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Abstract—One of the goals of Service-Oriented Computing (SOC) is to improve software maintainability as businesses become more

agile, and thus underlying processes and rules change more frequently. This paper presents a controlled experiment examining the

relationship between coupling in service-oriented designs, as measured using a recently proposed suite of SOC-specific coupling

metrics and software maintainability in terms of the specific subcharacteristics of analyzability, changeability, and stability. The results

indicate a statistically significant causal relationship between the investigated coupling metrics and the maintainability of service-

oriented software. As such, the investigated metrics can facilitate coupling related design decisions with the aim of producing more

maintainable service-oriented software products.

Index Terms—Services systems, design concepts, maintainability, product metrics, empirical studies.
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1 INTRODUCTION

THIS paper is concerned with the impact of design level
coupling on the maintainability of software products

developed using the Service-Oriented Computing (SOC)
approach. Specifically, a controlled experiment was con-
ducted to evaluate the effectiveness of selected SO coupling
metrics from Perepletchikov et al. [35] in predicting
maintenance effort.

SOC is an emerging and promising software develop-

ment paradigm which is based on the principle of

encapsulating application and business logic within self-

contained and stateless software services. Systems created

using the SOC approach, that is, Service-Oriented (SO)

systems, typically incorporate a large number of business

processes that require frequent modification in order to

facilitate rapid changes to the underlying business logic and

rules [17], [34]. To this end, producing highly maintainable

software is one of the main goals of SOC.
In previous software development paradigms, such as

Procedural and Object-Oriented (OO) development, it was

shown that software maintainability can be predicted, and

consequently improved, early in the Software Development

Lifecycle (SDLC) by quantifying the structural properties of

software designs, such as coupling and cohesion, using

dedicated metrics [12], [21]. Early prediction of maintain-

ability is desirable given that software maintenance has

long been regarded as one of the most resource-consuming

development phases. For example, Pressman [39] and Zuse

[48] suggest that over 60 percent of the total lifetime cost of
a system is spent on maintenance.

Presently, little research effort has been dedicated to
considering how the structural properties of service-
oriented software designs may influence the maintainability
of final software products. More significantly, there is a lack
of mature, empirically evaluated SO-specific software metrics
for measuring design properties in an automated and
objective manner.

In previous work, Perepletchikov et al. [35] proposed a
suite of 17 SO coupling metrics, which is the first effort of its
kind for predicting maintainability of software in the early
stages of the development process. The metrics were
defined in terms of a formal model of service-oriented
design [36] and theoretically validated using the property-
based framework of Briand et al. [6]. Given that the aim of
the original publication [35] was to formally define a suite
of theoretically valid metrics, the empirical evaluation of the
metrics was left to future work. Such evaluation is needed
in order to establish empirically the relationship between
the metrics and the quality characteristics they purport to
predict, thereby showing the usefulness of metrics in
practice [8], [25], [40].

This paper presents a controlled experiment conducted
to evaluate the coupling metrics of Perepletchikov et al. [35].
The experiment involved a group of 10 participants, who
were asked to perform a number of corrective and
perfective maintenance activities on the controlled SO
software system, developed specifically for this study. The
system was composed of a number of distinct and self-
contained services which exhibited different types and
levels of coupling as reflected by the metrics (independent
variables). The modification process was documented and
measured, using standardized ISO/IEC maintainability
metrics (dependent variables).

The correlation between the independent and dependent
variables was then evaluated, using statistical approaches.
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The majority of the obtained results were in line with our
hypotheses and expectations, indicating a statistically
significant relationship between coupling in SO design
artifacts and their maintainability. This, in turn, provides
evidence of the potential usefulness of the evaluated SO
coupling metrics, and serves as a motivator for future
empirical studies on the structural property of coupling in
the context of SOC.

2 SOA AND SOC—KEY CONCEPTS AND

DEFINITIONS

Service-Oriented Architecture (SOA) is an abstract archi-
tectural model that describes how distributed service-
oriented systems are composed (i.e., orchestrated or
choreographed) to fulfill a specific domain or business
requirement [3], [34]. At a conceptual level, SOA consists of
three primary entities: 1) service providers, who publish
service descriptions and realise software services, 2) service
consumers, who discover service descriptions, and invoke
services, and 3) service registries or repositories (such as
UDDI [47]) that maintain a directory of services.

Services in SOA are commonly treated as technology-
agnostic “black-boxes,” where corresponding service inter-
faces constitute the only visible part of the software
architecture [18]. That is, SOA prescribes a conceptual
architecture that advocates the principles of loose coupling
without enforcing constraints on the actual design and
implementation of services and the individual service-
oriented systems. Loose coupling in SOA is achieved by the
logical and physical separation of service consumers from
service providers via service registries, meaning that there
is no need for preexisting relationships between parties.

While SOA embodies an overall conceptual architecture,
Service-Oriented Computing (SOC) is the concrete software
development paradigm covering the process of developing
software applications structured in terms of autonomous
software services that encapsulate well-defined business
functions [17]. One of the main goals of SOC is to provide
systematic guidance for the identification and realization of
services at the detailed design and implementation levels
[33]. To this end, the main focus of the research presented in this
paper is the design phase of SOC.

