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Abstract: 

In 2 experiments the authors examined whether individual differences in working-memory (WM) capacity are 

related to attentional control. Experiment I tested high- and low-WM-span (high-span and low-span) 

participants in a prosaccade task, in which a visual cue appeared in the same location as a subsequent to-be-

identified target letter, and in an antisaccade task, in which a target appeared opposite the cued location. Span 

groups identified targets equally well in the prosaccade task, reflecting equivalence in automatic orienting. 

However, low-span participants were slower and less accurate than high-span participants in the antisaccade 

task, reflecting differences in attentional control. Experiment 2 measured eye movements across a long 

antisaccade session. Low-span participants made slower and more erroneous saccades than did high-span 

participants. In both experiments, low-span participants performed poorly when task switching from antisaccade 

to prosaccade blocks. The findings support a controlled-attention view of WM capacity. 

 

Article: 

In 1980, Daneman and Carpenter provided the first demonstration of strong correlations among measures of 

immediate memory and complex cognition. Their working-memory (WM) span tasks, reading span and 

listening span, required participants to maintain a short list of words in memory while simultaneously reading or 

hearing sentences that contained the target words. Thus, the critical task—a memory-span test—was embedded 

within a secondary comprehension task. Daneman and Carpenter found that performance on these span tasks 

correlated with a global reading comprehension measure (the verbal Scholastic Aptitude Test [SAT]) with rs 

ranging from .49 to .59 and with more local comprehension measures (answering factual and pronoun-reference 

questions about prose passages) with rs ranging from .42 to .90. These impressive correlations stood in stark 

contrast to previous failures to correlate language comprehension with traditional short-term memory measures, 

such as digit span and word span, which placed minimal processing demands on the participant (for reviews see 

Crowder, 1982; Perfetti & Lesgold, 1977). Attempts to understand the relation between working-memory 

capacity and higher-order cognition have occupied researchers for the past 20 years and they are the focus of the 

present investigation. 

 

Daneman and Carpenter (1980, 1983) hypothesized that individual differences in reading efficiency mediated 

both individual differences in their span task and the correlations between span and comprehension. They 

assumed that WM capacity was a limited resource that could be allocated to processing functions, storage 

functions, or both (see Baddeley & Hitch, 1974), and that participants who more efficiently processed the 

sentences of the span task had more capacity remaining to store the sentence-ending target words. By this view, 

WM capacity, or the amount of information that can be stored during processing, is tied to the specific 

processing demands of the concurrent task. Good readers have more storage capacity during reading than do 

poor readers, but good and poor readers may well have equivalent capacities during other, nonreading tasks. 

Thus, WM span measures "work," in the sense that they correlate with measures of complex cognition, because 

they reflect the level of skill in the processing task. 

 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=312
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An alternative view proposed by Engle and colleagues (e.g., Tumer & Engle, 1989; Engle, Cantor, & Carullo, 

1992) holds that WM capacity is much more general, that it reflects an abiding, domain-free capability that is 

independent of any one processing task. Consistent with this view, a modification of the reading span task that 

requires mathematical processing is still an excellent predictor of language comprehension (e.g., Daneman & 

Merikle, 1996; La Pointe & Engle, 1990). Moreover, when speed of processing during the span task, an index 

of processing skill, is partialed out of the correlation between span and comprehension, the correlation is not 

diminished (Engle et al., 1992). Finally, even when the processing task is individually tailored to each 

participant's skill level, the correlation between span and comprehension is unaffected (Conway & Engle, 

1996). As yet another indicator of the generality of WM capacity, span tasks with a variety of processing 

requirements predict such diverse capabilities as note taking (Kiewra & Benton, 1988), bridge playing 

(Clarkson-Smith & Hartley, 1990), computer-language learning (Shute, 1991), and novel reasoning (Kyllonen 

& Christal, 1990). 

 

Clearly, the specific concurrent-processing task has little impact on the predictive validity of WM span 

measures across a host of higher-order cognitive capabilities. These span tasks must there-fore tap a very 

general—and very important—cognitive primitive. But what is the nature of this primitive? Engle, Tuholski, 

Laughlin, and Conway (1999) have recently argued that WM span tests "work" because they reflect a general 

controlled-attention capability. By this view, WM is a hierarchically organized system, in which short-term 

memory storage components subserve a domain-free, limited-capacity controlled attention (see Baddeley & 

Hitch, 1974; Cowan, 1995). Moreover, even though individuals may differ on any or all of the components of 

this hierarchical system, it is the individual differences in the controlled-attention component of WM that are 

responsible for the correlations among WM span and complex cognition measures. 

 

As a test of this view, Engle, Tuholski, et al. (1999) tested 133 participants on three WM span tests with 

reading, arithmetic, and counting as the concurrent processing tasks. Participants also completed three 

traditional short-term memory span (STM) tests with-out concurrent-processing requirements and two tests of 

general fluid intelligence (gF), the Ravens Progressive Matrices (Raven, Court, & Raven, 1977) and the Candi 

Culture Fair Test (Institute for Personality and Ability Testing, 1973). Exploratory factor analysis and structural 

equation modeling were performed on the data. For present purposes, the key findings were twofold. First, the 

varied WM tests reflected a common factor that was separate from, but strongly related to, the factor for the 

STM tasks. This finding is consistent with the notion that traditional STM tasks tap only the storage component 

of the WM system, whereas WM span tasks tap both storage and controlled (executive) attention. Second, in a 

subsequent structural equation model with STM and WM represented by separate latent variables, the variance 

common to STM and WM was removed and the correlation between the residual of WM and the gF latent 

variable remained in the .50 range. The STM residual showed no relation to intelligence. Engle, Tuholski, et al. 

argued that if the shared variance between WM and STM reflects storage, then the residual of WM should 

reflect controlled attention. Importantly, the controlled-attention component of WM was most strongly 

correlated with the gF latent variable, which was represented by visuospatial reasoning tasks with 'no surface 

similarity to the span tasks. 

 

A controlled-attention view of WM capacity is consistent with Baddeley's (1986, 1993, 1996) proposal that the 

central-executive component of WM may be analogous to the Supervisory Attentional System (SAS) described 

by Shallice and colleagues (Nor-man & Shallice, 1986; Shallice & Burgess, 1993). The SAS is hypothesized to 

be a conscious control mechanism that resolves interference between activated action schemas. In particular, 

when a prepotent action is environmentally triggered but conflicts with the individual's goal state, the SAS 

biases the action-selection process by providing additional activation to a more appropriate action schema and 

by inhibiting the activation of the inappropriate schema. The SAS thus allows attentional control over action by 

providing a means with which to override interference from powerful environmental stimuli and habitual 

responses. 

 

Our view (see also Engle, Kane, & Tuholski, 1999) is that WM capacity, the construct measured by WM span 

tasks, reflects the general capability to maintain information, such as task goals, in a highly active state. 



Although the need for such active maintenance will be minimal in many contexts, it will be particularly 

important under conditions of interference. Interference slows and impairs memory retrieval and therefore puts 

a premium on keeping task-relevant information highly active and easily accessible. Thus, individual 

differences in WM capacity will be most important to higher-order cognition in the face of interference. We 

also propose that individual differences in WM capacity reflect the degree to which distractors capture attention 

away from actively maintaining information such as a goal state. Outside of focal attention, the task-relevant 

information being maintained will return to a base-line activation level. If interference prohibits rapid retrieval 

of this goal information from long-term memory, then distractors, and not intentions, will guide behavior. Thus, 

coherent and goal-oriented behavior in interference-rich conditions requires both the active maintenance of 

relevant information and the blocking or inhibition of irrelevant information. Indeed, we agree with recent 

proposals that active maintenance may be responsible for the blocking or inhibition of distraction—that is, 

inhibition is the result of in-creased activation of goal states (see De Jong, Berendsen, & Cools, 1999; O'Reilly, 

Braver, & Cohen, 1999; Roberts & Pennington, 1996). 

