is organized as follows. Section 2

describes the related surveys and how this article is distinct

from them. Section 3 explains the proposed taxonomy that

has been developed to conduct the literature review. Sec-

tion 4 examines the elasticity literature, whereas Sect. 5

provides a discussion and presents open issues and research

challenges of the field. Finally, Sect. 6 concludes the paper.

2 Related surveys

This section briefly describes the current survey papers as

related work and provides a brief explanation of how the

review conducted in this paper is different. For this pur-

pose, we classify the relevant review papers into the fol-

lowing three categories based on their primary strengths.

2.1 Cloud resource management

The review articles in this category mainly cover an

extensive range of cloud resource management related

problems such as provisioning, allocation, scheduling,

mapping, adaptation, discovery and brokering. Amongst

these problems, cloud elasticity (or dynamic cloud resource

provisioning) approaches are covered either partially or in

a limited capacity. For example, Singh and Chana [11]

focused on autonomic computing with a particular

emphasis on QoS-aware management of resources; Jen-

nings and Stadler [12] used resource management functions

as a classification method; Mustafa et al. [13] reviewed the

literature based on the metrics used and discussed the

underlying research problems. Manvi and Shyam [14]

classified the literature into problem specific categories

such as resource provisioning and allocation; whereas

Singh and Chana [15] targeted resource provisioning in

general, wherein elasticity is considered as a trait of

resource provisioning mechanism.

2.2 Adaptability using control theory

The review papers in this category are related as their

primary focus is on the use of control theory in similar

context, e.g., QoS management or adaptation in general.
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However, none of them has considered control solutions

that implement elasticity. Yfoulis and Gounaris [16] briefly

investigated the control theoretical perspective in cloud

computing context with a focus on SLA management.

More relevant however, brief discussions on the use and

suitability of feedback controllers for performance man-

agement in larger context of cloud computing domain is

carried out in [17]. Gambi et al. [18] focused on the

assurance and adaptability perspective of cloud controllers.

However, their scope is wider and also includes other

techniques such as rule-based and machine learning.

Patikirikorala et al. [19] carried out a systematic survey of

the design of self-adaptive systems using control solutions.

They presented a quantitative review based on a taxonomy

consisting of attributes such as target system, control sys-

tem and validation mechanism. The scope of their research,

however, is much wider on general adaptive systems rather

than cloud elasticity. Moreover, they only presented a

quantitative analysis of the existing research works rather

than a detailed review.

2.3 Cloud elasticity

A comprehensive survey on cloud elasticity is carried out

in [7], where the authors classified the overall elasticity

literature based on the underlying implementation tech-

niques. Galante and De Bona [1] classified them into

infrastructure and application level, and a taxonomy con-

sisting of features like scope, purpose, decision-making

mechanism, action type and evaluation is proposed in [8].

A similar taxonomy is also provided in [20] with a focus on

the application provider perspective. The authors of [21]

focused on strategy, action type and architecture perspec-

tive. Whereas, an adaptability view of computational

resources with a larger scope including concepts like node

adaptation and virtual machine (VM) migration is provided

in [22]. They, however, used adaptation techniques as one

of the dimensions to review the literature. At last, elasticity

functions such as reactive migration, resizing and proactive

replication are used as a means of classification in [23].

3 Taxonomy

The primary focus of the survey articles reviewed in Sects.

2.1 and 2.2 are not cloud elasticity. However, they repre-

sent the set of problems (and systems) amongst which

cloud auto-scaling is a subset. In contrast, the survey

papers reviewed in Sect. 2.3 are particularly focused on

cloud elasticity and therefore closely related to this survey

paper. All the survey papers reviewed are very innovative

and mostly overlapped regarding the essential elasticity

features, e.g., elasticity type (Reactive/Proactive), trigger

(Horizontal/Vertical), scope [Cloud provider (CP)/Service

provider (SP)], etc. However, their scope is wide, i.e.,

overall cloud elasticity research and apart from [7], they

lack details on the underlying implementation techniques

of the proposed solutions. Majority of the existing such

review papers utilise the various cloud elasticity features to

classify the overall cloud elasticity literature. In such a

classification, the underlying implementation technique is

consider as one attribute, (e.g., in [7, 9]) and therefore no

classification of the existing literature is performed using

the attributes of a particular implementation technique.

This result in the lack of conducting an exhaustive review

of the proposals of each implementation technique.

In contrast to the existing survey papers of cloud elas-

ticity, the key aim of this review paper is to propose a

technique specific (control theory in this case), an up-to-

date and exhaustive review of cloud elasticity solutions. A

closely related survey paper in this regard is the research

work conducted by Patikirikorala et al. [19], where they

carried out a systematic survey of the design of self-

adaptive systems using control solutions. However, the

scope of this paper is much wider, i.e., self-adaptive sys-

tems, where cloud auto-scaling is a small part of it. Sec-

ondly, in their paper, no discussion is made about elasticity

perspective nor any elasticity attributes are considered.

Furthermore, they conduct a quantitative review rather than

an analysis of the existing approaches in the context of

cloud elasticity. In contrast, we aim to focus on the

implementation perspective of cloud elasticity only (rather

than larger adaptive systems) using control theoretical

approaches.

The implementation of cloud elasticity using a control

theoretical approach commonly uses a feedback loop

model, where a controller maintains the output of the

system around some desired value by monitoring the inputs

and outputs of the system. Generally such a control system

can be used to satisfy a constraint or guarantee an invariant

on the outputs of the system [25]. Figure 1 depicts the

general mechanism of such a feedback model where it

observes the system output to correct any deviation from

the desired value. The basic elements of the control sys-

tems can be seen from Fig. 1. The details of these elements

describe the implementation aspects of a control systems.

Therefore, these elements become the attributes of the

taxonomy and will helps us to analyse the implementation

Fig. 1 Block diagram of feedback control system adapted from [24]
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perspective of a proposed solution. However, these attri-

butes do not tell anything about the elasticity characteris-

tics of the proposed system. Therefore, we also included

the basic characteristics of the elasticity domain, which are

commonly used in the related survey papers such as [9].

Thus to summarise, this section introduce the taxonomy

(shown in Fig. 2) and briefly explains its various charac-

teristics. This taxonomy consists of characteristics from

control theoretical point of view (i.e., as an implementation

technique) as well as from cloud elasticity perspective (i.e.,

as an application domain). In terms of the structure, our

taxonomy complements the taxonomies proposed in

[9, 26]. The following subsections explain all the charac-

teristics of the taxonomy in detail.

3.1 Control solution view

The various essential elements of a control system can be

seen from Fig. 1. The brief explanations of all these ele-

ments are provided below.

(1) Control objective refers to the main intended

purpose for which a control system is developed,

e.g., to maintain an overall average response time of

less than t seconds.

Control
theoretic

approaches
of elasticity

Elasticity view

Evaluation

Compared with

Experimental
Enviornment Simulation

Real

Applications
Used

Workload Used
Synthetic

Real

Ingredients

Elasticity Type
Vertical (V)

Horizental (Ho)

Trigger

Hybrid (Hy)

Predictive (P)

Reactive (R)

Application
Type

DataBase (Db)

Storage (St)

Scientific (Sc)

Web (W)

Generic (G)

Provider
Service

Provider (SP)

Cloud
Provider (CP)

Control
solution view

Architecture

Cascade

Hierarchical

Distributed

Centralized

Controller

Controller Type

Intelligent
(e.g. Fuzzy)

Advance Gain Schedul-
ing/Switched

Hybrid

Optimal
LLC

MPC

Classic

Adaptive

State-Feedback

Fixed gain

Modelling Type

State-space

Queuing

Black-box/
Grey-box

Control-Input

Reference-Input

Control
Objective

Fig. 2 Taxonomy of control

theoretic elasticity
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(2) Reference input refers to the desired value of the

system output that the controller is required to

maintain. For example, the overall average CPU

utilisation of all acquired VMs (cluster) must be

60%.

(3) Control error refers to the difference between

desired reference input and the measured value of

system’s output.

(4) Control input refers to the dynamic parameter

computed by the controller that affects the behaviour

of the target system to achieve the desired reference

input, e.g., the number of VMs.

(5) Actuator is a component that executes the decision

made by the controller.

(6) Sensor measures the values of metrics needed by the

controller for making the next scaling decision. For

example, to measure the CPU utilisation of VMs.

(7) Controller is the mechanism that computes the

values for the Control input required to achieve the

desired objective value, e.g., Reference input by

taking into account various measurements. The

systematic design of a feedback controller consists

of the following two steps: (1) the formal construc-

tion of a system model, and (2) the implementation

of a control mechanism. Based on this description,

the Controller is divided into the following two

subcategories:

(i) Modelling type the model captures the

behaviour of a target system, which repre-

sents the corresponding time-varying rela-

tionship between system inputs (e.g., number

of VMs) and outputs, (e.g., Response time)

[27]. In literature, there are different types of

modelling techniques used for the design of

elastic control solutions. These types can be

seen from Fig. 2, whereas their brief expla-

nation is provided in Sect. 4.4.

