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1. SUMMARY

A new method of analysis for predicting thrust augmenting ejector characteristics is
presented and the results otcomputations for a test case discussed. The impetus for the

development of the method is based on three simulation requirements: (1) a predictive

analytic procedure is needed, (2) the method must accommodate some form of turbulent

flow characterization and interchange, and (3) the final system of equations must be

amicable to a real-time simulation objective. A literature search revealed an absence of

ejector research consistent with these combined objectives and that was capable of

describing transient flows.

Within the general framework of the control-volume formulation for continuity,

momentum, and energy there exist time derivatives of field variable volume integrals. Since

these volume integrals cannot be converted into surface integrals, an ap.proximat_on for the

field variable spatial distribution must be made. Under the assumption that the ejector

mixin_ region physics dominate ejector performance characteristics, spatial sub-division of
the mtxing region permits each sub-volume to be approximated by characteristic velocity,

pressure, and temperature profiles. A description of turbulent flow is provided with

Abramovich-type self similar turbulent flow field variable profiles. Time derivatives of the

volume integral reduce to time derivatives of lhe field variable characteristics, and, with
treatment of the surface integrals in the "usual" way, a set of differential equations in time

evolves. With the intent to focus primarily on results for ejector thrust, very few (less than

ten) subdivisions of the mixing region are needed, and, therefore, a terse description of the

ejector mixing region is obtained. Although a crude description of the turbulent ejector jet

interaction is employed, the final system of equations can potentially provide real-time
thrust predictions, thereby meeting the aforementioned objectives.

Since a step-change in the ejector driving nozzle flow is representative of typical

ejector operation, an example prediction of this situation is employed as a test case for

application of the methodology.
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2. EJECTOR SIMULATION PERSPECTIVE

Role of the Simulation

Research on design methodologies for integrated aircraft and propulsion flight
control systems requires accurate subsystem component simulations. In principle, these
simulations must mimic steady-state and transient component effects. A NASA Lewis

research prosram is currently underway to develop a "real-time" simulation -- including
system transients -- for Short Take-Off Vertical Landing (STOVL) aircraft. Thrust

augmenting ejectors are considered potentially valuable propulsion subsystem elements

for the powered-lift aspect of STOVL aircraft. To explore ejector concepts further, the

initial NASA Lewis STOVL system simulation requires a thrust augmenting ejector

sub-s_'stem simulation. Unfortunately, an ejector simulation that includes ejector

transients is not currently available; the purpose of the present work is to develop one.

An ejector is a mechanically simple fluidic pump composed essentially of two

components: (1) a "primary" jet nozzle issuing into (2) a shroud. This arrangement

permits entrainment and acceleration of a secondary flow (within the shroud) by the

primary jet. A diffuser section attached to the shroud allows control over the ejector

discharge pressure. Figure 1 illustrates a generic thrust augmenting ejector.

From a system simulation point of view, the ejector participates in the description
of the aircraft "plant dynamics" as shown in figure 2.

Three Competing Requirements

There are three basic requirements the ejector simulation must meet:

.

2.

The mathematical model must be predictive (not parametric) in nature.

Some approximation of turbulent flow characteristics inside the ejector mixing
region must be made.

, The final system of equations describing the ejector must be amicable to the

NASA/Lewis real-time simulation objective.

To meet the first requirement, only two data sets should be prescribed: (a) the primary

jet "control-valve" setting (with associated thermodynamic data), and (b)free-stream

atmospheric properties. From this, the secondary inlet condition and the ejector thrust

augmentation (as a function of time) are predicted. A parametric method would specify
all primary and secondary conditions (in contrast to the predictive method where the
latter is unknown).

Centralto the idea of an accurate ejector simulation, the second requirement
points out the need for some type of characterization of turbulent mLxmg and
entrainment phenomena in the mixing region; a description of these effects is essential
for transient-type analyses.

The third reguirement emphasizes the ejector simulation must not become a CPU
bottleneck in the fmal STOVL simulation.
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At this point in time these simulation goals are at odds with each other; methods

relying on first principles for the predictive facet of analysis are accurate, but not
executable in real-time.

Perspective on Previous Work

Ejector research goes back about half a century and has resulted in a multitude of

papers on various aspects of ejector performance, optimization, and analytic methods.

Frequently referenced in recent literature is the work of Porter and Squires[1981]
whose survey produced a compilation of over 1600 research papers on ejectors; much

more research on ejectors has been done since that review. No attempt is made in the

present work to extensively discuss the histo_' of ejector research. Rather, it is more of
interest to note that in the survey conducted for this work (see References) unsteady

flow research focuses on the pulsed ejector flow problem. Such flows are of interest, for

example, in chemical laser applications (see Anderson [1970a, 1970b, 1976], Johnson

[1966], and Petrie, Addy, and Dutton[1985]). No papers were identified that dealt with
transient thrust augmenting ejector flows m a way consistent with a real-time simulation

goal.

Methods of analysis are extracted from either a control-volume or material-vol-
ume formulation. In the former, a set of algebraic equations is (often) based on

quasi-one-dimensional and isentropic conditions, while in the latter a multidimensional

non-linear system of differential equations is obtained. The first generally gives way to

parametric studies while the second is more predictive in nature.

Although bases of analysis can be polarized as described above, there are many

methods of implementation. For any sp.ecific perspective on formulation involving, for
instance, a system of differential equations, details of analysis depend on the analyst's
selection of a solution method, e.g., finite-difference, finite-element, or method of

characteristics. We summarize the extremes c,f ejector simulation as follows:

. A control volume analysis is by far the most straightforward and widely reported
method, but, since the system of equations is under-determined (when only the

ambient and primary nozzle conditions are given), some key parameters must be

specified. Although the system has potential for real-time simulation, the need to

rescribe, for instance, mass entrainment ratio yields that (in principle) this is at
est a parametric method of analysis.

. A material-volume analysis draws on the full Navier-Stokes and energy equations,

and provides an opportunity for a fundamental introduction of tubulent flow

characteristics. It is therefore possible to be predictive in nature, but only at a

considerable CPU expense; these machine computations are not likely to fall
within a real-time framework.

Present Approach

In order to generate a predictive method of analysis an empirically based model

for the turbulent interaction region is explored within the framework of a control

volume analysis. This approach provides a rational foundation for the introduction of

steady flow data to "calibrate" an unsteady flow simulation; there is no intent here to

provide a multi-dimensional CFD code based on first principles.

<3>



Elements of Current Work

A methodology for simulating thrust augmenting ejector performance is described

in the present work. Section 3 describes some typical ejector approximations and

considerations related to ejector operation and operating regimes. Since the final
system of equations are extracted from a control-volume formulation, control-volume

equations for an arbitrary ejector control volume are given in Section 4; this enables the

general (time-dependent) surface velocity to be correctly introduced into the system.

Section 4 also expands on the simplification of one-dimensional flow and application of
the equations to the inlet, mixing region, and diffuser.

Section 5 remarks on the simplification offered by a steady-state analysis and
provides a descriptive solution procedure and results from the same. Section 6 looks at

three approaches for unsteady flow analysis and details the Finite-Volume adaptation
used in tlae present work.

A test case is examined in Section 6; this leads the the concluding remarks in
Section 8.

Appendicies A-J provide extensive detail on points of analyses traditionally
assumed "intuitively obwous". Such information is contained in the present work for (a)

completeness of documentation of the proposed method, (b) the capability to repro-

duce the derived results, and (c) illustration of inadvertently implicit assumptions.

<4>



3. PRELIMINARY CONSIDERATIONS

Qualitative Ejector Characteristics

A thrust augmenting ejector is often described as a fluidic pump that employs the

momentum of a high velocity jet from the primary flow nozzle (drive flow) to entrain

and pressurize a secondary (suction) stream; a typical thrust augmenting ejector consists

of four basic components:

1. a high pressure nozzle to accelerate the primary flow,

2. an inlet section to accelerate the secondary flow

. an intermediate mixing section to permit: momentum exchange between the

primary and secondary flows, and

4. a diffuser to match the discharge pressure (static) with the ambient.

Overviews of the characteristics for this general ejector configuration have been

given recently by (amon_ others) Koenig et. a1.[1981], Minardi [1982], and Bevilaqua
[1984]. Also, the proceedings of the 1981 Ejector Workshop for Aerospace Applications

(Braden et. al. [1982]) covers many issues in ejector technology and simulation. It is well
known that the (irreversible) mixmg of the primary and secondary streams results in a

local static pressure that is less than the ambient; this is the origin of the suction effect

on the secondary stream. Recovery of the stalic pressure in the diffuser results in a net

thrust component from the difference of the (integrated) pressure distribution of the
diffuser and inlet 1. It is therefore of interest in ejector design to contour the inlet and

diffuser so as to maximize the suction effect and diffuser pressure recovery. A typical

ejector wall pressure distribution is shown in Figure 3 (taken from Bernal and Sarohia

[1983]; also see the work of Miller and Comings [1958]). Minimization of nozzle drag

(direct and ram) is also important, as is the need to avoid shroud leakages. An

approximate relation for the ejector system thrust is given by

T = - (1)

where the first term is an approximation for the prima.ry nozzle thrust, the second the

net surface pressure integral, and the last the sum of vtscous and pressure losses. The

obvious design goal is to have an ejector where the third term is minimized. In analysis,

the object is to predict the velocities and pressures such that all terms in the thrust

equation can be evaluated; as a practical matter this is not an easy task and is the

impetus for the variety of approximate methods that exist. For example, in a

steady-state analysis the total thrust of the system can be computed from application of
conservation of momentum and mass for a control volume corresponding to the duct

boundary - in this case there is no need to integrate the pressure distribution over the

1 Analogous to the theory of lift on a wing in an inviscid flow, the inviscid thrust in an cjcctor is attributed
to the net circulation that arises when the flow streamlines in the shroud are directed hmgitudinally from

what would otherwise (in the absence of the shroud) be at an angle to the ccnterline.
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wall of the shroud. At the other extreme finite-element or finite-difference methods of

analysis are used to compute detailed flow velocities and pressures along the wall

bounding the flow.

It is evident that (as in many other fluid flow problems) ejector analyses suffer

from a lack of understanding of turbulent flow. Current mathematical descriptions of

turbulent flow yield non-linear, time-dependent equations; non-unique solutions are

also an important consideration. Phenomenological descriptions prevail, however, and
"calibrated" versions seem to simulate flows well. Several ejector studies blend

empirical results, aero-thermodynamics, and control volume (or numerical) approaches
quite successfully in the analysis of ejector performance (see for instance, Salter [1975],
or Tavella and Roberts [1984]). Nonetheless, experimental work continues to improve

understanding (again, an example is the work of Bernal and Sarohia [1983]). Some
conclusions from experimental studies assist in the characterization of ejector behavior:

. The level of thrust augmentation does not vary noticeably with primary pressure

ratio (the rate at which the primary jet spreads is not a function of its initial

velocity).

. Thrust augmentation increases nearly linearly with diffuser area ratio, up to an

area ratio in the vicinity of 1.5. Augmentation levels off and/or decreases as the
area ratio is increased further - the duct wall half-angle seems to influence the

particular trend.

. Ejector performance is very sensitive to inlet losses and the thrust efficiency of the
nozzle, although skin friction losses appear to be very small. The extent of mixing

of the flow discharge (flow skewness) has a significant impact on ejector

performance. See Belivaqua [1974].

4. Velocity profiles in the mixing region tend to be self-similar.

. Additional thrust augmentation can be realized for installed ejectors with the use

of end plates - these cause an otherwise three-dimensional flow to be two-dimen-

sional (the end plates block flow into the separated region and create a drop in

pressure at the ejector exit, improving performance).

Reflecting on the last remark, the present work does not focus extensively on some of

the aerodynamic installation problems of ejectors described, for instance, by Knott and

Cudy [1986] or Lund, Tavella, and Roberts [1986], though this is not to say that such
effects are unimportant or can be overlooked in future ejector examinations. Rather,

two- vs three- dimensional effects are significant and have considerable bearing on the

interpretation of experimental data.

Of principle interest here is that secondary mass flow entrainment and the extent
of mixing (of the two streams at the ejector discharge station) are closely related to

thrust augmentation, and influenced by (1) ejector geometry, (2) primary jet character-
istics, and (3) physical fluid properties.

<6>



Efficiency and Thrust Augmentation Ratio

Ejector performance is often quantified by computation of the thrust augmen-
tation ratio, ¢, and the ejector efficiency, ,_. As would be expected, an increase in

thrust augmentation occurs at the cost of a decreased efficiency, so the "optimum"
ejector balances the two (in accordance with the prescribed mission). In the

definition of _ it is useful to use as a reference the isentropic thrust obtained from
the expansion of the primary jet to the ambient

"I" SYSTEM

(_)
q_ = F PRtMARY,IDEAt

Note that when an isentropic reference thrust is used it is easier to compare the
performance of ejectors with different nozzIes.

Several equations to characterize "efficiency" have been used in the literature:

1. The nozzle efficiency is given as the ratio of the system thrust and the sum of

the thrust for the primary and secondary streams under ideal conditions,

2. The ejector efficiency can be measured as the ratio of the kinetic energy of the
ejector effiux to the input energy of the primary nozzle,

3. A ratio of the input momentum to the discharge momentum could be used (for
the nozzle or ejector),

4. Base the ejector efficiency on the cor_cept of thermodynamic availability ( see
Minardi [1982]),

5. Compute the ratio of the enthalpy change of the mixed ejector flow to the

ideal change in enthalpy of the primary flt_w (again, see Minardi [1982] for details

and several versions on this).

Item 2 is chosen for the present work and described in more detail in Section 4.

Characteristic Surfaces

Mass flow characteristics can be expressed in a general way as a function of
stagnation pressure and back-pressure ratios as

tits ( l" _s .o I" .,., ) (:3)lz - r_p I l',_,o' l;,p,o

where it is assumed that ejector geometry and fluid properties are known. Similarly,
the secondary stream inlet Mach number can be expressed as

<7>



[( P_' Po,_)= , (4)
Msl Pte,o Plp.o

where PIS is the static pressure of the secondary flow at the point of confluence of
the two streams.

A significant contibution to ejector analysis is the work of Addy, Dutton,

Mikkelson and co-workers [1974, 1981, 1986] who provide a clear view of overall

ejector characteristics through the presentation of three-dimensional surfaces; the

ordinate and abscissa use the arguments of the general relations given above. An
overview of the more detailed d_scussion by Addy, Dutton, and Mikkelsen [1981]
follows.

Three regimes of flow can be described with three-dimensional surfaces that

have the parameters of equations (2) and (3) as axes; these surfaces are shown in

figure 4. An important feature of the surface is the "break-off" curve that divides the

"supersonic" and "saturated-supersonic" regimes and the "mixed flow" regime. In the
latter, _ is a function of the ambient pressure level while the former are not.

Although it is assumed the primary nozzle flow is choked, the distinction of the
breakoff curve is to mark the development of sonic conditions in the mixing region.

Under certain conditions the secondary stream velocity can reach sonic conditions at

the inlet, in which case the flow is choked and the mixing region described by a

saturated-supersonic regime (see figure 4). Subsonic flows are depicted by the mixed

regime.

Thrust augmenting ejectors entrain a second fluid at ambient conditions and

discharge to the (same) ambient a mixed primary and secondary fluid. In this
situation

P i s,o Paem

P I/'.o P It',o

(_)

so a subset of the three-dimensional surface of figure 4 which is of interest is the

two-dimensional slice shown in figure 5. Because the three-dimensional surface has

been drawn in a general way, no specific intent to exclude or include the

saturated-supersonic region has been made in the description of figure 5. The

secondary flow characteristic surface of figure 6 illustrates that sonic inlet conditions

are associated with the saturated-supersonic regime.

Obviously the problem before us is to establish specific numbers for the axes

of the characteristic curves (as functions of time). Recognize that those numbers

which are presently available (and supported by experimental data) are generally for

steady-state ejector operation and therefore provide little with which to remark on
transient behavior.

<8>



Remarks on the Analytic Approach

In the interest of (eventually) realizing a real-lime simulation capability, it is rational to

begin the ejector analysis with the development of (l-D, integral) control-volume

equations for a partitioned ejector; nomenclature for an arbitrary control volume is

given in figure 7. This type of analysis forms a general mathematncal structure within
which methods for prowding a transient capability and imitation of the turbulent

interactions can be explored.

To be sure, there are much more capable frameworks of analysis, but they have

only been explored for steady flows and example calculations indicate the approaches

are extremely CPU intensive. Shen et. a1.[1981] investigate the high secondary mass

flow scenario using finite element analysis. Hedges and Hill [1974] discuss finite-differ-
ence solutions and review the integral boundary layer analyses of significance.

Considerable attention is paid in Appeadix A and B to the development of the

integral equations since (a) the nature of the time-dependent terms is important, (b) a

proper account of a control volume moving in space is required, and (c) an open
discussion of "intuitively obvious" quantities (presented without derivation) is without

rigor. The development of these equations is _redicated on a point of view appropriate

for ejectors - "appropriate" is given here b_y those arguments often presented and
weathered scrutiny nn the literature. Some elements of that point of view are discussed

below:

Constant Area Mixing Section

The ejector shown in figure 1 reflects the assumption that the mixing region
has a constant cross-sectional area; this selection is intentional and made on a

theoretical basis. An alternate configuration, is the ."constant-pressure" ejector in
which it is assumed the area of the mixing regnon vanes such that, in the

one-dimensional case, the integrated static pressure is constant over the mixing

relgion cross-section. For this configuration, however, determining the necessary
mtxing section area distribution and the high-probability of off-design operation are

problems.

As it turns out for the traditional steady-state control volume analyses, the

constant-area and constant-pressure formulations predict comparable performance

(see Dutton et. a1.[1982], Dutton and Carroll [1986]). In fact, the constant area
formulation leads to a doubled value solution in which the mixed flow is either

subsonic or supersonic; the solutions fc, r the Mach number are related by the
relation for the Mach number across a nor mal shock. Selection of a solution is based

on compliance with the second law of thermodynamics.

Minardi [1982] provides a discussion of considerations for which the con-

stant-area geometry is a necessary, but not sufficient, condition for the analysis. This
leads to the conclusion that all possible solutions for the mixing region will be

obtained with the constant-area case, evea though certain solutions are not likely to

occur for typical ejector configurations.

<9>



Adiabatic Ejector Walls

It is almost a universal assumption in theoretical ejector studies that the

ejector walls are insulated; this allows the surface heat flux term in the energy

equation to be dropped. As will be discussed in detail later, this is not immediately
an assumption that the flow is isentropic. If we consider the arguments on the
creation of entropy in Appendix B,

Ds

DI

_ u VT 2V" _/J + > 0
p 7 .f- - ( 6 )

then entropy changes exist as long as the fluid is subject to viscous dissipation. The

combination of adiabatic ejector walls and inviscid flow provides:

Ds

-- = o (7)Dt

from which a convenient steady flow integral arises:

- frSdr& = 0 (8)

This relation is most often employed in the analysis of the inlet and diffuser. Since

Bernoulli's equation can now be used for the description of pressure across those

regions an alternate use of the entropy balance is realized; generally speaking, the

entropy balance becomes a condition on the simultaneous solution for the equations
of mass, momentum, and energy (mechanical).

Inviscid Interaction Region

For ejector flow conditions where the static pressure of the secondary flow is

P 1 < P 1 , the rimary flow expands andless than that of the primary flow ( S P_) P

interacts with the secondary flow to provide the interface boundary shown in figure
8. Note the formation of an "aerodynamic throat", that is, a minimum cross-sectional

area downstream of the inlet associated with the boundary of the inviscid interaction

of the two streams. If the secondary flow is subsonic upstream of this station, then
the peak flow velocity at the constriction will be at or below sonic conditions. The

"supersonic" operating regime is described when MS2 = 1, and the "mixed" region

given where MS2< 1. At very low secondary flow rates the secondary flow is

effectively "sealedoff" from the primary flow. A number of investigators (Anderson

[1974a,b], Addy and co-workers [1974, 1981]) have taken advantage of these

"partitioned" flows, as originally characterized by Fabri[1958]. Of interest here are

the admission of the following assumptions for this "inviscid interaction" region:

° The primary and secondary streams are distinct and do not mix between the

point of confluence and station 2.

< 10>



, Viscous interactions occur along the interface of the two streams (mechanism

of energy exchange between the primary and secondary flow).

3. Each stream is treated as irrotational.

o Although the average pressure of the streams is (potentially) different at each
streamwise station, the local static pressure is equal at the boundary.

In the work of Addy et. al. [1981] both streams are treated with an isentropic flow

assumption (mixed and supersonic regimes). Anderson [1974a] allows that the
secondary flow is isentropic, but determines the primary flow field from the method

of characteristics (in his treatment of supersonic flow only). Quain et. a1.[1984] relax

the assumption that the secondary flow is isentropic, but the discussion of results

from that work is not possible at this time (the paper is written in Chinese, abstract

in English).

Implementation of an inviscid interation region may simpli.fy the analysis of

the mixing region, but this does not relax the reqmrement of an _terative solution

methodology. Nonetheless, the use of this modelling approach offeres some analytic

simplification and is worthwhile to pursue if the conditions which precipitate the

approximation can be identified in advance.

The low-secondary-flow rate regime is only properly treated with a two-dimen-

sional flow field analysis. As such, the euphoria surrounding a one-dimensional

approach is mitigated by these types of flows and asks that the computational
burden be assumed (for the correct analysis) or the degredation in solution accuracy
announced.

Thermodynamic Considerations

Some elementary thermodynamic assumptions are often made in ejector

analyses; identification of them here is appropriate:

, The state principle of thermody_iamics provides that, for a gas, a given

thermodynamic variable can be described in terms of two thermodynamic

properties.

. Below a gas temperature of (approximately) 600°K, air has essentially a

constant specific heat, and therefore qualifies as a perfect gas; for generality,

though, an ideal gas would be used

. For a perfect gas the entropy and enthalpy of the gas are expressible as a

function of temperature only.

o Application of Dalton's law of partial pressure to a constant volume mixing

process yields the properties of the mixed flow at station 3 (see Appendix F).
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Rarely does it come to pass the need to distinguish between an ideal and a

gas; both are described by the equation of state, but the specific heat of an perfect

gas is constant, but in an ideal gas the specific heat is a function of temperature. This
minor point can have significant impact on computational speed if temperature is

unknown and the specific heat then extracted by an iterative method.

Summary

In the present simulation effort, an ejector with a constant area mixing region and

adiabatic walls will be used to provide thrust augmentation through the mixing of two

ideal gas streams. A phenomenological approach is taken to the turbulent interaction

problem, consistent with the objective to formulate a system description amicable to
real-time simulation.

<12>



4. CONTROL-VOLUME EQUATIONS FOR ONE-DIMENSIONAL FLOW

Overview

A control volume description of the ejector is perceived to be the most efficient

method of analysis for the real-time simulation goal of the present work. This section

outlines the application of the general control volume equations (developed in

Appendix A) to the ejector shown in figures l and 10. Note the ejector is partitioned

into an inlet, mixing, and diffuser region. Development of the mass, momentum, and

energy equations for each component intends to provide three results: (a) a summary of

the integral form of the equation, (b) a form useful for the transient ejector analysis,

and (c) the version obtained if a piecewise-constant velocity is assumed at stations of

inflow and effiux. Prior to those developments some remarks on the one-dimensional

flow approximation are made below.

One-dimensional flow approximation

Compressible flow in channels is ofte_ treated in (practical) control volume

analyses under the assumption that a quasi-one-dimensional flow exists; the basic

simplification offered is that velocity gradients can occur along (not across) the

streamwise axis of the channel (longitudinal axis). See figure 9.

A real-flow velocity profile is not (necessarily) symmetric and would reflect the

presence of any viscous, blockage, and Reynolds number effects. In the absence of

separation the real flow in the vicinity of the boundary must be parallel to the wall. In

the present work these effects can only be accounted for as far as the continuity

equation allows.