 

Recent studies have provided evidence that interference differences between high- and low-span participants 

reflect controlled-attention differences. For example, Rosen and Engle (1997) tested high- and low-span 

individuals in a category fluency test in which participants were asked to recall as many animal names as they 

could for 10-15 min. High-span participants generated more animal names than did low-span participants, and 

the difference between groups increased across the recall period, a finding indicative of span differences in 

susceptibility to output interference. That is, successful fluency across long intervals requires strategically 

searching for low dominance exemplars while blocking the reretrieval of high dominance exemplars such as 

dog, cat, cow, and horse. Most important for present purposes, high-span participants' recall superiority was 

eliminated in a second experiment in which fluency was combined with a secondary digit-tracking task. When 

high-span participants had attention divided, fluency dropped to the level of low-span participants. Moreover, 

low-span participants were unaffected by the secondary load. These findings suggest that high-span individuals 

engage in controlled processing to attain high fluency because their performance dropped under dual-task 

conditions. In contrast, low-span individuals did not appear to engage in controlled processing during recall 

(perhaps relying on automatic spreading activation), because their poorer fluency did not differ as a function of 

load. 

 

Kane and Engle (2000) reached similar conclusions from a proactive interference (PI) task. High- and low-span 

participants studied and recalled three lists of 10 words each, and all the stimuli were drawn from the same 

taxonomic category (e.g., animals, occupations). Recall during such tasks typically drops across each 

successive list, as the potential for PI from previous lists increases (e.g., Wickens, Bom, & Allen, 1963). All 

participants showed significant PI, and high- and low-span participants showed equivalent recall on List 1, but 

low-span participants demonstrated significantly larger PI effects than did high-span participants. High-span 

participants were better able to block retrieval of prior-list items in recalling later lists. Did this interference 

resistance require attentional control? Evidence that it did came from divided-attention conditions, in which a 

secondary finger-tapping task was performed either while encoding or retrieving each list. As in Rosen and 

Engle (1997), high-span participants under load (at encoding or retrieval) performed similarly to low-span 

participants under standard conditions—their PI effects increased dramatically, suggesting they normally 

engaged in controlled processing to limit PI. In contrast, low-span participants were just as vulnerable to PI 

under load as under no load, suggesting that they did not engage in controlled processing to combat PI. 

 

Together, these individual-differences findings support the notion that WM capacity is related to controlled 

attention, with higher WM individuals demonstrating better (or more) use of attention to resist interference 

during encoding and retrieval than do lower WM individuals. However, if WM capacity reflects a relatively 

low-level, general attentional capability, then span differences in controlled attention should be detectable 

outside the context of memory-retrieval tasks. High- and low-span individuals should also differ in more 

"molecular" attention tasks that require minimal storage and no explicit recall from long-term memory. Indeed, 

the present investigation sought to demonstrate that individual differences in WM capacity correspond to 

individual differences in attention tasks that bear no resemblance to traditional memory tasks. 



To this end, we tested high- and low-span participants in a visual-orienting task commonly known as the 

antisaccade task (Hallett, 1978; Hallett & Adams, 1980). This task is simple, nonverbal, and makes minimal 

memory demands on participants beyond the maintenance of task goals in the face of interference. Very simply, 

the antisaccade task requires that participants detect an abrupt-onset visual cue in the environment and use that 

cue to direct their attention and eyes to a spatial location that will subsequently contain a target (for a review, 

see Everling & Fischer, 1998). Our interest in this task stems from prior demonstrations that its performance 

under some conditions demands significant attentional control, whereas under other conditions it may rely on 

relatively automatic orienting responses. For example, when the visual cue predictably signals a location that 

does not contain the target, participants must either voluntarily move their eyes away from the cue and toward 

the target location or initially prevent their eyes from being captured by the salient cue altogether. In contrast, 

when the cue predictably appears in the same spatial location as the target, the eyes may be reflexively drawn to 

the cued location. Although both tasks require the establishment of a goal-oriented task set, only in the former, 

where the goal conflicts with habit, is it necessary to maintain the goal in an active state for consistently 

accurate responding. 

 

Roberts, Hager, and Heron (1994) provided compelling evidence that suppressing the orienting response to 

peripheral cues in the antisaccade task requires controlled attention. Their antisaccade task consisted of two 

blocked conditions that presented peripheral stimuli at a visual angle that encouraged eye movements. In 

prosaccade blocks, an abrupt-onset visual cue appeared in the location of the subsequent target; in antisaccade 

blocks, the cue appeared opposite the location of the target (i.e., if the cue appeared to the right, the target 

appeared to the left). Thus, optimal performance on antisaccade trials required preventing eye movements to the 

cue—the reflexive tendency to move eyes to a cue in the periphery had to be blocked or inhibited. 

Roberts et al. (1994) found that introducing an attention-demanding secondary load task impaired the 

suppression of reflexive eye movements. When participants in the antisaccade condition had to continuously 

update the sum of auditorially presented digits, they moved their eyes toward the cue, in error, more than they 

did under no load. Under load, participants were also slower to direct their eyes to the target and less accurate in 

identifying the target than under no load. However, the addition of a secondary task had no effect on prosaccade 

performance, in either eye movements or target identification. Prosaccade orienting thus appeared to be an 

automatic process, insensitive to goal maintenance, whereas antisaccade orienting appeared to require 

controlled attention; that is, it was sensitive to active goal maintenance. 

 

Similar to Roberts et al. (1994), our interest in the antisaccade task is in part tied to its recent use in the 

neuropsychology literature. Performance on the antisaccade, but not the prosaccade, task is particularly 

impaired in patients with dorsolateral prefrontal cortex (dPFC) damage compared with patients with more 

posterior damage (Fukushima, Fukushima, Miyasaka, & Yamashita, 1994; Guitton, Buchtel, & Douglas, 1985; 

Pierrot-Deseilligny, Rivaud, Gaymard, & Agid, 1991). Moreover, an imaging study by Sweeney et al. (1996) 

found that antisaccade trials increased dPFC activation relative to prosaccade trials, along with increasing 

activation in some parietal, temporal, and midbrain areas. Our previous empirical work has suggested 

similarities between patterns of span effects and dPFC effects (Kane & Engle, 2000; Rosen & Engle, 1997), and 

our theoretical view of WM maintenance and interference resistance is, in part, grounded in work within the 

dPFC literature (see Engle, Kane, & Tuholsld, 1999; Engle & Oransky, 1999; Kane & Engle, 2001). We 

therefore had further reason to predict that performance on the antisaccade task, but not the prosaccade task, 

would discriminate between high- and low-span individuals. 

 

In the present study, then, we tested high- and low-WM-span participants in two experiments with a modified 

antisaccade task—a nonverbal task that made minimal demands on memory retrieval. We hypothesized that the 

span groups would perform equivalently on prosaccade trials, because orienting in these trials occurs reflexively 

and we had no a priori reason to expect span differences in the other processes required by this task, such as 

response selection. However, given the demand to maintain goal information in the face of interference in the 

antisaccade task, we predicted that high-span participants would outperform low-span participants. In particular, 

high-span participants should be better able to prevent orienting toward antisaccade cues than should low-span 

participants. 



Experiment 1 

Experiment I presented high- and low-WM-span participants with an antisaccade task in which an abrupt-onset 

visual signal predictably cued the location of a subsequent target letter. The signal appeared in the same 

stimulus location as the target in a prosaccade trial block and in the opposite stimulus location as the 

target on an antisaccade trial block. Participants were instructed to identify the target letter, by means of a key 

press, as quickly and as accurately as they could. We were not able to measure eye movements in Experiment 1. 

Instead, we used target-identification latencies and accuracy as more indirect indices of orienting. Al-though 

attention and eye movements are not perfectly correlated, we hypothesized that latencies would be shorter, and 

accuracy higher, for prosaccade trials than for antisaccade trials because in the former, attention was cued to the 

target location. On antisaccade trials, attention was initially cued away from the target, and so the task put a 

premium on actively maintaining the task goal in order to prevent (or recover from) reflexively orienting to the 

abrupt-onset cue. We measured eye movements directly in Experiment 2. 

 

Method 

Participant Screening for Working-Memory Capacity 

Participants were screened for WM capacity using the operation-word span task (OSPAN) in which they solved 

series of simple mathematical operations while attempting to remember a list of unrelated words (for details, see 

La Pointe & Engle, 1990). A Micro Experimental Laboratory (MEL) 2.0 program presented the task stimuli at 

the center of a color monitor with a VGA graphics card (set to black and white). Participants were tested 

individually and sat at the most comfortable viewing distance from the monitor. 