(ii) Controller type there are various types of

controller used for the implementation of

elasticity. We have clustered them into four

groups adapted from the controller types

used in [19]. These types can be seen from

Fig. 2, whereas their brief explanation and

the review of the control solutions belong to

these types are provided in Sect. 4.4.

(8) Architecture of a control system refers to the pattern

of how a particular control methodology is imple-

mented. The most common patterns observed in

cloud elasticity research include Centralised and

Decentralised (also known as Distributed). How-

ever, there are also few cases, where Cascade and

Hierarchical patterns are used as well. The brief

description of each of these patterns and the

overview of the control solutions following these

patterns are further provided in Sect. 4.5.

The Disturbance in Fig. 1 refers to the workload, whereas

the Measured output is the latest measurement of the sys-

tem output. All of the above mentioned elements of a

control system except Control error, Actuator and Sensor

are part of the taxonomy.

3.2 Elasticity view

This section covers the attributes from the cloud elasticity

perspective that defines different aspects of an autoscaling

approach. These attributes are already addressed in existing

review papers [1, 7, 8, 20, 23], however, mostly as clas-

sification factors. In contrast, we use the attributes of

control solution view as classification attributes. The

elasticity attributes are included to highlight the elasticity

perspective of the reviewed proposals. The brief descrip-

tion of the attributes considered is as follow:

(1) Provider an elasticity proposal targets the aims of a

particular stakeholder. This attribute can be divided

into two categories, i.e., CP and SP. The CP

specifies that a proposed elasticity method is imple-

mented by the infrastructure provider, whereas the

SP indicates that the elasticity mechanism is imple-

mented by the user of the cloud, who deploy their

applications/services over the cloud infrastructure.

The CP aim of performing dynamic resource provi-

sioning is to increase the efficiency of their under-

utilised computational nodes by shutting down some

servers and shifting their load to others, hence

minimising the energy consumption to reduce elec-

tricity costs as well as CO2 emission. Alternatively,

CPs could also oversubscribe their resources, hence

maximising their revenue. In contrast, the SPs are

concerned with the efficient use of their rented

computational resources, so that they can release any

under-utilised or unused VMs to reduce their service

operating costs. This attribute of the taxonomy

specifies the type of stakeholders, which demon-

strates the aim and purpose of a given elasticity

proposal.

(2) Application type the auto-scaling approaches are

proposed for different kind of applications. This

attribute refers to the nature of the application for

which the elasticity method is proposed. Possible

types can be seen from Fig. 2.

(3) Trigger this represents the triggering behaviour of an

elasticity method. The possible types include Reac-

tive, Predictive or Hybrid. In the case of Reactive,

the auto-scaling system performs the scaling

Cluster Computing (2018) 21:1735–1764 1739
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decision in response to changes in the behaviour of

the system. The Predictive anticipates future beha-

viour of the system and performs the scaling

decision in advance, whereas, the Hybrid combines

both the Reactive and Predictive mechanisms.

(4) Elasticity type refers to the type of resource scaling

that can be either Horizontal or Vertical. The

Horizontal elasticity enables the increase or decrease

in the number of VMs, whereas, the Vertical

elasticity allows changes in the specification of

existing VMs, e.g., the increase or decrease in CPU

and/or memory capacity of one or a set of VMs.

(5) Evaluation this attribute of taxonomy highlights how

the assessment of a particular approach is carried

out. This consists of the following specifications:

(i) Workload used for the evaluation can be

either real or synthetically generated. This

attribute represents the nature of the work-

load and its brief description.

(ii) Applications used includes the details of

any applications used either for the gener-

ation of workload or experimentation

purposes.

(iii) Environment includes the particulars of the

experimental set-up.

(iv) Compared with specifies the approaches or

scenarios used for comparison purposes.

4 Review of existing control theoretical
approaches of elasticity

This section provides the details of the existing cloud

elasticity approaches that are implemented using control

theory. The review is carried with respect to each attribute

of the control solution view of the taxonomy. The sum-

marised results are clustered by the Controller Type attri-

bute of the taxonomy and presented in Tables 1, 2, 3, 4, 5,

6 and 7.

4.1 Control objective

In general, there are three different types of Control

objective. The brief descriptions of these types are the

following:

– Regulatory purpose a feedback controller developed for

regulatory purposes maintains system output close to

the desired reference value. For example, the average

CPU utilisation of the Cluster must be 60%.

– Optimisation the controller is responsible to obtain the

best settings for the system output in the presence of

certain constraints. For example, minimisation of

system’s response time with the lowest possible cost.

– Disturbance rejection such a controller is used to

manage and adjust the level of disturbances, e.g.,

Admission control system. It only allows enough

workload that does not affect the performance of the

system.

In cloud elasticity domain, the majority of existing solu-

tions belong to the category of either regulatory control

(e.g., [28–33]) or optimisation (e.g., [34–39]). The control

solutions having the objective of disturbance rejection

often assist another control solution (e.g., [40–43]). Irre-

spective of these types, the key objective of any elastic

control solution is to improve the utilisation of computa-

tional resources whilst maintaining acceptable level of

performance of the system and reducing its operational

cost. This objective however, can be viewed differently by

CPs and SPs.

The CPs perspective of better resource utilisation is to

improve performance of the system and to reduce the

operational cost of data centre, e.g., decrease in electricity

consumption, increase in revenue generations using over-

subscription, and reduction in the CO2 emissions. From the

SPs perspective, it is to reduce the operational cost of the

services consumed whilst simultaneously maintaining

performance and reliability of their deployed services.

These different points of views dictate the design of control

solution for various purposes. The control solutions

reviewed in this paper carries one or multiple of the fol-

lowing purposes including maintaining an acceptable level

of performance, reducing operating cost, minimising

energy consumption and maintaining capacity level.

It is evident from the analysis of Tables 1, 2, 3, 4, 5, 6

and 7 that the objective of the majority of the control

solutions is to improve system performance. These objec-

tives are either in the form of the regulation of different

performance metrics (e.g., the control solutions proposed in

[31, 41, 44–47] aiming to maintain the response time of

system less than certain threshold) or in the form of opti-

misation of the system (e.g., obtaining the best value for

the number of VMs to avoid under-utilised and over-uti-

lised behaviour [48]). In such control solutions, the oper-

ating cost factor is indirectly considered, but the primary

objective is to maintain the desired level of performance.

Alternatively, the control solutions proposed in

[28, 35–37, 49] directly consider cost as one of the

objective by the system.
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The second popular category of control objective after

performance management is the maintenance of resource

level capacity. The capacity level in most cases has an

indirect relation with the performance of the system.

However, in terms of implementation, the control solution

is responsible for maintaining the utilisation (or allocation)

level of system resources. In such cases, we found the

following two possibilities: (1) in the case of horizontal

elasticity, the common objective is to maintain the CPU

utilisation level of overall cluster (e.g., [50–52]). (2)

Whereas, in the case of vertical elasticity, the objective

depends on the nature of reconfigurable resources. For

example, there are control solutions, where the control

objective is the readjustment of the memory allocation

(such as [53, 54]) or the readjustment of the CPU allocation

(such as [49, 55–58]).

In last, the following control solutions [34, 39, 45, 59]

have considered the energy efficiency perspective of cloud

elasticity, where the control objective is to reduce the

power consumption behaviour of the system in association

with the performance goal.

Table 1 Fixed gain controllers

[72] [60] [44] [43] [48] [53] [50] [61]

Type PID PID PID PI PD Fixed gain Integral Integral

Model State-space Queuing – Grey-box – Black-box Black-box Black-box

Architecture Centralized Distributed Centralized Centralized Centralized Centralized Centralized Centralized

Control

objectives

99th % read

operation

latency

Application

SLO

(response

time) at a

pre-defined

level

Maintain a

desired

response

time

Ensure

service time

constraints

Optimal

number of

VMs

avoiding

under/over

utilized

scenarios

Desired

memory

utilization

Desired

CPU

utilization

Maintain a

desired

response

time

Reference

inputs

Service

time

CPU

utilization

CPU

utilization

Service time Server load

and memory

utilization

Memory

utilization

CPU

utilization

CPU

utilization

Control input Number of

Voldmart

nodes

Number of

VMs

Number of

VMs

Number of

map-reduce

nodes,

number of

clients

Number of

VMs

Memory

allocation

Number of

VMs

Number of

VMs

Monitoring

metrics

Read

latency

without

round-trip

time

Mean CPU

utilization of

tier’s VMs

Mean CPU

utilization

of cluster

Service time

and number

of clients

Server load
and memory

utilization

CPU and

memory

usage, page

fault rates

CPU load,

arrival rate

CPU load,

arrival rate

Ingredients SP St R Ho SP W R Ho SP W R Ho – D Hy Ho CP W R Ho – W R V SP W R Ho SP St R Ho

Workloads Synthetic:

generated

using

YCSB

Real: FIFA Synthetic Synthetic Synthetic Real Synthetic Synthetic

Applications

used

YCSB – Hogna

Framework

MapReduce

Benchmark

Suite

– httperf,

MemAccess

– Cloudstone

Environment Real:

Voldmart

Real: Amazon Real:

Amazon

and SAVI

[117]

Real:

Grid5000

[118]

Real: Amazon Real: Custom

(4 HP

Proliant

servers) ?