Analysis of "traditional" one-dimensional flow yields that the accuracy of this

assumption depends on the axial gradient of the cross-sectional area. If dA/dx is small

the assumption is well received (For the analysis of a stream-tube the "approximation" is
exact). It is worth noting the comparison given by Thompson [1972] between nozzle

data and the result for a one-dimensional flow analysis.

Particular attention should be paid to the 8enerosity of the one-dimensional flow

assumption for the expansion of the primary, jet issuing from the nozzle. There is

considerable breakdown in the approximation - and therefore in the accuracy of the
analysis - when the secondary static pressure is significantly less than that of the primary

jet. Recognize, of course, the extreme subsonic case (discussed previously) where the

secondary flow is effectively "sealed-off" a_d the flow field must be treated as

two-dimensional (recall figure 8).

Often it is assumed that the one-dimensional flow is also piecewise constant; this

allows for multiple streams of constant one-dimensional velocity to be considered and
provides for very convenient forms of the control volume equations.

Some accommodation of real-flow effects can be provided through a "skewness

factor" which mitigates the asumption that the discharge velocity from a duct is
completely mixed. As a practical matter, such an account is particularly useful for

examination of ejector configurations where experimental data is available.
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Skewness Factor

In order to include (partially, anyway) non-ideal mixing characteristics in the

ejector analysis, there is often introduced a skewness factor for the flow at the exit of

a mlxmg region and for the diffuser exit. It is assumed that knowledge of friction

losses in the shroud and the value of the skewness factor are adequate for the

characterization of the net effects of non-ideal mixing (even though local flow
details cannot be extracted).

Consider the spatially averaged velocity given by

,f<v> - vclA (1)
A

for the definition

/ (<v> 2A) (2)

If v is uniform, the skewness factor is unity; in a non-uniform flow/_ > 1. To get a

fee!ing for the magnitude of a, Bevilaqua [1974] notes that a typical ejector inlet
region has a skewness factor on the order of 1.8, while the skewness factor at the exit

of a (well-designed) mixing duct is approximately 1.02.

The skewness factor is constant for self-similar velocity profiles.

Salter [1975] discusses a theoretical approach to the prediction of the skewness

factor, based on the turbulent jet theory of Abramovich [1963].

Continuity

For a control volume moving through space with velocity U(t) the continuity
equation is

d-d-fvPdV + fAp(u-U)" ndA = 0 (3)dt

Define at any instant in time the mass contained in the control volume by

rn_ = fvPdV (,I.)

and introduce the relative velocity

v = u - U = ui (s)
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where the unit normal is defined as positive outward from the surface of the control
volume. Also, define the mass flowrate past station k as

m = (6)

Emphasis is placed on (a) the use of the relative velocity, and (b) the presence of the
negative sign. The impact of the latter is that an inflow Is described by a positive mass
flow; since

(v_.n)_ = v_(-i._) = -v_ (7)

then for an inflow

= f p,_,dA (8)

and for an outflow

(v_.n_)_÷, = v_.,(!.!) = v_., (9)

rh_., = - fA pvkclA (10)
k

Returning to the continuity equation, substitution yields

k

(11)

This has the intuitively desireable result that when the inflow exceeds the outflow, the
accumulation of mass is a positive quantity. Although superficially this may appear a
trivial result, reflect on a formulation involving u instead of v in the definition of the

mass flowrate; the impact on the latter is significant.

Introduction of the skewness factor requires the assumption of a constant density
over the cross-section,

tit = fA pvkclA = -fJyA v,dA = p, <v> A (12)
k k

Integrals dissapear on the right hand side of the continuity equation if the density
is considered piecewise constant; the mass flux accross station k is
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rfl_ = (pvA)k (13)

and therefore

dmc_

dt
(puA)k - (pvA)k, I (14)

Momentum

Application of the integral momentum equation to an ejector with adiabatic walls
and where gravitational effects are neglected provides

pu_dV = - p{t(u-U).r_zdA+ n.S'dA - n.(pl')dA

(15)

Introduce the relative velocity, then

p(v_+U_)dV - p(v+V)v.ndA dA

(16)

Define the net force acting on interior surfaces (thrust) to be characterized by the sum

of the surface integral of the deviatoric stress tensor and the interior pressure forces

F = frn'S'dA - frn_'(pl)dA (17)

It is important to note that no shear stresses are assumed to be acting over the inlet or

outlet regions. Also note that the area r represents the (fixed) interior surfaces of the

ejector unit - those are the areas responsible for the exchange of forces (between the

fluid and ejector surfaces) to provide the system thrust.

Expand the time derivative in the momentum equation

dtt p(v+U)dV di PvdV + -dr pUdl/ (18)

and recognize
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d Ld_ pU_V - (U_c_) (19)-- dt --

Recalling that the reference velocity U is constant over the surface (but remains time
dependent), then

dmc_ dU
_(u__) = v_-_7- + _c_ d; (2o)

Also

A d 172cv=- pv(u'r_z)dt+I/ dt (21)

The momentum equation becomes

L "" L Ld p!)dV + m = - PU(t .n)ctA - n.(pl)ct,l+ I, ('2._)
dl _" dt

where A implies those surfaces at the inlet and outlet of the control volume, not the
internal surfaces used in the definition of F.

Important Note: The volume integral represents the time rate-of-change of the
momentum of all particles inside the control volume at an instant in time. It cannot be

converted into a surface integral and requires some estimate of field conditions in the
elector mixing region.

Some simplification of the momentum equation results from a piecewise constant

velocity, density, and pressure assumption. In this case

-/zpv(v _.n_)dA = _vkrh k (23)
k

-/An.(pl:)dA - El'kr, k/l, (:2.1)
k

and therefore

d /v d//U _ EVkN_. _dtt pvdV + rrt_ dt k
- EPknkAk + t7" (25)

k
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An alternate modification involves the skewness factor. For a uniform cross-sec-

tional area,

f pv2clA

(26)

then substitution in the appropriate locations in the momentum analysis above provides
the desired result.

Energy

Ejector analyses typically assume all surfaces are adiabatic, but (as mentioned

earlier) this is not immediately an implication that any of the transport processes are

isentropic. With this in mind the control volume formulation of the energy equation is:

dtt (pH-P)dV = pU.ndA - pll(u-U).ndA (27)

Note the absolute velocity participates in the definition of the stagnation enthaipy

U 2

H = h + -- (28)
2

From this the ideal gas assumption yields

pl-t = pcpT o (29)

then

dtt (pcpTo-P)dV = pU'r!(IA - pcp'l'ov'_dA (30)

which is the desired integral form.

As before, a piecewise constant velocity, density, and temperature simplifies the

equation

dt (pc,,ro-P)aV = " • + •
k k

but does not eliminate the volume integral on the RHS.
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Entropy

In integral form the entropy equation acts as a condition on the solution of the

mass, momentum, and enegy equations; from Appendix A,

_L L L'dt psdV + psv.ndA + _:f:l_.ndA >- 0 (32)

Acknowledging that the last term vanishes by virtue of the adiabatic ejector assumption,

a non-zero entropy balance arises from viscous dissipation.

If the mass flowrate is introduced

d_ Ldt p s d V - s d rh -> 0 (33)

then the uniform one-dimensional flow assumption yields

_ fvPSdV - _,(,:,,._)_> o
dt k --

(34)

Summary of Basic Equations

Four basic control volume equations form the foundation of the analysis of the

transient ejector:

Mass

k

Momentum

_f _- Lclt PvV-dV + rnc_ dt pv(v'n)dA - f n.(p/) d,,t+/:

Energy

at_-fv(pc_ro-P)dv p II • n d A L pc p Tov. ndA

Entropy
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dt

For the momentum, energy, and entropy equations, the simplified one-dimensional
relations are:

_ - - • . - P n k A
dtt pvdV + m_ dt k k

+ F

dtt (pcpTo-P)dV = U___PkA_(!v'n_). + ___tlkrhk(io.nk 1_,,
k k

dt p s cl V - • _
k

An important goal in transient ejector analysis is finding an accurate approximation to
the time dependent volume integrals on the left hand side of each equaUon.

Remarks on Supplementary Equations

Overview

Application of the general, one-dimensional flow, control-volume equations to

the ejector of figure 10 is intended to provide a framework for ejector performance
prediction in terms of the primary nozzle flow, initial conditions from which the

secondary fluid is drawn, and ambient conditions. In application to the mixing
region, the assumptions involved are critical since it is w_thin this region that the

most complex physical phenomena occur.

In anticipation of the section 6 discussion on methods of solution for the

complete (time dependent) one-dimensional ejector equations developed above, the
simplification of steady-flow is explored in section 5. That excursion is of value in

situations where a quasi-steady flow can be assummed to exist. That discussion also

addresses some concepts to closure common to the unsteady flow problem

formulation. This allows section 6 to focus on the difficult issue of evaluating the

time-dependent volume integral terms. A summary of the solution options that exist

and the reccommended approach in the provision of a complete system of equations
is then made.

The control volumes used in the applications to follow are illustrated in figures
1 and 10. Since it is assumed (for this phase of the work) that the primary nozzle

flow characteristics are known, no control volume is drawn for it. An important
assumption is that the nozzle and the shroud are adiabatic - as discussed earlier this

is not (immediately) an assumption that the flow is isentropic; the latter is allowable
only if viscous dissipation is absent from the flow (as you would have, for instance, in
an ideal, irrotational flow).
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To set the stage fl_r application of the Control volume equations to the ejector,

some remarks on the character of some unk=lowns and the working medium follow:

o The state principle allows that local thermodynamic states are expressible in

terms of two thermodynamic variables; in the present work the static pressure

and temperature have been chosen.

o The assumption of an ideal gas provides the entropy and enthalpy are

functions of temperature only. Density is given as a function of T and P

through the ideal gas law.

° The local mass flowrate is defined in the one-dimensional case as a function of

velocity, temperature, and static pressu re.

o It is assumed that the force on the shroud can be constructed as the sum of

empirical relations for duct flows, including such effects as losses due to

expansion or contraction of cross-sections. The empirical constants will reduce
the unknowns in the function for F to velocity, temperature, and static

pressure. Geometric characteristics art. assumed known.

, In general, entropy is employed in arguments related to the admissability of

solutions, not in the direct solution for specific velocity, temperature, and

static pressures.

° Velocities at the inlet duct and primary nozzle discharge are uniform and

one-dimensional, but distributions internal to the mixing region are express-

able in some "appropriate" self-similar form.

. The default unknown velocity is the relative velocity, v, since the absolute

velocity, u, and the frame of reference velocity, U, are related by v = u - U. For

the present work it is assumed that U is known. Actually U is generally not, but

if the ejector GDE's are coupled with those for the aircraft then U can, in

principle, be determined (in general, as a function of time).

, Possible existance of shock waves is recosnized, but an account here would
require they are normal and stationary wnth respect to the shroud (diffuser,

inlet, and mixing region) frame-of-reference. In the present work subsonic

flight is assumed for the operational envelope the ejector participates in.

We suspect in the primary flight mode the ejector is involved in will not be

supersonic flight.

Supplemental Equatiott_

The framework of analysis is constructed through application of the con-

trol-volume equations to the inlet region, mixing region, and diffuser. The assump-

tions of the previous section introduce the following supplemental equations:

= pv.nl
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p = P/RT

v = u - U

E = F_(P,T,v)

h = h(T)

s = s(T)

The principle unknows at this point are the following (field) variables: velocity,
v(x,t); static pressure, P(x,t); temperature, T(x,t). The steady-state solution for these

unknowns is discussed in the next section; Section 6 describes the approach for the
transient situation.
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5. STEADY FLOW ANALYSIS

Overview

Although it is the intent of the present work to focus on unsteady ejector flows,
the steady-flow solution methodology is of inte rest for several reasons:

- The steady-state solution is the startir_g solution for the unsteady analysis,

Many of the subroutines generated for the steady-state version of tile program

are common to the transient program; a successful steady-state solution is a
useful check on those routines,

The steady-state ejector performance program can be a useful theoretical tool
for interpreting data from the NASA I_ewls PLF.

Presentation of typical steady-state ejector performance equations highlights the

mathematical benefits of disposing of time-dependent terms in the ejector analysis and,

by default, provides the system of equations one would use in a quasi-steady flow

analysis. For instance, the section 6 assumption of a quasi-steady inlet and diffuser flow

means the steady-state inlet and diffuser equations discussed below are applicable.

Additionally, many details associated with the execution of the general ejector
"problem" (and coincident with an unsteady flow analysis) are easily illustrated with a

description of the solution of the steady flow equations. The present work draws

partially upon the discussions of Belivaqua [1974], Salter [1975], and Alperin and Wu

[1983a,b].

System of Equations

In a steady-state ejector flow scenario, time-dependent control volume terms

would not be involved in the system of equations. Recalling the general system and

auxiliary equations presented in section 4, it is important to note the steady flow

assumption leaves three governing equations and (only) nine unknowns for the

description of the mixing region. Although there is some variation in specific analyses,

closure to this problem is usually obtained by prescribing one or more of the following:

1. confluence static pressure ratio at the inlet,

2. primary and secondary inlet velocities,

3. static pressure at exit,

4. stagnation temperatures at the inlet.

Often, if there is not a direct prescription of, for instance, the stagnation conditions at

the inlet, an isentropic flow is assumed between the (assumed known) free-stream

conditions and the inlet cross-section, thereby facilitating calculations of the inlet

temperature and pressure.
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For the present steady-flowanalysis,the three conditions for closure are obtained
byprescribing (a) primary flow inlet conditions, (b) static pressureat the diffuser exit,
and(c) an isentropic inlet and diffuser. A detailed discussionof the systemof equations
follows.

Mixing Region

Considerable simplification of the system of equations is realized by invoking

the steady-state assumption; the system is given by:

Mass:

0 = rhle+rhls-rh3 (l)

Momentum:

0 = t)lt, rhle+VlsNtls-fl<v3>rh3+(t _ -P3)A +FIP 3 -- (2)

Energy:

0 = rittello._p+rftlstlo.ls-rh311o.:_ (3)

The entrolSy equation remains a condition on the solution, as discussed earlier (also,

see Appendix B). Some assumptions often applied to the system are:

1. All skin friction and blockage losses are neglected.

2. The primary flow is fully expanded at the point of confluence of the two jets
(equal static pressure at the inlet region, station 1).

3. Specific heat of each gas stream is assumed equal.

4. The ejector is stationary in space (test stand set-up).

5. Gases are assumed thermodynamically perfect (constant specific heat) and

described by the equation of state.

Only assumptions 1, 3, and 5 are used in the present work.

Non-dimensionalization of the system of equations above clarifies the partici-

pation of each equation in the solution; related manipulations are outlined below.

i. Continuity

A useful non-dimensional form of the mass flowrate equation is (see

Appendix G.6)
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l( )/''2r/_ i/2 Y- ] 2

pA(RT)_ = M y I +--_!2

= l_(y,M) (4)

where it is understood that the specific heat ratio is known or can be computed
from Dalton's law (Appendix F). From conservation of mass

mp + ms - m3 = 0 (S)

in non-dimensional form

tit 3 m p dt s r?t t,
+ - (1 +lz)

PeAe PpAe PpAe P,Ap

= +,)

If the mass flowrate equation for statism 3 is normalized by the primary flow
conditions

rft3 P,_Aaf 6(Y3, M a)
- (7)

Pt,Ae PeAt, _RaTo, 3

then by comparison with the result derived above

P3 _ A RaTo.3f6(yt,:Mej

Pt, m Rt,To.t,f6(ya,Ma){l +lZ)
(8)

the entrainment ratio itself can be expressed as a function off6 in a similar form:

ri-ts PsAs /Rt,To.t,/6(Ys, Ms)" rdtp- P;A-¢ -R_Tols-]-6-(V)_M_) (9)

so that the static pressure ratio is given by

Pe _ A_s /----P s At,

Rt,TO.Pf6(ys,Ms)l
(Io)

In general, the stagnation pressures are assumed to be related isentropically to
the static pressures at the same station by the function
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p /a(Y,M)P

then the stagnation pressure ratio is

Po,_ Psl_(y_,M_)
Po,¢ Pp/a(ye,Mv)

iL Momentum Equation

In non-dimensional form, the momentum equation is given by

1 +

PsAs PaAa PeV2e Pev_ Pa<tJa >2
+ --+ tt_

PeAl, PpAp Pt, Pe PP
- 0

The velocity terms can be written

pu 2 0 2

P RT
- M2y

(11)

(12)

(13)

(14.)

so that the momentum equation can be written

....... 2PsAs PuAa(I +flYaMa}
(l+yeV_,} + {I+YsM_}- PpApPeAl,

= 0

Re-arrange the previous result for the static pressure ratio

PsAs

Pt, Ae I RR__eTs,of6(ye,M e)
- Tp.of6(Ys,Ms)l l

so the momentum equation is

/1/2
0 = (1 + ypM 2 RsTs'° f6(ye'M- *')/2(l+YsM2s)

{R,_I,.o}"2/o( y,, a!_)- _1+,,) R,r,,,o /_,I_IMT,_(_+/_*_v:_')

(16)

(17)

then
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)1/2

{ },,2( )R3T3'° fz Y3,M3
(l+p) R,,,T,,,o

(18)

where

/z(y,M) = (l+flyM2)//6(y.M) (19)

The solution for M 3 is now given in the t:orm

l }-1/2

R3T3,o

/,(y3,u3) = R,7_,o (_+;,)-'{/,(y_,M_)

t:'_sTs,o I I/2+ ;' )-,_;_,oJ /-,(ys.M_)> (20)

For given primary and secondary conditions the right-hand-side is a constant

fz(y3,M3)=X, (21)

An expression for M 3 is derived by re-introducing the definition of the function
f7

)),,2yl 2

+ flyM 2 = KLM y 1 +------M (22)

since

] +/YyM2) 2 = 1 +2flyM2+/Z_'y2M 4 (23)

then

l+2flyM2+f£2y2M 4 K?_MTy+K2M4 ( y- 1)= , y _ (24)

This is re-arranged to yield
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(2u)

so

/I = '82Y2-K2 IY-I/'Y-2_- (26)

-- 2fly- K?y (27)

C = 1 (28)

The solution for M 3 is therefore obtained from the solution

equation

2 + C = 0A(M_) 2+ BM 3

to the quadratic

(29)

which is given by

-B+_/B2-4AC

2A

The root is expressed in functional form as

M3 = /,,(p,y3,x,)

(30)

(31)

iii. Energy Equation

Introduction of the entrainment ratio in the energy equation yields:

rh r r/_ s
6pTe, o + .... 6sTs, o

E3 T 3"° - rh 3 rrt 3

where e is the specific heat at constant pressure. Rearranging,

T3 o, - m_,+_ 6--_aT"e,o+ ltc3Ts.o

and therefore

(32)

(33)
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/- 7"s,o ( 34 )
T3'° (1 +/a)8a TP'°+lice

Expressed as a ratio:

Ta.0 1 6e{ 6sTs _ }I + tt ..... (3_)
Te.o 1 + ltda gt, 7"p..

iv. Inclusion of Frictional Effects

Salter [1975] provides corrections for friction effects through an equivalent

pressure loss:

AP t = (fLpv 2) / (2D_) (36)

where f is the friction factor and D h is the hydraulic diameter. Also, a

momentum correction factor, Km, is applied to the mixing region exit to account

for incomplete mixing of the primary and secondary streams; use of the

momentum correction factor means the momentum equation is to be written

explicitly in v (rather than in terms of the mass flow rate), the result:

2
0 = pA_pv_e + PAnsY2 _ , 2,s k ,,,p A_tJ 3

+ (P,s-P:,)Aa - APtA a (37)

Bevilaqua [1974] and Kentfield [1978] take a slightly different tack and invoke an

incompressible flow assumption to simplify their analysis (they also remark on

the error introduced in this approximation).

v. Mixing Region Equation Summary

Solutions for the pressure, velocity, and temperature at station 3 are

obtained by analysis of the mixing region; since conditions at the primary station

are given, the field variables at station 3 are functions of the unknown conditions
at station 1S.

Manipulation of the equation of continuity in conjunction with the
equation otstate yields the ratio of pressure at the mixing region exit and at the

primary nozzle discharge:

R3 To.3 ]'6(yrLM ,,,)

R,To.p ]'6(ya,M a) ( l +It}

this is implicitly a function of conditions at station 1S, via the entrainment ratio,
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P
s)

RsTo,s f 6(yp,M e)

From the momentum equation, the Mach number at station 3 was derived in

terms of the Mach number at the primary and secondary flow conditions at

station 1,

u, =

Through the energy equation the relation between the stagnation temperature at
station 3 and the stagnation temperature at the primary and secondary stations
was found to be:

Ta.o 1 c,,

Te.o ( 1 + #)_3

In summary, the prediction of P3, v3, and T 3 is a function of PS, MS, TS0,

and the pressure matching condition at the diffuser exit (more discussion on this

point later). Analysis of the inlet region will exchanlge the unknown pressure,

temperature, and velocity at station 1 for those at infinity.

Recall that, for this particular predictive situation, the secondary inlet
conditions are not known in advance since the secondary flow conditions are a

consequence of conditions in the mixing region, not a cause for the same. No real
reduction in the number of unknows is gained from the addition of these

relations but is a necessary development for the complete system of equations.
Relations for the diffuser are similar to those for the inlet and provide closure

for the final system of equations.

Here, it is of benefit to realize that for the thrust augmenting ejector the

static pressure at station 4 should, in general, be equal to that of the ambient.

The system of equations for the inlet and diffuser are discussed next.

Inlet

The inlet is given as the region between infinity and station IS; application of

the principles of mass, momentum, and energy to that region are described below.

As a first approximation isentropic conditions are assumed to prevail.

L Mass

For a single-stream flow, the mass flowrate is unity,

As

- 1 (38)
me
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so that

PsvsAs : p®v®A® (39)

or (see Figure 1)

psvsAs = PoVoAo (40)

since the characteristic area at infinity is undefined.

ii. Momentum

A balance of momentum for an ideal nozzle flow provides

PsAs + rAsv s = P_A_ + rilo, v_ (41)

then

P® PsAs As P®A,_]
(42)

PsAs {l+y®M2-)_P,A,, 1 + ysM_
(43)

An alternate expression for this ratio is given in terms of the mass flow function,

/'6

PsAs {RsTo,s}l/2[6(Y_,.:ffT?) (44)
P.A** R.,T0.® [6(Ys, Ms)

but for an isentropic flow it can be sho,_n the two ratios are not independent.

iii. Energy

Conservation of energy provides the simple statement that the stagnation

temperatures in the free-stream and at station 1S are equal

To._ = To. s (4_)

this result relies on the adiabatic inlet assumption. If local properties are related

to local stagnation conditions isentropically, then
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_o:_(l+y+1_2)-2 (46)

from which

Ts

T®
To,** 1+ T

/2(y.._-)

The assumption of isentropic
relation to

Y In - In P-oy-I

and therefore

P® P®.o T'_

where

(47)

flow simplifies the integrated form of Gibbs'

0 (48)

(49)

T" = T y/y-I (50)

Since the ideal gas law provides that

e s T's
- ([51)

P. T'_

it is evident the stagnation pressures must be equal for an isentropic flow

Ps.o = P-,o (52)

and so the static pressure ratio is

P_ /_(y.,M.)

P® /3(ys,M s)
( '._;3)
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This is a slightly more convenient expression than that derived from the

momentum equation since the area ratio is not required in the present result
(but an isentropic flow assumption is).

iv. Remarks

In the general case of analysis the free-stream velocity, static pressure, and

static temperature are known so the stagnation temperature and pressure can
therefore be computed. If isentropic flow conditions are assumed to exist

(adiabatic ejector, frictionless flow) then the stagnation temperature and

pressure at station 1S are equal to those in the free-stream. When the velocity at

station 1S has been determined, the static temperature and pressure can be

computed.

For situations where the isentropic flow assumption is not valid, we return

to the momentum equation and account for frictional effects. As a first

approximation of the "answer", an incompressible flow is assumed to exist.