 

Participants saw one operation-word string at a time, and each set of operation-word strings ranged from two to 

six items in length. For example, a set of three strings might be, 

 

IS (9/3) + 2 = 5 ? drill  

 

IS (5 X 1) — 4 = 2 ? beach  

 

IS (2 X 2) + 3 = 7 ? job 

 

The experimenter instructed the participant to begin reading the operation-word pair aloud as soon as it 

appeared. Pausing was not permitted. After reading the equation aloud, the participant verified whether the 

provided answer was correct and then read the word aloud. The next operation then immediately appeared. The 

participant then read the next operation aloud, and the sequence continued until three question marks (???) cued 

the participant to recall all of the words from that set only. Participants wrote the words on an answer sheet in 

the order in which they had been presented. 

 

The OSPAN score was the sum of the recalled words for all sets recalled completely and in correct order. Three 

sets of each length (from two to six operation-word pairs) were tested, and possible scores ranged from 0 to 60. 

The different set sizes appeared in an unpredictable order, so the number of words to recall was not known until 

the recall cue appeared. 

 

Participants 

Two hundred three undergraduates from Georgia State University and Georgia Institute of Technology 

participated in Experiment 1, either for extra credit or as partial fulfillment of a course requirement. These 

participants were identified from a larger pool who had participated in OSPAN: 107 participants were selected 

from the top quarter of the distribution (high-span participants), and 96 were selected from the bottom quarter 

(low-span participants). All had correctly solved at least 85% of the OSPAN operations (as typically do 99% of 

those tested). All participants had normal or corrected-to-normal vision. Participation in the antisaccade 

task followed OSPAN by 5 min. 

 

 



Design 

The design was a 2 X 2 X 2 mixed-model factorial, with task (prosaccade, antisaccade) as a blocked, within-

subjects variable and span group (high, low) and task order (prosaccade, antisaccade; antisaccade, prosaccade) 

as between-subjects variables. 

 

Apparatus and Materials 

A MEL 2.0 program presented the stimuli in standard font on a Dell brand (Dell Computer Corp., Austin, TX) 

color monitor with a VGA graphics card and collected latency and accuracy data from key-press responses. 

During the antisaccade task, participants sat in a comfortable, but stationary, chair that was positioned (via tape 

marks on the floor) such that the eyes of a 5 ft 9 in. (1.75 m) person would be approximately 45 cm from the 

center of the monitor. 

 

Procedure 

The basic requirements of the task were to identify the masked target stimulus on each trial and to press the key 

that corresponded to the target as quickly and accurately as possible. The target on each trial was the capitalized 

letter B, P, or R. The /, 2, and 3 keys on the number pad of the keyboard were labeled with colored stickers, B, 

P, and R, respectively. Index, middle, and ring fingers of the right hand were rested on these keys throughout 

the experiment. The entire experiment consisted of six trial blocks: two "response mapping" practice blocks, a 

prosaccade practice block, a prosaccade experimental block, an antisaccade practice block, and an antisaccade 

experimental block, with the order of the prosaccade and antisaccade blocks varying between participants. In all 

blocks, the target letters B, P, and R occurred an equal number of times. 

 

The experiment started with two response-mapping practice blocks. In each block, 18 trials were presented in 

which a target letter appeared at central fixation. There were six trials for each target letter, presented in a 

randomized order for each participant. Each block began with the presentation of a yellow "READY?" signal at 

the center of the screen against a black background. The ready signal remained on screen until the participant 

pressed the keyboard's space bar, which was followed by a 400-ms blank screen. A cyan fixation signal ("***") 

then appeared at the center of the screen for an interval that varied unpredictably, as is typically done in 

antisaccade tasks (see Hallett & Adams, 1980; Roberts et al., 1994), here between 200 and 2,200 ms. An equal 

number of trials had fixation durations of 200, 600, 1,000, 1,400, 1,800, or 2,200 ms. A 100-ms blank screen 

followed fixation, and then a white target letter appeared in the center of the screen for 100 ms. The target was 

followed by a succession of backward-masking stimuli: an H for 50 ms, and then an 8 that remained until a 

response key was pressed. A 500-ms tone gave feedback immediately following an incorrect response. The next 

trial began with a 400-ms blank screen. 

 

In the prosaccade practice block, 18 trials were presented in which the trial sequence proceeded as in the 

response-mapping practice blocks, except that the target appeared to the right or left of fixation, and the target 

location was cued by a flashing white "=" symbol. Immediately after the cyan fixation signal disappeared, a 50-

ms blank screen was followed by a " cue that appeared for 100 ms to the right or left of fixation (with an 

eccentricity of 11.33° of visual angle), one character space below the horizontal plane of the fixation signal. 

Then, a second 50-ms blank screen was followed by the second appearance of the cue, which appeared for 100 

ms in the same eccentric location. Thus, the cue appeared to briefly flash on and off, and so was a strong 

attractor of attention. Following another 50-ms blank screen, the target appeared in the character space directly 

above the one that had been occupied by the cue. Target duration, masking sequence, and error feedback 

matched those in response-mapping practice. After prosaccade practice, the prosaccade experimental block 

proceeded in the same way, with 72 trials. Every combination of the three targets, six fixation durations, and 

two stimulus locations occurred twice across these 72 trials. 

 

The antisaccade practice and experimental blocks were identical to the prosaccade blocks with one exception. In 

these blocks, the "=" cue always appeared on the opposite side of the screen from the upcoming target stimulus. 

So if the cue appeared on the left of the screen, the target then appeared on the right of the screen, and vice 

versa. 



 

 
Results 

Participants 

The mean OSPAN scores for high- and low-span participants, respectively, were 23.65 (SD = 6.73, range = 18-

55) and 6.07 (SD = 2.14, range = 0-9). 

 

Response Times 

We expected that high- and low-span participants would differ minimally (if at all) in the prosaccade task, 

where fast and accurate target identification would be aided by a relatively automatic orienting response. In 

contrast, we expected high-span participants to significantly outperform low-span participants in the antisaccade 

task, where fast and accurate identification required the active blocking of, or recovery from, an automatic 

orienting response. For all analyses reported hereafter, the alpha level was set at .05. Also, for all response-time 

analyses in Experiments 1 and 2, group means were taken across individual participants' median latencies in 

each condition. 

 

A 2 (span group) x 2 (task) X 2 (task order) mixed-model analysis of variance (ANOVA), with task as a 

repeated-measures variable, indicated a significant task order effect, F(1, 199) = 27.53, MSE = 64,846.32, as 

well as a significant Span x Task Order interaction, F(1, 199) = 5.39, MSE = 64,846.32, and Task x Task Order 

interaction, F(1, 199) = 53.76, MSE = 14,126.38. Therefore, to examine span differences in prosaccade versus 

antisaccade performance that were independent of order effects, we analyzed response latencies from 

participants' first task block only, treating task as a between-subjects variable. For the prosaccade task, then, 

data were analyzed from 52 high-span and 45 low-span participants, and for the antisaccade task, data were 

analyzed from a different 55 high-span and 51 low-span participants. These data are presented in Figure 1. 

 

The prosaccade task appeared to allow for faster target identification than did the antisaccade task. Most 

importantly, however, high- and low-span participants performed virtually identically in the prosaccade task (M 

difference = 8 ms) and quite differently in the antisaccade task, with high-span participants identifying targets 

much faster than low-span participants (M difference = 174 ms). A 2 (span group) X 2 (task) ANOVA indicated 

that prosaccade identification times were significantly shorter than antisaccade identification times, F(1, 199) = 

110.79, MSE = 48,762.10, and although high-span participants identified targets significantly more quickly than 

did low-span participants, F(1, 199) = 8.63, MSE = 48,762.10, the Span x Task interaction was significant, F(1, 

199) = 7.12, MSE = 48,762.10. Of importance, span differences in prosaccade-task latencies were not 

significant, F(1, 95) < 1. 

 

The effects of task order on target-identification speeds in prosaccade and antisaccade tasks are depicted in 

Figures 2 and 3, respectively. For participants who experienced the prosaccade task first, there were no span 

differences in prosaccade performance, as discussed previously. However, for participants who experienced the 

prosaccade task second—after completing the antisaccade task—span differences emerged. Here, low-span 



participants responded more slowly on prosaccade trials than did high-span participants. A 2 (span) x 2 (task 

order) ANOVA revealed a significant effect of task order on prosaccade response times, F(1, 199) = 4.54, MSE 

= 23,807.66, and more importantly, a significant Span x Task Order interaction, F(1, 199) = 4.67, MSE = 

23,807.66. Target-identification latencies for low-span participants who completed the prosaccade task after the 

antisaccade task were significantly longer than those of their high-span counterparts, F(1, 104) = 8.86, MSE = 

31,228.44. Moreover, low-span participants who completed the prosaccade task second were significantly 

slower to identify targets than were those who completed it first, F(1, 94) = 5.77, MSE = 35,961.98. High-span 

participants showed no such task-order effect, F(1, 105) < 1. We will hold our interpretation of these findings 

for the Discussion section. 