Xen 2.6.16

Real: ORCA

[119] ?

Xen as

Hypervisor

Real: ORCA

[119] ?

Xen as

Hypervisor

Compared

with

Not

provided

Threshold

based,

proportional

controller

Not provided Not provided Compared

with [81]

Not provided Static

threshold,

integral

control

Static

provisioning
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4.2 Reference input

The reference input in most of the cases reflects the cor-

responding control objective of the control systems.

However, this is not always the case, e.g., the objective of

the control solutions proposed in [44, 60, 61] is to maintain

the desired level of system performance but the reference

input in each case is the CPU utilisation. Therefore, we

analyse the reference input independently from control

objective attribute.

The analysis of the reference input for each reviewed

solution presented in Tables 1, 2, 3, 4, 5, 6 and 7 hints on

the use of three types of metrics. These include Perfor-

mance-based, Capacity-based and the combination of both.

Table 3 Adaptive approaches

[62] [63] [73] [75] [49] [55] [54]

Types Adaptive

(optimal)

Adaptive

PI ? pole

placement

Adaptive PI Nested adaptive

(integral)

MIMO adaptive

PI ? RL

SISO, MIMO

and adaptive

MIMO

Adaptive

Model Black-box

(ARMA 2nd

order)

Black-box (1st

order AR

model)

Least square

regression

– ARMAX (2nd

order) ? SVM

[124]

Kalman filter Linear regression

(1st order)

Architecture Distributed – Distributed Cascade and

distributed

Centralized Centralized Centralized (node

level)

Control

objectives

To achieve

application

level QoS

(response

time)

To achieve

application

level QoS

(response

time)

To obtain

target job

progress

to meet

deadline

To achieve

target QoS

goal (response

time)

To maximize

application

benefit (QoS)

within time and

budget

constraints

To maintain

CPU

allocation

right above

the CPU

utilization

Adjustment of

memory size to

achieve desire

application

response time

Reference

input

Per application

response

time

Response time Target job

progress

Response time,

CPU

utilization

Benefit function,

execution time,

resource cost

CPU utilization Response time

Control

input

CPU

entitlement

and IO

allocation

CPU

entitlement

CPU share CPU allocation Adaptive

parameters

CPU allocation Memory size

allocation

Monitoring

metrics

CPU usage,

response

time, disk

usage

Response time Job

progress,

milestone

CPU utilization,

measured

response time

Adaptive

parameters, CPU

and memory

usage

CPU utilization Measured

response time,

memory

utilization

Ingredients CP W P V – W R V SP Sc R V – G R V SP/CP G P V – W P V SP W R V

Workloads Synthetic Synthetic Synthetic R: SPECweb99

[125]

– Synthetic R: FIFA,

Wikipedia

Application

used

RUBiS, TPC-

W, custom:

secure media

server

httperf ADCIRC,

OpenLB,

WRF,

BLAST

and

Montage

httperf Great Lake

nowcasting and

forecasting,

volume rendering

RUBiS RUBBoS,

httpmon

Environment Real: two test-

beds (HP

C-class

blades and

Emulab

[126])

Real: two

machines,

i.e., HP9000-

R server and

Pentium III

Real:8-core

AMD

server ?

Hyper-V

and Xen

Real: two

machines, i.e.,

HP9000-L

server and HP

LPr Netserver

Real: two private

clusters (each

with 64 nodes)

R: three

machines

with Xen

3.0.2

Hypervisor

R: 32 cores and 56

GB memory

based machine

? Xen

hypervisor

Compared

with

Two cases:

work-

conserving

and static

allocation

Fixed PI

controller

Feedback

approach

of [127]

Single loop QoS

controller,

utilization

controller

Work conserving,

static scheduling

Not provided Capacity based

[128] and

performance

based [46]

memory

controllers
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The Performance-based as their name specifies refers to

the category that include metrics related to the performance

of the system, e.g., Response time, Throughput, etc. On the

other hand, the Capacity-based relies on system provided

metrics such as CPU utilisation, memory consumption, etc.

The key benefits of using system provided metrics are the

following: (1) they are directly obtained from monitoring

API provided by CPs. Hence it does not require application

level monitoring or efforts. (2) No runtime relation iden-

tification between application metric, e.g., Response time,

is required. Hence it does not involve additional overhead

at runtime. However, control solutions that rely only on

system provided metrics assume that the specified utilisa-

tion threshold will always meet the performance expecta-

tion. On the other hand, control solutions that rely on

performance metrics require an additional burden of

monitoring system’s performance. Furthermore, they do

not consider system resource utilisation level.

The commonly used performance based metric includes

the use of Response time as Reference input. This include

the control solutions proposed in

[31, 39–42, 45, 46, 52, 54, 59, 62–67]. The subset

[39, 45, 59, 62, 64–66] of these control solutions targets the

CPs perspective, where the reference input is actually the

Response time for each application (or each client). In

some other control solutions, the use of Response time is

coupled with Throughput such as in [30, 68–71]. Apart

from Response time and Throughput, the use of some other

performance metrics is also observed. This include Service

time for data oriented applications [43, 72], Job progress

for scientific application [73] and Read operation latency

for storage application [32, 74].

On the other hand, the capacity based Reference input

depends on the type of elasticity. In the case of horizontal

elasticity, CPU utilisation of the cluster is the common

metric used for Reference input [44, 50, 51, 60, 61],

whereas, in the case of vertical elasticity, the utilisation of

individual resources is utilised as Reference input. For

example, the control solutions in [55, 58] rely on the use of

CPU utilisation, whereas Memory consumption was

focused in [53] and both components were utilised in [48].

In last, very few approaches including the control solutions

proposed in [28, 29, 75] use both performance based (i.e.,

Response time) and capacity based (i.e., CPU utilisation) as

Reference input.

4.3 Control input

The choice of control input depends on the Elasticity type.

Thus for the control solutions, where the Elasticity type is

horizontal, the Control input is the Cluster size (Number of

servers). This is evident from Tables 1, 2, 3, 4, 5, 6 and 7,

with the only exception in the cases of [40, 41], where the

control input consist of an additional parameter for dis-

turbance rejection. In the case of vertical elasticity, the

choice of Control input depends on the nature of applica-

tion type, i.e., either CPU (or memory) sensitive. However,

in terms of vertical elasticity, the existing literature lacks

on providing the justification of the choice of Control

input. It is evident from Tables 1, 2, 3, 4, 5, 6 and 7 that the

CPU allocation is the most common choice considering

their use as single Control input in the following control

solutions [32, 34, 55–57, 59, 63–66, 68, 70, 73, 75, 76] and

as combined with Memory allocation in [30, 42, 45, 71],

combined with bandwidth in [62, 77] and combined with

both memory and bandwidth in [30, 69]. In last, the control

solutions proposed in [31, 53, 54] only use Memory allo-

cation as Control input.

4.4 Controller

Generally, the various modelling approaches used in the

design of control systems are categorized into the follow-

ing three main classes [78–80]:

(i) White-box such models are used when it is

possible to construct the model based on the prior

knowledge and the availability of the physical

insight about the system. White-box modelling

derive mathematical models based on the use of

first principles.

(ii) Black-box such models are data driven and no

physical insights or prior knowledge of the system

is required. Statistical methods are used to derive

the model based on the measurement of data using

well designed experiments, where the underlying

system is considered as black-box.

(iii) Grey-box such models are hybrid in nature and are

used in situations where some physical insights or

prior knowledge about system is available, how-

ever, certain parameters are required to be derived

from observed measurements.

The use of white-box modelling approaches in the context

of cloud elasticity are rare. However, in certain few cases

Queuing Theory and State-space modelling approaches are

utilized. Thus, in the context of cloud elasticity, we found

the following types of modelling techniques are used in the

construction of control systems to address dynamic

resource provisioning problem:

(i) Queuing theory the elastic system is considered as

a queue so that different analysis can be per-

formed such as prediction of queue length,

average service rate, and average waiting time.