Fig. 1 illustrates a design view of an SO system, where
services consist of two types of fundamental design artifact:
service interfaces and service implementation elements (that
realize operations exposed in a service interface). There are
no technological constraints on the paradigms and lan-
guages used to define service interfaces (although WSDL is
commonly used to describe service interfaces in present
implementations [47]) nor realize service implementation
elements, although a typical example of such would be Java
or C++ classes, as shown in Fig. 1.

There are two important design-level characteristics of
SOC that differentiate it from the previous paradigms such
as OO and Procedural development [36], [38]:

SOC introduces an additional level of abstraction. The
Procedural paradigm has only one main level of design
abstraction: a procedure. The OO paradigm operates on two
levels of design abstraction where OO methods are

encapsulated within OO classes. In contrast, the SOC
paradigm introduces a third level of abstraction and
encapsulation: a service. In service-oriented systems, opera-
tions (e.g., OO methods) are aggregated into implementation
elements (e.g., OO classes) that implement the functionality
of a service as exposed through its service interface.

A service interface is an important first-class design

artifact. Correctly identifying service interfaces is a
challenging and important design activity. This is because
service-oriented systems should be structured in terms of
independent and self-contained services, with service
interfaces being the primary entry points of a system
[16], [24].

The above characteristics suggest the need to quantify
coupling in SOC, based on the locality of coupling
relationships from the service boundary perspective, where
the concept of loose coupling refers to the absence of direct
implementation-level dependencies between system ser-
vices. Specifically, three distinct coupling relationship types
(shown in Fig. 1) should be considered in SO designs [35]:
1) incoming intraservice relationships (ISR) and outgoing
intraservice relationships (OSR), 2) incoming indirect extra-
service relationships (SIR) and outgoing indirect extraservice
relationships (SOR), and 3) incoming direct extraservice
relationships (IR) and outgoing direct extraservice relation-
ships (OR). Section 5 provides a detailed description of the
SO coupling relationship types.

3 INTERNAL AND EXTERNAL QUALITY

CHARACTERISTICS

Developing high quality software should be one of the main
targets of any software engineering process independent of
the development paradigm in use [20]. In software
engineering, quality characteristics are typically categorized
as internal or external. That is, the design of any software
product is said to possess a number of measurable internal
characteristics or structural properties (e.g., coupling,
cohesion, and size) that have a causal effect on external
quality characteristics, such as maintainability.

According to the ISO/IEC 9126-1:2001 [26] standard, the
quality characteristic of maintainability can be defined as
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the level of effort required for modifying the software product, and
can be subdivided into four measurable subcharacteristics:
analyzability, changeability, stability, and testability. These
subcharacteristics are defined in [26] as:

. Analyzability: the capability of the software product
to be diagnosed for causes of failures or for the parts
to be modified to be identified.

. Changeability: the capability of the software product
to enable specified modifications to be implemented.

. Stability: the capability of the software product to
avoid unexpected effects from modifications.

. Testability: the capability of the software product to
enable modified software to be validated.

Additionally, maintenance tasks can be categorized
according to the nature of the change request. For example,
the ISO/IEC/IEEE maintenance standard [27] states that a
modification request can be classified as either a correction
(corrective and preventive activities) or enhancement (adaptive
and perfective activities). To this end, the present work is
concerned solely with corrective and perfective maintenance1

since these activities are highly relevant to SOC. This is
because SO software products typically include a large
number of business rules and associated business processes,
which have been shown to be the most unstable part of
software applications [44]. This suggests a potential increase
in the rate and number of corrective and perfective tasks
required to keep up with rapidly changing business
requirements [17].

4 THE STRUCTURAL PROPERTY OF COUPLING

It was shown in previous work that structural properties of
software designs can influence some of the subcharacter-
istics of maintainability [12], [23], [29]. For example, a
number of empirical studies demonstrated that the struc-
tural property of coupling is strongly correlated to the
analyzability, changeability, and stability of software
products,2 regardless of development paradigm [9], [15].

The concept of coupling was originally defined for
procedural systems by Stevens et al. as “the measure of the
strength of association established by a connection from one
module to another” [43, p. 233], where coupling was classified
based on the type of connection—data or control. The
authors later extended their definition [46] in order to
characterize four major factors that influence coupling:

1. type of connection between modules,
2. complexity of the interface,
3. type of information flow (data or control), and
4. binding time of connection.

The notion of coupling was then extended for OO
systems due to the existence of additional mechanisms that
can influence coupling, such as polymorphism. Also, there
are two main subjects of interest in OO design, namely,
classes and methods, as opposed to procedural systems

where the procedure (a module consisting of code state-
ments) is the main subject of interest. To this end, coupling
in OO was defined as “the interdependency of an object on other
objects in a design representing the count of other objects that
would have to be accessed by a given object in order for that object
to function correctly” [4, p. 7].

It is important to note that coupling can be measured at
different levels of abstraction, ranging from high-level design
through to executable implementations, with the target level of
abstraction influencing the definition of metrics and their
measurement procedure. Ideally, metrics should be col-
lected as early in the SDLC as possible since the sooner
problems in the software structure can be identified, the less
effort required to correct them.