 

Task order also affected antisaccade performance, but it did so in the opposite direction (see Figure 3). That is, 

for participants who experienced the antisaccade task first, large span differences were evident, as discussed 

previously. However, for participants who experienced the antisaccade task second—after completing the 

prosaccade task—span differences were absent. Moreover, low-span participants' antisaccade performance 

appeared to benefit more from practice on the prosaccade task than did high-span participants' performance. 

Indeed, a 2 (span) x 2 (task order) ANOVA on antisaccade latencies indicated a significant effect of task order, 

F(1, 199) = 44.17, MSE = 55,165.03, as well as a significant Span x Task Order interaction, F(1, 199) = 4.58, 

MSE = 55,165.03. For participants who completed the antisaccade task second, span differences in target 

identification latency were not significant, F(1, 95) < 1. Both span groups who completed the antisaccade task 

second had shorter response latencies than did those who completed the antisaccade task first: for low spans, 

F(1, 94) = 28.97, MSE -= 69,613.03; for high spans, F(1, 105) = 14.04, MSE = 42,230.64. However, the 

significant Span x Task Order interaction indicated that low-span participants' order effect was larger than that 

of high-span participants. 

 

 

 

 

 



 
Error Rates 

Means of high- and low-span participants' target-identification error rates for prosaccade and antisaccade tasks 

are presented in Table 1. Overall, high-span participants made fewer errors than did low-span participants, and 

prosaccade responses were more accurate than antisaccade responses. In addition, span differences in accuracy 

were smaller in the prosaccade than in the antisaccade task. 

 

These impressions were confirmed by a 2 (span groups) X 2 (tasks) X 2 (task order) mixed-model ANOVA on 

target-identification error rates, with task as a repeated measures variable. Overall, high-span participants made 

fewer errors than did low-span participants, F(1, 199) = 8.72, MSE = 0.02, and prosaccade targets were 

identified more accurately than were antisaccade targets, F(1, 199) = 668.60, MSE = 0.01. The Span X Task 

interaction approached conventional significance, F(1, 199) = 3.73, MSE = 0.01, p < .06, suggesting that span 

differences in accuracy were slightly greater in the antisaccade than in the prosaccade task. Considering the 

prosaccade and antisaccade tasks separately, span differences were not significant in the prosaccade task, F(1, 

199) = 2.76, MSE = 0.01, p = .10, but they were significant in the antisaccade task, F(1, 199) = 7.89, MSE = 

0.03. 

 

Task-order effects in error rates were also present, but unlike the effects in response times, order affected the 

span groups equivalently. Task order had a significant effect on overall error rates, F(1, 199) = 55.44, MSE = 

0.02, and it interacted with task, F(1, 199) = 48.91, MSE = 0.01, such that order effects were larger for the 

antisaccade task than for the prosaccade task. Both tasks did show significant order effects, however.  

Participants who completed the prosaccade task first made significantly fewer prosaccade errors than did those 

who completed it second (Ms = .057 and .084, respectively), F(1, 199) = 4.78, MSE = 0.01. In contrast, 

participants who completed the antisaccade task first made significantly more antisaccade errors than did those 

who completed it second (Ms = .449 and .267, respectively), F(1, 199) = 66.33, MSE = 0.03. 

 

The Span X Task Order interaction in error rate was not significant, F(1, 199) < 1, nor was the Span X Task X 

Task Order interaction, F(1, 199) = 1.04, MSE = 0.01, p > .30. Span did not interact with task order when 

considering error rates only from prosaccade trials, F(1, 199) < 1, nor when considering error rates only from 

antisaccade trials, F(1, 199) < 1. 

 

Discussion 

Participants with high and low WM spans differed in an attention-demanding visual-orienting task, but not in a 

relatively automatic version of the task. The antisaccade task predictably required attention (and probably eyes, 

given the visual angle) to be moved away from a salient, abrupt-onset cue and so demanded attentional control. 

That is, the task required active maintenance of goal information in the face of competition from external 

stimuli. Here, high-span participants were able to identify targets more quickly and accurately than were low-

span participants. High-span participants were better able to resist having attention captured by the cue, and/or 

they were faster than low-span participants to disengage attention from the cue and toward the target location. 

The prosaccade task predictably required participants to move attention (and probably eyes) toward an abrupt-

onset cue and so allowed responding based, in part, on relatively automatic orienting. Here, high- and low-span 



participants performed equivalently; at least this was true when we controlled for task-order effects. When we 

examined only those participants who completed the prosaccade task first, high- and low-span participants' 

response times were virtually identical. When attention was cued exogenously by an environmental stimulus, 

high- and low-span participants were equally able to shift attention quickly and accurately (and were equally 

able to perform the choice reaction time [RT] task, which made significant perceptual, response-selection, and 

speed demands on participants). Thus, it was only when attention had to be shifted in opposition to a powerful 

cue that high-span participants performed better than did low-span participants. 

 
The order effects we found were unexpected, and although they are interesting and suggestive, we cannot yet 

draw strong conclusions from them. However, we speculate that the prosaccade-task-order effects may reflect 

the relative flexibility of high-span individuals' attentional control. Whereas high- and low-span participants 

were equally fast in the prosaccade task when it was the first task of the experiment, low-span participants were 

significantly slower when it followed the antisaccade task. Furthermore, only the low-span participants were 

slowed on the prosaccade task as a second task compared with as a first task; high-span participants' latencies 

were unaffected by task order (although both groups were affected in accuracy). 

 

Why should low-span participants have responded more slowly on prosaccade trials following the antisaccade 

task? A possibility is that once low-span participants had repeatedly attempted the controlled task of looking 

away from the cue, they had more difficulty than high-span participants in abandoning that task set in favor of 

the more automatic task set allowed by prosaccade trials. Low-span participants may have perseverated more 

than high-span participants on the antisaccade requirement of trying to look away from the cue when the task 

changed to allow looking toward the cue. Of course, this speculative interpretation is consistent with our view 

that low-span individuals are less able to control attention than are high-span individuals. The findings are 

fascinating, in any case, and we replicate them in Experiment 2. 

 

An interesting contrast to the prosaccade order effects was seen in the antisaccade task. Both high- and low-

span participants were faster when antisaccade was their second task of the experiment (i.e., when it followed 

the prosaccade task) than when it was their first task. Moreover, this "task-two" benefit was actually larger for 

low-span than for high-span participants, and when the antisaccade task was presented second it eliminated span 

differences in target identification times. Because this finding suggests that span differences in antisaccade 

performance may be eliminated with minimal practice, Experiment 2 further explored the effect of practice on 

the antisaccade task. 

 

Experiment 2 

In Experiment 2, high- and low-WM-span participants per-formed the target identification task from 

Experiment 1, while we monitored eye movements. We also presented 10 separate blocks of 36 antisaccade 

trials in order to examine practice effects on span differences in suppressing eye movements. The final trial 



block was a prosaccade block that tested the effects of extended antisaccade practice on prosaccade 

performance. 

 

Method 

The OSPAN and target-identification-task methods for Experiment 2 were identical to those of Experiment 1 

with the following exceptions. 

 

Participants 

We tested 40 undergraduates (20 high span, 20 low span) from Georgia State University and Georgia Institute 

of Technology, who received $20 each. All had normal or corrected-to-normal vision. Participants were 

identified from a larger pool that had participated in OSPAN; this pool, and these specific participants, were 

different from those tested in Experi-ment 1. Participation in the antisaccade task may have followed OSPAN 

by as little as 1 day and as much as 90 days. Because of problems with the eye-movement data-collection 

system, data from 7 participants were discarded, leaving 16 high-span and 17 low-span individuals in the 

analyses. 

 

Design 

The design was a2 X 11 mixed-model factorial, with span group (high, low) as a between-subjects variable, and 

trial block (1-11) manipulated within subjects. In addition, a within-subjects task variable (antisaccade, 

prosaccade) was perfectly confounded with block, with Blocks 1-10 presenting antisaccade trials and Block 11 

presenting prosaccade trials. 