Recognize that in such a case, the differential formulation of momentum is

preferred since Bernoullis' equation can be extracted. This provides an equation

applicable to any inlet streamline. The analysis of Salter[1975] introduces a

correction factor for real-flow effects with the use of an inlet loss coefficient, K1,

and the loss due to the impedance of the nozzles to the free-stream flow, C D,

Anozzto)
l ( 2 2) I 2 +C--- ('54)

Pls = P®-_P Vls-V® -,_P;Jo KI o Ao

Given the free-stream velocity, conservation of mass is used to find the first

approximation to the secondary inlet velocity,

A_

v_s---v® (55)
Ais

and therefore

Diffuser

Pressure recovery in the diffuser is a fu_lction of the area ratio, and becomes an

important parameter in ejector design. For the thrust augmenting ejector the exit
static pressure is (generally) intendedto be that of the ambient, but real flow effects

may dictate otherwise. Nonetheless, in principle the overall (isolated) ejector

pressure ratio is unity.

Equations governing the conservation of mass, momentum, and energy in the
diffuser are similar to those for the inlet, but a brief discussion is presented below to

highlight the pressure matching condition at the diffuser discharge.

<33>



i. Mass

For a single-stream flow, the mass flow rate is unity,

ma
- 1

rh4
(57)

ii. Momentum

In the absence of frictional effects, the adiabatic diffuser is characterised by

P4A4

PaAa 1 + YaMi}
1 + y4 M

(58)

In this result the Mach number is modified by the mixing effectiveness parameter

when an account of non-uniform mixing is desired.

iii. Energy

As before, the adiabatic diffuser assumption allows that

r,
(59)

from which the additional assumption of isentropic flow permits

e, /,(y,,u3)
(60)

and since

Po,4 = Po,3 (61)

P4 = e_ (62)

then the exit velocity can be computed from

Po,4

P4

(62)
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iv. Remarks

For the assumption that the discharge pressure is equal to that of the ambient we

find that the momentum equation can be used to predict the "appropriate" exit

velocity for the given station 3 conditions. Recognize here that the station 3
conditmn reflects on the original velocity assumption at station 1S. The correct

assumption will be that for which the mass flow rates at stations 3 and 4 are

equal.

As a first approximation to the compressible flow solution the use of an

incompressible assumption is of convenience; Bevilaqua [1975] and Salter [1975]

provide more detials on those approximations.

Primary nozzle conditions

All of the thermodynamic and flow variables required to describe the primary

nozzle discharge can be derived from three input conditions: mass flowrate,

stagnation temperature, and static pressure. A discussion of the relationships
involved - including an account for choked flow - is given below.

i. Primary nozzle pressure ratio

Manipulation of the mass continuity equation provides the relation

-- = M 1 +--M _" (63)
A 2

where

) Y/y - |

P0 y-I 2
-- = 1 +--M (64)
P 2

It is intended the nozzle pressure ratio be expressed in terms of the mass

flowrate, stagnation temperature, specific heat ratio, and nozzle geometry. To do

this, the equation above is rearranged so that

Y -3-- = M21÷ 2 (6'._)

Since the isentropic pressure ratio gives the Mach number as

2/( 01,, i(y- 1------) P- - 1 (66)

then
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0 m2ToR(V) ....( o)Yl 
p2 A2y P -p-

2(y-I/y)

The nozzle pressure ratio is extracted from the solution to the

equation; the result is:

T 2

from which we establish the relation (notice the "+")

( /  m2,oR)/,/2)
y/y- I

(67)

quadratic

(68)

(69)

This equation is valid for choked and unchoked flow; in the latter situation,

however, there arises a convenient relation from the concept that the mass

flowrate per unit area is a maximum for choked flow and coincides with a Mach

number of unity.

A solution for the nozzle static pressure as a function of stagnation

pressure, stagnation temperature, and specific heat is given in Appendix J.

Returning to the first equation of this section and eliminating the static

pressure from the RHS provides

A k] R,f_o M 1+ _ M 2

¥-I

2(y-I)

(70)

then for a Mach number of unity

A ,_ i ,/:tO

For air at standard conditions

y = 1.4

(71)

R = 53.304
ft - lb t

lb,nR

we substitute and obtain Fliegners's formula
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r_ _ o.s32_eo (72)
,4" ,/T_o

The nozzle pressure ratio is then

e. e.k_
(73)

which is in a convenient form for hand calculations.

i& Primary nozzle thrust for isentropic flow

From the steady-state momentum equation the thrust of a nozzle, choked

or unchoked flow, provides

Introduce now the idea for maximum thrust in which the area ratio is such that

the exit pressure is the same as that of the ambient; furthermore, allow the exit

velocity to be given by the relationship for isentropic flow,

= C O((,- ,)('-(,'o; "})

I/2

(75)

The primary isentropic thrust is therefore given as

2 1 - (76)
T, = m. (y-l) Fo/

It seems that for unchoked flow the slatic exit pressure is equal to the ambient

(for the ideal case); if the nozzle pressure ratio is defined by

PO

NPR - (77)
Pw

then the isentropic thrust equation takes on a convenient form for evaluation of
flow conditions.

For choked flow from a convergent nozzle the exit pressure is not, in

general, equal to the ambient. It is then necessary in the analysis of choked flow

to return to the original expression for thrust and account for this fact:
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,/ /2 l- +A (e°-,o)
T, = fit° yRTo(y 1) Po °

(78)

where the subscript a referes to the ambient condition. Now, with the substitu-
tions

_° = PoV, Ao

P° = p°RT,

rhor To
Ao -

Pou°

and the additional relations that

_/ P°)Y-v. = _V-o l-(F °
I/y

Y
cp - R

y-1

then the isentropic thrust equation becomes

T_ ( 2 {,,2,_= r_°ydT-k_o (y- 1) po

mRr. (l - P,,/e.)

J_--_p_?o,/i-(),_ ;P ;-jc--:,;

NOW,

RTo _ r..[aro(y--i )
_oV ;

and for choked flow

(79)

(8o)

(81)
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Y

Po y+l
(82)

then

y-I

1 - - y- 1 (83)
y+l

SO

T

Continuing,

(84)

Y

P. e.Po - r-,, (86)

which provides the result

_/y+l+_/ :,.y y+i l--._.- ro

(87)

Combine the terms

/- .....:_#
= _/}-(y v] 5 (88)

then we obtain the desired result for the isentropic thrust for a choked nozzle:

< 39>



y(y+l) Y + 1 - " 2 Po
(89)

Thrust, thrust augmentation, and ejector efficiency

As previously mentioned the ratio of the total momentum increment and the

thrust that would be obtained from the primary nozzle under ideal conditions yields

the thrust augmentation ratio,

T srs
- (90)

F 1 P,IDEAL

where the system thrust is given by

Tsy S = /_4(U4- U®) (9])

and the thrust from the nozzle under isentropic flow conditions is

Fje.loEAt = rhlev]e (92)

where

I

v_e P0_.!e cy-_)/2_ 2 I-

c,, e,, j /o-,i J (93)

The efficiency of the energy transfer process is given by the ratio of the kinetic

energy of the effiux and the energy input at the primary nozzle; the energy efflux is

1 2

KE4 - nk4fl </)4 > (94)
2

and the energy input is

E_p = v,,,A,,,(t'o.,,,-l',p) (9_)

Solution Options

In the previous section there were (for the general case of analysis) presented 9

equations describing ejector physics in terms of 12 unknowns. The difference between

control-volume analyses generally centers around the manner in which closure is

provided. Two basic approaches are distinguished in the present work according to
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intent - the "direct solution" is used for parametric analyses and the "iterative solution"

used for predictive analyses. The iterative approach is obviously preferred in the

present work.

Direct Solution

From a computational point of view, a parametric analysis involves a direct

solution to the system of equations. That is, it is a simple matter to specify a broad

range of secondary inlet conditions and compute a corresponding set of discharge
conditions. In those cases where multi-valued solutions exist, selection of the

"correct" solution is assisted by the entropy condition. No attention need be paid to

extracting which of the solutions are naturally occuring, only that the solution

correspond with the prescribed conditions at the secondary inlet that, for whatever
reason, in fact have arisen.

The parametric approach is not in line with the objectives of the present work
so there is no need for further discussion. Complete coverage of the parametric

viewpoint is given in the works of Addy, Dutton, Mikkelson, and co-workers (see
references).

Iterative Solution

Although the iterative solution involves the same set of equations as the direct

solution, it is the objective in the former to seek the appropriate inlet velocity which

provides an exit static pressure corresponding with the ambient. So rather than

select arbitrary inlet velocities, a reasonable estimate at the correct value is used

(throu_gh, for instance an incompressible flow analysis) that meets ambient pressure
conditions, and the result then refined - by iteration - until convergence is reached.

A typical solution approach is presented below, although, as alluded to earlier, other

solution procedures given in the literature may vary nn some details of the steps
involved.

i. A Typical Solution Procedure

The procedure outlined below reflects the assumption of insentropic inlet

and diffuser physics; the impedance of the nozzle to the flow and other
,1 I, * • "

real-flow effects are _gnored for the present discussion. We have:

. Compute the free-stream stagnathm pressure and temperature Use the given

free-stream static pressure, static temperature and velocity in the following:

V._ = IU_lsina

M. = V._/c,_

Po. = P.I,(,..*,.)
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= T.I2(y.,M.)

. Compute the primary nozzle discharge conditions Use the (prescribed)

discharge mass flowrate, stagnation temperature, and static pressure in the

following procedure (Appendix J describes the modification if the stagna-
tion pressure is given instead):

(i) Compute the NPR based on the assumption that the discharge pressure
is the same as the ambient:

(,= - +- 1 +4 2A2y _--NPR 2 2 p

y/y- I

(ii) Compute the NPR for choked flow (M= 1)

NPR = _-

(iii) If NPn > NPR" , the nozzle flow is choked; use Fliegner's formula to
compute the stagnation discharge pressure,

Po.lp = 1.88

and the actual NPR is then based on the ratio of this stagnation pressure
and the actual back pressure.

(iv) IfNPR < NPR" , the nozzle flow is subsonic. Use the static pressure at the

nozzle discharge (an input condition) to compute the ratio

1+4
P2 A2Y ( y- 1

y/y- I

then compute the actual NPR from the known back pressure condition.

(v) With the correct stagnation pressure now established, the computation

of the static temperature and exit velocity can be made

T,e = To,,e/ f2(yte,M,e )

V _p = M _ec_p
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.

.

Assume M1S The solution to the steady-state problem is an iterative

procedure; in the present work a "starting solution" must be given. An
initial Mach number assumption of 0.01 has been found a convenient

starting point for the computations of the present work.

Compute station IS conditions. The known free-stream flow conditions, the

Mach number at station 1S, and the assumption of an isentropic inlet are

sufficient to estimate station 1S conditions. The isentropic assumption

allows one to equate the free-stream and station IS stagnation temperature
and pressure:

Po,ls = Po..*

To,is = 7o ._

Then

Pis =

Tls = To.ls//2(Yls,M,s)

.

The mass flowrate at station 1S ¢:an then be computed; enough information

now exists to compute the mass entrainment ratio.

Compute properties at station 3. Apply the system of equations from section
4.2.1.5:

T3. o = Fs(//,T,.o,Tp.o)

T 3 = To.3/f2(Y3,M3)

P3

Pe

P3.o

A e/R3To.3 [6_!Y_e, Me)
{ I + l z )

A3 RpTo.ef6(y:, Al_)

The mass flowrate at station 3 can be computed with these results.
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. Compute properties at station 4 The isentropic flow approximation and the

assumption that the discharge pressure is equal to that of the ambient
introduces

P4 = P,o

P4,o = P3,o

II  °l1M, -- -p5 - J

This velocity represents that which, if the station 1S velocity were correct,
would match the stagnation condition at station 3 to the static condition at

station 4. Once the static temperature is computed

T 4 = To.4/[2(y4,M4)

°

,

enough information exists to compute the mass flowrate at station 4.

Compare the mass flowrates at stations 3 and 4. In general it is unlikely the

initial guess for the station 1S velocity is correct, so the mass flow rate at

station 3 will not be equal to the mass flowrate at station 4 (the latter based
on a static discharge pressure equal to the ambient). If this is the case, the

"surge" is given by,

rh" = rha-rh 4

and the mass flowrate at station 1S given by
1 ,

this - rh
2

from which the new inlet velocity at station 1S can then be computed.

Repeat steps 4 - 7 until the solution converges. The convergence criteria is
that

I_'I < e = O.l

9. Proceed with the computation of thrust, thrust augmentation ratio, and ejector
efficiency.

This solution procedure is summarized in figure 11.

REMARKS:
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o Step 6 is based on an unknown value of the exit pressure (station 4),

allowin_g for the general situation where the exit pressure is not equal to
the amoient. Some modification of the procedure is allowable when the

latter is true. In such a case the computed P4 is compared with the ambient

and modification of the inlet velocity based on the error in pressure
prediction.

. There is required a second iteration contained within each timestep if an

ideal gas is used instead of a perfect gas. Figure 12 provides the

computational steps for the inlet region. These steps are typical for each
control volume and differ only by the subscripts of the variables used.

Sample Computations

A FORTRAN program for the Steady-state Ejector Analysis (SEA) performs
computations for the methodology outlined above (Preparation of a user's manual for

this routine is currently in-progress).

For the purpose of comparing theoretical predictions with experimental data,
some preliminary data from the DeHavilarld ejector tests at the NASA Lewis PLF

facility have been made available to the present work; an overview of this data is

presented in Appendix K.

Results

Input data to simulate PLF ejector runs 223-239 were considered adequate for

the test of the steady-flow methodology since

A. The nozzle mass flowrates were between 18.7 lbm/s and 46.97 lbm/s -- a

range broad enough for the primary nozzle to be choked somewhere
inbetween (about 30 Ibm/s), and

B. The primary nozzle stagnation temperature of 760 OR was considerably

higher than the 540 OR ambie_lt stagnation temperature.

Figure 13 illustrates that the steady flow analysis presented here is capable of

predicting both the magnitude and the trends obtained in the experiments; note the
mirroring of the "dip" in the vicinity of choked primary nozzle flow.
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6. UNSTEADY FLOW ANALYSIS

Focus on Transient Ejector Flow

Fluid flows characterized by time-dependent velocity fields are termed unsteady.

More revealing descriptions are linked to time-asymptotic flow behavior. A transient

flow is a 'temporary' unsteady flow, associated with, for example, a change in ejector

operation from one stead),-state condition to another. Contrast this with oscillatory
flows in which a periodic time-asymptotic flow character is exhibited. Ejectors utilizing
pulsed primary nozzle flows are of the latter type. In the present simulation the focus on

transient, not oscillatory, ejector phenomena descends from flight-critical aircraft flight

control scenarios; an example would be transition to forward flight from vertical
take-off.

Effects the transient ejector simulation should capture are:

1. Ejector response to the primary jet actuation,

. Momentary depletion of net thrust due to reallocation of engine fan air to the

ejector,

3. Feeder line delays (related to actuator transients).

Upon integration of the ejector, engine, and airframe simulations, incipient vertical

deceleration effects (due to thrust lag) can be quantified.

Remarks on the Energy Exchange Process

In connection with recent research on the coherent structure of turbulent flows, it

appears that even steady-state ejector operation relies on (local) unsteady flow

processes 1. That is, in a coherent flow there are continuously deformin8 boundries

whose motion can tin principle) be tracked - not time averaged as in classical theory -
so that there is a distinctly traceable mechanism for work by pressure to be done and

therefore energy (attributable to pressure) between streams to be exchanged. Addition-

al energy exchange is provided by viscous shear forces, but these do not rely on the

motion of the bounda_. Since thepressure-exchange process (non-dissipative) is very
short in duration relat,ve to the (dissipative) process of mixing (viscous-dominated),

there is potential that a pressure-exchange dominated process is likely to be more

efficient than a viscous dominated process. This notion is supported by the marked

increase in performance of (correctly designed) ejectors with pulsed primary flows in

comparison with their steady-state counterparts.

Since the literature reveals that most unsteady ejector studies concern pulsed laser

operation, it is of interest to employ the conclusions from these studies in the present
work (especially for work containing comparisons with experimental data). Such may

1 This "unsteadiness" in a turbulent flow has, of course, becn known for a long time, it has just traditionally
been a practice to use time averaged quantities in, fi)r instance, the Navier-Stokes equations. See Liepmann
[1979], and Hussain [1981] for discussions of "classic" vs coherent turbulent flow modelling.
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not be the case, however, since there is a distinct domination of pressure-exchange

mechanisms in pulsed iets that cannot be assumed to r_main in a steady-flow turbulent
jet entrainment scenario for thrust augmenting ejectors'..

The present work employs the concept of kinetic energy exchange between the

primary and secondary streams for the transient secondary velocity prediction. There is

a limitation to this approach in that an emprical correction is needed for closure.
However, there is significant technical antecedant for the correction factor and its use

follows from the work of Korst and Chow [1966]. It is important to remark that the

creation of a kinetic energy balance for this purpose requires deletion of the

corresponding kinetic energy balance terms from the energy equation for the control

volume (what remains is the thermal energy equation).

Three Levels of Approximation

From a technical standpoint difficulties in real-time ejector simulation arise from

evasion and compromise. By "evasion" it is meant we are in search of the "answer"

without mandating recourse to solving the full unsteady Navier-Stokes equations; in

terms of "compromise", there is a needto balance the level of approximation used (for

which empirical calibration of the theory is then intensified) and the expectations for

the accuracy of the simulation. Three levels of approximation can be considered:

lo Quasi-Steady Flow: Assume that the ch.'tracteristic time for changes in the forcing

function (boundary conditions) is greater than the characteristic time for response

of the fluid - that the fluid is "very agile" and therefore permits the steady-state

equations of motion to be used at each instant in time.

, Characteristic Volume Approach: Allow that the mixing region can be partitioned

into three characteristic volumes; one domain characterizing secondary flow

effects, another for the primary nozzle flow, and one to characterize the mixed

flow domain (the size of the control volumes are time dependent).

, Finite Volume Approach: Identify a finite number of control volumes of fixed

size, partitioned only in the streamwise direction (the size of the control volumes
are Ume independent). This approach introduces a relationship between the

primary and secondary flows with the use of the self-similar profiles.

Remarks

In the analysis of a given unsteady flow problem, it is quite convenient

mathematically if a quasi-steady formulation can be assumed valid. This leads to the

use of steady flow equations in an unsteady flow analysis; at each instant in time the

flow is assumed to instantly respond to boundary condition transients. A basic issue,

however, is whether the characteristic time of the forcing function is the same order

of magnitude as the relaxation time of the flow.

There is no need to remark on the details of the system of equations for this

approach since this is, by default, already given in the steady flow discussion.

2 An interesting note here is that, at the other exlremc, for pulsed flow there exists an entrainment even in

a laminar flow for those geometries where a secondary _treaming (a viscous phenomena) is present.
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In the case of external unsteady flows the Strouhal number (a characteristic

arameter for the unsteady flow frequency) plays a significant role as the criterion

y which to (or not to) invoke the use of a quasi-steady formulation (see Drummond

[1985, 1986]). Although the Strouhal number is also a convenient characteristic

unsteady flow parameter in internal flows, there appears no technical antecedents

on which to base the prescription of a threshold for quasi-steady ejector fluid-dyn-

amic operation. Only testing would allow this assumption to be made a-priori.

An appropriate application of the characteristic volume approach is for flows
that exhibit distinct flow regime characteristics, like, for instance, the inviscid

interaction region discussed in section 3. Time lags for this system are generated

through imposition of lag.coefficients between field variables of the characteristic
region; although this is a simple approach, it relies on accurate knowledge of the lag
coefficients for the simulation to be accurate (read: analysis cannot be divorced

from transient experimental data). This would be a new method in the approxima-

tion of transient ejector performance, but is not explored further in the present
work.

The finite volume application of this work is also new in ejector analysis, but it

is anticipated to be more accurate than the characteristic method since considerably

more elements are employed; as expected, though, execution is likely to be more
CPU intensive. Here, a hybrid approach is based on the work of Drummond [1985],

and Seldner, Mihaloew, and Blaha [1972]. Note that an important feature of the

method is that steady-state data (not transient) can be used in the calibration of the

method. It emAoloys control volume elements of constant volume and assumes the
mixing region flow is expressable in self-similar form.

Finite Volume Approach

It is evident that the quasi-steady and characteristic methods of analysis previously

discussed really make no specific assumption about the nature of the flow in the mixing

region. The finite volume approach attempts to overcome this problem. Indeed, a
fundamental philosophical point to be made is that in exchange for the ability to more

accurately depict conditions (than you would otherwise have) inside a given sub-region,

a more complex form of the surface integrals must be accommodated.

In the present work the inlet and diffuser regions are permitted to be represented

by a quasi-steady approximation, and the finite volume method of analysis applied only

to the mixing region. This is based on the perception of the inlet and diffuser physics to

be driven by imposed pressure gradients, and the mixing region dominated by turbulent
viscous interaction. Obviously, the notion is that the physics of the mixing region are the
cause of a situation that yields the pressure gradient effect in the inlet and diffuser.

The fundamental assumption in the finite volume approach is that the mixing

region is divided into N sub-regions of known volume and whose individual velocity,

temperature, and pressure can be given by characteristic quantities. A significant
departure from prevnous discussions is that the characteristic quantities are not
necessarily uniform over the sub-region, but do relate to characteristic distributions.

These distributions relieve us from a specific treatment of, for instance, an inviscid

interaction region, though by default such a phenomenon should be predicted within
the domain of an accurate solution methodology for the problem.
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Correspondingwith the finite volume method of analysisis the need for specific
statementsabout the characteristicdistribution within eachsub-region. A discussionof
the profiles used in the present work follows an overview of the basic control volume
equations for the mixing region. Then, application of the finite volume method to the
continuity, momentum, and energyequationsfor the mixing regions is discussed.Lastly,
the complete system of equations for the ejector are assembled and the proposed
method of solution presented.

Figure 14 illustrates the finite volume nomenclatureand sometypical elements.A
virtual grid representation is given in figure 1.5.

General system of equations

The basic form of the control volume equations are:

Mass

k

Momentum

dfvpodV+rrtcodUdt fAPV(_"n)dA-fAn-'(pI)dA+F- _ _ (2)

Energy

dt PdV = - yPv.ndA - (y- 1) PU.ndA (3)

Entropy

a--fvPSav - f sa,_ >_ o (4)dt

Again, the presence of the surface integrals (that in the steady flow analysis were

simple sums of average quantities) reflects the idea that one cost of incorporating a

simple turbulence model in the time dependent volume integrals is given by
increased surface flux term complexity.

Note the heat equation has replaced the general power equation for the energy

equation (see derivations in App.endix A). Application of the self-similar profiles is
in fact easier for the heat equatnon than it is for the power equation, but both are

eventually needed in the analysis. As mentioned earlier, the kinetic energy

components will be accounted for in a separate balance intended to predict the

secondary flow magnitude; this will be detailed later.
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Turbulent Jet Approximation

A diagram of the present turbulent jet geometric characteristics is given in
figure 16. Extending from the mixing region inlet plane there exists a potential-core

region characterized by a fairly uniform centerline velocity, with no transverse

component. This is distinguished from the mixed-flow region where the centerline

velocity decay arises from momentum transport to the entrained fluid.

This section extablishes the basic features of the potential- and mixed-flow
regions for use in the finite-volume analysis.

i. Jet spreading approximation

Two jet angles are associated with the growth of the turbulent jet. One

ortrays the decay of the potential core region and the other bounds the outer jet

oundary layer growth. Rectilinear profile assumptions for both have an analytic

foundation and empirical verification. Although the outer jet expansion angle

depends on the ejector pressure gradient and inlet velocity ratio, the inner jet
expansion seems more exclusively a function of the latter. To eliminate the

introduction of additional unknowns in the ejector problem formulation it is

worthwhile to explore an analytic approximation for the inner boundary length,
b I ; see the potential core region of figure 16. Below, some remarks on the outer

jet expansion follow a discussion of the potential core approximation.

ii. Potential core region length

Characterization of the potential core re!gion is given in the present work
by "calibrating" an analytic model; calibration is done with ejector data.