4.1 Coupling in the Context of SOC

The structural property of coupling is yet to be thoroughly
investigated in the context of SOC. To this end, Perepletch-
ikov et al. [35] redefined the notion of coupling in order to
address the specifics of service-orientation (such as the
inclusion of an additional level of design abstraction—a
service, refer to Section 2). More importantly, a suite of
theoretically-validated coupling metrics, defined according
to the formal model of SO design [36], was proposed to
quantify coupling at three different levels of design
abstraction: 1) system level, 2) service level, and 3) service
implementation element level. Furthermore, the element level
metrics were designed to quantify three distinct types of
coupling relationships, shown in Fig. 1:

1. intraservice relationships between implementation
elements belonging to the same service—ISR and
OSR relationships in example SO design in Fig. 1,

2. indirect extraservice relationships between implemen-
tation elements of a given service and service
interfaces of other (external) services—SIR and
SOR relationships in Fig. 1,

3. direct extraservice relationships between implementa-
tion elements belonging to different services—IR
and OR relationships in Fig. 1.

These relationships were assumed to have a varying
impact on the maintainability of SO software, and thus the
corresponding metrics were initially weighted (using a
coarse approximation) with respect to one another, based
on their perceived influence on maintainability.

Note, however, that direct extraservice relationships
should be avoided since they violate one of the key
principles of SOC, service autonomy [32]. Nevertheless,
most existing SO applications incorporate legacy compo-
nents which were not designed according to the principles
of SOC and, as such, direct extraservice relationships are
common in practice [17]. To this end, the corresponding
metrics are useful since they can quantify nonconformance
to SO principles.

5 SO COUPLING METRICS

The metrics presented in this section and empirically
evaluated in Section 6 were originally published in [35]
along with a formal set-theoretic definition of each metric,
and a description of the corresponding theoretical valida-
tion process. Of the 17 metrics, only the element-level metrics
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1. Corrective maintenance refers to modifications necessitated by errors
(i.e., defects) in a software product [27]. Perfective maintenance refers to
modifications performed to provide new functionality or improvements for
users, or reverse engineering to improve performance or maintainability
[27].

2. Testability typically refers to the existence of inbuilt testing functions,
and is not related to the structure of software.



(six metrics in total) are covered in this paper. The service
level metrics, which represent an aggregation of the
element-level metrics, are not evaluated since the evalua-
tion of their constituent metrics is sufficient to indirectly
establish the empirical validity of the aggregate metrics.
Furthermore, the system level metrics are not evaluated
since developing multiple full system designs as required
for their evaluation is beyond the scope of this paper.

The metrics are designed to measure coupling based on
two different factors: direction of coupling communication,
and the three different SO coupling relationship types
described in Section 4.1. The metrics can be collected by
examining design documents related to the structure and
behavior of an SO system including UML class, sequence
and collaboration diagrams, flow charts or data flow
diagrams, business process scripts, etc. In addition,
business level information captured in workflows and
use-case diagrams can be used to calculate metrics in terms
of the participation of external system actors, in cases
where more explicit structural information is not available.
This is particularly relevant to extraservice incoming
coupling, where it might be difficult to determine the
concrete structural characteristics of clients located outside
known system boundaries.

5.1 Intraservice Coupling

This type of coupling is comparable to the notion of
coupling in Procedural and OO designs. This is because an
individual service can be considered as a Procedural or OO
subsystem when investigated in isolation from the other
services in the system; therefore, the impact of high
intraservice coupling on maintainability is expected to be
similar to that suggested for Procedural/OO systems [15],
[22]. More specifically, high intraservice coupling is
assumed to influence the specific maintainability character-
istics in a distinct way [35] as follows:

. High incoming intraservice coupling can influence
service changeability and stability.

. High outgoing intraservice coupling can influence the
analyzability and changeability of an element.

The above assumptions will be formally redefined as
experimental hypotheses (Section 6.1.3, Hypotheses
Hcoup1:1 and Hcoup1:2) and statistically tested in Section 6.2.2.

The following two metrics are designed to measure
incoming and outgoing intra-service coupling.

Weighted intraservice incoming coupling of an ele-
ment (WISICE). WISICE for a given service implementa-
tion element e, belonging to a service s, is the count of the
number of other implementation elements of the same
service s coupled to element e (ISR relationship type in
Fig. 1).

Motivation: Services are intended to be independent
components, and thus can be maintained in isolation from
the system. Therefore, it is useful to measure the coupling
within a single service. Specifically, it is expected that high
intraservice coupling of one or more service implementa-
tion elements can indicate a potential design problem that
should be fixed prior to commencing the implementation of
the service.

Weighted intraservice outgoing coupling of an element
(WISOCE). WISOCE for a given service implementation

element e, belonging to a service s, is the count of the number
of other implementation elements of the same service s that
are used by element e (OSR relationship in Fig. 1).

Motivation: As described previously, services are in-
tended to be independent components which can be
maintained in isolation. As such, it is useful to measure
the coupling within a single service.

5.2 Indirect Extraservice Coupling

Indirect extraservice coupling concerns relationships that
occur through a service interface (i.e., not directly to service
implementation elements), thereby supporting the notion of
service-autonomy and loose coupling, as advocated by SOC
literature [1], [3], [33].