 

Apparatus and Materials 

The target-identification task program and hardware were similar to those in Experiment 1. 

 

Eye-movement data were collected using an E-5000 eye tracker. and pupilometer (Applied Science 

Laboratories, Bedford, MA). This is an infrared-based, corneal-reflectance system that records the x- and y-

coordinates of the pupil and corneal reflectance at 60 Hz, allowing saccade latencies to be calculated with a 

temporal accuracy of 16.667 ms. Spatial error of the apparatus (difference between actual point of gaze and 

calculated point of gaze) was less than 1°. A magnetic head tracking (MHT) system (Flock of Birds; Ascension 

Technology Corp., Burlington, VT) was used to coordinate head movements and camera focus on the eye.  

Measurements were taken on the left eye. The apparatus allowed for the detection of eye movements greater 

than 0.5°. Software provided by ASL was used to calculate point of gaze, fixation, fixation duration, and inter-

fixation interval. Point of gaze was calculated using the angular disparity between pupil reflectance and 

maximum corneal reflectance. A fixation was said to have occurred if the mean x- and y-coordinates of eye 

position did not move more than 1° for a period of at least 100 ms. Fixation and fixation duration were said to 

have terminated if three successive samples exceeded criterion. The interfixation interval was the time in 

milliseconds from the last sample included in the previous fixation until a new fixation was established. The 

MEL 2.0 program sent data to the eye-tracker computer as events occurred in the task. 

 

Procedure 

After informed consent was obtained, participants put on the MHT headband, and point of gaze was calibrated. 

Participants began with one response-mapping practice block of 36 trials, in which the target letters B, P, or R 

appeared at fixation and were pattern masked. Trials followed the same timing sequence as in Experiment 1. 

Participants then practiced the antisaccade task for only 6 trials and then began the 10 experimental blocks of 36 

antisaccade trials each. After they completed the antisaccade trial blocks, participants practiced the prosaccade 

task for 6 trials and then began the 1 experimental block of 36 prosaccade trials. At the beginning of each 

experimental block, gaze was checked for proper calibration and recalibrated as necessary. 

 

 

 

 



Results 

Participants 

The mean OSPAN scores for high- and low-span participants, respectively, were 26.94 (SD = 10.96, range = 

19-60) and 5.94 (SD = 2.49, range = 0-9). 

 
 

Target Identification Task 

In parallel with Experiment 1, we first present the response-time and error-rate data from the target-

identification task, followed thereafter by the eye-movement data. 

 

Response times. High- and low-span participants' mean target-identification latencies for Blocks 1-10 of the 

antisaccade task are presented in Figure 4. What is immediately clear is that high-span participants responded 

faster than did low-span participants across all antisaccade blocks. Indeed, a 2 (span groups) X 10 (blocks) 

mixed-model ANOVA indicated that high-span participants responded faster than low-span participants (Ms = 

533 and 641 ms, respectively), F(1, 31) = 6.08, MSE = 159,276.61, and that responses became faster across 

blocks, F(9, 279) = 15.95, MSE = 8,447.54. Finally, even though span differences appeared larger in Block 1 

than in subsequent blocks, the Span X Block interaction did not approach significance, F(9, 279) = 1.00, MSE = 

8,447.54, p = .44. Thus, in contrast to Experiment 1, in which significant prosaccade practice eliminated span 

differences in subsequent antisaccade performance, here span differences persisted across several hundred trials 

of antisaccade practice. 

 

On the final block, Block 11, which presented prosaccade trials, high-span participants identified targets 

significantly faster than did low-span participants (Ms = 460 and 551 ms, respectively), F(1, 31) = 6.18, MSE = 

11,101.92. Thus, as in Experiment 1, significant antisaccade practice was followed by substantial span 

differences in prosaccade task performance, with low-span participants taking much longer to identify a target 

even when their eyes should have been reflexively drawn to its subsequent location. 

 

Error rates. Table 2 presents high- and low-span participants' target-identification mean error rates across the 

10 anti-saccade blocks. Overall, low-span participants made more errors than did high-span participants (Ms = 

.26 and .18, respectively), F(1, 31) = 4.12, MSE = 4.20, and errors became less frequent across practice, F(9, 

279) = 7.92, MSE = 0.24. The span difference in antisaccade errors persisted across all of practice, with the 

Span Group x Block interaction not approaching significance, F(9, 279) < 1. 

 

On the prosaccade block (Block 11), low-span participants' error rate (M = .123) was double that of high-span 

participants (M = .062), F(1, 31) = 4.64, MSE = 0.01, a significant difference that again is consistent with the 

proposal that low-span participants had more difficulty than high-span participants shifting set from the 

antisaccade to the prosaccade task. 



Eye Movements 

Here we report our analyses of participants' eye-movement data concerning the directional accuracy and speed 

of initial saccades on each trial. For these analyses, the display screen was divided into four areas of interest, 

three of which comprised a central band of approximately 5° of vertical visual angle extending horizontally 

from the left edge of the screen to the right. The fourth area contained the rest of the display screen. A center 

fixation area extended 1.3° to either side of the fixation point. For each trial, the first fixation following the 

onset of the cue was examined. Fixations occurring in the fourth area were not included in the analyses; those 

falling to either the right or the left of the center area were. If the saccade was made in the direction of the cue, 

the saccade was considered "reflexive." If it was made away from the cue, it was considered "controlled." A 

correct saccade was defined by the instructions for that condition. Trials in which either the corneal or pupil 

reflectance was lost, a key press was made before the initial saccade, or no saccade was made at all were 

excluded from analyses. These criteria eliminated 19% of the high-span participants' data and 15% of the low-

span participants' data, figures not out of line with previous investigations using such an apparatus (e.g., Butler, 

Zacks, & Henderson, 1999). 

 

For each trial the saccade accuracy and latency were calculated from the eye movement data. The initial saccade 

following the presentation of the cue was defined by three consecutive 17-ms eye movement samples that 

occurred in the same horizontal direction and whose durations summed to at least 100 ms. Saccade-initiation 

latencies were calculated from the onset of the flashing cue until the beginning of the first of the three 17-ms 

samples. 

 

Saccade directional accuracy. Figure 5 displays the proportions of high- and low-span participants' initial 

saccades on anti-saccade trials that were reflexively drawn to the cue, in opposition to task instructions. Clearly, 

low-span participants were more likely than high-span participants to initially move their eyes toward the 

abrupt-onset cue, which reliably appeared in a location that would not contain the target. Indeed, as in the 

target-identification data, the span difference persisted across practice on hundreds of antisaccade trials. 

 

These observations were confirmed by a 2 (span groups) x 10 (blocks) mixed-model ANOVA, indicating that 

low-span participants showed a higher proportion of reflexive saccades than did high-span participants (Ms = 

.371 and .280, respectively), F(1, 31) = 4.19, MSE = 12.11. Overall proportions of reflexive sac-cades did not 

decrease significantly over blocks, F(9, 279) = 1.52, MSE = 0.22, p = .14, nor did span differences in reflexive 

responding decrease, F(9, 279) = 1.49, MSE = 0.22, p = .15. 

 

Moreover, on those trials on which a reflexive saccade occurred, span differences emerged in the time taken to 

recover. For each saccade-error trial, we summed the fixation and interfixation times from the initial reflexive 

eye movement until the eye moved out of the incorrect-side region of interest. Low-span participants 

maintained fixations on the incorrect side of the screen over 150 ms longer than did high-span participants 

(overall Ms = 674 and 512 ms, respectively), F(1, 31) = 4.38, MSE = 0.81. Thus, compared with high-span 

participants, low-span participants not only made more saccade errors, but after committing an error, they also 

took much longer to correct it. 

 



In Block 11, the prosaccade block, low-span participants also made more saccade errors than did high-span 

participants. Here, however, saccade errors reflect looking away from the cue instead of reflexively attending to 

the cue. These are nonreflexive saccade errors. Thus, the higher saccade error rate for low-span participants, (M 

= .281) compared with high-span participants (M = .202), indicates that low-span participants were significantly 

more likely to look away from a "valid," prosaccade cue, F(1, 31) = 9.85, MSE = 0.18. Low-span participants 

appeared to have more difficulty than did high-span participants in abandoning the task set from the previous 

antisaccade blocks and shifting set to the prosaccade task requirements, a difficulty that was also reflected in the 

target-identification data from this experiment and from Experiment 1. 