(ii) Black-box/Grey-box as earlier described, such

methods are used when the detailed knowledge
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of the target system is not available. Such

approaches involve the construction of SID

experiments, where well-designed system input

signal is generated to record outputs of the system.

Statistical techniques are then utilised to infer

system input and output relationship.

(iii) State-space the target system using such an

approach is characterised and represented using

a set of state variables to express their dynamics.

For detail description of these modelling tech-

niques, please refer to [27].

The study of existing elasticity approaches implemented

using control theory indicate, the use of various types of

controllers. We have clustered them into the following four

groups inspired by the controller types used in [19].

4.4.1 Classic

This family of control solutions contains the commonly

used controller types that are comparatively simpler in

nature. This category is further distributed into the fol-

lowing three types:

4.4.1.1 Fixed gain This subclass of controllers are refer-

red to those control solutions, where the tuning/gain/model

parameters are estimated off-line and then remains fixed at

runtime. The most commonly used controller of this cate-

gory is called Proportional–Integral–Derivative (PID) or its

different variants such as Proportional–Integral (PI) or only

Integral (I).

The authors of [44, 50, 60] focused on horizontal elas-

ticity and proposed fixed gain control solutions for web

applications. All these solutions aim to achieve a desire

performance level using CPU utilisation as reference input.

Lim et al. [50] used an Integral controller, where Gergin

et al. [60] and Barna et al. [44] adopted PID based

approach. In both of these papers, the design of the con-

troller is similar but the adaptation is different. More

specifically, Barna et al. [44] only considered one tier,

whereas Gergin et al. [60] considered n-tiered transactional

application and proposed a distributed architecture, i.e.,

using multiple controller in parallel but one for each tier.

The multiple controllers do not have any interaction and

synchronisation towards the achievement of end to end

objective. Gergin et al. [60] decomposed the primary

control objective to the objective of individual tiers based

on the utilisation demand. Each control is then responsible

for their tier’s objective. The influence of tiers on each

other are not considered in their approach. Furthermore, no

relation identification between the desired performance and

CPU utilisation is provided. On the other hand, Barna et al.

[44] only considered the application business tier.

However, they assumed that the intensity of the incoming

workload would not saturate the other tiers. Lim et al. [50]

in contrast focused on the application as a whole rather

than tier specific. They further proposed a dynamic

threshold based approach for the reference input (CPU

utilisation in this case) to avoid oscillation. They used a

dynamic range of CPU utilisation with lower and upper

thresholds rather than the commonly used static target

value as in the case of [60]. Barna et al. [44] also used the

static value but avoided scaling decision within the range

of �15% of the target threshold.

Similar to Barna et al. [44], Ashraf et al. [48, 81] also

focused on application business tier. However, there

approach is different in the following ways: (1) they used a

Proportional–Derivative (PD) controller without any per-

formance model. (2) They have also used memory con-

sumption as reference input instead of only CPU

utilisation. Apart from above difference, they proposed the

concept of shared hosting, where multiple web applications

could be hosted to similar VM. However, it is not clear

how to measure (and guarantee) the performance of web

applications that share the same VM. Furthermore, no

insight on the selection of lower and upper threshold for the

memory and CPU utilisation is provided. Lastly, it is not

clear how to model and quantify the relationship between

utilisation metrics and application performance. Heo et al.

[53] in contrast to the above mentioned approaches,

focused on vertical elasticity, where they used the reallo-

cation of memory and CPU resources at VM level to

comply with the SLO requirements.

The control policy of [50] has been further utilised to

maintain the performance (Response time) of storage tier

of a multi-tier application in [61]. Whereas, a PID con-

troller is proposed in [72] to adjust nodes of a cloud-based

storage system (named Voldmart [82]) to maintain the

desired service time. Both of these control solutions

focused on Storage tier and used the data rebalancing

component to distribute the data load among the available

servers as a result of scaling decision. The approach of Lim

et al. [61] is accompanied by a state machine, that is

responsible to synchronise the actions of the Integral con-

troller and the rebalancing component of the storage tier.

However, no such details are provided in the case of [72].

In contrast, the authors of [43, 83] used a PI feedback

controller for big data application. They focused to adjusts

the computing nodes of a map reduce cluster to guarantee

the desired service time of map reduce jobs. Their pro-

posed approach guarantee the desired system performance.

Furthermore, it is also associated with an admission control

component that is responsible to stop disturbance from

impacting the performance of the system. However, the

response to disturbance is kept slow to minimise the

number of scaling decision. Furthermore, they have
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provided analysis of the control properties such as closed-

loop analysis and 0% overshoot. The other approaches lack

in this regard.

The gains of the fixed gain controllers can be estimated

off-line either using a trial-and-error methods or perfor-

mance model [50], application specific model [81] or using

a standardised method such as ZieglerNichols and Root-

locus. However, they remain fixed at runtime. The sum-

marise details of the proposals reviewed in this category

are provided in Table 1.

4.4.1.2 State space feedback (SSF) This class of con-

trollers used state-space modelling approach to design the

control solutions [27]. Li et al. [30] proposed an integrated

three-layer automatic management approach. The three

layers include resource management at VM, node and

cloud level. Amongst these layers, the method at VM level

is only relevant to the scope of the paper, where they

proposed a MIMO based SSF controller responsible for

determining VM resource requirements. They focused on

vertical elasticity and considered multiple resources

including the CPU power, memory and I/O allocation to

achieve application SLO requirements consisting of

Throughput and Response time. Their method uses an on-

line model estimator to capture the relationships between

application performance and resources at runtime. Simi-

larly, Moulavi et al. [28] also used SSF, however for the

horizontal scaling of distributed cloud storage systems’

computational nodes.

Both of the above approaches use linear quadratic reg-

ulator (LQR) method to obtain the gains (Proportional and

Integral) of their controllers. However, in [30], the gain is

adaptive and may change at runtime, whereas the gain

remains fixed in [28]. Moreover, Moulavi et al. [28] used

an additional fuzzy controller, which is responsible for

allowing or discarding the control decision considering the

standard deviations of CPU loads. The purpose of the

additional controller is to avoid unnecessary fluctuations.

However, no description is provided for the design of fuzzy

controller. Their approach also considers cost as one of the

reference input. However, it is not clear how it influences

the decision of the controller. A similar approach is utilised

in [29] with a difference of using Throughput as one of the

reference input rather than cost. However, no details are

provided on the performance aspects of the proposed

method. The details of the papers mentioned in this cate-

gory are provided in Table 2.

4.4.1.3 Adaptive This class of controllers have the ability

to estimate the model/control parameters at runtime thus

adjusting itself to changes in the environment, e.g., the self-

tuning PID controllers [17].

The authors of [32, 55, 62, 68, 75] focused on vertical

elasticity, where they all used the dynamic readjustment of

CPU allocation to maintain the target CPU utilisation of the

system. Amongst these solutions, Zhu et al. [75] used a

nested control design that comprise of two integral feed-

back loops. Their idea is to use CPU utilisation as a ref-

erence input in association with the target response time.

However the threshold value for the CPU utilisation is not

fixed and will be adjusted by the outer loop to maintain the

target QoS goal (Response time). The inner loop is then

responsible to maintain the variable CPU utilisation by

adjusting the CPU allocation of a VM. Padala et al. [68]

utilised a similar idea of multiple controllers but in hier-

archical style. Furthermore, the focus is on multi-tiered

applications that share the same physical node. The control

solution in this case is responsible to adjust the CPU

allocation of VMs that host individual tiers of multi-tier

applications. They introduced a utilisation controller

implemented using an adaptive Integral controller that runs

at each VM and is responsible to maintains the target CPU

utilisation by adjusting the CPU allocation, whereas an

arbiter controller implemented using a fixed Integral con-

troller is responsible to allocate the CPU share based on the

requested CPU allocations by the utilisation controllers.

In the case of Zhu et al. [75], due to the variability of

reference input of the inner loop, the target response time

can be obtained using different CPU utilisation thus han-

dling the uncertainty aspect between resource utilisation

and performance. Moreover, this also improve cost effi-

ciency. In contrast, in the case of Padala et al. [68], the

target CPU utilisation for each VM is fixed that can be

obtained at design time. Furthermore, no performance

parameter at runtime is considered. However, their

approach at node level resolves any conflicting decisions

made by the utilisation controller in the case of resource

contention situation, whereas no such scenarios are dis-

cussed in the case of Zhu et al. [75]. The approach of

Padala et al. [68] is further enhanced in [62], where they

not only considered the readjustment of CPU allocation but

also included Disk I/O allocation. Moreover, they changed

the adaptive Integral controller with an optimiser controller

aiming to minimise a cost function comprise of perfor-

mance and control cost while obtaining the values of

required resource allocations for next interval.