Abramovich [1963] derives the length of the initial region for 2-D planar

co-flowing jets as:

L 1 + r

bo c_(1-r)(0.416 + 0.134r)

where the velocity entrainment ratio is

r = Ols/Uit, (6)

and the empirical coefficient for free jets given by

0.2 < c_ < 0.3

Alternate models are presented by Abramovich for multiple jets that link the

increase in thickness of the jet proportionally to the intensity of turbulence in the

stream (those models also assume a loss of single jet identity loss for multiple jet
configurations). We find it convenient to use the expression above with a
corrected constant
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c I = 0.4

which is based on the experimemal work of Bernal and Sarohia [1983].

Prediction of L/b 0 of 15.5 for a 2-D single jet corresponds fairly well with a value

of 18 extracted from their plots of nondimensional centerline velocity. In this

regard the work of KrothapaUi et. al. [1980] is of interest since multiple

rectangular free jets were considered and the dimensionless length estimated
(from their plots) to be in the vicinity of 14-20. This is the basis for the earlier

remark that, at least for the ejector configurations of interest, the rate of the

potential core spreading is influencedmore so by inlet velocity than longitudinal

pressure gradient. For the limited purpose of establishing the non-dimensional

potential core jet length the free turbulent jet results are applicable. Bear in

mind that unlike the free turbulent jet an axial pressure gradient is assumed for

the ejector.

Figure 17 illustrates the non-dimensional centerline velocity as a function

of the non-dimensional centerline distance for a typical multiple free jet. The

potential core region is important since the total non-dimensional length of the

mixing region under consideration is on the order of 20-30.

iii Outer jet boundary expansion

A linear representation for tt_e outer jet boundary is illustrated by the

boundary bH in figure 16. This is based on the interpretation of data by

Abramovich for incompressible planar jets (free and submerged). Data from

Donsi et al [1979] supports this trend for extremely large pressure gradients

(experiments were for fluidized beds with jetting). We therefore have

b = kz (7)

and note Abramovich's simple expression for the constant has the attractive
result

b l-r

- c,i + (8)z F

where c I is the same as used previously. An account of jet growth as a function of

longitudinal pressure gradient couJd be nested in the constant. Due to the

time-dependence of the pressure gradient for transient ejector operation the

(outer) jet growth -- and therefore the proportionality constant -- is also a

function of time. Since the development of Abramovich is based on continuity

the p.resent work follows suit, but from a finite volume standpoint. This ensures
the finite-volume method will satisfy continuity without an ad-hoc construction of

b(x).
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It is interesting, though, to remark on a test case for the correlation ab2_ve
where r=0.35 and an ejector mixing region pressure gradient of 14 Ibf/ft is
given. The 9 ° expansion angle from finite volume continuity considerations

compares reasonably well with the 10.1 o value from the Abramovich model

(with el =0.4) and, as expected, is higher than the 5 ° value found with Cl for a

free jet with no longitudinal pressure gradient.

Self-similar profiles

In the characterization of an element of the mixing region the velocity

description simplifies with the 2-D planar turbulent jet self-similar profiles of

Abramovitch [1963] for co-flowing jets:

/J--U a

Uw 1 m UI I

1 - (9)

Alternate co-flowing jet profiles are used, for instance, in the work of Korst and

Chow [1966] or Lund, Tavella, and Roberts [1966], but the polynomial form is more

applicable to the physics of interest here.

Introduce the dimensionless radial coordinate,

X

_=- (lo)
b

so that in general form

then

v_v. 1q5($) = ' _ (11)
vm-Vo O, 1 <_<-_

v =v,(1-+) + v,,4, = /(_) (12)

where

= (13)

and B is the maximum value of the jet half-width, b. For an incremental volume of

length Az, width y, and height x, only part of the jet consumes the element.

Therefore, the general velocity profile is written

u(_) = ( [(q')' 0-<_<1}Vo, 1 <_-<_- (14)
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The description above makesno account for the potential core for the initial

jet region; for this we note

/9 = Oil-hi (15)

and the dimensionless radial coordinate becomes

x-tot x-tot
sr - (16)

btl-bl b

Recognizing the inner boundary vanishes outside the potential core region (by

definition), then by default the dimensionless coordinate takes the correct form if
we define

b°-ztan0' z<zt} (17)/91 = 0,z>_z I

where Zl is the length of the potential core region. In the discussion to follow
distinction between the potential core and mixing regions is not necessary if the

appropriate non-dimensional parameters are understood.

To allow for a density variation _,cross the jet a basic self-similar profile is

assumed,

P--Po

P rgl -- P O

- A(¢) (18)

where

{1, 0,-<_ <_; (19)A(_) = 0, _ <_-<_)

and obviously

p = O.(1-A) + o_A (20)

The value of _" used in the present work is unity, though fluidized bed data suggests
a value of 0.9 allows more interaction between the jet boundary layer and the

free-stream. For a constant cross-sectional density there is no need for a self-similar

approximation; thus

p = 5 (21)

Pressure is assumed to have a profile similar to that for density,
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P-eo

- z(_) (22)
e lTtl -- P O

Again, this profile need not be invoked if the assumption of a uniform transverse

pressure gradient is specified.

Temperature profiles are shown by Abramovich [1963] to have the dimension-

less profile

T-T,

Z l'tl -- T Q

- _(_) = 1 __l.s (23)

derived as the square root of the velocity profile.

Transformation of coordinates require that derivatives of _ be determined. If it
is assumed that b is in general only a function ofz and t (not x), then,

d_ 1

dx b (24)

so, for example, the generic area integral across the mixing region is,

_0 B
4

4_0 B= z(¢J)h/dx

= ld{_o6Z(_)dx+/bsz(_)dx)

= w_ z(_)d_+ z(_)d_ (25)

and the integral for the complete cross-section would be

Z

N

= _¢,(_. _) (26)
i=1

L Example Application: Average velocity computation

Computation of the average mixing-region velocity at station k is a simple

example of the use of the self-similar profile integrals. Define the average
velocity by

,£- vdA (27)
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we have for "N" nozzles that

2NW: e
_k A-, .Io .dx (28)

and through a change of variable

2NWt'_ fot- v,d_
vk A_

(29)

Application of the self-similar profile., yields

2NWbk

fo_(,.( l - /,). _/,}a_vk Ak
(30)

where

i, = o. i _<,_<_,_ j

Completion of the integral yields

(31)

{Jk = Ak u m [,d_ u° (1-[,)d_;+v_ (l)d_ (32)

Let

A" 2NIVO, (33)
Ak

then

= z'{_(1-o.8+o.2"_),,,.(o.8-o.2"_)+,,o(_- I)) (3.1.)

and finally

= A'(o.4s_+ _.(_-o.,:_)} (35)

Application of the finite volume method

The assumptions and profiles outlined in the previous section are applied to the
equations of mass conservation, momentum conservation, and balance of energy.
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Application to conservation of mass

For the generic sub-region k, bounded by surfaces at k and k+ 1,

\_t / k

(36)

where

fo B
rA t = 2NW pkukdx (37)

From the similarity profiles

rh k = 2NIVb k {po(l -A)+p,,, A} (_,.( l -_,)+ ,,.,,_}d,t (38)

As discussed earlier, an account of real-flow effects is provided in part through an

empirically obtained jet spreading function b(z,t) that defines the jet boundary. This

is a common function explored in turbulent jet analyses. In general, the spreading

function is dependent on space and time, although for the present preliminary study
considerable simplification is obtained by ignoring the time dependence. It suffices

for the present work to admit a quasi-steady approximation for the jet expansion;

this approximation can be checked when ejector data is available.

After substitution of self-similar profiles the mass flux integral becomes

fo _rA = 2NWb {p.,u.,A¢ +p,,u,.(I-A)d:,+p,.u.A(l-¢)

+ poVo( I - A)(I - q_)}d¢ (39)

then (see Appendix H)

F, = fA_d_

F 2 = /

F 3 = /

= O. 4,5 (4.0a)

¢(l-A)dts = 0 (4Oh)

A(l-_)d_ = o.t_'_ (4Oc)

A)(l-¢)d_ = $-1 (4od)F4 = f(l-
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where

B
_: = -- (41)

b

and the numerical values are for the mixe, d flow region.

Now,

rh = 2NWb{p,,.u..F, + p.u,.I::: + P.,UoI"3 + PoU.I"4}

= 2NWb{Z,} (42)

The mass in the elemental volume is also given by

L ;orrt = p d V = 2 N W zl z i_d x

/o= 2 NIVbA z pd_- (43)

where the characteristic density approximation for the finite volume has been used

1 f _ (44.)
.Z

If now

tPd[ = p.,El+PoE 2 (45)

where

f0 tE I = Ad_ (466t)

2'E 2 = (l-A)d[ (46b)

then

n_ = 2NWbAz(p_I;,+p./_'_)

The continuity equation now has the form

(,1.7)
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5/lz El dt J E2 dt OkZ,_ bk. lZl_.,
(48)

i. Uniform transverse density approximation

A uniform jet density in the transverse direction simplifies computations by

eliminatinlg the distinction between entrained and primary flow density. This
does not ignore the marked extreme of secondary amd primary flow, rather,

treats the combined flow with a characteristic density extracted from thermal

exchange upon mixing. With this assumption the elemental volume mass
becomes

m = 2NW_zpB (49)

and the result for the finite volume density derivative is

(d_d__) = btZIk-bt÷lZl_.lk BAz (50)

it Computation of o,,

Continuity conditions across the first mixing region finite volume (steady

flow case) allow an approximation for the outer jet spreading angle. The

approximation is based on the following

II constant secondary velocity, andconstant primary and secondary flow densities.

In practice, these assumptions provide the jet spreading angle as a simple
transformation from "top-hat" profiles to those of a self-similar form. Since

fh I = 2NWbiZ I ([51)

then

- (_52)
b1 2N[c'ZI

(53)

and the outer boundary layer then defines the jet expansion angle. A more
convenient expression is given by an explicit representanon of b as a function of
the primary and secondary inlet velocities. Recall that
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Zj = p_v,,,Fj+p°v,,,F_+p,,,,l°F3+p,v°F 4 (54)

where

El

F2

F3

F4

bl

= --+0.45 (55a)
b

= o.o (55b)

= 0.55 (s_c)

B-b1
l ([_Sd)

b

By substitution

rh, = 2Nh/(p._v,_(b, +O. fSb)+ f._vo(O.._L3b)+ PoVo(B-b, (56)

then the expression for the boundary layer thickness is

,-,,,,- 2Nwp{b,,,,,,+(B- b,),,,}
b =

2Nh/ p(O.45v._- O.4.!::_v_}
(57)

The outer jet expansion angle is theretore

(,,,,bo)(,,,+,,,,,o1O. = arctan .......... (58)

The expansion angle is determined at the time of initialization of the flow and, as
a first approximation, remains constant in time thereafter. This assumes the
inner boundary layer is not a deciding influence on the overall jet boundary layer
characteristic. The form of the inner boundary layer used in the present work is

_rimarily a function of the primary and secondary velocity ratio. On the other
and, the outer jet boundary is infhlenced more by the longitudinal pressure

gradient than by inlet velocity ratio. Providing that the free-stream (inlet) and

discharge pressures remain fairly constant, the constant boundary layer assump-
tion will, as a first approximation, not significantly impact the gross characteriza-
tion of ejector physics.

Application to the momentum equation

The integral form of the momentum equation for the elemental volume is
given by
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L Lpo_dV + rrt¢_ _ - pv_(v.n_)dA - n.(pl_)dA+E (59)

i. Time rate of change of momentum

Computation of momentum within an elemental volume is given by the

volume integral of the density and velocity product,

L f/M k = pvdV = 2Nh/Az pvdx (60)

For simplicity the average density concept from the continuity equation discus-
sion is used here; furthermore, an average element velocity is assumed character-

ized by the velocity at station k + 1,

B
Mt = 2N[,eAzp ukdx (61)

this yields

Mk = 2Nw_,_:a{u_,(F,+l:2)+u.(F,_+F,)} (62)

from which the time derivative is

dMk

dt

dp

- 2Nle'bdz( _[{u,,,(F +F2)+_.(e,+ F,)}

dvm , du,

o(F, + F2 -_-+ P(Fa + F4)_-) (63)

iL Momentum flux

The momentum flux across station k is

'Qk = lAP U2dA

B 2= 2NIV pkv-,ctx

t 2d_ (64)= 2NIVb k PkUk

Scalars are used in the above since the directions (signs) are understood at each
station to be given by:
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Recall that

v : Vo(1-¢) + v._¢

where

¢(_=) -_-"_) _ o<_<l}
p --

o, I _<_<__

then

2 2
v2 = v2(l-¢,)_+u;;,¢, _ + 2,,°,,.,(¢ - _)

and so

L_,Q = 2NMb {po( 1 - A)+ p,.,, - +

(67)

Performing the multiplications,

f _ 2 2l(,l = 2Nh/b {PoV°(l-¢,) (1-A)
o

or,,.( 1 - A)_2 + /:_,,.v2.,A¢ 2+p 2

+ 2P.UoU.,(l-A)i'q,-cp _)

Introduce a set of integrals G i

G I = f Aq'2d( = 243/7",'0

G 2 = f'A(l-¢)2d_ = 320/770
J

+ p._u_(1 - ¢)2A

2p,,,,,.,,,,,A(_ - _ 2)}__:

(68)

(69a)

(69b)
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6:4 = f(!-A)_2d_ = 0

C5 = f(l-.4)(]-'_)_d_ -

C 6 = 2f(l-A)(_-_2)d,_

414/1540

= _-l

= 0

so that

fit = 2Ntdb{ 2 + oC 2PmOm C I Pm lj2

fit = 2N_'b(z_}

]2+ p,,,_J,tt,,,C 3 + p°z ,;,C 4

The net momentum flux is therefore

iii. Static pressure integral

2NW(bkZ2,

The surface pressure integral is re-written as

L '_(;._"A=L'_(+,(,_._L ,_(+i,,,.A
t k'l

so application of the self-similar profiles is restricted to the equation

L //PdA = 2Nlc'b Pd_

from which we obtain

(69c)

(69d)

(690)

(69I)

( 70 )

(71)

(72)

(7:3)

(74)
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fA PdA L_= 2NWb {P.(l-A)+ P.A},t,_

= 2NlVb{PmEl+p°E2}

= 2NWbZ o

where E 1 and E 2 have been previously defined.

The surface pressure integral is now given by

- _ P(L" n_)aA = + 2NW(b, Zo.k-bk.,Zo.k.,}
JA

(75)

(76)

iv. Wall fn'ction

Frictional effects are considered an explicit function of velocity, pressure,

and temperature (or density)

_, = F_,(p,.v,.P,) (7I)

but in the first approximation frictional effects are neglected.

v. Summary of components

The modified form of the momentum equation is given by summary of the

components discussed above, the result is

dp (F t 22NW6,., Az {--_(v m * F + Uo( l:a +F4)}

du,n d,!,'. + 1:4) }+---o(F )+ -p(,::,
el t I 2 (1' t

The last term has the simple interpretation of the net momentum flux,

A.;/.v°t = 2NI.GbA:(Z.;,,+Zo, ) + 2NWb,.I(Z2,.,+Xo,., ) (79)

where at the ejector inlet

_a_o,, ( 2 ) (p + s_2 )= Ale PII'+PlI"UIp + A|s Is Pl IS (80)
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A solution for the time derivative of velocity can now be extracted

dt 2NWbt.lAz dt p l:l+F2 dt \Fl+t:2J
(81)

Application to the energy equation

The form of the energy equation most conveniently adapted to the finite

volume analysis is the heat equation, given in integral form as

dt pdV = -y pu.ndA-(y- !) pU.ndA (82)

Distinction between this interpretation of the energy equation and the mechanical

and general power equations is described in appendicies A and B. Term by term
evaluation follows; in all discussions use has been made of the uniform transverse

pressure and density assumption.

i. Surf ace flux terms

Since pressure and density have similar representations, the pressure

energy-flux term is similar to the mass flux term; by direct analogy

_p = -y_pv.ndA = 6k-6k. I (83)

= y2N[e'bkp{um(Ft+F2)+Uo(Fa+F4)}

= y2NtVbZ 4 (84)

and where the self-similar profile integrals F i are the same as defined previously.

The pressure-energy flux associated with the free-stream is

-(y-I) rpU.  ZA =
as

If desired, the area term can be re-written as

= 2Ntet,,(E, + E2)

or

(86)
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A,, = 2Nl'v'bk$k = 2NI, VB (87)

ii. Time rate-of-change of energy

The volume integral of pressure
discussion on conservation of mass)

f pdV - 2NWBAzp

cast in finite volume form is (see

(88)

and has the time derivative

-_t pdV = 2Nh/ B Az d_£ _! (89)
dt Jk

Considerable simplification of the time-derivative is realized from the approxi-
mation that static properties at station k are characteristic of the finite-volume

element. This is not a statement of uniform volume thermodynamic properties,
rather, that the reference for derivauve computations can be approxamately
given at either station k or k + 1.

iiL Summary of components

In modified form the heat equati on is

(,ip) 2NiV(b,z2NWBAz --_ k *" Y

from which

,, -

I-bk. iZj)

+(y- t)U2NtC(b,Zo-b,.,Zo) (90)

,-b_,.,/,)+A-_-_Uy- I (btZo-bl,.,Zo) (91)

Homentropic secondary flow

Analysis of a finite-volume element whose cross-section spans the mixing
region provides a relationship in time and space between the primary and secondary

flows. The description of the mixing region is incomplete, however, since the basic
profiles used previously only represent the characteristics of the jet boundary layer
and not those of the secondary flow itself. In this situation an inviscid, homentropic

flow assumption for the secondary flow provides closure for the mathematical
representaUon of the mixing region.
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The present analysis is predicated on a shock-free flow. However, as men-

tioned by Anderson [1970a, b], introduction of shocks could be explicitly introduced

through discontinuities in the initial flow field.

Homentropic flow is distinguished by the absence of temporial and spatial

gradients of entropy

Os
__ m Vs - 0 (92)
Dt

Entropy jumps across a shock violate this condition. Nonetheless, in this work the

fact that entropy is assumed uniform throughout allows the fluid flow to be
described by the relation

P
-- .. const (93)
p_

This replaces the need for the energy equation, but adherence to conservation of

mass and momentum remains. The derivative of this expression yields

dP Py

dp p

and thus

dP (
Conservation of mass allows for the computation of the density gradient in the

secondary flow, but the representation chosen here is to compute the gradient one

time step after changes in the primary flow have been computed. A point function
computation arises

(dp) . (Pk)i.,_,--(Pk), (95)-_ k z_t

A description of the entrained velocity derived either through a solution of the

momentum equation for the secondary flow, or, as in the present work, use j of a

kinetic energy transfer function. The momentum equation approach is noted briefly

below. Details on the kinetic energy function are given later.
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L Momentum

For an inviscid flow assumption Euler's equation represents the momen-

tum equation for a material volume. Although previous discussions consider
extention to a material volume, the assumed existance of a streamline for the

homentropic flow is a valid simplification. For one-dimensional flow we have

3v 3U c_v 1 c_F'
--+-- - -(v+U)
c)t c) t c)z p c)z

Finite difference approximations for the streamwise derivatives give the time

derivative of velocity in terms of velocity and pressure at stations k-l, k, and k+ 1.

Finite volume initialization

Nomenclature for the virtual grid used in the finite-volume initialization is given

in figure 15. Initialization of pressure, velocity, and density is based on steady-state

versions of the mass, momentum, and energy equations. The assumption is made that

the uniform pressure and density profiles apply. Application is discussed below.

Conservation of mass

Elimination of time derivatives in the mass conservation equation produces

0 = 2NICb,ZI,-2NWbsZR, (96)

where

Z. = p,av_Ft+p.v,_F2+pmv,Fa+PoV°F4 (97)

Now since

tit I - 2NWbzZz_ (98)

then the centerline density is

p,(,,.(r, ÷r2) *
rh I

2Nh/b i

which becomes

P1 V"a+V" Fz + 2Nh.'b,(F, + F2)

Solving for density, we obtain

(99)

(100)
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P1 - (]ol)
vn_ +b

where

a 2NWb,(F,+F2) (102)

and

(Fa+FT_)- (103)b = Vo Fl +

Conservation of momentum

Computation of the jet centerline velocity derives from the momentum
equation and assumes the entraned velocity is known. First, recognize the discharge
momentum is

M, " A,e(P,p+P,p v=)re + Ats(P,s+p,sv2s) (104)

and then at station k

ml_

where

Z0

= 2NWb,(Zo +Z2. ) (105)

- {e,,,e,+e.e=} (]o6)

E 2Z2 { P,,,v_GI + PmVoG2 + P._V.v,.G3

+ p,v_C4 + p°v2, Cs+ p°v°v,.C6}

then

M, - p(_., E_),p(v_(c,+c,)+o:(c2,c5)*v.v,,,(c3+c°)}
2NIVb ,

Normalization yields

(]07)
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MI

2NWO/(C,+G4)
-- + p U m + U - -- + U,U m --

P Gt+ " GI+G4 +G

(109)

which has the shorthand notation

(llO)

where

C I

d 2( G2+G5)_v° G, +G4

(Ilia)

(lllb)

(lllc)

Yl
am

2NWOj(GI +G4)

Conservation of energy

The steady-state result for conservation of energy is

0 = f pu. ndA

2NId{bkZ 4 -bjZ %}

and therefore (by analogy with the conservation of mass discussion)

g
p f

v_.+b

(llld)

(112)

(ll3)

where

g
Z4 o

2NIVb,(F, + F2)

(114)
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This transformation of the thermal energy exchange is supplemented by the constant

enthalpy relation applicable to homentropic flows (see earlier discussion).

Solution of the system of equations

Substitute the density and pressure representations into the simplified momen-

tum equation so that velocity remains the only unknown

a {, }
vm +b vm+v_c+d +

go

vm+b

= / (115)

then by re-arrangement

Um+UmC+d+-- s Urn+ b
a

(116)

2(I) gab/Vm+U m C---- +d + '_
a a (1

0 (117)

2 +v,.B+C = 0Vm (118)

This quadratic equation has the solution

B 1
±-_B2-4C

v_ " 2 2
(119)

where

B

C

/
C -- --

a

v, Gl +C4 rhn Cl +C4

d+ge b/
a a

v2 G 2 + G s + --_-_l - - v . --* Gt+G4 \-C1+ rftl Gl+C4

(120)

(121)
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Kinetic Energy Exchange

Analysis of the primary and secondary flow interaction has not, to this point, been

completed. By themselves, the self-similar profiles close the loop for steady-state flows,
but not transient ones I This section provides an approximation for the turbulent flow

kinetic enerjgy exchange mechanism to characterize the influence of primary flow

changes on the secondary flow.

Kinetic Energy Computation from Self-Similar Profiles

Kinetic energy can be computed by the integral of the product of velocity and
momentum (as described in Appendix B); from this there results the scalar quantity

KE ,. _ pvadS (122)

By substitution for the self-similar velocity profiles and with the use of a uniform

density approximation, the kinetic energy becomes

KE = NWbp {v.(l-_)+v,.,,'_'}ad_ (|23)

I

If it is assumed

_-2 --- I

then

KE = Nldbp {Vo(l-¢)+vmcb}ad¢ + radio (124)
l

Upon integration

( 3 )2 H +b_v_lta+v3_H4+VoHs (125)KE = Nldbp va, H I +v°vm 2

where the Hi integrals arc given in Appendix H.