 

Latency of initial saccades. Figure 6 presents mean latency for initiating saccades across antisaccade trial 

blocks, collapsed across correct controlled eye movements (i.e., toward the direction opposite the cue) and 

incorrect reflexive eye movements (i.e., toward the same direction as the cue). Overall, low-span participants 

initiated their eye movements more slowly following the cue than did high-span participants across the entire 

session. 

 

A 2 (spans) x 10 (blocks) X 2 (saccade type: controlled vs. reflexive) mixed-model ANOVA indicated that the 

saccade latencies for low-span participants (M = 284 ms) were significantly longer than those for high-span 

participants (M = 236 ms), F(1, 31) = 4.63, MSE = 61,085.36, and that saccade latencies remained relatively 

stable across blocks, F(9, 279) = 1.03, MSE = 13,208.93, p > .40. The Span x Block interaction was not 

significant, F(9, 572) = 1.49, MSE = 13,208.93, indicating stable span differences across blocks. Finally, 

although controlled, correct saccades were initiated more slowly than were reflexive, incorrect saccades, F(1, 

572) = 58.30, MSE = 13,208.93, saccade type did not interact with span, F(1, 572) < 1, or with block, F(9, 572) 

= 1.62, MSE = 13,208.93, p > .55. Thus, eye movements that were reflexively drawn to the cue in error were 

initiated more quickly for both high- and low-span participants (Ms = 215 and 269 ms, respectively) than were 

eye movements correctly directed away from the cue (Ms = 287 and 322 ms, respectively). However, of central 

interest here is that high-span participants were not only more likely than low-span participants to move their 

eyes in the correct direction on antisaccade trials, but they also initiated those saccades more quickly. 

 

On prosaccade trials (Block 11), low-span participants' saccades were initiated significantly more slowly (M = 

286 ms) than were high-span participants' saccades (M = 203 ms), F(1, 31) = 5.54, MSE = 7,660.51. Correct 

reflexive saccades were generated some-what more quickly than were incorrect controlled saccades, F(1, 31) 

3.61, MSE = 7,660.51, p < .07, but the Span X Saccade Type interaction did not approach significance, F(1, 31) 

= 1.22, MSE = 7,660.51, p = .27.  

 
 
 



Thus, not only did low-span participants tend to make eye movement errors on prosaccade trials following 

extended antisaccade practice, but also the saccade latencies were quite long. These long latencies might 

suggest that low-span participants were making controlled saccades on many prosaccade trials (note that low-

span participants' mean saccade latency in the prosaccade task, at 286 ms, was nearly identical to that for the 

antisaccade task, at 284 ms). Following antisaccade practice, then, low-span participants appeared to persist, 

more than high-span participants, in making controlled eye movements when no longer required. 

 
Discussion 

Our findings from Experiment 2 replicate and extend the key findings from Experiment 1. First, high- and low-

WM-span participants differed significantly in identifying visual targets that were signaled by antisaccade cues. 

That is, on trials in which a flashing cue predictably appeared in the opposite location as the upcoming target, 

low-span participants were slower and more error prone in identifying targets. Moreover, Experiment 2 

demonstrated that this substantial span difference was maintained across a total of 360 trials, with little sign of 

diminution over practice. These findings suggest that low-span individuals are less able to block reflexive eye 

movements to abrupt-onset cues that conflict with task goals and that low-span individuals' difficulties are not 

limited to novel situations that involve minimal practice. 

 

In addition, with respect to the target-identification task, Experiment 2 replicated the unexpected finding from 

Experiment 1 that prosaccade performance for low-span participants was particularly disturbed by prior practice 

on antisaccade trials. Compared with high-span participants, low-span participants were significantly slower (by 

more than 150 ms) and less accurate in their responding on the block of prosaccade trials, which followed 10 

blocks of antisaccade practice. Low-span individuals may be less able to shift intentional set between tasks than 

are high-span individuals. 

 

The eye-movement data collected in Experiment 2 nicely rein-force the target-identification findings from both 

experiments. Specifically, on antisaccade trials, low-span participants were considerably more likely to make 

reflexive saccades toward the cue than were high-span participants. This difference in the ability to suppress 

saccades, although especially large in the first trial block, persisted over substantial practice. Moreover, once an 

error was committed, low-span participants took much longer than high-span participants to recover and move 

their eyes to the correct side of the screen. The same was true for initial saccade latency: Antisaccades were 

initiated more slowly by low-span participants than by high-span participants over the entire session. 

 

Moreover, with respect to the prosaccade task, the eye-movement data suggested that low-span individuals' 

difficulties following antisaccade practice are at least in part due to a perseveration on the antisaccade task goal. 

Low-span participants were more likely than high-span participants to look away from the prosaccade cue, and 

they were slower to initiate saccades in this condition. Even though the cue consistently appeared in the same 



location as the target, low-span participants appear to have been less able than high-span participants to 

reconfigure their task set to allow less controlled, more automatic responding. 

 

The data from Experiment 2 also constrain further hypotheses regarding the other task-order effect from 

Experiment 1, namely that prosaccade practice eliminated span differences in antisaccade performance. 

Clearly, the findings from Experiment 2 discount the possibility that simply any kind of visual-orienting task 

practice will eliminate span differences in the antisaccade task, because span differences in target identification, 

saccade accuracy, and saccade latency remained significant across 10 blocks of antisaccade practice. Either the 

Experiment 1 effect was spurious, or something specific about prosaccade practice led low-span participants to 

improve in the antisaccade task. Further experiments will be required to determine which of these is correct. 

 

General Discussion 

In two experiments in which participants with high- and low-WM-span capacity were tested on an analogue of 

the antisaccade task (Hallett, 1978), high-span participants demonstrated better control over visual orienting. In 

antisaccade trial blocks, in which eyes and attention were to be moved away from an abrupt-onset visual cue, 

optimal performance required that reflexive orienting responses be suppressed. Here, in accord with task 

demands, high-span participants were less likely than low-span participants to move their eyes toward the 

flashing cue (Experiment 2), and high-span participants were faster to correct their saccade errors (Experiment 

2). High-span participants were also faster and more accurate in identifying visual targets that appeared in the 

opposite location as the cue (Experiments 1 and 2). In contrast, in prosaccade trial blocks, in which participants' 

reflexive responses did not conflict with task goals, high- and low-span participants performed similarly when 

the prosaccade task was performed first. 

 

Thus, of primary interest here is that high-span individuals outperformed low-span individuals in a task 

demanding significant attention control but not a significant memory load. In a task requiring no complex 

mathematical processing or retention of random word lists (as in the OSPAN task), substantial differences were 

seen between individuals of high- and low-WM-span capacity. At least, span differences were seen in the 

antisaccade task, a task that not only required participants to orient their eyes to a discrete location on cue but 

also required them to actively maintain the task goals in the face of powerful interference from the environment. 

When such controlled processing was unnecessary for successful performance, that is, on prosaccade trials, 

high- and low-span individuals performed equivalently. Note, however, that prosaccade performance did 

demand more than simple reflexes, as heavily masked stimuli were to be rapidly identified by means of a choice 

RT task. WM capacity thus appears to be related to the controlled processing required in responding to 

interference. WM capacity, as measured by OSPAN and other complex WM tasks, predicts performance even 

on very simple, low-level tasks that require little in the way of complex higher-order processing, as long as 

successful performance depends on active maintenance in interference-rich conditions. 

 

But do we know that the processing components shared by OSPAN, a complex multidetermined task, and the 

antisaccade task, also a multidetermined task, are the same ones shared by OSPAN and higher-order cognitive 

tasks? Do we know that a unitary, general attention control capability underlies both OSPAN, antisaccade, and 

even gF test performance? Or might several individual factors contribute in different ways to different 

processes required by these tasks? Clearly, the present study alone cannot answer such questions. Indeed, a 

large-scale, structural-equation-modeling study might be very useful in this regard. 