Contrary to the integral controller based approaches of

[68, 75], Kalyvianaki et al. [55] exploited the use of Kal-

man filter based feedback controller to adjust the CPU

allocation for multi-tier applications. They proposed three

Kalman filter based control solutions including a SISO,

MIMO process noise covariance controller (PNNC) and an

adaptive MIMO PNCC controller. The SISO is responsible

for the CPU allocation of individual VMs that hosts a

single application tier. MIMO PNNC is responsible for the

1750 Cluster Computing (2018) 21:1735–1764

123



CPU allocation of all VMs of a multi-tier application.

However, both their controllers (i.e., SISO and MIMO

PNNC) are fixed, where the gain of the Kalman filter does

not change at runtime. The adaptive MIMO PNNC is the

adaptive counterpart of MIMO PNNC, where the gain of

the controller is obtained at runtime. Their approach further

utilised filters to track noise in the CPU utilisation.

Moreover, the coupling between multi-tiers of the appli-

cation is also considered, which was not discussed in other

related approaches.

Spinner et al. [32], in contrast to the above mentioned

approaches focused on a different perspective of CPU

allocation, wherein they adjusted the number of virtual

CPUs of VMs to meet target latency of an application.

They used a queuing theory based on layered performance

modelling approach in collaboration with a runtime model

estimation component. Their performance model not only

considers the application demand of the resources, but the

demands of the virtual and physical resource as well. They

also further considered the scheduling and contention

delays caused by the rearrangement of VMs due to the over

subscription or overloading of the physical host. However,

the response of their resource controller to the disturbance

in some scenario may be slow as their scaling decision is

fixed where at each control interval, only one virtual CPU

can be added or removed at a time.

All the above approaches were capacity based, where

the decision making mechanism was based on resource

utilisation except [75], where both CPU utilisation and

response time were used as reference inputs. The control

solutions that are only based on capacity based are inade-

quate to guarantee application performance because of

their no consideration of performance aspects at runtime

[54].

In contrast to these approaches, the authors of

[31, 49, 54, 63, 73] included performance based metrics

into their decision making mechanism. Amongst these, the

target performance measurements were used to readjust,

the memory size in [31] and CPU entitlement in [63, 73].

All these three methods only rely on performance based

metrics that may not be adequate to ensure the desired

quality of service, because the performance can be also

disturbed by an internal bug [54]. The control solution of

[31] is further extended in [54], where memory utilisation

is considered as part of the decision additional to response

time, making their methodology hybrid, which consider

both aspects. Zhu et al. [49], in contrast utilised both CPU

and memory allocation by proposing an adaptive version of

the MIMO PI controller in collaboration with a reinforce-

ment learning component. This approach, however, is

different in two aspects from any other approaches men-

tioned in this section. Firstly, it does not directly control

resources but rather change adaptive parameters of the

cloud applications. Secondly, it aims to maximise the

application specific benefits (QoS) within a pre-specified

time limit and budget constraints. Similarly to this

approach, the control solutions proposed in [84] also con-

sider cost and efficiency constraint in order to find an

optimal trade off between these two aspects. However, the

control objective in this case is to obtain the optimal

numbers of VMs rather than the readjustment of adaptive

parameters of the application. Analogously, Mao et al. [85]

also focused on maximizing efficiency with lowest cost

possible under the deadline constraints. Furthermore, they

consider different kinds of VM instances as well as

heterogeneous deadlines. The nature of the application

types in all three proposals are different, i.e., Zhu et al. [49]

focused on adaptive systems of Jiang et al. [84] on web

based systems, whereas Mao et al. [85] target on long

running jobs.

In contrast to all of the above approaches in this section

where the focus was on vertical elasticity, Ali-Eldin et al.

[33] proposed an adaptive hybrid controller for horizontal

scaling using queuing theory as a modelling technique. The

queuing based model determines the total service capacity

required per control interval while considering the arrival

rate of the concurrent requests. The output of the controller

is dependent on a gain parameter that is obtained at runtime

using the change in demand on the past time unit and the

necessary service capacity. The approach is independent of

any performance controller. However, it does not consider

how the application performance can be guarantee. Fur-

thermore, the approach does not consider the impact of the

delay caused by the start up of a VM. The same approach is

applied in [86] considering scientific domain with an

enhanced model and controller design. The enhanced

model also considers buffer size, the delay caused due to

VM start process, allocated capacity and changing request

service rate of the VM. Furthermore, they not only pre-

dicted the future load changes but also considered the

monitored load changes and delay caused due to VM start

up. The summarise details of the proposals reviewed in this

category as per the taxonomy attributes are provided in

Tables 2 and 3.

4.4.2 Optimal

This class of controllers refers to all those control solutions

that formulate and solve the cloud resource provisioning as

an optimisation problem. There are two types of optimal

methods utilised in the cloud elasticity domains. Their brief

explanation and review of the proposals are provided as

follows.

4.4.2.1 Model predictive controller (MPC) The MPC is

based on a twofold concept [87]. Firstly, it uses an internal
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dynamic model to predict future system behaviour, and

optimises the forecast to generate the best decision at the

current time. Secondly, it uses the previous moves of the

controller to determine the best possible initial state of the

system as the current move of the optimal control depends

on it. For further details on MPC, refer to [87].

The readjustment problem of data centre capacity with a

focus on energy saving perspective is addressed using an

MPC based approach in Zhang et al. [35]. They included

aspects like cluster reconfiguration cost (due to saving/

loading/migration of systems’ state), electricity price fluc-

tuation (as rates vary at different time of the day in some

countries, e.g., the USA). Their work, however, assumes

that (1) all data centre machines have the same computa-

tional capabilities and (2) the instances of incoming

workload shares similar characteristics, e.g., task length,

resource requirements. Roy et al. [88] proposed a similar

MPC based solution with the exception that they do not

include electricity price fluctuation in their cost function

but consider cluster reconfiguration cost, resource renting

cost. Furthermore, they also consider SLA violation cost,

which isn’t the case in [35]. The work of Zhang et al. [35]

is further extended in [36], where they considered hetero-

geneous hardware and workload behaviour. They approa-

ched the heterogeneity issue using MPC controllers

coupled with a k-means clustering algorithm, which is used

to cluster the tasks into various groups based on the iden-

tical characteristics, i.e., performance and resource

requirements.

The MPC based approach in [37] decides a sequence of

resource reservations actions for N steps rather than a

single decision for next control input. The paper, however,

lacks details about the results obtained. Whereas, Cerf et al.

[38] focused on the idea of reducing the number of elas-

ticity decisions for big data cloud systems using an MPC

controller coupled with an event triggering mechanism.

The event triggering mechanism serves as an additional

layer to determine whether the MPC decision will be car-

ried out or not. The mechanism is based on the optimal cost

function rather than the state of the system or any form of

control error mechanism.

In contrast to MPC approaches mentioned above, Lama

et al. [45] proposed a distributed MIMO control solution to

address vertical elasticity. They used multiple MPC to

manage the allocation of resources (CPU and memory) to

achieve the target performance requirements of the co-lo-

cated multi-tier web applications deployed on shared

computational nodes of a data center. Each MPC handles

one application and controls the allocation of resources of

all their respective VMs whilst considering each tier of the

application deployed on a separate VM, which may reside

in different computational nodes than other tiers’ VMs.

They used neural network based fuzzy models and

considered variables of the local controller as well as the

neighbour controller, which manages VMs of other appli-

cations that share the underlying physical resources.

A few other MPC based proposals include reconfigura-

tion of storage system [89], resource management of

multiple client classes in shared environment [90], per-

formance optimisation using power control [91], and

dynamic resource allocation using an integrated approach

of fuzzy model and MPC [92].

4.4.2.2 Limited lookahead controller (LLC) The LLC fol-

lows the similar concept as MPC, where the next action of

the controller is determined using the projected behaviour

of the system over a limited look-ahead horizon [93]. The

key difference between MPC and LLC is that the former

deals with the systems operating in continuous, whereas the

latter deals in discrete input-output domains [34].

Kusic and Kandasamy [39] utilised an LLC mechanism

for enterprise computing system by formulating the

resource provisioning problem as a sequential optimisation

problem. They approached the problem by considering

multiple fixed three client classes, each with different QoS

requirements. A different cluster is used to manage one

client class focusing on reducing operating cost regarding

switching cost and minimisation of energy consumption.

The distinct feature of their approach is the consideration

of provisioning decision risk as a factor and encoding it

into the cost function while considering the variability of

workload patterns. Each of their decision determines not

only the number of machines in each cluster but also the

operating processing frequencies associated with different

pricing regarding power.

The same approach is adopted in [34] for virtualised

environments with the following modifications. The con-

troller decision concludes the allocation of CPU share of

each VM for each cluster rather than specifying operating

frequencies, the indication of active host machines and the

share of workload to be assigned to each VM. Bai and

Abdelwahed [59] demonstrated the use of artificial intel-

ligence based search methods on a case study of processor

power management to address the problem of computa-

tional overhead caused while using LLC.