Change in Kinetic Energy of Secondao, Stream due to Mixing

Computation of the gain in secondary flow kinetic energy can be made by

direct extension of the general kinetic energy relation above

AKE = pv v° d_ (126)
2
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where _ defines the jet boundary streamline (for which the secondary mass flow

through station i is equal to primary mass flow through i). For the present discussion
this dividing streamline is assumed known; AppendLx L illustrates the typical

approach of analysis. Expanding the equation for the change in kinetic energy yields

Consider the integration as the sum of the following four components:

I,, " v3d_

3 +v.o_H2+v_H, (128a)•. veil I

I b = v d_

= v3,Hs (1285)

2'
= v,_v2F,+v_F3 (128c)

Id " f_vv_,d_

= v_F 4 (128d)

In sum, the change in kinetic energy of the entrained flow is

3(H +Hs-e3-F,).vmv .(Ho-F,)AKE = NMbp{ v° l

2 3
+vmv,H 2 + v._H 4} (129)

Change in Primary Flow Kinetic Energy due to Mixing

In a similar way as the change in secondary flow kinetic energy was computed,

the energy loss of the primary flow is given by

AKE .. pv d_ (130)
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where the limits of integration reflect interest in the domain of the primary jet
cross-section.

Evaluation of the integral at station i yields the result

NlVbp( 3H +v.v_H +v_v2. H +v3HzIKE " v. t 2 a _ 4
2

-v_Ft-v.v=F3)

(131)

Kinetic Energy Balance

Computations for a specified steady-state condition show that the change in
kinetic energy due to mixing is not the same for the secondary flow as it is for the

primary. Figure 18 illustrates some typical results (for net changes in kinetic energy

between the input and discharge of the mixing re#on). In fact, the gain in kinetic
energy of the secondary flow is entirely due to the mixing process, while the mixing

loss of the primary flow is only a fraction of its total loss. In balance, however, the

total change of kinetic energy of the primary flow is greater than that of the

secondary flow.

In the works of Korst and Chow [1966] and Chow and Addy [1964] the

relationship between the change in entrained flow kinetic energy and the total

primary flow kinetic energy is given by

AKEIs a

Em = t 3 z (132)
_PteVte

where a value of 12 for o for turbulent flow provides a reasonable match between

theory and experiment for low-speed flows. At higher speeds the relationship

O " 12+2.758Mip (133)

is sometimes used. The important feature of this result is that the change in
secondary flow kinetic energy has the functional form

AKE_s = F(KE_,, a) (134)

The difficulty with the energy transfer function described above is that it

provides (by default) a quasi-steady flow approximation. It therefore cannot be used

for the transient flow in its present form. To entertain local changes in primary-se-

condary kinetic energy in a way that does not burden the computational procedure,
consider the modified function

(13 )
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where the subscript m denotes the loss in kinetic energy due to mixing. Numerical

testing suggests that

This enhancement arises from the assumption that local velocity _adients in the

steady flow case are typically less that the gradients experienced m the transient
mode. Here, the introduction of an engineering approximation also results in the

introduction of an undetermined constant, C1. The alternative is to establish N

computations of the kinetic energy exchange to coincide with the N control volumes

of the mixing region; the present method permits post-processing KE information at
the completion of mixing region calculations. Sample calculations indicate

C_ - 0.95-1.00 (137)

Summary of Method

This chapter has introduced the continuity,, momentum, and energy equations
required for the analysis of the ejector mixing region. A quasi-steady flow assumption
for the inlet and diffuser relieves us from repeating the chapter 5 discussions for those

components here. The energy equation is supplemented by the kinetic energy exchange

equations presented above. Figure 19 summarises the solution methodology for the

unsteady flow problem. As expected, several steps are common with the steady flow
solution, especially in the initialization process (recall figure 11). Some remarks are

given below to highlight the assumed kinetic energy exchange process.

Communication between primary and secondary flow in the present work is based

in part on kinetic energy gain by the secondary flow due to kinetic energy loss of the

secondary flow. Such calculations are for the specific purpose of updating the secondary
flow as ume evolves (changes in the primary flow are effected through solution of the

traditional momentum and energy equations for the same). Three steps are involved:

. For a flow condition given after the primary flow has advanced forward in

time, compute the jet streamline position at station N, for simplicity this
station is taken to be the point of nuxing region discharge.

. Compute the entrained flow kinetic energ_ gain before and after the change
in primary flow conditions; the difference is the net change in entrained flow

kinetic energy due to changes in primary flow.

. Update the entrained influx kinetic energy for the net change withiri the
nuxmg region; extract the new secondary flow inlet velocity.
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7. DISCUSSION OF RESULTS

Characteristic Test Case

In the absence of data from transient flow ejector experiments (or even from modern

multi-dimensional Navier-Stokes solvers), 'k, erification" that the proposed ejector analysis can

provide reasonable thrust predictions must be left to engineering judgement. Because of this,

a "familiar" ejector forcing function must be used. In the present work the system response to
a step-function input is not only a characteristic transient case study, but the scenario is also
coincident with typical STOVL ejector application.

For demonstration purposes the ejector system response to a step-change in primary

nozzle flowrate from 18.7 to 21.85 lbm/sec is chosen because (a) expenmental steady-state
data at each of these operatingpoints _s available, and (b) the 17% change in primary flowrate

is well beyond a "smaU"-perturbation examination (this exercises the system non-linearities).
Changes m primary flow stagnation temperature are taken from data given with flowrate data,

but the corresponding static pressure is computed by the procedure given in Appendix J.

Calculation Results

For the mixing region finite-volume length of 0.18 ft and a characteristic mixing region
velocity of 500 ft/s, the characteristic time step for computations is

0.18
At - -- 0.4ms

500

To avoid infringing on this stability limit a computational time step of 0.1 ms was established;

100 time steps provided the necessary interval foi examination of the step-function test case.

The empirical coefficient in the transient analysis, C1 (required for calibration of the

primary-to-secondary kinetic energy exchang.e mechanism), was selected to match the asyp-
totic transient thrust prediction with the quas_-steady value at the new set point; satisfying this

condition required

C 1 = 0.97

Figure 20 illustrates the predicted ejector thrust profile for this coefficient. It appears the 2

n_ll"'isecond residence time of the flow (elapsed time for primary nozzle flow to reach the
diffuser exit plane) is slightly less than the 3 millisecond interval for the thrust to reach a new

maximum. Oscillations in thrust after that point appear to settle in about 5
milliseconds.

An unexpected feature of the thrust profile is the dip in thrust immediately following

the step-change in ]primary nozzle efflux. Examination of the field variable profiles reveals
this is not a numerical problem, but that the increase in static pressure associated with the
instantaneous change in driving flow temporarily impedes the secondary flow. After a short

period, the secondary flow kinetic energy builds (commesurate with the increase in primary

flow energy) to overcome this effect, then continues in the intuitively expected manner.
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Remarks

A distinctive second-order flavor is displayed by the predicted thrust profile; under a

second-order assumption the ejector test case has approximately a 0.75 damping ratio and a

natural frequency on the order of 300 Hz. Although the results seem reasonable, it is necessary

to conduct more extensive computational tests before conclusions about the order or linearity
(about the perturbation) of the system can be made. The purpose here is to establish the

routine is operational and that it can in fact provide reasonable results between two steady-
state condiuons.

The strongest criticizim of the proposed method of analysis probably lies within the

entrained flow prediction by kinetic energy exchange; the one-dimensional flow limitation

has required the traditional theoretical analysis of the problem to be modified and an empirical

coefficient introduced. This ma X mitigate the robust nature of the simulation approach and
require fine-tuning for a speofic ejector configuration. Once this has been established,

however, the simulation permits characterization of the transient ejector behavior very quicldy,

for a wide spectrum of operating conditions. If it determined the ejector time constants are

"small enough" so as to be neglected (relative to time constants for other propulsion system
components) then a quasi-steady flow assumption for the ejector mixing-region may be valid.
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8. CONCLUSION

Assumption Highlights

It should remain clear the intent of the proposed finite volume method of analysis

is to meet the combined requirements of

1. Thrust prediction for real-time simulation,

2. Apredictive fluid-dynamic methodology, and
3. Characterization of turbulent flow.

As a result of the assumptions and compromises that must be made to reach these goals,

two empirical constants have been introduced. The result is a simulation detailed enough
to allow a rational introduction of experimental data in the simulation, while at the same

time being of a simple nature; this is anticipated to provide a realistic candidate for
real-time simulation. Several assumptions made with this goal in mind (and with significant

impact on the algorithm structure) are worth repeating:

1. Primary nozzle and all free-stream conditions are known as a function of time.

2. Quasi-steady flow conditions exist at the inlet and diffuser.
3. Entrained flow velocity predictions are adequately given by the proposed kinetic

energy exchange mechanism.

Exploration of a step-function test case reveals that items 2 and 3 appear not to have

compromised the fundamental description of ejector physics.

Closing Remarks

The method of analysis for the description of transient ejector characteristics pro-

vides reasonable results for the single test case considered. As such, the method can be

concluded as viable if the specific intent of development is kept in mind. An operational

computer program has been based on the equations presented. Application of the method

to a broad class of ejector configurations and operating parameters will require exploration
into the sensitivity of the two empirical coefficnents introduced in the course of the analysis.

As more detailed experimental and theoretical treatment on the theory of turblent

mixing evolve, it remains to make practical application of those results to the ejector

analysis. It remains that the basic turbulent flow control volume approach is an excellent
vehicle on which to test new (or modified versions of the present) method of turbulent

mixing characterization.

Solutions to some of the equations described in this work have, due to the limited
time available, been solved iteratwely. There is considerable opportunity to decrease the

execution time of the method by replacing the iterative rotuines with analytic solutions.

Such solutions may be available in future work through application of, for instance, the

MACSYMA symbolic manipulator.

<77>



REFERENCES

Abramovich,G.N. (1963),The _ of turbulent j_¢__, M1T Press.

Addy,A.L., J,;C.Dutton, and C.D.Mikkelsen (1981), Ejector-diffuser theory and experi-
ments, Report No. UILU-ENG-82-4001, Department of Mechanical and Industrial

Engineering,University of Illinois at Urbana-Champaign, Ill.

Addy,A.L. and Mikkelsen,C.D. (1974), "An investigation of gas dynamic flow problems in
chemical laser systems,' Report No. UILU-ENG-74-4009, Department of Mechanical

and Industrial Engineering, University of Illinois at Urbana-Champaign, Ill.

Alperin, M. and J. Wu (1983a), "Thrust augmenting ejectors, I," AIAA Journal, V.21, Oct,

pp.1428-1436.

Alperin, M. and J. Wu (1983b), "I'hrust augmenting ejectors,II," AIAA Journal, V.21, Dec,

pp.1698-1706.

Anderson, B.H. (1974a), "Assessment of an analytical procedure for predicting supersonic

ejector nozzle performance," NASA TN D-7601.

Anderson, B.H. (1974b), "Computerprogram for calculating the flow field of supersonic

ejector nozzles," NASA TN D-7602.

Anderson, J.D. (1970a), "A time-dependent analysis for vibrational and chemical non-equi-
librium nozzle flows," AA Journal, V.8, No.3, pp.545-550.

Anderson, J.D. (1970b), "A time-dependent solution of nonequilibrium nozzle flows - A

sequal," AiAA Journal, V.8, No.12, pp.2280-2282.

Bernal, L. and V.Sarohia (1983), "Entrainment and mixing in thrust augmenting ejectors,"
AIAA 83-0172

Bevilaqua, P.M. (1974), "Evaluation of hypermixing for thrust augmenting ejectors," J.

Aircraft, V.11, No.6, pp.348-354.

Bevilaqua, P.M. (1984), "Advances in ejector thrust augmentation," AIAA Paper 84-2425.

Braden, R.P., K.S.Nagarja, and H.J.P.VanOhain (1982), Proceedings: Ejector Workshop

for Aerospace Applications, AFWAL-TR-82-3059.

Drummond, C.K. (1985), "Numerical analysis of mass transfer from a sphere in an

oscillatory flow," Ph.D Thesis, Syracuse University, 1985.

Drummond, C.K. and F.A.Lyman (1986), "Numerical Analysis of secondary streaming in

the vicinity of a sphere," Forum on Unsteady Flows, ASME FED, V.39.

Dutton, J.C. and B.F.Carroll (1983), "Optimized ejector-diffuser designprocedure for

natural gas vapor recovery, "ASME Journal of Energy Resources Technology, V. 105,

No.3, pp.388-393.

<78>



Dutton, J.C. and B.F. Carroll (1986), "Optimal supersonic ejector designs," ASME

Transactions, Journal of Fluids Engineering, V.108, December 1986, pp.414-420.

Fabri, J. and R.Siestrunck (1958), "Supersonic air ejectors, "Advances in Applied Mechan-
ics, Vol.V, Academic Press, pp.l-34.

Hedges, K.R. and P.G.Hill (1974), _Compressible flow ejectors, Part I - Development of a
Finite-Diference flow model, ASME Paper No.74-FE-1. Also, Transactions of the

ASME, Journal of Fluids Engineering, September, pp.272-281.

Hussain, A.M. (1981), "Role of coherent structures in turbulent shear flows," Proc. Indian

Acad. Sci. (Engg. SO.), Vol.4, Pt.2, pp.129-175.

Kentfield,J.A.C. (1978), "Prediction of performance of low pressure ratio thrust augmenting

ejectors," Journal of Aircraft, V.15, pp.849-856.

Knott, P.G. and D.N.Cundy (1986), "Installation aerodynamics of ejectors in combat
aircraft," Aeronautical Journal, V.90, December, pp.410-413.

• ,1 _ °Koening, D.G., F.Stoll, and K.Aoyagl (1981), AI: phcation of thrusting ejectors to tactical

aircraft having vertical lift andshort-field capability," AIAA Paper 81-2629•

Korst, H.H. and W.L.Chow (1966), "Non-isoenergetic turbulent jet mixing between two
compressible streams at constant pressure," NASA CR-419.

Krothapalli, A., D. Baganoff, and K. Karamcheti (1980), "Development and structure of a

rectangular jet in a multiple jet configuration," AIAA Journal, V.18, No.8, pp.945-950.

Liepmann, H.W. (1979), 'q'he rise and fall of ide:ts in turbulence," American Scientist, V.67,

pp.221-228.

Lund,T.S., D.A.Tavella, and L.Roberts (1986), "Analysis of interacting dual lifting ejector

systems," AIAA Paper 86-0478.

Mikkelsen, C.D., M.R.Sandberg, and A.L.Addy (1976), _l'heoretical and experimental

analysis of the constant area, supersonic - supersonic ejector," Report

UILU-ENG-76-4003, Department of Mechanical and Industrial Engineering, Univer-

sity of Illinois at Urbana-Champaign.

Miller, D.R. and E.W. Comings (1957), "Static Pressure distribution in the free turbulent

jet", JFM, pp.l-16.

Minardi, J.E. (1982), "Characteristics of high performance ejectors," Proceedings: Ejector

Workshop for Aerospace Applications, pp179-279.

Minardi, J.E. (1982), "Compressible flow ejector analysis with application to energy

conversion and thrust augmentation," AIAA Paper 82-0133.

Qiart, H., M.Zhang, and G.Ye (1984), "A method for calculating the performance of ejector
nozzles," Journal of Engineering Thermophysics, V.5, February, pp.47-50.

<79 :,



Salter, G.E. (1975), "Method for analysis of V/Stol aircraft ejectors," Journal of Aircraft,

V. 12, pp.974-978.

S¢ldner,K., J.R.Mihaloew, and R.J.Blaha (1972),"Generalized simulation technique for

turbo-jet engine system analysis," NASA TN-D-6610.

Shen, H., E.Dong, T.Shyur, and M.Kee (1981), "The sweep finite element method for

calculating the flow field and performance of supersonic ejector nozzles," Proceed-

ings: Fifth International Symposium on Air Breathing Engines.

Tavella, D. and LRoberts (1984), "A simple viscous-inviscid aerodynamic analysis of

two-dimensional ejectors," AIAA Paper 84-0281.

Thompsort, P.A. (1972), Compressible Fluid Dynamics, New York: McGraw-Hill.

<80>



BIBLIOGRAPHY

Abramovich,G.N. (1963), The _ of turbulent j.cd&, MIT Press.

Addy,A.L, J.C.Dutton, and C.D.Mikkelsen (1981), Ejector-diffuser theory and experi-

ments," Report No. UILU-ENG-82-4001, Department of Mechanical and Industrial

Engineering, University of Illinois at Urbana-Champaign, Ill.

Addy,A.L and Mikkelsen,C.D. (1974), "An investigation of gas dynamic flow problems in
chemical laser systems, Report No. UILU-ENG-74-4009, Department of Mechanical
and Industrial Engineering, University of Illinois at Urbana-Champaign, I11.

Alperin, M. and J. Wu (1983a), "Thrust augmenting ejectors, I," AIAA Journal, V.21, Oct,

pp.1428-1436.

Alperin, M. and J. Wu (1983b), 'Thrust augmenting ejectors,II," AIAA Journal, V.21, Dec,

pp.1698-1706.

Anderson, B.H. (1974a), "Assessment of an ana)ytical procedure for predicting supersonic

ejector nozzle performance," NASA TN 13-7601.

Anderson, B.H. (1974b), "Computerprogram for calculating the flow field of supersonic

ejector nozzles," NASA TN D-7602.

Anderson, J.D. (1970a), "A time-dependent analysis for vibrational and chemical non-equi-

librium nozzle flows," AIAA Journal, V.8, No.3, pp.545-550.

Anderson, J.D. (1970b), "A time-dependent solution of nonequilibrium nozzle flows - A

sequal," A/AA Journal, V.8, No. 12, pp.2280-2282.

Anderson, J.D. (1976): Gasdynamic lasers: An Introduction. Academic Press

Banks, D.W. and G.M. Gatlin (1986), "Longitudinal and lateral aerodynamic data from
tests of an advanced STOVL fighter employing a powered lift ejector," NASA TM
87672.

Batterton, P.G. and B. J. Blaha (1987), "NASA supersonic STOVL technology program,"
NASA TM 100227.

Beard, B.B. and W.H.Foley (1982), "An engine trade study for a supersonic STOVL

fighter/attack aircraft," NASA CR-166304.

Beheim, M.A., B.H.Anderson, J.S.Clark, B.W.Corsott, LE.Stitt,and F.A.Wilcox (1970),

"Supersonic exhaust nozzles," in Aircraft Propulsion, NASA SP-259, pp.233-282.

Berg, D.F. (1982), "F101 DFE preliminary stud_: Transient performance customer deck -
User's manual," GE-R82AEB507.

Bernal, L. and V.Sarohia (1983), "Entrainment and mixing in thrust augmenting ejectors,"
AIAA 83-0172

< 81 :_



Bernstein, A., C.Hevenor, and W.Heiser (1967), "Compound-compressible nozzle flow,"

AIAA Paper 66-663; also: J. Appl. Mechanics, V.34, No.3, Sept.1967, pp.548-554.

Bevilaqua, P.M. (1974), "Evaluation of hypermixing for thrust augmenting ejectors," J.

Aircraft, V.11, No.6, pp.348-354.

Bevilaqua, P.M. (1984), "Advances in ejector thrust augmentation," AIAA Paper 84-2425.

Bodden, D.S., D.W.Whatley, and R.K.Douglas (1987),"E-7 STOVL aircraft low speed flight

control system," AIAA Paper 87-2903.

Braden, R.P., K.S.Nagarja, and H.J.P.VanOhain (1982), Proceedings: Ejector Workshop

for Aerospace Applications, AFWAL-TR-82-3059.

Bresnahan, D.L. (1968), "Experimental investigation of a 10-degree conical turbojet plug

nozzle with iris primary and translating shroud at Mach numbers from 0 to 2.0,"
NASA TM X-1709.

Brown, E.F. (1968), "Compressible flow through convergent conical nozzles with emphasis

on the transonic region," Ph.D Thesis, University of Illinois.

Cantwell,B.l.(1986),"Viscous starting jets," Journal of Fluid Mechanics, V. 173, pp.159-189.

Carroll,B.F. and J.C.Dutto,n (1985), "CAEOFI2: A computer program for supersonic
ejector optimization, Report No. ULIU-ENG-85-4006, Department of Mechanical
and Industrial Engineering, University of Illinois at Urbana-Champaign.

Chandrasekhara, M.S., A. Krothapalli, and D. Baganoff (1987), "Mixing characteristics of a

supersonic multiple jet ejector," AIAA Paper 87-0248.

Chandrasekhara, M.S., A. Krothapalli, and D. Baganoff (1987), "Similarity of ejector

wall-pressure distributions" AIAA Journal, V.25, No. 9, pp. 1266 - 1268.

Cheng, L. (1988), "CFD efforts @ BMA in support of STOVL technology development,"
Presentation to NASA/Lewis, 30 March 1988.

Chow, W.L. and A.L.Addy (1964), "Interaction between primary and secondary streams of

supersonic ejector systems and performance characteristics," AIAA J., V.2, No.4,

pp.686-695.

Chow, W.L. and P.S.Yeh (1965), "Characteristics of ejector systems nonconstant area

shrouds," AIAA Journal, V.3, No.3, pp.525-527.
/

Collins, D.I. and M.F.Platzer (1982), "Experimental investigation of oscillating subsonic

jets," Proceedings: Ejector Workshop for Aerospace Applications, pp.463-474.

Crane,L.J.(1957), "The laminar and turbulent mixing of jets of compressible fluid. Part II:

The mixing of two semi-infinte streams," JFM, V.2, pp.81-92.

Dahm, W.J. and P.E. Dimotakis (1987), "Measurements of entrainment and mixing in

turbulent jets," AIAA Journal, V.25, No.9, pp. 1215-1223.

<82>



DeJoode,A.D. and Patankar,S.V.(1978),"Prediction of three dimensional turbulent jet
mixing in an ejector,"AIAA Journal, V.16, No.2,February,pp.145-150.

Deleo,R.V., R.E.Rose,and R.S.Dant(1962),"An experimental investigationof the useof
supersonicdriving jets for ejector pumps,"ASME Journal of Engineering for Power,
V.84, pp.204-212.

Droste, C.S.(1988), "A case study the F-16 fly-by-wire flight control system," AIAA Case

Study.

Drummond, C.K. (1985), "Numerical analysis of mass transfer from a sphere in an

oscillatory flow," Ph.D Thesis, Syracuse University, 1985.

Drummond, C.K. and F.A.Lyman (1986), "Numerical Analysis of secondary streaming in
the vicinity of a sphere, Forum on Unsteady Flows, ASME FED, V.39.

Dutton, J.C., C.D.Mikkelsen, and A.L.Addy (1982), "A theoretical and experimental

investigation of the constant area supersonic - supersonic ejector," AIAA Journal,

V.20, No.10, pp.1392-1400.

Dutton, J.C. and B.F.Carroll (1983), "Optimized ejector-diffuser designprocedure for
natural gas vapor recovery, ASME Journal of Energy Resources Technology, V. 105,

No.3, pp.388-393.

Dutton, J.C. and B.F. Carroll (1986), "Optimal supersonic ejector designs," ASME

Transactions, Journal of Fluids Engineering, V.108, December 1986, pp.414-420.

Elbanna, H., S. Gahin and M.I.I.Rashed (1983), "Investigation of two plane parallel jets,"

AIAA Journal, V.21, No.7, pp.986-991.

Elgin, J. (1988), "Control mode analysis," Presentation to NASA/Lewis, March 16 at GE

Aircraft Engine Group.

Emanuel, G. (1976), "Optimum performance for a single-stage gaseous ejector," AIAA

Journal, V.14, No.9, pp.1292-1296.

Emanuel, G. (1982), "Comparison of one-dimensional solutions with Fabri theory for

ejectors," Acta Mechanica, V.44, No.3-4, pp.187-200.

Fabri,T. and J. Paulon (1958), 'Theory and experiments on supersonic air-to-air ejectors,"
NACA TM 1410.

Fabri, J. and R.Siestrunck (1958), "Supersonic air ejectors, "Advances in Applied Mechan-

ics, VoI.V, Academic Press, pp.l-34.

Fisher, S.A. (1981), "Thrust augmenting ejectors for high pressure ratio propulsive jets," 7th
Austrailian Conference on Hydraulics and FluidMechanics, Brisbane, Australia,

August 18-22, 1980.