 

However, on the basis of the extant literature, we see substantial converging evidence for the general-attention 

view. For example, it is clear that with respect to the OSPAN task, mathematical ability does not contribute to 

the correlation between working memory and reading comprehension (Conway & Engle, 1996), nor does 

processing time on the equations (Conway & Engle, 1996; Engle et al., 1992), nor does study time on the words 

(Engle et al., 1992). It is also clear that a latent WM variable representing the shared variance among the 

OSPAN, the reading-span task, and the counting-span task, is very strongly linked to a gF latent variable, 

whereas a latent variable of STM storage tasks is not (Engle, Tuholski, et al., 1999). Thus, neither math skill, 



reading skill, counting skill, processing speed, study time, nor simple storage capability is critical to the relation 

between WM span and measures of higher-order cognition. 

 

Moreover, it has been demonstrated that individual differences in OSPAN correspond to individual differences 

in interference-resistance and dual-task effects across a variety of memory tasks (Conway & Engle, 1994; Kane 

& Engle, 2000; Rosen & Engle, 1997, 1998). And Roberts et al. (1994) demonstrated that dividing participants' 

attention in the antisaccade task leads to performance that is similar to our low-span participants' performance. 

The lack of such a dual-task effect on prosaccade performance also corresponds nicely to our finding of no span 

differences in prosaccade performance. In the present study, we have obviously not manipulated all relevant 

variables at once. However, we find the con-verging evidence across many studies to provide strong support for 

the idea that OSPAN taps a very general cognitive primitive, closely linked to a form of attentional control that 

is critical to performance of the antisaccade task—and to many other tasks as well. 

 

Despite all these consistencies, our findings are at odds with one surprising aspect of the Roberts et al. (1994) 

results. Roberts et al. found that a secondary attentional-load task impaired the suppression of antisaccades, 

suggesting that such suppression is a con-trolled process, but they found no span effects in their data. Roberts et 

al. tested participants in a reading span task (Experiments 1, 2, 3) and a counting span task (Experiments 2, 3), 

and found essentially no significant correlations among span and various antisaccade measures. Roberts et al. 

hypothesized that span and antisaccade performance may reflect different components of a multidimensional 

WM or executive system. Such a hypothesis (and data) certainly conflicts with our view of the generality of 

WM and span tasks and is not consistent with our findings here. We are not sure why Roberts et al. did not 

detect span effects, as there are many ways to obtain null results.' It is possible, however, that our experiments 

tested a wider range of WM capacities or at least a greater number of participants at the ends of the distribution. 

The possibility that Roberts et al. did not test many participants who we would characterize as low-span 

individuals is suggested by the task-switching findings discussed below. We found large task-order effects, with 

low-span individuals performing much more slowly on the prosaccade task when it came second, but weaker 

task-order effects for high-span individuals. Roberts et al. (Experiment 1) found only a small order effect. Their 

small effect suggests that their sample may have included relatively few low-span individuals, as we have 

defined them. 

 

Working Memory, Controlled Attention, and Task Switching 

The task-order effects observed here, particularly with respect to the prosaccade task, are intriguing. 

Performance on prosaccade tasks, unlike antisaccade tasks, is typically unaffected by the imposition of a 

memory load (Roberts et al., 1994), by advancing age (Butler et al., 1999), or by injury to prefrontal cortex 

(e.g., Fukushima et al., 1994). And here, in Experiment 1, we found that for unpracticed participants, 

prosaccade-task performance was not related to WM capacity, either. Together these findings indicate that the 

prosaccade task may be performed with little involvement of controlled processing. However, our findings also 

demonstrate that this "automatic" task may be disrupted by the prior performance of a similar, but attention-

demanding, task. Particularly for low-span individuals, switching instructional set from the antisaccade task to 

the prosaccade task appeared to be quite difficult. Following practice on the antisaccade task, low-span 

participants made more antisaccade-type eye movements than did high-span participants on the prosaccade task 

(Experiment 2), and low-span participants were slower and less accurate than high-span participants in the 

prosaccade target-identification task (Experiments 1 and 2). However, even high-span participants showed some 

evidence of perseveration, with an increase in identification errors in Experiment 1, and with a nonnegligible 

number of "anti" saccades in the final, prosaccade task block in Experiment 2. 

 

Our findings are partially consistent with a demonstration by Weber (1995) that participants performed worse 

on both prosaccade and antisaccade tasks when the task demands switched randomly between trials compared 

with when the tasks were predict-ably blocked. For most participants, saccades were slower and less accurate 

when there was little or no warning about what kind of trial would be next. However, much of the switching 

cost on prosaccade trials was eliminated when a task cue appeared at least 100 ms before the location cue, 

suggesting that a prosaccade task set could be implemented with minimal warning following an antisaccade 



trial. We have found, in contrast, that a preceding antisaccade block can disrupt performance over an entire, 

predict-able block of prosaccade trials. As discussed above, Roberts et al. (1994) also found a similar, but 

smaller, switching effect in their Experiment 1. Perhaps antisaccade-to-prosaccade switching costs require more 

momentum in set than can be created from just one trial to the next, or perhaps Weber did not test many low-

span participants in his study. 

 

Interestingly, our results resemble those from Allport, Styles, and Hsieh (1994; see also Harvey, 1984), who 

examined task switching in a series of experiments using various Stroop-like tasks, including the traditional 

color-word task (Stroop, 1935). In their Experiment 5, they found substantial set-shifting costs when naming the 

color of a color-word on one trial (high interference) was followed by reading the word of a color-word on the 

next trial (low interference). Thus, shifting set from a controlled task to an automatic task was markedly 

difficult, even though the tasks alternated predictably and occurred as much as 1,100 ms apart. The converse 

effect was not found, however, in that shifting set from reading words to naming colors produced no cost 

whatsoever. In a similar vein, but outside the Stroop-task context, Meuter and Allport (1999) recently 

demonstrated switching asymmetries in bilingual participants who switched between their dominant and 

nondominant language in naming digits: Switch costs were larger from the nondominant language into the 

dominant language than vice versa. Much like our data from Experiment 1, then, these findings demonstrate 

that switching from a more automatic task to a more controlled task causes minimal difficulty compared with 

switching from a controlled to an automatic task. Allport et al. (1994) discuss their findings in terms of task-set 

inertia, a kind of PI in which a nondominant response mapping imposes a stronger set that is more difficult to 

overcome than is the set for a dominant response. Given our prior findings of WM-span differences in PI (Kane 

& Engle, 2000), we recommend further exploration of the relations among WM, controlled attention, and task 

switching. 

 

"Controlled Attention" or Attentional Inhibition? 

Here and elsewhere (Engle, Kane, et al., 1999; Engle, Tuholski, et al., 1999) we have argued that individual 

differences in WM capacity reflect rather fundamental differences in controlled attention. By "controlled 

attention" we generally mean an executive control capability; that is, an ability to effectively maintain stimulus, 

goal, or context information in an active, easily accessible state in the face of interference, to effectively inhibit 

goal-irrelevant stimuli or responses, or both (for related views, see Cohen & Servan-Schreiber, 1992; Dempster, 

1991, 1992; Duncan, 1995; Hasher & Zacks, 1988). Thus, in WM-span tasks, high-span individuals are able to 

actively maintain information in memory while simultaneously turning attention toward a secondary-processing 

task. In the antisaccade task, we suggest, high-span individuals are better able to maintain the goal of the task, 

"look away from the cue," active in memory despite the strong interference presented by the abrupt-onset cue.  

In our view, then, this attentional control capability allows flexibility in response to environmental demands, 

whether those demands involve keeping many representations active in some contexts, keeping only one simple 

goal active in other contexts, or keeping irrelevant representations or responses at bay through inhibition. 

 

But do we really have much evidence for such a flexible control difference between high- and low-WM-span 

individuals? In fact, almost all of the research linking WM and attention has used selection tasks that require 

participants to ignore some nontarget information in attending to some target. For example, high- and low-span 

individuals differed in the negative priming task, in which to-be-named target letters appeared amidst to-be-

ignored distractor letters (Conway, Tuholski, Shisler, & Engle, 1999). High-span individuals showed negative 

priming but low-span individuals did not. That is, only high-span individuals were differentially slowed when 

the to-be-ignored letter from one trial be- came the to-be-named letter on the next trial, a finding some theorists 

suggest reflects prior inhibition of the distractor (e.g., Houghton & Tipper, 1994; but see Milliken, Joordens, 

Merikle, & Seiffert, 1998). 