Nevertheless, according to [35], indirect extraservice
coupling should still be weighted higher than intraservice
coupling because when system functionality is encapsulated
in different services, which can be situated across various
logical and physical boundaries, maintenance effort is
expected to increase accordingly. This will be tested in
Section 6.2.3.

Also, as was the case with intraservice coupling, the
direction of communication (or locus of impact [7]) is
expected to influence the specific subcharacteristics of
maintainability as reflected by the following two metrics.

Extraservice incoming coupling of service interface
(ESICSI). ESICSI for a given service s is a count of the
number of system elements not belonging to service s that
couple to this service through its interface sis (SIR relation-
ship in Fig. 1).

Motivation: Although indirect extraservice coupling can
be considered as a desirable form of loose coupling, it
should still be minimized where possible. This is because,
as the value of ESICSI increases, the service becomes more
critical from a systemwide perspective, thereby resulting in
a decrease in system changeability and stability. This will be
tested in Section 6.2.2 according to Hypothesis Hcoup1:3.

Element to extraservice interface outgoing coupling
(EESIOC). EESIOC for a given service implementation
element e is a count of the number of other service interfaces
in the system that are used by (coupled to) element e (SOR
relationship in Fig. 1).

Motivation: As argued previously, it is advisable to
avoid excessive and unnecessary indirect extraservice
coupling. As the value of EESIOC for a given implementa-
tion element increases, so does the dependency of this
element on the other services in the system. As such, the
analyzability and changeability of an element is likely to be
affected, given the greater effort needed to analyze (and
change) an element using functionality provided by many
external artifacts. This will be tested in Section 6.2.2
(Hypothesis Hcoup1:4).

5.3 Direct Extraservice Coupling

This type of coupling covers the direct relationships
between implementation elements belonging to different
services. According to [35], direct extraservice coupling
can be considered as the strongest (least desirable) type of
extraservice coupling because it breaks service autonomy
[17] via explicit dependencies between service implemen-
tations, thus potentially decreasing their reusability and
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substitutability [42]. To this end, Perepletchikov et al. [35]
argue that this type of coupling should be weighted higher
than both intraservice and indirect extraservice coupling types.
This will be tested in Section 6.2.3. Also, the direction of
communication is again expected to influence the specific
subcharacteristics of maintainability as reflected by the
following two metrics:

Weighted extraservice incoming coupling of an ele-

ment (WESICE). WESICE for a given service implementa-
tion element e of service s is a count of the number of
system elements not belonging to service s that couple to
element e directly (IR relationship shown in Fig. 1).

Motivation: Direct extraservice coupling introduces tight
(implementation-dependent) coupling between services and
should therefore be avoided. Specifically, incoming cou-
pling from service implementation elements belonging to
different services, to element e, is expected to negatively
influence changeability and stability of a system since as
WESICE increases, so does the number of external elements
and services dependent upon the implementation charac-
teristics of element e. This will be tested in Section 6.2.2
(Hypothesis Hcoup1:5).

Weighted extraservice outgoing coupling of an ele-

ment (WESOCE). WESOCE for a given service imple-
mentation element e of service s is the count of the
number of system elements not belonging to the same
service that are used by (coupled to) this element (OR
relationship in Fig. 1).

Motivation: As the value of WESOCE for a given element
increases so does the (tight) implementation-level depen-
dency of this element on the other implementation elements
in the system. As such, the analyzability and changeability of
this elementwill be affected. Thiswill be tested in Section 6.2.2
(Hypothesis Hcoup1:6).

5.4 Metrics Summary

Table 1 provides a summary of the metrics investigated in
this paper, where the values in the relative weight column
are intended to represent the hypothesised strength of
impact of different coupling types on the analyzability,
stability, and changeability of SO software, as explained in
the metric motivation sections above. In order to maintain
the integrity of the metrics from the measurement theory
perspective, such weights need to be defined on a ratio
scale. However, since this requires large-scale empirical
studies, this is left to future work. As such, the weighting
values of 1, 2, and 3 are a coarse approximation provided
for illustrative purposes only.

6 EMPIRICAL STUDY
3

The empirical study (or controlled experiment) presented in
this section is designed to evaluate the relationship between
the investigated coupling metrics and the specific subchar-
acteristics of maintainability (i.e., analyzability, stability,
and changeability) they purport to predict. Specifically,
there are two main goals of this study, defined according to
the GQM framework of Basili et al. [5]:

GOAL-COUP1. Evaluate the predictive capability of
selected service-oriented coupling metrics with respect to
early estimation of the analyzability, stability, and
changeability of SO software, from the point of view of
software engineers, in the context of an experimental SO
software system.

. This will be done by comparing the maintainability
of lowly and highly-coupled elements for each
distinct coupling relationship type (i.e., incoming
and outgoing: intraservice, indirect extraservice, and
direct extraservice coupling).

GOAL-COUP2. Evaluate the relative impact (strength) of
selected service-oriented coupling metrics on the analyz-
ability, stability, and changeability of SO software, from the
point of view of software engineers, in the context of an
experimental SO software system.