4.4.3 Advance

This family of controllers clustered all those control solu-

tion methodologies that either combine multiple control

method into one or have some notion of runtime adaptive

behaviour. However, the adaptation mechanism is not

based on runtime parameter estimation, which is described

earlier for the Adaptive type in the Classic category. This

family of controllers includes the following types.
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4.4.3.1 Hybrid This set of controllers refers to all those

control solutions that combine more than one controllers

and all of them are active at the same time. The control

solutions proposed in [42, 46, 57, 69] utilised multiple

controllers in various capacity to directly maintain per-

formance based metrics that identify the target quality of

service. Amongst these, the control solution proposed in

[42] consists of the use of three feedback controllers to

dynamically allocate CPU, memory and application per-

formance tuning respectively. All of the three controllers

run in parallel albeit independent from each other and it is

not clear how and why the decision of one controller does

not have any effect on others. Analogously, Dutreilh et al.

[94] proposed a generic framework, where multiple control

policies can be used. Each policy is responsible to manage

the scaling of a group of VMs (referred to as scaling point

by the authors), which host one component of an applica-

tion. Similar to [42], it is not clear, why the decisions of

each control policy will not have an impact on each other.

This approach however deals with horizontal elasticity in

contrast to that of Dawoud et al. [42].

Farokhi et al. [46] also used two different controllers

each for CPU and memory allocation of VMs. Their

approach, however in contrast to [42, 94] consists of a

fuzzy based coordination mechanism. This mechanism

consider CPU and memory consumption as well applica-

tion performance to determines the contribution of each of

the controller to the final decision making. The use of fuzzy

control solution in their approach also consider noise in

measurement and uncertainty aspects during decision

making, which rarely consider by cloud resource provi-

sioning mechanism.

Xiong et al. [57], only focused on the CPU share allo-

cation using a two-level hybrid control scheme to indi-

vidual VMs hosting the different tiers of a N-tiered

application. This approach consists of an inter-dependent

application implemented using a PI feedback and resource

partitioner implemented using optimal controller. The

application controller is responsible to compute the CPU

budget required for the application, whereas the resource

controller is responsible to optimally distribute the com-

puted CPU share among the individual VMs hosting the

different tiers. This approach provide details about the

resource partitioner controller, which solves an optimisa-

tion problem to derive optimal share for each VM using

fixed CPU budget. However, no details are provided of

how the total CPU budget for the application can be

obtained, i.e., the details about the application controller

are missing. Rao et al. [69] on the other hand also

approached using a two-level approach. However, they

considered multi-objectives and proposed a self tuning

fuzzy controller (STFC) for each objective and a gain

scheduler controller to compute the final decision by

aggregating the decisions of all STFCs. This approach

readjust three different components including CPU, mem-

ory and disk bandwidth. The gain scheduler is responsible

to synchronise the decisions by the individual controller

using the control errors of each STFC. Furthermore this

approach provides resolution strategy in the case of con-

flicting decisions by the individual controllers and/or

resource contention. The other methods discussed in this

category lacks in these aspects.

In contrast to above approaches discussed in this cate-

gory, the control solutions proposed in [56, 64, 74, 95] use

a combination of feedback and feed-forward methods. The

idea behind such merging is to exploit feed-forward to

predict large spikes of the workload using a proactive

method to make scaling decision in advance, whereas, the

feedback approach can be exploited to manage the gradual

changes and to rectify any modelling errors. Al-Shishtawy

and Vlassov [74] used such an approach to perform hori-

zontal scaling of cloud-based key-value stores. The scaling

decision in their methodology will be either carried out

with feed-forward or feedback method and that depends on

the intensity of the workload. Their approach, however, is

different in general than any other related horizontal

approaches as they use average throughput per server as the

control input in contrast to the commonly used number of

servers.

Wang et al. [95] focused on vertical elasticity to adjust

CPU allocation of virtual containers that hosts different

tiers of an application. Their feed-forward method esti-

mates optimal CPU utilisation level, whereas the feedback

controller further tunes the utilisation target for individual

containers that are maintained by the distributed utilisation

controllers. In the case of [74], either feedback or feed-

forward control executes at a time as their control interval

is the same, whereas, in the case of [95], all controllers run

at different control intervals. Their approach is further

extended in [64] to manage the performance of multiple

applications. The extension includes the consideration of

hybrid controller of [95] as the application controller,

which is responsible for calculating required CPU entitle-

ment necessary to obtain the desired performance target.

Furthermore, the addition of a node level controller (Inte-

gral) to manage the CPU entitlement of the respective VMs

on a given node. Kjær et al. [56] combined a PI and a

Proportional based feed-forward method. Their feed-for-

ward approach however, is different as it uses an on-line

performance model in contrast to other related hybrid

approaches mentioned in this category which use off-line

performance model.

4.4.3.2 Gain scheduled/switched controllers This family

of control solutions refers to those methods, where multiple

models/controllers/gain parameters are used
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simultaneously. Such methodologies are accompanied with

an associated reconfigurable/switching/gain scheduler layer

to select the suitable model/controller/gains at runtime.

Grimaldi et al. [58] proposed a PID gain scheduling

approach to dynamically adjust the number of VMs to

maintain the desired CPU utilisation. The gain scheduler is

based on the minimisation of a cost function to obtain

optimised values of the controller gains in a particular

operating region (characterised by different workload and

timeslots) with an objective to reduce the control error

close to zero. Certain details such as modelling aspects and

how CPU utilisation is related to the end-user performance

are missing. A linear parameter varying (LPV) modelling

approach is followed in [40] to guarantee web server per-

formance (Throughput and Response time) by dynamically

adjusting the number of VMs. They utilised a gain sched-

uled LQR design approach, where the CPU utilisation of

VMs is used as a scheduling parameter. In contrast, Qin

and Wang [52] used LPV � H1 controllers as their design

approach for calculating the aggregate CPU frequency

needed to maintain a target Response time, which was then

used to compute the number of VMs. They used arrival rate

of the workload and average service rate as the scheduling

parameter for the characterisation of time-varying operat-

ing conditions. Similarly, Tanelli et al. [66] also used

arrival rate and effective service rate per application as

their scheduling variables in their proposed MIMO LPV

approach. However, they focused on the dynamic alloca-

tion of CPU capacity to individual VMs that share the same

physical system.

Patikirikorala et al. [65] proposed a multi-model

switching control system to dynamically allocate CPU

capacity to the VMs of a physical machine to maintain

response time objectives of an individual application. Their

approach distributes the overall system in two operating

regions using a threshold level of Response time. A specific

model is then designed to represent the behaviour of the

system in each operating region. Their approach uses

multiple fixed PI feedback controllers, which on runtime

change based on the operating region using if-else based

switching mechanism. In contrast, Saikrishna and Pasu-

marthy [41] used ten distinct operating regions and arrival

rate as the switching signal. Similarly, our early work in

[51] is based on the use of multiple controllers to dynam-

ically adjust the number of VMs to guarantee application

performance. The distribution of overall system among

different operating region is based on the various intensity

levels of incoming workload, whereas the selection of

suitable controller is realised at runtime using a fuzzy

control system based switching mechanism. The switching

mechanism consists of attributes like workload intensity,

application performance and resource utilisation level.

Morais et al. [96] in contrast, combine multiple predictors,

where they switch amongst them in order to find best set-

tings for the resources to meet the target utilization level.

They however, do not consider any target performance and

assume that the target utilization level meet the purpose.

Their method, in contrast to other approaches mentioned in

this category, is also accompanied with a reactive strategy,

where the scaling actions shall be taken based on prede-

fined utilization threshold.

4.4.4 Intelligent

This set of controllers is based on uniting the underlying

knowledge of the system in the form of ontology or rules to

reason about the behaviour of the system, e.g., knowledge-

based fuzzy control and neural network based control

solutions.

The authors of [47, 67, 97] proposed horizontal elas-

ticity solution for Internet based systems using fuzzy sys-

tems. They all have used performance based metrics to

make scaling decisions. Jamshidi et al. [47] highlighted the

lack of handling uncertainty related issues in existing auto-

scaling approaches and the static scaling behaviour of

commercially available rule based systems. They proposed

the idea of qualitative elasticity rules using a fuzzy control

system to the aforementioned issues. The inputs to their

method consist of Arrival rate and Response time, whereas

the output is the number of VMs to be added or removed.