 

As another example, Conway, Cowan, and Bunting (in press) recently tested high- and low-span individuals in 

the dichotic-listening "cocktail party" task (Cherry, 1953), in which participants repeat aloud an auditory 

message played in one ear and ignore a message played in the other ear. Participants typically learn to manage 

the task quite well, and although they are able to detect the physical characteristics of the ignored message (e.g., 



pitch, volume), they can report little of its content. Conway et al. followed up Moray's (1959) discovery that 

when the participants' names were played in the distractor ear, approximately 33% of participants reported 

detecting it. Conway et al. found, however, that high- and low-span individuals had dramatically different "hit" 

rates: Whereas a full 65% of low-span individuals reported hearing their name, only 20% of high-span 

individuals did. These findings suggest that when the task goal is to ignore or block a stimulus source, high-

span individuals do so better than low-span individuals. 

 

In line with the antisaccade findings reported here, then, the current evidence certainly points to WM capacity 

being related to attentional inhibition, or the ability to suppress interference from distractor stimuli or prepotent 

responses in the service of task goals. Indeed, largely on the basis of evidence from memory-interference 

studies, Engle (1996; Conway & Engle, 1994) suggested that inhibitory capabilities may be the primary 

determinant of WM span differences, a similar proposal to that made earlier by Hasher, Zacks, and their 

colleagues (e.g., Hasher & Zacks, 1988; Hasher, Zacks, & May, 1999; Zacks & Hasher, 1994). Hasher and 

Zacks have proposed that age (and other) differences in WM and language comprehension are driven by an 

inhibitory deficit. For example, older adults show compromised WM capabilities not because they have smaller 

capacity but rather because their attentional inhibitory mechanisms fail to regulate the contents of WM. With 

inhibitory failure comes an increased cluttering of WM, where relevant and irrelevant information compete for 

retrieval access and action control. In the Hasher and Zacks view, then, attentional inhibition is the primitive 

ability that drives WM capacity. In contrast, we have proposed that WM capacity, or con-trolled attention 

capability, is the primitive that drives inhibition, as well as maintenance and other attention-demanding 

functions (see also De Jong et al., 1999; O'Reilly et al., 1999; Roberts & Pennington, 1996). 

 

How can we resolve this theoretical "chicken—egg" dilemma? There appears to be evidence supporting both 

positions. For ex-ample, May, Hasher, and Kane (1999) demonstrated that vulnerability to PI may determine 

WM span scores, thus implicating inhibition as an important determinant of WM capacity. May et al. presented 

older and younger adults with different versions of the Daneman and Carpenter (1980) reading span task and 

the back-ward digit span task. Some memory sets proceeded from small sets of two upward to large sets of six, 

in "ascending" order, as is often done in research and in clinical testing. Others were presented in a 

"descending" order from large to small sets. The logic was that PI may build rapidly across memory sets (a la 

Keppel & Under-wood, 1962), and typical ascending versions of span tasks maximize the potential for PI 

effects because the larger sets of four, five, or six items are attempted after numerous other sets are completed. 

In contrast, on descending versions of the task, PI susceptibility will have less impact on scores because large 

sets may be attempted before much PI has built up. Indeed, May et al. found substantial age differences in span 

on ascending versions of the task, where PI potential was high, consistent with prior demonstrations of age 

differences in interference (for a review, see Kane & Hasher, 1995). However, age differences were eliminated 

on descending versions of the task, where PI was minimal. May et al. interpreted their findings to suggest that a 

WM score, and thus the differentiation of high- and low-span participants, is influenced by PI susceptibility, 

which in turn is driven by attentional inhibition. 

 

Other evidence suggests, however, that inhibition is the result of controlled processing that relies on WM 

capacity. Specifically, studies of divided attention and interference suggest that high- and low-span participants, 

who normally differ in interference susceptibility, become equivalently interference prone when required to 

perform a secondary task. As discussed in the introduction to this article, Rosen arid Engle (1997) in a fluency 

task and Kane and Engle (2000) in a PI build-up task demonstrated that in the absence of interference, both 

high- and low-span participants were quite able to retrieve information from long-term memory. However, 

when the potential for PI was increased, low-span participants proved to be much more vulnerable to 

interference than were high-span participants. These findings are perfectly consistent with May et al. (1999). 

 

In our view, however, the inhibition-as-primitive hypothesis runs into difficulty in light of divided-attention, or 

"load" effects, on interference susceptibility. In both the Rosen and Engle (1997) and Kane and Engle (2000) 

studies, some participants were tested under an attentional load, such as monitoring auditory digits or tapping 

fingers in a complex pattern. These secondary tasks bore no surface similarity to the primary memory tasks' 



stimuli or modality. Nonetheless, in both studies, high- and low-span participants performing under load were 

equivalently vulnerable to interference; load equalized the span groups. That is, high-span participants became 

more vulnerable to interference under load, whereas low-span participants remained equivalently susceptible to 

interference under load and no load. These data not only suggest that high- and low-span participants allocate 

attention differently when faced with interference-rich situations but also that inhibitory capabilities of high-

span participants can be manipulated by the task demands. High-span participants are adept at resisting 

interference under normal conditions; however, their ability to resist interference is significantly hampered by 

the imposition of a secondary task. 

 

If inhibition were the primitive capability that drove WM capacity and controlled attention, then an attentional 

load should not be effective in disrupting inhibition. Indeed, the Roberts et al. (1994) findings in the antisaccade 

task also suggest that the suppression of reflexive saccade requires controlled attention: Adding a secondary 

auditory—verbal summation task, bearing no similarity to the antisaccade task, impaired participants' ability to 

look away from the antisaccade cue. If suppression can be affected by dual-task conditions, it suggests to us that 

a more general attentional capability is responsible for successful inhibition and inhibitory differences. We 

suggest that the general controlled ability to actively maintain information in the face of interference is central 

to individual differences in WM capacity and therefore is central to the range of complex cognitive behaviors 

that WM-span tests predict. 

 

Conclusion 

In two experiments, individuals of high- arid low-WM-span capabilities were tested in an analogue of the 

antisaccade task, a task previously found to be reliant on controlled processing and sensitive to dPFC 

functioning. In both experiments, high-span participants were faster and more accurate in identifying visual 

targets signaled by antisaccade cues; that is, when the location of the cue indicated that the upcoming target 

would appear in the opposite screen location, high-span participants were better able to direct their eyes in 

opposition to the cue. However, high- and low-span participants performed equivalently following prosaccade 

cues that indicated a target would appear in the same location as the cue. Here, where performance could rely in 

part on reflexive, automatic orienting responses, no span differences were seen. At least, no span differences 

were seen in the prosaccade task when it was the first task encountered by participants. High-span participants 

were equally fast in the prosaccade task regardless of task order, but low-span participants experienced more 

difficulty in switching from the antisaccade task to the prosaccade task. Here, low-span participants were slower 

to identify prosaccade targets, suggesting that they perseverated on the antisaccade task demands and failed to 

reflexively attend to the cue. 

 

In Experiment 2, eye movements were monitored across a substantial number of practice trials with the 

antisaccade task. Low-span participants were more likely than high-span participants to reflexively move their 

eyes to the cue, even though their goal was to suppress these reflexive saccades in favor of moving the eyes 

away from the cue. And, as in Experiment 1, low-span participants were slower and less accurate in identifying 

these antisaccade targets than were high-span participants. Moreover, the span differences in reflexive saccades 

and target identification remained stable and substantial throughout the 360 trials of practice. 

 

These findings are consistent with the idea that WM capacity, as defined by complex span measures, is a valid 

predictor of attentional control. In a simple attention task involving minimal memory demands, no complex 

cognitive skill, and no surface similarity to a span task, but significant attention and dPFC involvement, high-

WM-span individuals consistently outperformed low-WM-span individuals. WM capacity may therefore reflect 

a basic attentional control capability, reliant on dPFC circuits, that is critical across a wide range of cognitive 

contexts involving interference, from long-term memory retrieval, to language comprehension, to reasoning. 

 

Notes: 

1 Larson and Perry (1999) recently reported another failure to detect a significant correlation between a WM 

measure and antisaccade performance. However, we note the following difficulties in interpreting their 

findings: (a) The sample was limited to 31 participants, not prescreened for their WM capacity; (b) the working-



memory measure ("Mental Counters Test") was not a span task per se, and so it may or may not have tapped the 

same construct as WM span tasks (see Engle, Tuho1ski, et al., 1999); and (c) they tested all participants in the 

prosaccade task first, followed by the antisaccade task. In our Experiment 1, we found that span differences in 

antisaccade performance were eliminated by prior practice with the pro-saccade task. 
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