Foa, J.V. (1982), _Considerations on steady- and nonsteady-flow ejectors," Proceedings:

Ejector Workshop for Aerospace Applications, pp.659-698.

<83>



Foa, J.V. and C.A.Garris (1984), "Cryptosteady modes of energy exchange," Mechanical

Engineering, V. 106, Nov., pp.68-75.

Foley, W.H., A.E.Sheridart, and C.H.Smith (1982), "Study of aerodynamic technology for

single-cruise-engine V/STOVL fighter/attack aircraft," NASA CR-166268.

Fozard, J.W. (1978), "File jet V/STOL Harrier," AIAA Case Study•

Franke, M.E. and G.Unnever (1985), "Performance characteristics of rectangular and

circular thrust augmenting ejectors," AIAA Paper 85-1344.

Franklind.A. and S.A.Englland (1987),NE-7A Aero and Propulsion Model," Unpublished.

Garland, D B (1987), "Specification for tests of the full-scale single-sided ejector for the

Spey/E7 model at Lewis Research Center, NASA, DeHawlland Aircraft Company,
DHC-DRIE 87-1•

Garland, D.B. (1987), "Development of lift ejectors for STOVL combat aircraft," AIAA

Paper 87-2324.

Goff, J.A. and C.H.Coogan (1942), "Some two-dimensional aspects of the ejector problem,"

Journal of Applied Mechanics, V.9, No.4, pp A151-A154.

Greathouse, W.K. and D.P.Hollister (1953), "Air-flow and thrust characteristics of several

lindrical cooling-air ejectors with a primary to secondary temperature ratio of 1.0,"
CA RM E521.24.

Grohs,G. and G.Emanuel (1976), "Gas dynamics of supersonic mixing lasers," in the

Handbook of Cemical Lasers, John Wiley & Sons, pp.263-388.

Habib,M.A. and J.H.Whitelaw (1979),"Velocity characteristics of a confined coaxial jet,"

Journal of Fluids Engineering, V. 103, pp.605-608.

Hardy, J.M. and H.Lacombe (1967), "Supersonic bypass nozzles - computing methods,"

Rev. Francaise de Mechanique, 4th qtr, pp.49-59.

Hart, C.E. (1971), "Function generation subprograms for use in digital simulations,"
NASA-TM-X-71526.

Hassinger, S.H. (1978), "Ejector optimization," Report AFFDL- TR-78-23, Air Force Flight

Dynamics Laboratory, Wright-Patterson AirForce Base, Ohio.

Hassinger, S.H. (1984), NA new method for calculating duct flows," AIAA Journal, V.22,_

January, pp.141-143.

Hedges, K.R. and P.G.Hill (1974), "Compressible flow ejectors, Part I - Development of a
Finite-Diference flow model," ASME Paper No.74-FE-1. Also, Transactions of the

ASME, Journal of Fluids Engineering, September, pp.272-281.

Heiser, W.H. (1967), _'hrust augmentation", Journal of Engineering for Power, pp.75-82.

<84>



Hickman, liE., P.G.Hill, and G.B.Gilbert (1972), _A{)alysis and testing of compressible
flow ejectors with variable area mixing tubes, ASME Journal of Basic Engineering,

V.94, pp.407-416.

Hoh, R. and S.R. Sturmer (1987), "Handling qualities criteria for STOL landings," STI

Paper 407.

Howe,R.M. (1986), Dynamics of real-time simulation, ADI, Inc.

Hussain, A.M. (1981), "Role of coherent structures in turbulent shear flows," Proc. Indian

Acad. Sci. (Engg. Sci.), Vol.4, Pt.2, pp.129-175.

lob, M. (1987), "An investigation of some simple models for the F/A-18 flight dynamics,"
Australian DoD AR-004-513.

Iwaniw,M.A. and A. Pollard (1983), "Multiple jet mixing in a rectangular duct - Center

plane behavior," ASME Paper 83-FE-35.

Johnson, J.D. (1966), "An analytical and experimental investigation of ejector performance

for nonsteady flow conditions," College of Engineering, Clemson University., Engi-

neering Experiment Station Bulletin 107, July.

Keenen, J.H. and E.P.Nuemann (1982), "A simple air ejector," Journal of Applied

Mechanics, V.9, No.2, pp.A75-A81.

Kentfield,J.A.C. (1978), "Prediction of performance of low pressure ratio thrust augmenting

ejectors," Journal of Aircraft, V. 15, pp.849-856.

Khared.M. (1973),'An analytical and experimental investisation of an unsteady flow
ejector," University of Calgary, Mechanical Engineenng Department, Rept.53.

Khare,J.M. and J.A.C.Kentfield (1978),"A simple apparatus for the experimental study of

non-steady flow thrust-augmenting ejector configurations," Workshop on Thrust

Augmenting Ejectors, June 1978.

Knott, P.G. and D.N.Cundy (1986), "Installation aerodynamics of ejectors in combat

aircraft," Aeronautical Journal, V.90, December, pp.410-413.

Kochendorfer, F.D. and M.D.Rousso (1951), "Performance characteristics of aircraft

cooling ejectors having short cylindrical shrouds," NACA RM E51E01.

Koening, D.G., F.Stoll, and K.Aoyagi (198I), "Application of thrusting ejectors to tactical

aircraft having vertical lift andshort-field capability," AIAA Paper 81-2629.

Korst, H.H. and W.LChow (1966), "Non-isoenergetic turbulent jet mixing between two

compressible streams at constant pressure," NASA CR-419.

Krothapalli, A., D. Baganoff, and K. Karamcheti (1980), "Development and structure of a

rectangular jet in a multiple jet configuration," AIAA Journal, V.18, No.8, pp.945-950.

< 85 ::_



Krothapalli, A., LVanDominelen, and K.Karancheti (1985), "Fhe influence of forward
fl_ght on thrust augmenting ejectors,_AIAA Paper 85-1589.

Kuhlman, J.M. (1987), "Variation of entrainment in annular jets," AIAA Journal, V.25,

No.3, pp.373-379.

Lewis, W.G.E and F.W.Armstrong (!970), "Some experiments on two-stream propelling
nozzles for supersonic aircraf4 ICAS Paper 70-48.

Liepmann, H.W. (1979), 'q'he rise and fall of ideas in turbulence," American Scientist, V.67,

pp.221-228.

Loth, J.L. (1966), "Theoretical optimization of staged ejector systems, Part I," Report
AEDC-TR-66-2.

Loth, J.L. (1968), "Theoretical optimization of staged ejector systems, Part II," Report
AEDC-TR-68-80.

Luidens,R., R.Plencner, W.Haller, and A.Glassman (1984), "Supersonic STOVL ejector

aircraft from a propulsion point of view," NASA TM-83641.

Lund,T.S., D.A.Tavella, and L.Roberts (1986), "Analysis of interacting dual lifting ejector

systems," AIAA Paper 86-0478.

Maphet,J.A. and W.T.McKenzie (1958), "Internal performance of several lindrical and
divergent shroud ejector nozzles with exit diameter ratios of 1.11, 1.1c9y, 1.27, 1.35,

1.43, 1.53,and 1.65," Report FZA-4-341 General Dynamics/Convair.

Marsters, G.F. (1977), "Interaction of two plane parallel jets," AIAA Journal, V.15, No.12,

pp.1756-1762.

Matsuo, K., H.Mochizuki, K.Sasaguchi, and Y.Kiyotki (1982), "Investigation of supersonic

air ejectors II - Effects of throat-area-ratio on ejector performance," JSME Bulletin,

V.25, December, pp. 1898-1905.

McLachlan,B.G., A.Krothapalli, K.Nagaraja (1984), "Flow structure within a heated

rectangular jet ejector," AIAA Paper 84-0571.

McRuer, D. (1980), "Human dynamics in man-machine systems," Automatica, V.16, pp.
237-253.

McRuer,D., Ashkenas,l., and Graham, D. (1973), Aircraft dynamics and automatic control,

Princeton University Press.

McRuer, D. and H. Jex (1967), "A review of quasi-linear pilot models," IEE Transactions

on Human Factors in Electronics, No.3, pp.231-239.

Mihaloew, J. R. (1988), "Flight propulsion control integration for V/STOL aircraft," NASA
TM-100226.

<86>



Mikkelsen, C.D., M.R.Sandberg,and A.L.Addy (1976),"Theoretical and experimental
analysisof the constantarea,supersonic- supersonic ejector," Report

UILU-ENG-76-4003, Department of Mechanical and Industrial Engineering, Univer-

sity of Illinois at Urbana-Champaign.

Miller, D.R. and E.W. Comings (1957), "Static Pressure distribution in the free turbulent

jet", JFM, pp.l-16.

Miller, D.R. and E.W. Comings (1960), "Force-momentum fields in dual-jet flow," JFM,

V.7, pp.237-256.

Miller, R.J. and R.D. Hackney (1976), "F100 multivariable control system engine

models/design criteria," AFAPL-TR-76-74.

Minardi, J.E. (1982), "Characteristics of high performance ejectors," Proceedings: Ejector

Workshop for Aerospace Applications, pp.179-279.

Minardi, J.E. (1982), "Compressible flow ejector analysis with application to energy

conversion and thrust augmentation," AIAA Paper 82-0133.

Mitchell, D.G. and J.M. Morgan (1987), "A flight investigation of helicopters low-speed

response requirements," STI Paper 402.

Narayaman, M.A. and S.A. Raghu (1982), "An experimental study on the mixing of

two-dimensional jets," Proceedings: Ejector Workshop for Aerospace Applications,

pp.383-405.

Neiders, G.K., A.S.Goldstien, and J.E.Davidson, "Evaluation of prototype digital flight

control algorithms in hardware-in-the-loop environment," Proceedings of Digital

Avionics Systems, IEEE, pp.547-554.

Nelson, D.P. and D.L.Bresnahan (1983), "Ejector nozzle test results at simulated flight

conditions for an advanced supersonic transport propulsion system," AIAA Paper
83-1287.

Parikitt, P.G. and Rj.Moffat (1982), "Resonant entrainment of a confined pulsed jet,"

ASME Transactions, Journal of Fluids Engineering, V.104, December, pp.482-488.

Patankar, S.U. and Spalding, D.B. (1972), "A calculation procedure for heat mass, and

momentum transfer in three-dimensional parabolic flows," Int. J. Heat Mass Transfer,

V.15, pp.1787-1806.

Paynter, H.M. (1985), "Representation of measured ejector characteristics by a simple
Eulerian bond graph models," Transactions of the ASME, Journal of Dynanuc

Systems, Measurement, and Control, V. 107, December, pp.258-261.

Petrie,H.L (1980), "An experimental and theoretical investigation of multiple ducted

streams with a periodic or a steady supersonic driven flow," M.S. Thesis, Department
of Mechanical and Industrial Engineering, University of Illinois at Urbana-Cham-

paign.

<87>



Petrie, H.L and A.LAddy (1982), "An investigation of planar, two-dimensional ejectors

with periodic or steady supersonic driver flow," Proceedings: Ejector Workshop for

Aerospace Applications, pp.475-492.

Petrie,H.L., A.LAddy, and J.C.Dutton (1985), "Multiple ducted streams with a periodic or

steady supersonic driven flow, NAIAA Journal, V.23, December, pp.1851-1852.

Porter,J.L. and R.A.Squyers (1981), "A summary/overview of ejector augmentation theory

and performance," ATC Report No. R-91100/9CR-47A, Vought Corporation Ad-
vanced Technology Center, Dallas, Texas. Also, USAF Techmcal Report No.

R-91100-9CR-47, April 1981, Volumes I and II.

Pratt & Whitney Aircraft (1968), "Users manual for the general ejector nozzle deck,"

Report PWA-3465.

Qian, H., M.Zhang, and G.Ye (1984), "A method for calculating the performance of ejector
nozzles, Journal of Engineering Thermophysics, V.5, February, pp.47-50.

Quinn, B. (1973), "Compact ejector thrust augmentation," J. Aircraft, V.16, No.8,

pp.481-486.

Rizzi,A. and B.Engquist (1987),"Selected topics in the theory and practice of computational

fluid mechanics," Journal of Computational Physics, V.72, No.l, pp. 1-69.

Rojek,F.W. (1986),"Development of a mathematical model that simulates the longitudinal,

and lateral-directional response of the F/A-18 for the study of flight control

reconfiguration," M.S.Thesis, Naval Postgraduate School.

Runstadler, P.W., F.X.Dolan, and R.C.Dean (1975), "Diffuser data book," 1st Ed., Create

Technical Information Service, Hanover, New Hampshire, pp.1-88.

SAE (1984), _V/STOL: An update and introduction," SAE SP-591.

Salter,G.E. (1975), _Method for analysis of V/Stol aircraft ejectors," Journal of Aircraft,

V. 12, pp.974-978.

Saminich,N.E. and S.C.Huntly (1969), "I'hrust and pumping characteristics of cylindrical

ejectors using afterburning turbojet gas generator," NASA TM X-52565.

Sayer, R.A. (1961), _The flow due to a two-dimensional jet issuing parallel to a flat plate,"

JFM, V.9, pp.543-561.

Sawyer, R.A. (1963), "I'wo-dimensional reattaching jet flows including the effects of
curvature on entrainment," JFM, V.17, pp481-498.

Schum, E.F., J.H.Dehart, and P.M.Bevilaqua (1982), rejector nozzle development, _ 13th

Congress on International Council of the Aeronautical Sciences & AIAA Aircraft

Systems and Technology Conference, Seattle, WA, August 22-27, V1 of Proceedings
(A82-40876 20-01), pp.410-417.

<88>



Schrewsbury,G.D. and J.RJones (1968), "Static performance of an auxiliary inlet ejector
nozzle for supersonic cruise aircraft," NASA TM X-1653.

Seldner, K., J.R.Mihaloew, and Rd.Blaha (1972),"Generalized simulation technique for

turbo-jet engine system analysis," NASA TN-D-6610.

Shen, H., E.Dong, T.Shyur, and M.Kee (1981), 'q'he sweep finite element method for
calculating the flow field and performance of supersonic ejector nozzles, Proceed-

ings: Fifth International Symposium on Air Breathing Engines.

Stratford,B.S. and G.S.Beavers (1961), _I'he calculation of compressible turbulent bound-

ary layer in an arbitrary pressure gradient - a correlation of certain previous

methods," Rept R&M-3207, Aeronautical Research Council, Great Britan.

Sully, P.R. and D.C. Whittley (1987), "The synthesis of ejector lift / vectored thrust for

STOVL," IAA Paper 87-2378.

Sweetman, B. (1988), "ASTOVL requirements begin to take shape," Interavia, V.3,

pp.261-264.

Tavella, D. and L.Roberts (1984), "A simple viscous-inviscid aerodynamic analysis of

two-dimensional ejectors," AIAA Paper 84-0281.

Thompson, P.A. (1972), Compressible Fluid Dynamics, New York: McGraw-Hill.

Toulmay, F. (1984), "Internal aerodynamics of infared suppressors for helicopter engines,"

40th Annual Forum of the American Helicopter Society, Arlington, VA, May 16-18.

Turner, J.S. (1986), "Turbulent entrainment: the development of the entrainment assump-

tion, and its application to geophysical flo,,_'s,"Journal of Fluid Mechanics, V.173,

pp.431-471.

Vavra, M.H. (1960), Aero-thermodynamics and flow in turbomachines, New York: Wiley
and Sons.

VonGlaun, U.H. (1986), "Plume characteristics of single-stream and dual-flow conventional

and inverted profile nozzles at equal thrust." NASA TM-87323

VonGlaun, U.H. (1987), 'q'wo-dimensional nozzle plume characteristics," NASA
TM-89812.

VonGlaun, U.H. (1987), "Secondary stream and excitation effects of two-dimensional

plume characteristics," NASA TM-89813.

Vogt, W.G., M.H.Mickle, M.Zipf, S.Kucuk (198,), Research activities at the University of
Pittsburgh, School of Electrical Engineering," Presentation to NASA/Lewis, Decem-
ber.

VonKarman, T (1949),'Theoretical remarks on thrust augmentation," Contributions to
Applied Mechanics.

< 89 _:"



Wacholder, E and J.Dayan (1984), "Application of the adjoint sensitivity method to the
analysis of a supersomc ejector,"Transactions of the ASME, Journal of Fluids

Engineering, V.106, December, pp.425-429.

Whittley, D.C., and F.L.Gilbertson (1984), "Recent developments in ejector design for
V/STOL aircraft," SAE Paper 841498 (in SAE-SP-591).

Wood, J.J. (1982), _qon-recoverable stall transient engine model: Volume dynamic
simulation," GE M&AETA Memo, Jan. 13 (P).

Yang,T., T.Jiang, D.R.Pitts, and F.Ntone (1984), "An investigation of high performance,

short thrust augmenting ejectors," ASME Paper 84-WA/FE-10.

<90>



Station:

Constant area

mixing region Diffuser

o ; = _

zI
__" lit#Ill/l/l, _fll/ll/

1P=
High Pressure

Primary

Mixed Flow

Figure 1. Generic Ejector Configuration

<91>



_o_
-=a--:

i

J

o .

-o° ,o ,_

oc_
I,-- Uj

Z,,_

0
l I l l I I

0

0

0

L

o
k_

o

°_

>

e4

&
°_

<92>



180600 1 2 3 4

0., OEG

Figure 3. Typical Ejector Wall Pressure Distribution

<93>



SUPERSONIC
REGIME

I

SATURATED
SUPERSONIC 1
REGIME / i

MIXED REGIME

Poo

PIP,0

Figure 4. Mass Flow Characteristic Surfaces

<94>



!

I

I

%

Break-off curve

\
\

\

• \
%

PlP,O

Figure 5. Thrust Augmentation Profile

<95>



M1s

0

SATURATED Pls

/ SUPERSONIC .f p_.i \\ 0

g I J" "_

SUPERSONIC MIXED

I,,. '_ _ I "_

.- . \

_ " \

:-off curve

Figure 6. Secondary Mass Flow Characteristics

<96>



(a) Arbitrary control volume U

/

U I
I

i
I

X X+AX

X

(b) simplified duct control volume

Figure 7. Nomenclature for Arbitrary Control Volume

<97>



It//I//l _/ _ _ _ '

Secondary flow

Primary nozzle flow _///_

(a) High secondary flowrate

Secondary flow

Primary nozzle flow

(b) Low secondary flowrate

Figure 8. Flow Model for High and Low Secondary Flow Rates

<98 >



_Y-

x

(a) Real flow field
(b) Assumed flow field

Figure 9. Transverse Velocity Distribution

<99>



0

0
o_
Ol.

P

"I0

I O0 E

• . _ _._ "'_ ._

I _ _ _ _'_

i: . ,io
II _ _ _ II

0

e,-

0

o.

r>

0

I TM

"oIo I_
:-T

'0010,

"o o %IT,_
.i__L

N

N

o

r-

E

Z

E

>

o_

<I00>



DATA: Geometric data

Gas propenies

Macro solution

/dtl " _1. ÷_U
L
F

-I

Subroutine SEA.FOR

Compute the free-stream static

and stagnation properties of the
flow

lr

I Compute primary nozzle dis-charge conditions

Assume a value for the secondary
flow velocity,

OIl

Compute station ls flow condi-
tions

Establish mixing region discharge 1
conditions. (The mass flowrate Is I

a function of thetyS)econdary veloci- I

Compute diffuser exit conditions, I

based on the discharge pressure Imatching condition P3 = P4.

Compare the mass flowrates at
stations 3 and 4

Pr_eed with computation of
thrust, augmentation ratio, and

ejector efficiency.

[R - RNI

Figure 11. Steady Flow Solution Procedure
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FIELD VA21ABLE SPECIFICATIONS:
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VIP : 869.20000 _HOIF' :

VE : 303.97C_0 _HO :
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GEOMETRIC SPECIFICATIONS:
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BO = .0168100
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AIP = .4199800

KINETIC ENERGY BUDGET
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Figure 18. Typical Kinetic Energy Budget
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Overview

Appendix A

Developmentof the Integral Equations

A material volume of V(t) and surface S(t) can be described by four laws of motion:

1. Conservation of Mass: Based on continuity conditions, this is a statement that the
material volume is of constant mass.

2. Balance of Linear Momentum: Newton's second law provides that the rate of change
of momentum is equal to the sum of body and surface forces.

3. Balance of Energy: The first law of thermodynamics describes the balance of internal

plus kinetic energy, the rate at which work is being performed, and the rate at which
heat is transferred.

4. Creation of Entropy: The second law of thermodynamics dictates which of the energy
transport processes (that the first law provides) that are acceptable; the rate of

entropy creation is balanced by the sum of the rate of increase of entropy and that

transported through the material surface.

These laws are not derivable from a set of more primitive laws and are essentially axioms

supported by experimental work.

In the sections to follow the development of the control volume equations is given
for an arbitrary control volume with a uniform (but time dependent) motion in space.

Continuity

Conservation of mass for a material volame takes the form

_p(tV = 0 (A.1)

where d/dt is the total derivative. From Reynolds' transport theorem

-_l pctV = _(tl / + l)lt.r!clA ( A.2)

Reynolds' theorem can also be applied to a control volume defined by a region D and

surface r,

el foP,IV= f aPclv + S I/. (t.clA (/1.3)
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where Udefines the surface velocity of the control volume, related to the absolute velocity

by

v_ = u_ - U_ (A.4)

Except for the total derivative terms, integrals over the region £'/are identical to

those chosen to be instantaneously coincidental with the (arbitrary) region V; in other
words

f_ arjav = f aPav ( A.,_)
at at

odV • pdV (A.6)
1

but through substitution

#dV - oflV - Ou" tzdA + flU. nclA ( A.Y)
dt

so now

-- pdV + p(u-U).ndA = 0 (A 8)
dt _ -

Momentum

The net body force and surface forces acting on the material volume is balanced by
the rate of change of the material volume momentum

L Lfl__zdV = p_dV + n" ._dA (A.8)

here, g is identified as the specific gravitational force; the general fluid stress tensor, .5.

can be decomposed into a "pressure stress" and a "viscous stress" (deviatoric stress) tensor

-¢ - pi + _ (A.9)

To obtain the momentum balance for a control volume, Reynolds' transport theorem is
first applied to the total derivative for a material volume

<'S L LJtt i OEdV = _(Ou-)aV + pu(u. n)aA (A.IO)

and also to the control volume
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where, again, we note the use of U in the latter. Once the arbitrary material volume is
extendedto coincide with the control volume

afvoUdV-afnouav+ fOu(u'n)aA-fou(U.n)dA (A 12)dt - dt ....... "

It is now evident that

and therefore

-_n.(pi)dA +_ f, rn. S'dA (A.14)

Energy

Because textbooks and the literature are often inconsistent in the use of the term

"energy equation", some clarification is worthwhile so that the present work is interpreted

correctly. Obviously, an energy-conversion law must account for all forms of energy within
and across the control volume. Confusion often arises since a continuous flow of mass

across a control volume admits two independent energy equations. In one case, the

mechanical power equation is derived from the product of the Navier-Stokes equation and

the particle velocity; this gives the so-called balance of mechanical power or transport

equation for kinetic energy. The other case involves the first law of thermodynamics and
is the general power equation, or, as viewed here, the general energy equation. It can be

shown that the heat equation is the difference of the mechanical and general power

equations; in the present work the heat equation can be transformed into a statement of

the entropy balance and will be covered in Section A.5.