Their approach utilised the knowledge of domain experts to

design fuzzy rules at design time. These fuzzy rules are

then responsible to make scaling decisions at runtime. The

key problems of this approach is their reliance on domain

knowledge, which may not always available. Furthermore,

the output (number of VMs) of their approach are a pre-

defined fixed range. Their approach is further extended in

[67], where they have used fuzzy Q-Learning to learn the

best elastic policies (fuzzy rules) at runtime to cope with

the issue mentioned above.

In both of the above mentioned approaches, they have

consider application as a whole rather than handling the

complexities of the multiple tiers of the application. In

contrast, Lama et al. [97] focused on multi-tier applications

to guarantee the 90th percentile end-to-end delay. This

approach utilised an optimal approach to determine the

optimal number of servers needed for a multi-tier appli-

cation and integrate a self tuning fuzzy controller to

compensate the delay caused due to the addition of new

server. This approach however, assume that all the servers

are homogeneous. Furthermore, in contrast to [47, 67], they

also consider resource utilisation in decision making in

accompanying to their performance measurements.

In contrast to the approaches mentioned above, the

control solutions proposed in [70, 71, 76, 77] focused on

vertical elasticity. Xu et al. [76] used two fuzzy based
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methods, i.e., modelling and prediction to dynamically

estimate the CPU capacity of a VM needed by an appli-

cation. Their modelling approach builds a fuzzy model at

runtime by directly monitoring/learning the relationship

between application workload, resource usage and perfor-

mance. Whereas, their adaptive prediction technique only

considers the observations of resource usage to estimate

future resources. Their approach is generic in nature and

can be utilised for different type of applications. In con-

trast, Ref. [70] focused on multi-tier application to

dynamically allocate CPU share of VMs of each tier. This

approach is further extended in [71] to also take into

account the memory readjustment in collaboration to CPU

capacity. Moreover, they also provided a cascade based

coordination mechanism at the time of scaling decision to

consider the joint effect of both kinds of resources. Such

coordination mechanism has not been considered by many

authors for the same problem, e.g., [42, 92, 98]. Wang et al.

[77], in contrast focused on data based system to read-

justment the CPU capacity and disk IO bandwidth using an

adaptive fuzzy modelling approach. Some other examples

of fuzzy approaches include neural fuzzy control [99],

fuzzy logic based feedback controller [100], fuzzy model

coupled with a performance prediction model [101] and

multi-agent fuzzy control [102].

4.5 Architecture

The analysis of implementation pattern of each reviewed

proposal presented in Tables 1, 2, 3, 4, 5, 6 and 7 indicate

the use of following patterns:

– Centralised the control system following this architec-

ture is implemented as one unit, which is responsible

for managing the control objective from a central place,

e.g., at a global system level. It is evident from

Tables 1, 2, 3, 4, 5, 6 and 7 that the majority of the

control solutions are Centralized. A solution can be

centralized at one of the following three levels, i.e.,

Application, Node or Cloud. The solutions that focused

on horizontal elasticity from the SP perspective are

centralized at Application level (e.g.,

[43, 44, 48, 50, 61, 72]), whereas the control solutions

that cater CPs perspective runs centrally at Cloud level,

where they could be responsible for different applica-

tions (e.g., [33, 48, 86]). The application level control

solutions can be executed outside of the cloud

environment and therefore they can control interactions

with multiple control. The centralizes solution at node

level are those, where the control solutions are

responsible for the resource management of VMs

running at that computational node (e.g., [49, 53, 54]).

– Distributed the control systems adopting distributed

pattern implement at sub system level. Such control

methods are usually responsible for achieving the

control objective at sub system level. It can be seen

from Tables 1, 2, 3, 4, 5, 6 and 7 that such an approach

is mostly common in the cases of vertical elasticity,

where the implementation of the control solutions are

proposes at each VM of the cluster, (e.g., [30, 62, 73]).

In the case of horizontal elasticity, there are few

approaches including [40, 41, 60], where sub con-

trollers are responsible to handle resource management

task at per tier (or objective) level.

– Hierarchical the control system in this case is imple-

mented at two different levels, i.e., lower and upper

level. At the lower level, the distributed controllers

manage a sub-system, whereas, at the upper level,

another controller mediate distributed controllers to

achieve the control objective at the global scale. This

category only include the following control solutions

[34, 64, 68].

– Cascade using such an approach, multiple controllers

work simultaneously in a way, where the decision of

one control solution becomes input for the next one,

(e.g., [28, 75]).

5 Discussion, issues and challenges

The feedback control solutions that follow the fixed gain

design principle such as [44, 48, 50, 53, 60, 61, 72] in

general work well for systems that are subject to stable or

slowly varying workload conditions [17]. However, due to

the lack of adaptive behaviour at runtime, the performance

suffers in scenarios where the operating conditions change

quickly or when the environmental conditions and config-

uration spaces are too wide to be explored effectively [18].

The lack of adaptivity issue has been addressed by

incorporating runtime adaptation mechanism using online

learning algorithms such as the use of linear regression

[31], optimisation [62], Kalman filter [55] and reinforce-

ment learning [49]. In general, such adaptive control

methodologies have the ability to modify themselves to the

changing behaviour in the system environment that make

them suitable for systems with changing workload condi-

tions. However, such methodologies are criticised for the

associated additional computational cost caused due to the

online learning [7], their associated risk of reducing the

quality assurance of the resulted system, and the impossi-

bility of deriving a convergence or stability proof [18].

Moreover, they are unable to cope with sudden changes in

the workloads.
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Similarly, the optimal methodologies such as MPC and

LLC based approaches are also blamed for their compu-

tationally expensive nature due to solving complex opti-

mization models [103] despite their ability of producing

optimal results. For example, Ali-Eldin et al. [33] reported

that for the LLC based solution proposed in [34], it takes

half an hour for computing the elasticity decision for a

system consist of 60 virtual machines hosted by 15 phys-

ical servers. The computational time for such solutions

demonstrate exponential increase with the increase in the

problem size, i.e., the number of computational servers.

The hybrid approaches integrates multiple controllers to

achieve efficient control over cloud resources. The inte-

gration includes controllers either of same kind (e.g.,

[42, 46]) or different kinds (e.g., [57, 69]). The proposals

reviewed in this category hint on the following three dif-

ferent types of integration. Firstly, the multiple controllers

act in parallel, e.g., [42, 46]. Secondly, the different con-

trollers used are executing at different levels, e.g., [57, 69].

Lastly, a combination of feed-forward and feedback con-

trollers are utilized, e.g., [56, 64, 74, 95].

The hybrid approaches where the controllers run in

parallel require a synchronization method to determine the

contribution of each controller into the final objective. For

example, consider the case of vertical elasticity, where

individual feedback controllers are provided to handle

memory and CPU requirements. In such a solution, the role

of the decisions taken by individual controller shall be

synchronized and coordinated, otherwise it may result in

unpredictable system behaviour [46]. However, establish-

ing better coordination mechanism is challenging as it

requires to determine the relation between application

performance and the variations in the combination of dif-

ferent resources.

The hybrid approaches [57, 69] running at different

levels have some sort of coordination. In such approaches,

the multiple controllers at first level aim to maintain indi-

vidual objectives (e.g., the resource requirements of indi-

vidual tiers of the application), where the next level

resolves any conflicting decision made by individual con-

trollers to deduce the final output. The hybrid scheme in-

tegrating the combination of feed-forward and feedback

methods are effective, where the feed-forward controller

follows a predictive approach that takes scaling decisions

for a longer time in advance, whereas the feedback method

is responsible for making gradual changes in a reactive

style. However, the performance and accuracy of the pro-

posals are more dependent on the choice of the type of

controllers used as feed-forward and feedback methods.

For example, Al-Shishtawy and Vlassov [74] used MPC

based feed-forward control solution and a fixed-gain PI

based feedback control method. MPC based approaches as

earlier mentioned are very accurate but computationally

expensive, whereas fixed gain PI feedback controller suf-

fers from lack of adaptivity at runtime.

The gain scheduled (switched) controllers like the

hybrid approaches also consist of multiple controllers, but

only one controller (model) is active at a time. The gain

scheduled (switched) controllers have the ability to adapt

themselves to the changing environment at runtime using

the pre-configured repository of multiple controllers (or

models), where each works well in a different operating

region. Such a controller helps to achieve certain level of

adaptivity at runtime without learning at runtime, e.g.,

[41, 51, 65]. However, such controllers require a large

amount of work to be done at design time to identify and

partition the system among the various operating regions.

Furthermore at runtime, the handling of any situation that

was unseen at design time will be uncertain. Lastly, they

are also criticized more often for their associated unwanted

behaviour, termed as bumpy transition, that could lead the

system to an oscillatory state [27, 104, 105]. On the other

hand, knowledge-based control solutions utilizing machine

learning [67, 106, 107] or neural networks [99, 108] pro-

vide high levels of flexibility and adaptivity. However,

such flexibility and adaptivity come at the cost of long

training delays, poor scalability, slower convergence rate,

and the impossibility of deriving stability proof

[7, 18, 103, 109].