. This will be done by comparing the maintainability
values collected for the highly coupled elements for
each distinct coupling relationship type. This, in
turn, should allow: 1) ranking different coupling
relationship types and corresponding metrics based
on their influence on maintainability, and 2) compar-
ing SO metrics with the widely accepted OO metric,
Coupling Between Objects (CBO) [11]. Such a
comparison is possible because CBO is structurally
equivalent to the WISCE metric (refer to Section 5.1)
intended to measure intraservice relationships.

An empirical evaluation of software metrics can be
achieved using either targeted (controlled) experiments
conducted under research settings, or case studies of
industrial software products [8]. Both strategies can have
a contrasting impact on the internal and external validity [8]
of the produced results. More specifically, targeted experi-
ments provide greater support for controlling instrumenta-
tion effects [9] that can influence the internal validity of the
study, but can negatively affect external validity since such
experiments are not necessarily representative of real-world
practice insofar as they are subject to time and scope
constraints, which in turn impose limitations on the size of
experimental artifacts and tasks. In contrast, case studies
maximize external validity, but make it more difficult to
control instrumentation effects.

PEREPLETCHIKOV AND RYAN: A CONTROLLED EXPERIMENT FOR EVALUATING THE IMPACT OF COUPLING ON THE MAINTAINABILITY... 453

TABLE 1
Summary of the Investigated SO Coupling Metrics

3. This study was conducted as part of a comprehensive investigation of
two important structural properties of SO software, coupling and cohesion.
Although the empirical study conducted to evaluate the impact of cohesion
on maintainability [38] was conducted independently of the coupling study
presented in this paper, the studies share some common features. In
particular, the same participants (refer to Section 6.1.1) were employed in
both studies, and the overall study design (Section 6.1.6) and experimental
procedure (Section 6.1.7) were comparable. Moreover, both studies used
similar techniques to alleviate possible threats to validity (Section 6.4).



The study presented in this section follows the first
approach since it has been suggested that the internal
validity of the study should be determined prior to
establishing external validity [45]. Additionally, SOC is an
emerging paradigm, and as such it is difficult to conduct
large-scale industrial investigation at this stage.

6.1 Experimental Protocol

This section presents the experimental protocol that was
followed when performing the experimental tasks and
analyzing the results. Note that an effort has been made to
provide a comprehensive description of the protocol so that
the study can be replicated in future work.

6.1.1 Participants

The study employed 10 subjects: 1) five industry practi-
tioners and 2) five postgraduate research students under-
taking their study in the School of Computer Science and IT,
RMIT University, Melbourne, Australia. Purposive sampling
[41], which is a participant selection technique frequently
used in behavioral sciences, was employed to select
participants with comparable experience with software
development and maintenance and knowledge of various
development paradigms, including SOC and OO. The level
of experience and knowledge of each participant was
evaluated using a User Profile questionnaire and a pretest
task. All participants were male in the 23-29 age group,
possessed OO development and maintenance experience
ranging from six months to five years, and had some basic
experience with SO development. Also, all participants were
unpaid volunteers who had professional interest in SOC.

6.1.2 Dependent Variables

The dependent variables were taken from the ISO/IEC TR
9126-1:2001 [26] suite of maintainability metrics. Note that
all ISO/IEC metrics are defined on a ratio scale, thereby
being suitable for the parametric statistical analyses (such as
one-way ANOVA) used in this study.

Analyzability Metric. Failure Analysis Efficiency
ðFAEÞ ¼ Sum (T)/N, where T ¼ time taken to analyze each
cause of failure (or time taken to locate a software fault), and
N ¼ number of failures, of which causes are found. The
interpretation of possible values: 0 < FAE; the closer to 0, the
better.

Changeability Metric. Modification Complexity ðMCÞ ¼
SumðTÞ=N , where T ¼ work time spent on each change and
N ¼ number of changes. The interpretation of possible values:
0 < MC; the closer to 0, the better.

Stability Metric. Modification Impact Localization
ðMILÞ ¼ A=B; where A ¼ number of emergent adverse im-
pacts (failures) in the system after modifications, and B ¼
number of modifications made. The interpretation of possible
values: 0 < ¼ MIL; the closer to 0, the better.

6.1.3 Experimental Hypotheses

Two distinct sets of hypotheses were defined according to
the goals of this study and tested for statistical significance
in Section 6.2.2.

The first set of hypotheses (Table 2, Hcoup1:1�Hcoup1:6) is
related to GOAL-COUP1, based on the assumption that a
highly-coupled SO design element will have a significantly

negative impact on the maintainability subcharacteristics

compared to a lowly-coupled element. For example,

Hypothesis Hcoup1:1 can be interpreted as:
An element with a high4 value of the Weighted Intraservice

Incoming Coupling between Elements (WISICE) metric will

result in significantly lower (or worse) service changeability5 (as

reflected by a higher value of the Modification Complexity (MC)

metric), and stability (i.e., a higher value of the Modification

Impact Localization (MIL) metric) compared to an element with a

low value of WISICE.
The second set of hypotheses (Table 2, Hcoup2:1�Hcoup2:6) is

based on the assumption that different coupling relation-

ship types have varying impact on the maintainability

subcharacteristics according to GOAL-COUP2. For exam-

ple, Hypothesis Hcoup2:2 can be interpreted as:
An element with a high value of the Element to the