With the first law of thermodynamics in mind, the energy per unit volume of a fluid

is the sum of the specific internal energy, e, and the specific kinetic energy, u2/2. For a

material volume this energy is balanced by lhe energy due to heat and work; the general

power equation is therefore

S c, Ld---t p e+-- all/' = • ' _" • - •2. ,P(l udV + .su (rt .c-3)dA q Izcl/I (/t.1_,_)
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Employing the logic used earlier in the extension of the material volume to a control
volume

0 e+--ff aV = _ 0 e+-- av + p e+-- (u-U).ndA2 2 -

(A.16)

so that

d---tt p e+2-u2 dV = p.q'udV + u'_ (n',_)dA - q'ndA

- p e+-u (u-U).ndA
2

(A.17)

From the definition of the stress tensor we expand the stress term:

and since the enthalpy is defined as

P
h = _ +-- (A.19)

P

then

cl f) h+----- dV = - p It+----- (u-U)'ndA
2 P 2 9 -

+ _f)g'udV + _u'(n'S')clA

- f l)_z'uct/l - frq'¢zaA (A .2o)

It is quite useful to assume the heat equivalent to the work of viscous forces to be

immediately transferred to the region where the forces occur. No part of that energy is
transmitted to the surroundings so its presence becomes nested within the other forms of

energy the governing equations provide a balance for. Furthermore, if gravitational effects
are neglected and like terms in the energy equation are eliminated, the energy equation
becomes
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p h+ dV = - U',_dA2 P-- -
U. 2

(A.21)

Alternate Energy Equation

In the absence of dissipative effects, an adiabatic ejector representation of the heat
equation is

LpoctV - ptt. r_dA (A.22)

Apply Reynold's transport theorem to the total derivative for a material volume

_t(Pe)dV + <I_' po(u.n)dA (A.23)
d .,;

and also to the control volume

d_J_(po.)dV = f a _"2 _-i(P°)c'/V + ':'po(u.'n.)c'tA (A.2d-)
i [. -- __

then

J_t,_v (pe)dV - dfn(Po)dV + '_Pe(u-U).ndA (A.2S)
dt .s - -- -

and

L L_-_ (po,)dV - po(_t-It).l_z(l,1 + P(t !'n)dA (A.26)

Since the enthalpy is defined as

[)

p ( A .27)

then by rearrangement and substitution
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An interesting observation extends from the steady-flow zero-reference velocity
simplification; the result is

0 = -fsPhU.ndA (A.29)

which is simply a statement of conservation of heat content between two streams that mix.
Compare equations A.28 and A.21.

Introduction of the ideal gas approximation into the heat equation yields

d--t 29 c°T- dV - pcpTv.ndA - laU'ndA (A.30)

Now, from the relations

p = p R T

Y
c R

P

y-1

then

Py---'-_- l:_ dV - p Y_u' lzdA - pU. ndA (/1.31)
- y-l- -

which simplifies to

= - tg--u'ltdtl - t)U.ndA (A.32)
; y-I- -

and if the specific heat ratio is constant

d_ pdV fsPYU'lzdA - (y-I)fsPu t_dA (A.33)dt 2

In the finite volume analysis of the present work this form of the heat equation is more
convenient (than the general power equation) because of the absence of the cube of
velocity.
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Entropy

Creation of entropy in a material volume is given by the balance of the rate of increase

of entropy and the entropy flux across the surface and, by definition, is a positive quantity,

psdV + q.ndA > 0 (A.34)

where the entropy flux has been identified as the quotient of the heat flux and temperature

of transport (this can be shown; see for instance, Appendix B). Reynolds' transport theorem

is again drawn on to provide the extention of a material volume to a control volume with

local surface velocity U; the result is

d"_l _ -_q" ndA > 0 (A.35)

An interesting analytic excursion (see Apper_dix B) shows the production of entropy is

given by viscous dissipation and thermal effects

+ -V. - > 0 (A.36)
Dt p pT'_ P _:7 -

where the viscous dissipation is defined as

= (S'.V)'u (A.37)

It is evident that if the entropy balance is non-zero the result must be positive since the

production terms are proportional to the square of temperature and velocity gradients.
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Appendix B

Derivation of the Heat Equation

Overview

It is understood that the mechanical power equation is given by the product of the

Navier Stokes equation and velocity, and that the general power equation is formed by
application of the first law of thermodynamics to a control volume. Here, an integral form

of the heat equation is derived as the difference between the integral forms of the
mechanical power and general power equations.

Mechanical Power Equation

For an infinitesimal fluid volume the product of velocity and the Navier Stokes
equation yields

d u

pLt" dt pu'g + t! (V-S) (B.I)

where the general stress tensor is composed of normal (pressure) and viscous components

__S = -pl_ + __S" (B.2)

If gravitational effects are ignored and the total derivative written in explicit form, the
mechanical power equation becomes

_U

Ou_'--=-+P'{(u'v)u)}dt......: -(,.v)p + a.(v.S) (B.3)

Expanding the first term

a_ _ a <pt_t 2 ) i.[ 2 a LLP_i" at at T 2 at (B.4)

then the convective flux term becomes

l O, 21 U_2P_! {(_2" v)a__) = (_!" v) off -ff(_" v)o (B.',_)

and combining with the mechanical power equation results in

a-7 o-y-. - Z+(L_-v)o = -(_!.v) p_+_j +LL.(V.S') (B.6)
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From the general form of the continuity equation

u 2,:)p u. 2 u 2

2 at - p-.._-V" u.+---_-(U_" V)p

and also from the relation

v. u_ p = (u_.v) p +p-i_(V.L L)

then

U2 //2 ] l/2

-p-_V.t_z--_-.(u_.V)p._+-_](u.'V)P

-v. LL p_ +p_(v._4)-(a'V)p+L_(v's_')

(B .7)

(B .8)

(B .9)

this can be reduced to

at p = -V. u, O_- -(__L.V)p+t_,.(V.S') (B.IO)

which, when integrated over a material volume V, yields

(,9.]])

This is the desired result; it is a statement that the integrated kinetic energy inside the
material volume will change if work has been done (due to pressure forces or viscous
stresses within the control volume) or there is a net flux of kinetic energy.

General Power Equation

The first law of thermodynamics for a system has been shown to be

-b • ° -- ° •

dt p e+ 2 dV pg>udV ;-u (n S)dA q ndA (B 12)

If the gravitational effect is ignored and Reynolds' transport theorem applied to the total
derivative,
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p e+-- ctV
2

o+-- u'tz(l,4+ n'(u'S)dA- q.ndA
2

(B.13)

which can conveniently be written

_(po)dV = - p--_[ n" udA- pon" udA

+fvv'(u'S)dV-fvV/'q_clA

(B.14)

Now, since

7' (u'S) = u'(V't;" - ,'V/' + ¢-P(n'V)u (B.1S)

then

+ f,(_2" (v. s')+¢-L L. vP)av

-_v.gav- ;vP,2.(v.u_)av

(8.16)

This is the desired form; it is evident we can identify the mechanical power equation within
the general power equation.

Heat Equation

Recall that the heat equation is formed as the difference of the mechanical power
and general power equations; for the form of these equations as derived above, the result
is

Z L f,_(po)dV = - pon" u, dA + ,¢dV

- ;vV'qdV - S, PI_'(V't_L)dI' (a.17)
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or simply

LpodV = {¢-V.q_-#V.u_},lV (B.18)

An important form of Reynolds' transport theorem provides that

x av : p--6-F¢tv (B.19)

and therefore

p--+V'q-¢+PV' dV = 0
_, Dt -

(B.20)

so for an arbitrary material volume

C

P Dt-- + PV'u_ = ¢ -V'q_
(_.21)

Introduce

1 Dp
V- tt

v DI
(B.22)

T Ds c ,_Dp-- + I --

Dt Dt Dt
(B.23)

so

Ds pDp} pDp__-- __ +
P TDt Dt D-I}

= p T-
Ds

DI

= ¢ -V. q
I

(B .24)

Recognize that

q = -KVT (B.2s)

and

KVT} l<, 1v • --::7-. + -v. (_:v/)
1 '/"

(B.26)
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SO

os _ ¢, + v. -- +_(VT)
Dt pT pT

(,9.27)

Ds V.(_<VT} _ _ +__(VT) 2D--7- -7-- o7 o -7- (8.28)

The terms on the right-hand-side represent the square of velocity and temperature gra-

dients and are therfore always positive; this forms the basis for the second law. Clearly

Ds V. {v,,VT}Dt --7 >_ 0 (B.29)

and since

q K V T

T ]

( B .30)

we finally obtain

+ V"

Dt
_> o (B.31)
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Appendix C

Steady-State Nozzle Coefficient

Flow coefficient

At an (isolated) ejector nozzle exit the steady-state mass flowrate is, for a uniform

flow, given by

m = puA (C.l)

Of interest here is a more convenient form of this relation which introduces stagnation

field variables and the flow coefficient, _.

Stagnation conditions are incorporated by the product

p u c } (C.2)rkt = PoCo A PoCCo

and identify the flow coefficient

m = PocoA_ (C.3)

The flow coefficient can be expressed in terms of the Mach number

= M_C--- (c.4)
poCo

but a more convenient relation uses

C /2

M - (c .5)
Co Co

so the expression for the flow coefficient becomes

I

(* : goo g:-7 l- N

To complete the desired form of the flow coefficient we recognize the isentropic pressure
ratio

I

00°'-
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and therefore

I
!

l l-IPl _ 2 Pl

As a final step, introduce

1 2

(C .9)

so that

1

4) = -- (c.lo)
co

2

I  ,po

Aerodynamic choking

Channel flow is considered aerodynamically choked if the normalized mass flow rate

through a section reached a maximum. Because the fluid stagnation properties are assumed
constant, the flow function has the functional form

cl) (C 1 1)4) = [ Co

(and represents the functional form of the normalized mass flow rate).

If4, is a maximum so must also its square; we obtain the condition for choking that

a(B _-)
- o (c.12)

where

Cl

(c.13)

The square of the flow function is now

(c.14)
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which simplifies to

2 ! 2 *'__1
¢,2 _ 13'-'- _P"'

y-1 y-I
(c.ls)

and the derivative is

d(¢,2) _ 0 _ 2 !-_{ 2 y+l }dl_ y-1 p'-I y-I y-I 13
(c.16)

Since

13 # 0 (c.17)

then it is clear

y+l 2
--[3
y-1 y-1

(c.18)

and therefore the condition of aerodynamically choked flow is that

2
I3 =

y+l
(C.19)

or

( c__L_ 2 _ 2
c2J y+ 1

(c.2o)

It

Po 1/+1
(c.21)

When this result is compared with the expression for the local Mach number we find the
trivial result that sonic conditions are reached when the flow is choked.

Summary

Steady-state mass flowrate through the primary nozzle of the ejector is given by

t-h I = pocoAlqb

where
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I I

I NPR

¥.1

" o x, 2{¥ l)

NPR
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Appendix D

Alternate Mass Fiowrate Equations

Summary of Relations

The literature reflects the use of several different forms of the mass flowrate equation;

the most common are gathered below:

(D.1)

2yRTo(rn = pA y---I 1 -

I - /_---_

1/2

(D .2)

(D .._)

For the present work, the mass flowrate equation is that given by the derivation in Appendix
G:

PA
m - ,-------=./ e (y, M ) (D.4)

 RTo
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Appendix E

Change in Entropy due to Mixing

Overview

In situations where multiple solutions for the Mach numbercan be extracted from

the momentum equation, the "correct" answer is quite often given by that whose circum-

stances are in collaboration with the second law of thermodynamics. For a steady-state
flow, the form of the second law takes on a convenient form and is derived below for

interest and the completeness of this report.

Derivation

For an ideal gas, Gibbs' relation gives that

dT d P

dS = Cp "I--:--R i-T- (E.1)

If the gas is thermally and calorically perfect, then

Y

C p - ¥- 1R = const ( E .2 )

and integration of the previous result gives

Consider steady-state, steady-flow as an example; the integral entropy balance yields

su.nclA >_ 0 (E.4)

so from the definition

d tit

dA

then

-£.Sdln >_ 0 (£.6)

For one-dimensional flow
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-SplFiZpl-SslFi2sl + S21122 >- 0 (E.7)

we obtain

AS

IJl p1

m s l
Sel -Ss_ --

lit p i
+$2-- "::: 0 (E .8)

Because

r/-tst = riZ 2-/h. el (E .9)

then

_> 0 (£.1o)

and so

A S In2
- (Sel-Ssj) +

rh e t ri _ e l
--(Sz-Ss,) >- 0 (£.]1)

By application of the ideal gas relation

AS

R I-i2 p l
(< ( ( ,= - Y In - in

y- 1 7"s, J) Ps,/J

(< (.,.2)}:/t2 --Y-----In - In --
rltpl _- I _ I) s]

which simplifies to the form

AS y

Rmel y- 1 + (.,-,)._
This can be re-arranged in terms of the mass entrainment ratio

AS _ v i,('-r._,'_
Rmpi y- 1 \+1-_] (T+I,+(,,,+,)+ Y In + " It]

y- I _ I;QpI

AS y

Rmrt y- 1
(+2)_,,,,,,,] 11 D:I.p I ] I I "/" :; I IIt I" I

(£.]2)

Introducing the entrainment ratio
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P
l]_ s I

[1:/PI
(E.:3)

then we have the desired result

AS y

Rlnpl y- 1
In + n -- -(l+|t)ln

y- 1 7"sl
(E.i4)
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Appendi:_ F

Mix[d Flow Fluid Properties

Basic Relations

Fluid properties for the mixed flow can be estimated through application of Dalton's
law of partial pressures to an ideal mixing process. We summarize for convenience here
relations extracted from the works of, for instance, Addy et.al.[1981] or Minardi[1982].

The specific heat is given by

Co. MR = Cp.p 1 +it- - > (F.1)
Cj, pj

where the specific heat is related to the gas constant by

¥ x (F.2)
Cp - (y- 1)

The equivalent molecular weight is given by a similar relation

Mu# = Me(l+lt) l+It (F.3)

The specific heat ratio is

M¥

YMR YP +|t vs (ve-]) _!e
YP (Ys- 1) Lts
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Appendix G

Flow Functions

Overview

Manipulation of equations is simplified (and the potential for errors reduced) when

commonly occuring expressions are introduced as functions. In this appendix five

expressions with physical significance are derived; they are:

1. Steady flow stagnation temperature ratio

2. Steady flow isentropic pressure ratio

3. Steady flow isentropic velocity ratio

4. Steady state isentropic area ratio

5. Mass flow function

Steady flow stagnation temperature ratio

For a steady inviscid flow with negligible body forces the energy equation for a
streamline is

2

h + - h o (G. ! )
2

where h 0 is the stagnation enthalpy. This equation does not imply the flow is isentropic,

only that there is negligible heat transfer across the control surface. Introduce a perfect

gas so that

h = cpT+const (G.2)

Pv = RT (G.,3)

where P is the thermodynamic (static) pressure; also

cp : ¥R/(¥- I) (C.4)

c "e : (c)PlOp) s : y(c_PlOv), r : yRT (G.,_)

where Cp is the specific heat at constant pressure and c is the speed of sound. These results
provide

iL 2

cRT+ - cRT_ (G.6)
2
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Cp T 1 tt 2 c v T o
--+ - (G .7)

Cz 2C 2 Cz

so that

To 1 U2C 2

T 2c2cvT

= I+IM2YRT 1
2 y_-R-(Y - I)'7

¥- 1 M 2 (G .8)
2

In functional form this is written as

7" 0

T
- /2(Y, M) (G .9)

Note that no specific assumption of isentropic flow was made.

Steady flow isentropic pressure ratio

In a steady isentropic flow there exists a convenient relation between temperature

and pressure

To _ ( Y

LT
(G.lO)

and thus

¥

/ /Po _ 1 +Y- 1Aq 2 (G.l 1)
P 2

so

,¢

Po
([1 (y, m/1 ) },Y i = /:l(y, M, ((;. 12)

P

Steady flow isentropic velocity ratio

It is useful in the analysis of choked flow to invert the isentropic pressure ratio

equation so that
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this can be rearranged to yield

U

c

A characteristic pressure ratio is that given by the quotient of the stagnation pressure

and the static pressure,

PO

NrR - (C.lU)
P

and we recognize that, as a general rule, P < P0, then NPR > 1. The isentropic velocity
ratio is now

= f4(Y,NPR) (c.16)

Since the speed of sound can be written as a function of the nozzle pressure ratio,

y I

Co

(G.17)

then an alternate expression is

H

Co 1 -( N t'R ) 7_ ((;.18)

Steady-state isentropic area ratio

For a steady-state flow the condition of conservation of mass yields the mass flux
ratio

A 0 * tt,

A" pu

where an asterisk denotes sonic conditions. From this ratio

(c.19)
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p.tz. p.c. 1 poCo

pu poCoM pc

2 l/,,, t 1 2 l+ M

M 2

1 f 2 _'_) ¥- 1
-- I+--A_

M y+l 2

¥.1

_v:G

= v-;5 l+

= .[,._(¥, M)

Mass flow function

From the definition of the mass flow r;_te

m = pvA
_)A I )

R']"

_/ y-I
I+--M 2

2

(c.2o)

(c2])

then

m u v I To

PA - RT -h'7"o T

1 To v

= " COTo 7 Co

_/ y 7'0 _/= -RTo T Co

Since the velocity is given by

v = M c

then

m _ M c
P/1 c o

(c22)

(c .23)
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and the temperature ratio

To _ 1 + Y- 1M2 (G.24)
7" 2

co_c (C .2S)

leads to the result

= M ¥ I +--M _
P/t 2

= _-_o/6(¥, ,44) (G.26)

Summary

Five dimensionless functions have been derived, each associated with a specific
nondimensional physical meaning derived above; they are:

y-I
[2 = 1 +--A42

2

/V/¥_l

¥-1 2
[3 = I+--M

2

¥,1

l 2 1 +--M
[ "_ - M 2

)[6 = M y 1 +--M 2
2

<1._>



Appendix: H

Integrals of Self-Similar Profiles

Introduction

Specific assumptions for the dimensionless form of the self-similar temperature and

velocity profiles will avoid cumbersum numerical integration schemes in the final ana_. sis

(and in the computer code). This appendix provides an assumed form of the various profiles

for the present work and the results of integrations of them. Some of the more difficult

integrals have been explored with the MACSYMA symbolic manipulator on the

NASA/Lewis Vax.

If we consider the jet expansion characteristics of Figure H. 1, then it is evident two

expressions should be constructed for each self-similar profile, one for Region I and the
other for Region II. The basic form of the non-dimensional profiles are given by:

(1-_:l':i) 2 ; 0<_,< 1, _,> I /
• (k) : o • l_<_<__,, _,>l (H.l)

(]-_"_) _ ; o<__;<__,, _-,<l

l; o_<_<_,', _,>l /
A(k) = o: k'<_k<__,, _,>l (H.2)

l; o_<k<-_,. _,<1

Application to integrals incorporating these profiles are given in the sections that follow.
For the case of analysis in the present work it is assumed that

_;'= i. (/:.3)

Basic fi Integrals

Several of the velocity integrals are common to many of the self-similar profile

integrals, so it simplifies the presentation to st_mmarize them. First, set

fl = (]_(i._)2 (tl.4)

from which

cl_ = +().2Uk 4 - ().Sk 2s + k (H.5)

(J-f,)d_. = -o.2.,. + o.sk ..... (::.6)
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770 (H .7)

f( 11_7-,56_55 + 77_4I f, )_a_
77 ( H .8)

f(fl 220_; z- 11201_ ss+ 1925_ 4- 1232_, 2.s- /2)c"-/_ = - 1540 (tt.9)

E i Integrals

Integral evaluation distinguishes between Region I and Region II values, difference_

residing within the limits of integration in each case. Figure H.1 illustrates the variables
used.

Region II coefficients

Jo fo f,'/.., = Aa_, : (l),-t_. + (o)a,r. = l (t1.1o)

Yo' /o' Yo'//','2 = (1-A)dt = (0)c/t + (1)dr : _;-1 (H.I1)

Case where b > B

El = (l)a_, = _ (H.12)

Co_/'2 = (o)a_, = 0 (//.13)

Region I coefficients

In region I b is always less than B, but account of the potential core region requires

a modification of the lower limit of integration (see figure H.1)

fi
/'.',= Ad/:, = l-qo (11.14)

10

/.._= (i-A)c/_, = fl- J (//.I_,_)
0
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F i Integrals

Region II coefficients

/o_ /o' /;Y t = A_d_ = (1)(]t)d_+ (0)d_

= +0.25(I)4 _ 0.8(1)2"s + 1

= 0.45

fo_ fo f,'F2 = (I-A)¢d_ = (O)(/,)d_ + (O)(O)d_

= 0

Hereafter, elimination of the integrals of '0' can be made by inspection.

fo_ fo'Fa = A(l-_)d% = (l-[_)ci_

= -0.25(1)4+ 0.8(1)2"s

= 1 - Fl = 0.55

f_ fo_F 4 = (1-A)(l-qb)d_ = (1)a_ = _- 1

Region I coefficients

F 1
o

= (1)(l)aq
o

= (-qo) + ( 1-o.8(1)_5_ o.2,5(i)')+ (o)

- q o + O. 4U

i/2 = 0

(H.16)

(H.17)

(H.18)

(H.19)
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1'" ,_! I= ( I )( I -/, )(zTt

= 0.8( 1 );__'_- 0.2t._( 1)4

= 0.'J5

F,, = ( 1)( I )(l_,

G i Integrals

Region II coefficients

(Jl =

: Q-l

fo ;o'

I I0(1) 7-'_60(I)'_:_+ 1 IU',J(I)4 12:}2(I)Z't_ + 770 1

G 2

C 3

7YO

243 ,t86

770 IU40

/o= A(l-C,)_d_:, = (l-_)_d_.

l 1 ( 1 )I - U6( 1):s't_+ 77( I ) 4 320 640

77 770 1540

= 2 A(dP-4_2)</_, = 2 (qb- _2)(:1_ "

= _2{_20(i)1-J120(l)'-'"'+l,,_40R,)2"_(1)4-12:s_(l)_:'}

(I-A)(I - _)2d_ = ((-- i)

( ft .22)

(H.23)

(H .24)

(H.25)

41.1

1540

(H.26)

(ti.27)

(ti .28)

G 6 = 0 (II .29)
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Region I coefficients

.j_,o fi_oj 243Gi = (I)<lq÷ 4_ctq := -1.1o+----
o "fTO

(//.3O)

t 320G2 : (1 - 4_)2drl -
77{) ( H .31 )

o 414G 3 = 2 (qb-d,}:")d_l - It:;40 (tt .32)

G 4 = 0 ( tt .33)

G5 = (l)drl = _1- I ( tt. 3.t.)

G 6 = 0 (/: .35)

H i Integrals

Presentation of the H i integrals is given in terms of an arbitrary upper limit to the
integration; this relates to their use in the kinetic energy analysis of Section 5.

Region I coefficients

:o [ _o _'H 1 = A(1 - qb) 3 d _:, =

= -(1309_*l°-92,10_*su+?.2440_'z_ 19040_*ss}/13090

(1t .36)

jr _, t" _'' 2I tz = 2A(¢'_-(1):_){/_ = 2 i (_ -':l):J){'l_
0 .0

* ,ll

-- -- + '/ ' i _, ',,J t],

1()88{)_" :_.'i ,. • 4 .2.is- + 841,:,_ - 2992_ }/1870 (/I .37)
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F
H = I

3
.So

A(34_- 6@ _ * 3¢ :_)d_
== L t

A (3'_- 6@ _ +.S@:_)d_,

lO *8.ti .7

= {3927_ - 2'/220_, + Y2930_,

-8,_680_ "_u + 39270_,'4}/13090

fo I_ fo CH 4 = A fl>3 d _. = ¢3d[

{2618_ 1o 18,t8()_,8._ .7 ,s.u= * - + U61()0_ -9t_20()_,

+ 981 yU}, .4 62832 _,*2''_ *- + 26180_ }/26180

L' S' /,'H s = (1 - A)( 1-¢):_d}, = ( 1 - ¢):_dl:, + ( 1)d_,

( 't-tj31 11 l)(_-1)+ laogo

fo f'1t6 = 2 (l-A)(_2-¢:l)d_, = 2 .(@z-¢:_)dl:,

= (2'13 f12)1870

_ ( 2727 t/._)H7 = . (3<b-6¢_+3<b_)d_> = 1,}090

Region II coefficients

11_ : A(1-<b)c)d_> : A(l-@):)d_>
)

= - { 1309{'°- 9240(8.s + 224,10_z_ 190d.O{ st')/ 13090

(H .38)

(t/.39)

(g .4o)

(H.41)

( H .,t2 )

( It. 43)

(H.44)
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fotH 2 = 2A (qb2 - qba)df,

= -{374[ '°- 2640_ 85 + 748o{; 7

- ] 0880_ _5 + 841 s_:4 _ 2992_._ >/ 1870

fo _ do2H a = A(3qb- 6 + 3d0a)d_

= (3927_ l°- 27720{; 8-'s

+ Z2930{; 7 - 815680".5;,ss + 39270{;4}/13090

foH 4 = Adpad_

= {2618{; l°- 18,t80_, 8u

+ U6 100( 7 - 9S200 _,"_'_+ 9817 L-;{;4 - 628.32t 2.5+ 26180{; } / 26180

H u

tt 6

H7

H8

= 0

= 0

= 0

= 0

(H .45)

(H .46)

(H .47)

(tt .48)

(tt .49)

(H .50)

(H .Sl )
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Figure H.I Non-dimensional Mixing Region Profiles
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Appendix I

Remark on System of Units

Introduction

Few applications of engineering analyses appear exempt from the need to clarify the
system of units involved in calculations. Typically, confusion extends from translating back

and forth between force, mass, andpressure; the usual remark is that a "consistent" system
of units must be used in analysis. In the present work the Engineering English system of
units is used.