It is concluded from the above discussion that the dif-

ferent elastic controllers due to their underlying imple-

mentation techniques have different pros and cons, hence

there is no best solution and the choice of selecting suit-

able approaches depends on the requirements [18]. Fur-

thermore, irrespective of the considerably wide range of

control theoretical approaches to implement cloud elastic-

ity, there are still various issues and challenges that have

not received much attention. Based on our analysis, we list

the following important open issues and challenges that

need to be further addressed:

(i) Heterogeneity majority of the existing hori-

zontal auto-scaling systems consider hiring of

VMs with same computational resources.

Such consideration eases the design and

implementation of the control systems. How-

ever, renting homogeneous servers is not

always pragmatic. Therefore, further research

is required for the development of control

systems that consider acquisition and release

of servers having different computational

capabilities. This creates challenges for build-

ing efficient, accurate and robust performance

models that consider heterogeneous computa-

tional capabilities.
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(ii) Vertical elasticity the commercial CPs ( such

as Amazon, Microsoft, etc.) only provide

horizontal elasticity features. However, verti-

cal elasticity facilitate users to control their

rented resources at the fine-grained level. It

allows to dynamically increase (and decrease)

certain components, e.g., CPU and memory. It

is evident from Sect. 4 that there are many

academic control solutions that handle verti-

cal scaling. Some of such approaches either

rely on the dynamic adjustments of one

computational resource or independently con-

trol different resources using multiple inde-

pendent controllers. However, considering the

uncertain nature of applications, it is difficult

to predict at design time the dependent

resource components and therefore, relying

on the dynamic adjustments of one computa-

tional resource is not always pragmatic. On

the other hand, the existing approaches handle

multiple resources, lack coordination mecha-

nisms that can address the collaborative

behaviour of the readjustment decisions made

by different controllers runs in parallel to each

other. Such mechanisms are needed to avoid

unnecessary adjustments, avoid oscillations,

resolve conflicting decisions and avoid over

(and under) provisioning.

(iii) Hybrid (feed-forward and feedback) solutions

the hybrid solutions that integrate feed-for-

ward and feedback methods are effective as

they can obtain the benefits of both style of

auto-scaling decisions, i.e., predictive and

reactive. The feed-forward method in the

hybrid approach anticipate system’s demand

in advance and takes scaling decision to make

sure the virtual machines are ready at the right

time thus avoiding the additional delay caused

by the virtual machine start-up in the case of

reactive auto-scaling. On the other hand, the

feedback method handles the small variations

in reactive style to handle any unpre-

dictable situation. It is evident from

Sect. 4.4.3.1 that there are very few research

works [56, 64, 74, 95] that address cloud

elasticity problem using such an approach.

Furthermore, most of these approaches

focused only on vertical elasticity. Therefore,

considering the benefits of such hybrid

approaches, further research is required in

this direction.

(iv) Interoperability the cloud is perceived as the

repository of unlimited computational

resources. However, in reality, every CP has

a limited set of computational resources.

Therefore, the application providers may need

to hire resources from different CPs. How-

ever, reliance on resources from different CPs

raised a number of challenges related to

interoperability for the application providers.

Some of these challenges in the prospect of

elasticity (including the interaction between

control solution and auto-scaling APIs of CPs,

the delay, the design of accurate performance

model, etc.) have not been addressed in the

existing control solutions. Therefore further

research is required for the consideration of

interoperability with respect to addressing

elasticity.

(v) Oscillation the design of control solutions for

auto-scaling requires careful attention and

detailed evaluation because badly designed

controller may result in oscillation and insta-

bility [24]. The switched controllers in par-

ticular are criticized for the phenomenon like

bumpy transitions that could leads system to

an oscillatory state [27, 104, 105], where

cloud resources are acquired and released

periodically. The occurrences of bumpy tran-

sitions may be due to an inappropriate

switching or some larger changes in the

system state. The existing research works

lack on providing an explanation on how a

proposed method deals with such undesirable

oscillatory behaviour.

(vi) Resource usage analysis over-provisioning is

used to avoid performance violation consid-

ering peak workload scenarios [110, 111].

However, this results in the wastage of

resources. It is therefore undesirable and

should be avoided. In the existing research

works, the authors mostly provide the evalu-

ation of the proposed methodologies in terms

of achieving the performance objective. How-

ever, an explanation or comparative analysis

of the methodology in the prospect of min-

imising the computational resources is mostly

missing. Therefore, further research on cloud

elasticity shall consider to conduct compara-

tive cost analysis against state of the art

approaches in accordance to obtaining the

performance objectives.

(vii) Evaluation and benchmarking the perfor-

mance of a control methodology is sensitive

to the changes in workload. Therefore, exten-

sive evaluation of control solutions are
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necessary. However, majority of the existing

research works have been evaluated only

using less than three workload scenarios

[112]. Moreover, as is evident from Tables

1, 2, 3, 4, 5, 6 and 7, the majority of the papers

also lack on providing details of comparative

evaluation. Furthermore, the unavailability of

benchmark frameworks makes it difficult to

compare and evaluate the related approaches.

A recent development in this regard is the

performance evaluation framework proposed

in [112]. However, this framework is generic

and there is a stronger need for specific

control-theoretical benchmarks that have the

ability to facilitate analysis of control solution

specific characteristics, e.g., SASO (Stability,

Accuracy, Short settling and Overshoot)

properties as discussed in [2].

(viii) Computational overhead analysis most of the

control methodologies are adaptive in nature

as they have the ability to dynamically adapt

to the changing environments. Such method-

ologies provide flexibility and adaptivity.

However, they are also criticized for their

long training delays and slower convergence

rate [7, 18, 103, 109] because they are

required to learn the system behaviour at

runtime. The existing research works that

have utilised such methods are often lack on

providing details regarding the associated

computational overhead. Therefore, further

research works proposing such adaptive meth-

ods shall consider providing details on over-

head analysis of their respective methods.

(ix) Uncertainty the deployed application over

cloud environment automatically inherits the

uncertainty related challenges associated with

the cloud environment [113]. Hence the

underlying elastic method, which is responsi-

ble for the resource management of the

application, has to deal with these challenges.

However, handling uncertainty aspects in the

existing elasticity research has not yet

received much attention [114]. Some exam-

ples of such uncertainty behaviour include

impreciseness in domain knowledge, inaccu-

racy in monitoring information, delays caused

due to actuator operation, failure of a VM,

noise in input data, the unpredictability of

workload and inaccuracies in performance

model [114–116]. The existing research

works on cloud elasticity in general has not

paid much attention to consider such

uncertainty aspects, while designing auto-

scaling system [114, 115]. Therefore, further

research works in this direction is needed.

(x) Scalability it is observed, during our analysis

that most of the control methods are either

designed or tested for web applications.

Furthermore, the evaluation and analysis by

the authors of respective approaches are

performed at small scale, i.e., using a work-

load spanning of hours/days [112] or fewer

number of VMs. The experimentation and

description on the suitability of control solu-

tions at larger scale considering realistic

enterprise level web applications is missing.

6 Conclusion

With the increasing popularity of cloud computing in

recent years, the quest for better elasticity methods has

received a lot of attention. However, determining the right

amount of computational resources needed at runtime is a

challenging task. Over the years, the use of control theory

has been stood out as one of the very few main techniques

to implement cloud elasticity. In this paper, we survey the

cloud elasticity literature by focusing on control theoretical

approaches to provide a detailed review of the literature,

using a proposed taxonomy consisting of characteristics

belonging to both domains, i.e., control theory and cloud

elasticity. Finally, we highlight some open issues and

challenges that have not received sufficient attention in the

literature.

7 Summarized results

The details of all the proposals reviewed in Sect. 4 are

clustered with respect to the type of controller and pre-

sented in Tables 1, 2, 3, 4, 5, 6 and 7. The extracted

information from the reviewed proposals are presented as

per the attributes of the taxonomy explained in Sect. 3. The

rows of the tables represent the characteristics of the tax-

onomy where each column indicate a different approach.

Note the Ingredients attribute of the taxonomy combine

four characteristics (including Provider, Application type,

Trigger and Elasticity type). This can be seen from Fig. 2.

In light of this, each cell of the Ingredients row present

respective value for each of the four characteristics men-

tioned above. The possible values (and their corresponding

acronyms) for each characteristic is as follow (this can also

be seen from Fig. 2)

– Provider the possible values include CP and SP.
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– Application type the possible values include Generic

(G), Web (W), Scientific (Sc), Storage (St) and

Database (Db).

– Trigger the possible values include Reactive (R),

Predictive (P) and Hybrid (H).

– Elasticity type the possible values include Horizontal

(Ho) and Vertical (V).
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