Extraservice Interface Outgoing Coupling (EESIOC) metric will

have a more negative effect on analyzability (i.e., greater Failure

Analysis Efficiency (FAE)) and changeability (i.e., greater

Modification Complexity (MC)) compared to an element with

the same (high) value of Weighted Intraservice Outgoing

Coupling between Elements (WISOCE).
Note that the hypotheses presented in Table 2 are stated

as alternative hypotheses, where the corresponding null

hypotheses would be defined in terms of the absence of

examined effects. Moreover, although all hypotheses were

defined in terms of multiple dependent variables in order to

minimize the total number of hypotheses and thus improve

the readability of this section, they are tested individually

for each stated dependent variable.
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TABLE 2
Experimental Hypotheses—Details

4. The actual values used to represent high (and low) coupling in all
coupling hypotheses are described in Section 6.1.4.

5. Incoming coupling is related to changeability and stability, whereas
outgoing coupling is related to changeability and analyzability as discussed
in Section 5.



6.1.4 Experimental Material

The experimental material consisted of a controlled service-
oriented software system developed specifically for this
study and designed to support the investigation of the
experimental hypotheses presented in the previous section.
The system was based on an existing prototypical service-
oriented Academic Management System (AMS), which was
loosely modeled on the rules and procedures common to
RMIT University. The original system was designed to
provide support for the practical assessments used in a
number of courses run by the School of the Computer
Science and IT, RMIT University. Note that the chosen
application domain (educational organization) had the
advantage of being easily comprehensible by the partici-
pants, thereby ensuring that system requirements could be
easily interpreted.

The experimental version of AMS was composed of three
distinct services implemented using Java EE 5 platform, and
exposed via both local and WSDL-based interfaces. Each
service was located in a dedicated package, as shown in
Appendix A, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2010.61, with further implementation details
available in the online appendix [37].

In total, three services were required in order to support
the controlled investigation of different types of coupling
as follows:

1. Service SER-COUP1 (ams.services.academic-man-
agement service shown inAppendixA)was designed
to support the investigation of intraservice coupling
(hypotheses Hcoup1:1, Hcoup1:2, and Hcoup2:1�Hcoup2:4).

2. Service SER-COUP2 (ams.services.student-manage-
ment service from Appendix A) was designed to
support the investigation of indirect extraservice
coupling (hypotheses Hcoup1:3; Hcoup1:4; Hcoup2:1;
Hcoup2:2;Hcoup2:5, and Hcoup2:6).

3. Service SER-COUP3 (ams.services.enrollment-sup-
port service shown in Appendix A) was designed
to support the investigation of direct extraservice
coupling (hypotheses Hcoup1:5, Hcoup1:6, and
Hcoup2:3�Hcoup2:6).

Additionally, each of the experimental services was
logically divided into two subservices in order to support
the investigation of the incoming (SER-COUP1a, SER-
COUP2a, and SER-COUP3a) and outgoing (SER-COUP1b,
SER-COUP2b, and SER-COUP3b) coupling relationships in
isolation from one another.

Finally, the experimental system included a number of
utility services that provided basic support for data access
and manipulation, and communication with external
partners (prototype web services) running on a different
application server. Such utility services were required in
order to remove any potential influence of the specific
technologies used to develop the experimental systems (for
example EJB3 and Java Persistence API) on the maintenance
efforts. Additionally, a number of support services that
provided means for evaluating the extraservice coupling
metrics were included. The participants were notified that
all utility/support services were fault free.

The following characteristics were common to all three

experimental services:

. Each service aims to evaluate the coupling-related
hypotheses using four designated implementation
elements/or service interfaces: two lowly-coupled
[incoming and outgoing] elements/or interfaces, and
two highly -coupled [incoming and outgoing] elements/
or interfaces, where: 1) an implementation element/
service interface is considered to be lowly-coupled if it
is coupled to/from one implementation element or
service interface only, and 2) an implementation
element/service interface is considered to be highly-
coupled if it is coupled to/from five other imple-
mentation elements or service interfaces. The num-
ber 5 was chosen because it allowed developing
subsystems of manageable size, and also because it
represents the maximum number of couples for a
given implementation element in the original AMS.

. Each element designed to investigate low and high
outgoing coupling contained one explicitly inserted
fault in order to assess the analyzability of elements
under study. All faults were related to the same
problem domain, and their cognitive complexity6 was
approximately equivalent, as reflected by the output
of a pilot study (refer to Section 6.1.5) and the
feedback obtained from the participants.

Given our aim to conduct a controlled experiment, an

effort was made to manipulate only the coupling of services

while keeping the other properties (or controlled variables) as

constant as possible in order to prevent their influence on

the experimental results as follows:

1. Interface Size and Complexity: All three experimental
services expose an equal number (four) of service
operations in order to ensure their comparability in
terms of interface size and complexity. The number 4
was chosen because it allowed developing services
of manageable size, while maximizing the amount of
experimental data. Additionally, it represents the
mean number of service operations exposed in the
interfaces of services included in the original AMS.

2. Implementation Size: The lines of code (LOC) mea-
sures for each of the experimental services were
similar (300-350 LOC per service). Note that the total
size of the system, including the supporting services,
was approximately 3,500 LOC.