This appendix is intended to summarize the 6 systems of units commonly used in

engineering analyses so that no confusion will exist over the definition of Engineering

English system for the present work. The difference in each system of units can be described

by first identifying the fundamental units in each case, then categorizing each system by

observing:

- the magnitude of the fundamental units,

- the choice of the physical nature of the fundamental units

- the choice in the number of fundamental units

The magnitude of the fundamental units originates from the metric and English

systems. Because metric units are estabfished primarily by international conferences,
English units are related to them by several convement conversion factors. Conversion

factors exist within the different English systems and reflects the varied historical devel-

opment of the overall system.

All the systems include length and time as defined quantities - the physical nature of
the fundamental units indicates whether mass, force, or both are defined within the system.

In an absolute (also known as physical) system the mass has a defined fundamental unit

and force units are derived on the basis of Newton's second law. An absolute system is

one for which measurements made in terms of the fundamental units are independent of

the location of the measurements. In the gravitational system, however, a standard weight

(standard force) is defined and mass units are derived. Note in either of these systems only
three defined units, known as primary units, are required to define the system, with all

remaining quantities derived (secondary units). The engineering system of units in unique

in that both mass and force are defined. In this case the total number of primary units is

four and consistency of units is provided by the introduction of a universal constant in
Newton's second law.

From the three general systems described above, six specific systems of units can be

identified; the absolute MKS, absolute CGS, metric gravitational, English gravitational,

absolute English, and engineering English. In each case force, mass, length, and time are

related by newtons second law

F = k(ma)
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where k is a constant. A discussion of each system follows.

Absolute MKS

Also referred to as the International System (SI), mass, length, and time are defined

by units of kilograms (kg), meters (M), and seconds (s), respectively. The unit of fgrce is

a Newton (N). A 1 Newton force will give a mass of I kg an acceleration of I rn/s z. This

system is the most popular Metric system and was adopted for international use by the
Ninth International Congress on Weights and Measures in 1948.

Absolute CGS

This absolute system is very similar to the absolute MKS system. The unit of mass

is defined as the gram (g), the unit of length is the centimeter (cm). Forc_ units are derived
and given in dynes - no abbreviated symbol - where 1 dyne = 1 g cm/s--.-

Metric gravitational

Since weights are measured by the force of attraction that a given mass experiences,
a standard weight for the metric gravitational system is defined with the introduction of a

standard gravitational constant gc. The unit of mass, the kilogram-mass (kgm), is derived.

Using the meter for units of length and the second for time, the kilogram-force (kgf) is a

defined standard weight for the attractional force exerted on 1 kg mass by the earth where

the gravitational constant has a standard value ofg c = 9.80665. Note a total of three defined
units and one derived.

English gravitational

Making use of the foot and second that is common to all English systems of units,

the English gravitational system differs from the absolute system in the same way the
metric graviational does. That is, the unit of force is defined as pound-force (lbf) and the

unit of mass is derived, as the slug - no abbreviated name. From Newton's second law we

obtain 1 slug = 1 lbf sZ/_t. When a force of 1 lbf is applied to a mass of 1 slug it will yield
an acceleration of 1 ft/s z.

Absolute English

This system is also based on three defined fundamental units; feet (ft), seconds (s),

and poungl-mass (Ibm). The units of force are derives as the poundal, where i poundal =

1 lbm.ft/s z.

Engineering English

This system is based on four fundamental units for length, force, time, and mass. As

before, the units of length and time are feet and seconds respectively, but the unit of force

is the lbf and the unit of mass is the Ibm. Compatability of units is provided by the intro-

duction of an English gravitational constant gc into Newton's law. This is the system used

in the present work !
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F = rrt--

gc

where gc = 32.174 Ibm ft/lbf s 2. So for this system, rather than a unit force imparting a
unit acceleration to a unit mass, a unit force causes a unit mass to accelerate with a value

equal to the gravitational constant. It should be noted that the constant gc is numerically
but not dimensionally equal to the standard gravitational acceleration g. Two problems

arise that often lead to confusion with this system: (a) _ is often thought of as g, implying

the problem depends on terrestrial graviation when it may not, and (b) the ratio g/gc
obtained by setting a =g in Newton's law is often approximated as unity and discarded,

leavin_ the appearance that the problem is not a function of gravitational effects where it
might mdeedbe an important part.

Conversion Between Systems

The present work uses the Engineering English s.ystem of units. A summary of the

"hierarchy" of the systems in given in Table 1.1. Comparison of the MKS and Engineering

English units for quanities of key interest are given in Table 1.2. More detailed conversions

between the various systems are provided in Table 1.3.

Illustrative Calculations

Some illustrative calculations may seem trivial, but are .quite illustrative in following
the presence (or absence) ofg c when, for instance, the details of the computer program

are being traced.

Gas Constant The gas constant for air at "standard" conditions can be computed from

R

where

= R/M

Now

] /t z lbm ),
= 49,720 _Rszl_-?t. ),

M

R

ibm )= 28.98 lb,_ol_

49,720

28.98 [t lbm !b,,,ot_ I
s2 R lb mot_ lb ._

< 147 >



=I71G.66--
s2R

Specific Heat For calculations in the computer programs the specific heat at constant

pressure is given by

Y
C p - R

y-I

so for the data of the previous calculation and a specific heat ratio of 1.4

1.4 [ t _

cp - 1.4- 1 171'5.66 = 6004.81 s2 R

but this does not immediately conjure the "0.24" value one might expect. That value is

obtained by conversion of units

c = 6004.81
p

If'e 1 Bill 1 lb /s 2

sP.R 7Y8.6 lb /It 9 _ lb ,,] t

Bltz
= 0.24

Ib ,,, R

Sound Speed For an ideal gas approximation the speed of sound is given by

c = ,_yRT

so for the data

y= 1.4

I = 7",39.67 R

R = 17"1,%.66 [t2/Rs

then

C 1 .,t (/'_9.6/) ( I /l U .66 )

= 13,'50.8()[l/s

<148>



Gas Density Consider an ideal gas at a pressure of 4233.6 lbf/ft 2 and a temperature of
300 F; the density is determined from

9 = P/RT

4233.6

1715.66(759.67) lbt/ftz }
([t2/s2R)R

= 0.0032483 lbts2

.[t 4

To bein a consistent Engineering Engtishsystem ofunitsthefactorofgcmustnotbe

dropped

O = (P/RT).q_

lb t sz lbmft }= 0.0032483(32.174) ft 4 lbt S 2

Ibm
= O. 1045

[t a

Of course, in the English gravitational system the derived mass is the slug

1 slug = 1
lbts

[t

so the first result is immediately recognized as

p = 0.0032483
slugs

.ft a

Stagnation Pressure The stagnation pressure for a 300 F gas flow with a 150ft/s velocity

and 4233.6 lbf/ft z static pressure can be computed from

[) U

Po = P +
2

SO

{,,,,/ oPo = 4233.60-_] + 2 /t 2 s 2
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Po = 4233.60 _-_ + 1175.63 [ l-sz

and the inconsistency in units resulting from the ommission ofgc; correcting the density,
then

2
pu

Po = P+--
2go

42:33.60+ 1175.63 _Ib I}
32.174 _, [t 2

4270.14
lb t

[t 2

Note that computations in the Gravitational English system do not, by default, require
an explicit incmsion of a numerical value for gc since it is unity.

Stagnation Temperature Correction of the density for stagnation temperature calcu-
lations is done the same as in the stagnation pressure case

It 2

T o = T+--
2cp

tO'netic Energy of the Flow
case is a flowrate term

/-_U 2

KE -
2

This quantity has the units of work since the "mass" in this

- 1 P v3A {tb/[l I
2g_ ,s"
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Table 1.2 Summary of Engineering and MKS Systems

Quantity

Length

Time

symbol

L

English MKS

m

lb or lb[

t S S

Mass m lbm kg

Force F N

Density kg/m 3

D_rnamic p lbf-s/fl2 Ns/m 2
Viscosity

Kinematic v ft2/s m2/s
Viscosity

Pressure p Ibf/ft 2 N/m 2

Work, Energy 1,1/ N-m

Power N-m/s

Note:

gc
lb.,ft kg-m

= 32. 174 - 1
lb / s 2 N - s 2
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Appendix J

Computation of Nozzle Exit Static Pressure

Introduction

Instrument data for the primary nozzle flow conditions has been assumed to be for

mass flowrate, stagnation temperature, and static pressure. From this information the

velocity, static temperature, and static pressure for the primary nozzle can be computed.

However, if stagnation pressure is given rather than static pressure the analysis for primary
nozzle conditions (given in the main body of this report) must be modified; the details for
this are given below.

Derivation

The nozzle pressure ratio can be given by

)¥/(¥-1)
Po _ 1 _V- 1M_ -
P 2

so the Mach number is

_/¥- 1_\ p - I

Combine this result with the modified mass flow-rate expressions of Appendix D to obtain

14/ _ Po -1
A RToy- 1

l/2y

and after re-arrangement

2 v'l

/t 2 2¥ pg ].,

If the stagnation pressure, stagnation temperature, and mass flowrate are known, then this

equation contains only the pressure ratio as an unknown; in polynomial form

2 v+l

- 0
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Solution

The root of the equation above provides the solution for the nozzle pressure ratio

and, since the stagnation pressure is known, the static pressure computes directly there-
from. Because this is not an ordinary polynomial which benefits from a simple analytic

solution, a numerical approach is reccommended. Figure J.1 provides a listing and sample

calculation for the APL computer program that provides this service.
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Figure J.1 APL Solution Approach for Static Pressure

ro]

[I]

[2]

[33

[4]

[G]

[7]

[8]

[9]

[I0]

[_.!3

[122

_IISFrC]_

r_s?

ESTII"AT'=OF riCZZLS ['/IT ST_T!,I :_E3sY_z ' ,) "

PO : ',L!,j 4 3_.3.,.' L,_F,,FTZ-'

TO = ',it,.',_ _TO,>, .R'

A = ,',b? 4 _), FTP'

MDOT : '._tO ; :FIDOT>,' L_iL,S'

P(-HEWTO.q 2000, £E-5

' ... _ESULT... '

P : _.(I0 4 _P_.' L!;F,/FS2'

[o]

ell

[2]

[33

[4]

[6]

[7]

[83

[91

[ ic,]

[_.i]

_NEWTOH[O] v

X(-_(EWTON Y,

P(EWTCP(S!_ETFO." FO? P.(]OT-FItP)I_iq

INPUT : ( - VECTO_ OF [HITIAL :UES3 /did Z_RgE 90UtlD

OUTPUT: Z - ROOT OF THE FUtlCTiOt4'ZE_,O'

NOTE: THE EXTZ_r_ALL_ DEFIU_D FUNCTION 'ZERO' HU3T

RESIDE THE U3ER'3 _¢TIL'E _JORZ_PACE.

CT+O ,)Z+ '.'[2]"Zl _-/[i]

Y+YI'-ZE_O Z

[lZ] LO:DX_-YC2]' Y _x :I_ Z-ZI

[13] +LIY_.O Yx_(-ZEP,O Z+.r,X

[i4] +0

[i_] LI:Y_'ZEgO Ze, ZI_-Z, _-,,:I_,X)-!A-_.'I_-:

[16] *LOx_70)IST_-,:T+,'._).'I_I

[17] 'DlVER_I N!;'

[18] _0

vZERO[g]v

[O] Z_ZE_,O -_

[12 CI_( X+PO)+2÷q

[2] C2_(X*PO)_, q_l) -q

[3] CS+(,',MDOT÷A)'-i)Y,,,l-£,"R_TO.-,,2,_2. i74,,;._O*2)

[4] Z+(Ci-CZ)-,.2

NSP

Ec_.TIH_TEOf' :_OZS.LEr';L:T:-TATIC PP,ES_U_...

...INPUT DATA...

PO = 2799.3000 LBF. TT2

TO = 769.7000 .R

A = .42C,0 FT2

';AMMA = t. 4C'L']

= 52. _073 ST-L_F'LP_-.-_
MDOT = IS.?03'_ L_:I ':

,..RESULT...

P : 22:9.7_C-_ L_F FT2
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Appendix K

Overview of some PLF ejector data

Some geometric and instrumentation data

In the evaluation of the methods of analysis outlined in the text, it is necessary to

have data with which to compare theoretical predictions. Information on some past

NASA/Lewis PLF ejector tests have been made available to the present work. Figure 1
summarizes some geometric and instrumentation data believed to apply to the DeHaviland

ejector tests conducted at the NASA/Lewis PLF facility.

Knowledge of the type of test data to be collected is fundamental in shaping the

input requirements of practical computer programs. For the present work the requirements
developed in the text (see chapter 5 of the text) have been based on the type of information

one might expect from the PLF.

The general geometric characteristics of the DeHaviland ejector are also shown in

figure 1. Use of this data has guided the geometric data requirements for the analysis as

illustrated in Figure 11 of the text.

Some performance data

Performance data used for comparison with the theoretical predictions is shown in
Table 1 - 3. The nomenclature for the computer printouts is defined (to a limited extent)

in Figure 1.

< _57>



O
...._

E

O

o,,.,._

E

@
O

E

¢

°_

E
O
4.,)

L_

E
O

(t..)
5-.

ORIGINAL GE 1:3 . _ "El

: A._ OF POOR bUALITY ', _ II t |

•,-, _,, _ ..,, _ _

.................. 41. ,.._._ - ". _ _ ._I_ 7__-

• :) :i _ *( ,4 "_IC

_ I "_ "_ " "_ ' _ ,-,_ _ .._.

.,J I_ . $ .......

< 158 > -- -



Table 1. Data Summary for Preliminary PLF Tests

Reading

I

F-S Temp NPR

I I

Thrust PHI riz

223 769.70 1.35 945. 1.86 18.70

239 760.60 1.46 1231. 1.87 21.85

225 761.70 1.70 1725. 1.80 27.27
' ' 'l

237 763.50 1.82 1977. 1.79 29.66

227 763.50 2.06 2471. 1.78 34.26

235 765.50 2.27 2910. 1.78 37.97

229 763.50 2.38 3066. 1.74 39.96

233 758.40 2.56 3458. 1.76 43.22

764.80 3839.231 1.722.79 46.97
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Table 2. Data from PLF Test #223

SINGLE-SIDED EJECTOR FOR SPEY/E7 MODEL RUM 9

FORWARD DUCT VALVE ANGLE

HAS&-LEWTE PREI.II'III_RY DATA 11/30/87 PDPIITWO

POWERED LIFT FACILITY

EJECTOR NOZZLE TYPE NOTCHED-CONE NOZZLES

REC 07/16/87 19:08:50.656 FAC PLF PGM D003

Z

90.0 DEG EXIT-RAKE I LOCATION 0.00

EXIT-RAKE 2 LOCATION 0.00

OPTION 1 SUMMARY

RUN FDVA NPR PRIM PR6 TP CYCLES
9 90.0 1.35q 1._26D 1.370 769.7 10

H MNOZ CDH XM XM2 XIE XI6
19.51 18.70 1.0_35 9_5.D 938. 532. 5_i.

PI-FINET PHIMET2 ANET6 XTISTD H PA TA

1.7776D 1.7651 1.7_69D 967.9 5.97D 1_.36 5q2.8

_F PR5 XI5 ANET5 XIIM ANETIM

0.05 1.3780 5_6.D 1.730&D 573.D 1.6_91D

NASA-LE_IS

POWERED LIFT FACILITY

EJECTO_

OPTION

PN

PTN

PRTN

DELPTN

DELPTN/PT5

DELPTH/(PTS-PA)

DELPTN/Q5

PRELIT_MARY DATA 11/30/87 PDPIITWO REC 07/16/87 19:08:5_.656 FAC PLF PGM D003

RUN 9

FORWARD DUCT VALVE ANGLE 90.0 DEG EXIT-RAKE 1 LOCATION 0.00

EXIT-RAKE 2 LOCATION 0.00

07 08 09 10 11 12 A

18.98 18.80 18.92 18.69 18.85 18.70 18.79

19._9 19.5_ 19.5q 19.57 19.56' 19.58 19._5

1.357 1.361 1.360 1.363 1.362 1.363 1.35_

0.61D 0.52D 0._SD 0.39D 0.35D 0.31D 0.30D 0.25D 0.26D 0.22D 0.23D 0.21D 0.3qD

0.031D 0.027D 0.023D 0.020D 0.018D 0.016D 0.015D 0.012D 0.013D 0.011O 0.012D 0.011D 0.017D

0.113D 0.097D 0.08qD 0.071D 0.06qD g.057D 0.055D 0.045D 0.0q7D 0.0qeD e.0q2D 0.039D 0.063D

0.821D 0.705D 0.6lID 0.521D 0.q66D 0._I6D 0.400D 0.332D 0.3_4D 0.295D 0.310D 0.286D B.459D

SINGLE-SIDED EJECTOR FOR SPEY/E7 MODEL
NOZZLE TYPE NOTCHED-CONE NOZZLES

q EJECTOR-NOZZLE CALCULATIONS

01 02 03 0q 05 06

18.q_ 18.82 18.&_ 15.76 18.66 18.99

19.18 19.27 19.3_ 19._0 19._q ' 19.48

1.336 1.3_2 1.3_6 1.351 1.35q 1.357

OF POOR QUALITY
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Table 3. Data from PLF Test #225

OR_C:5_:L _;.i_31 !:3
. _- rOF POOR _.,Li_ _'

HASA-LEWIS

POWERED LIFT FACILITY

EJECTOR NOZZLE TYPE

OPTION 1 zUr_ARY

RUH FDVA

9 90.0

W WNOZ

27._5 27.29

PHIHET PHIHET2

1.783-5D 1.7773

WF PR5

0.06 1.726D

PRELIMINARY DATA 11/30/87 PDPIlT_O

SINGLE-SIDED EJECTOR FOR SPEY/f; _ODEL RUN 9

NOTCHED-CONE NOZZLES FORHAR[ DUCT VALVE ANGLE

REC 07/L6/87 19:13:08.5&6 FAC PLF PGM D003

90.0 DEG EXIT-RAKE 1 LOCATION 0.00

EXIT-RAKE 2 LOCATION 0.00

NPR PRIN PR6 _P CYCLES

1.697 1.801D 1.715 761.7 10

CDN XM XM2 XIE XI6

1.0056 1725.D 1719. 967. 976.

ANET6 XMSTD H PA TA

1.7675D 1765.D 6.¢6D 1_,36 5q0.3

XI5 AHET5 XllN ANIITIH

981.D 1,7583D 1016.D l.t, 985D

HASA-LEMIS PRELIMINARY DATA

POMERED LIFT FACILITY

EJECTOR NOZZLE TYPE ffOTCHED-COHE NOZZLES

OPTION

PN

PTN

PRTN

DELPTH

DELPTN/PT5

DELPTN/(PTS-PA)

DELPTH/Q5

11/30/87

SINGLE-SIDED EJECTOR FOR SPEY/[7 _ODEL RUN 9

FORNARP DUCT VALVE AHGLE

PDPI1TkO REC 07/16/87 19:13:08.5_ FAC PLF

90.0 DEG EXIT-RAKE i LOCATION 0.00

EXIT-RAKE 2 LOCATION 0.00

06 07 08 09 10 11 12 A
23.56 23.5_ 23.26 23.63 23.06 23.33 23.08 23.22

2,_._8 2_.51 2_.5_ 2_.53 2_._9 2_.5_ 26.51 2_.38

1 706 1,706 1.708 1.708 1.705 1.709 1.707 1.697

EJECTOR-NOZZLE CALCULATIONS

01 02 03 06 05

22.65 23.26 23.3_ 23.17 23.02

23.92 2_.15 2q.2_ 24.30 2_.33

1.665 1.681 1.688 1.692 1.69q

PGM D003

0.87D 0.66D 0.5_D 0.689 O._SD O.31D 0.28D 0.26D 0.25D 0.29D O.2qD 0.27D O._ID

0.0_SD 0.026D 0.022D 0.020D 0.018D 0 012D 0.011D 0.010D 0.01OD 0.012D 0.010D 0.011D 0.016D

0.0830 0.061D 0.0520 8.0q7D 0.063D 0029D 0.027D 0.0250 0.02_D O.0ZSD 0.0Z3D 0.026D 0.O39D

0.738D 0.5_6D 0.6639 O._13D 0.3859 0.261D 0.236D 0.219D 0.2159 0.2489 0.206D 0.231D 0.3_7D
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Appendix L

Jet Boundary Streamline

Equivalent Secondary Mass Flow

In the exchange of kinetic energy between mixin_ streams, cjuantifying the kinetic

energy gained or lost by a single stream requires defimtion of a dividing streamline for the

flow. Figure 1 marks the divicTin_ streamline with the jet boundary parameter b*. This is

different than the boundary defined by pointfon the figure, whichsimply marks the vol-

ume consumed by turbulent jet expansion.

The dividing streamline easily derives from the mass flow relation

m = /pvdA

from which we have

2N[¢ ( B- bo) p _sV_, I Bib= 2Nh/bp2 vd_
"] b*/b

Completing the integration

ud_, = {uo(1-ep)+v.,ep}d_= FIo,n+Fao.+F4Fo

ab'/b 1

where

F1 = 0.4_-(+0.2,_,4-0.8_2s+_1 1)
2.5

/:'3 = 0 55-(-().2',_,4+().8_,1 )• I

F4 = _,_- 1

Substitution and cancellation of like terms yields

c_+c_,25+c,_ _+c4 = 0

where

OF POOR v,.-,_-_,
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it

b

c I = 0.25(v.,,2-vo,2)

c2 = 0.80(Vo.g-v,_.2)

C 3 = Urn, 2

C4 -- P2 bj ts.,l-cl-c2-c3- _- 1 uQ

The root to this equation provides the location of the dividing streamline, b*, at desired
axial location, station 2.

Numerical Solution

The polynomial describing the dividing streamline location does not have an conve-
nient analytic solution, so numerical methods are used. In the present work the modified
Newton's method is used. For this method two derivatives are required:

f(_) = c_4+c2t2_+c_+c4

f'(_) = 4C1_3 +2._C2_1"5+ C3

]"(_) = 12c1+3.75c2_ °'S

The iterative method of solution calls for the following steps

1)

2)

3)

4)

5)

Assume an initial value for the root; here t, _- t, o = b o / b

u(_) = /(_)/['(_)

.-(_) = i-t(_)/"(_)/(/'(_)) 2

8 = -u(_)/u'(_)

If 5 < c then exit otherwise refine the approximation for the root t, -- t>+ 5 and

repeat steps 2-4.
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Figure L1. Jet Boundary Streamline
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