3. Cohesion: The cohesion of experimental services was
held constant, with all three services having an
average cohesion ranging from 0.47 to 0.52, as
measured by the Total Interface Cohesion of a
Service (TICS) metric derived and evaluated by the
authors in prior work [38].

6.1.5 Experimental Tasks

The experimental tasks were intended to directly support

the evaluation of the analyzability, changeability, and
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6. Cognitive complexity can be defined in terms of the level of effort used
by a person performing a given task, where the cognition processes
common to the software maintenance tasks include reading code (chunk-
ing) and searching through code (tracing) [10].



stability subcharacteristics of maintainability in order to test
the experimental hypotheses defined in Section 6.1.3.

TASK-COUP1. The participants were asked to determine
the causes of six failures related to the core functionality of the
system (one failure per outgoing lowly and highly-coupled
element under study). An effort was made to ensure that all
causes of failures (or software faults) were comparable in
terms of their cognitive complexity. This task can be
considered as a corrective maintenance activity, being de-
signed to evaluate analyzability using the Failure Analysis
Efficiency (FAE) metric. Participants were required only to
identify the faults by noting the name of the faulty
implementation element/s andoperation/s, but not fix them.

TASK-COUP2. The participants were asked to imple-
ment 12 source-code changes to the business rules and
logic—one change per designated incoming and outgoing
[lowly/highly] coupled element, in each of the three
experimental services. This task can be considered as
perfective maintenance, and was intended to support the
investigation of the changeability and stability subcharacter-
istics. Note that changes were related to specific functional
requirements of the AMS system, as well as the particular
implementation characteristics of each service, and as such,
experience or learning effects [9] were unlikely to be a
significant factor. Also, as with the introduced failures, an
effort was made to ensure that all changes were concep-
tually (or cognitively) comparable.

A pilot study using two experienced software engineers
(who were not participating in the main study) was
conducted to evaluate the cognitive similarity of the intro-
duced failures and required system changes, and to approx-
imate the completion times for both tasks. Both software
engineers completed all of the experimental tasks within the
allocated time-frame of 3 hours, having ranked the cognitive
complexity of all failures and changes as low. This was
expected since the failures/changes were designed to have
low complexity in order to reduce potential fatigue effects.

6.1.6 Experimental Design

The study was based on an incomplete within-subjects design
[31], where each condition was administered to each
participant only once, and the order of administering the
conditions was varied systematically across participants. A
within-subjects experimental design was considered suita-
ble for this study because it requires fewer participants to
maintain the statistical power of the experiments compared
to a between-subjects design [14]. Furthermore, the error
variance due to differences among participants is reduced
in within-subjects designs [41], which is especially signifi-
cant in the area of empirical software engineering, where
potentially strong variation in participant capabilities and
skills is a major concern [9].

Note, however, that one of the limitations of a within-
subjects design is that the independent variables can
become confounded with the order of presentation because
of practice effects [41]. Practice effects can arise as the
experimentation progresses, due to improvements in
the participants’ skills and knowledge (learning effects [9]),
and degradation of participants’ ability to perform experi-
mental tasks (fatigue effects).

To deal with the practice effects in this study, thereby
increasing its internal validity [45], the participants were
exposed to the various levels of treatment using the selected
orders approach [41], where only a subset of all possible
orders is used, with the number of selected orders equaling
some multiple of the number of conditions in the experi-
ment. Specifically, the random starting order with rotation
technique was employed to ensure that each condition
appears in each ordinal position equally often. This
technique involves choosing a random initial order (or
sequence) of the conditions, which is then systematically
rotated with each condition moving one position (in this
case to the left) on each rotation [41].

6.1.7 Experimental Procedure

The experiment consisted of two separate phases: the pre-
experimental phase and the actual experiment.

During the pre-experimental phase, the participants were
given one week to familiarize themselves with the System
Requirements Specification (SRS) document for AMS. Next,
all participants attended a 30 minute face-to-face group
tutorial session, where they had a chance to ask questions
related to the requirements of AMS. Furthermore, at the end
of the tutorial session, the participants were asked to rank
their understanding of the functional requirements of the
AMS system on a scale of 1 (low) to 5 (high). All participants
indicated that they had a good understanding of these
concepts (as reflected by the uniformly high rankings of 5).

The actual experiment was conducted in a controlled
laboratory setting in order to eliminate confounding factors,
such as unplanned distractions, that could affect the
performance of participants. The PCs located in the lab
had identical hardware and software configurations, with
Eclipse 3.3 chosen as the implementation perform, since all
participants had prior experience with this specific Inte-
grated Development Environment (IDE). At the beginning
of the experiment, the participants were given a document
describing the tasks to be performed, and the details of the
tasks were then described by one of the authors in a
15 minute question-answer session. Participants were
instructed not to talk among themselves, but instead direct
any questions to the monitor. All participants managed to
complete the tasks within the allocated time-frame of
3 hours.

6.1.8 Data Collection Procedure

The duration of individual maintenance tasks was collected
in real time. Specifically, the task commencement time was
noted, and as soon as a given participant finished one of the
tasks he (all participants were male, refer to Section 6.1.1)
would indicate this to the monitor who would then record
the completion time on a PDA. In addition to recording the
duration of the maintenance tasks during the experimental
runs, the modified systems were later examined and tested
by the first author, using a suite of unit and integration tests,
in order to collect the data needed to calculate the ISO/IEC
stability metric Modification Impact Localisation (MIL). This
was necessary since the participants were asked to imple-
ment the changes, but were not asked to test the experi-
mental system after the changes were made (otherwise, it
would be impossible to collect the values of MIL due to a
lack of newly introduced and undiscovered faults).
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The following data points were collected individually for
[incoming/outgoing] lowly and highly-coupled implemen-
tation elements in each of the three experimental services on
a per task basis as follows:

TASK-COUP1.
Failure Analysis Efficiency (FAE)

. Time (in minutes) taken to analyze the cause of
failure in three experimental services for each pair
of [outgoing] lowly and highly-coupled elements
for every participant (1 failure� 2 elements �
3 services� 10 participants ¼ 60 data points).

. The correctness (number of failures of which causes
are found) of the failure analysis described above
(60 data points). The correctness was evaluated in
terms of a Boolean value [true/false]. That is, the
failure analysis was considered correct only when all
causes of a given failure were found.

TASK-COUP2.
Modification Complexity (MC)

. Time (in minutes) taken to implement a change to
the functional requirement in three experimental
services for each pair of [incoming/outgoing]
lowly- and highly-coupled elements for every
participant (1 change � 3 services � 4 elements �
10 participants ¼ 120 data points).

Modification Impact Localization (MIL)

. Number of detected faults in the system after
changes to the functionality described above for each
pair of [incoming] lowly and highly-coupled ele-
ments for every participant (1 change� 3 services �
2 elements� 10 participants ¼ 60 data points).

6.1.9 Analysis Procedure

The collected experimental data were analyzed using the
Analyze-it 3.0 [2] statistical software tool.

To begin, the Shapiro-Wilk test [28], which is a recom-
mended normality test for smaller sample sizes (up to 1,000),
showed that the distribution of both dependent variables did
not deviate significantly from normality (all Shapiro-Wilk
(W) values were greater than 0.75). This suggested that
parametric tests were suitable for this study. Nevertheless,
the significance probability values (p) for the tests were high
(all p > 0:3), thereby suggesting that it is possible that the
observed normality results are incorrect. As such, the
decision was made to also use alternative nonparametric
tests. In every case, the nonparametric test supported the
findings of the corresponding parametric test.

Second, the level of significance (�), which reflects the
probability of falsely rejecting a null hypothesis (Type I
error), was set to the commonly used (scientific) level of
0.05. Note that it is not uncommon to use higher levels of �
in software engineering experiments. For example, Briand
et al. [9] suggest that an � value as high as 0.2 might be
considered when making an informed decision regarding
practical utility of software metrics, even though the
empirical evidence is not strong enough to make a scientific
statement with a high degree of confidence.

Finally, The G*Power 3 [19] software tool was used to
conduct a power analysis in order to estimate the impact of

effect size on the statistical tests used in the study. The
analysis showed that given our: 1) sample size of
10 participants in a within-subjects design, 2) chosen level
of � ¼ 0:05, and 3) a power value of 0.87; the effect sizes
required to achieve statistically significant results can be
classified as large according to the categorization of Cohen
[14] whereby, for a one-way ANOVA, the conventional
effect sizes (f) are: small f ¼ 0:1, medium f ¼ 0:3, and large
f � 0:1. As such, the effect sizes required to show
significance in the present study range from 0.5 to 0.6,
thereby suggesting that the statistical tests could produce a
Type II error [14] (i.e., fail to reject a null hypothesis when it
is in fact false) when the relationships involved do not
exhibit large effect sizes.

6.1.10 Statistical Tests

A number of parametric and nonparametric statistical tests
have been employed to evaluate the experimental hypoth-
eses. The tests were chosen based on their suitability to the
goals and design of the study. For example, the within-
subjects experimental design adopted in the study requires
the selection of statistical tests that cover data related to
repeated measures. Table 3 summarizes the statistical
approaches used in this study, the complete description of
which can be found in [14], [28].

6.2 Analysis of the Results

This section discusses the results of the statistical tests
conducted in order to evaluate hypotheses Hcoup1:1�Hcoup1:6

and Hcoup2:1�Hcoup2:6 defined in Section 6.1.3.

6.2.1 Descriptive Statistics

The descriptive statistics are presented in Tables 4, 5, 6
individually for each dependent variable, with the excep-
tion of the stability metric, Modification Impact Localization
(MIL). The values of MIL are not included because all
participants performed TASK-COUP2 without introducing
any new system faults, and as such, all MIL values were
equal to zero. Therefore, it is evident prima facie that there
is no significant difference between the mean values of MIL
obtained for the investigated lowly and highly-coupled
elements, resulting in rejection of the alternative hypothesis
Hcoup1:4. The absence of failures is believed to be due to the
small size of the services, and because the description of the
tasks designed to evaluate the stability of a system (refer to
[37]) instructed participants to make sure that any changes
to existing functionality did not result in a negative effect on
the system.

The values for the remaining two dependent variables,
Failure Analysis Efficiency (FAE) metric (Table 4), and
Modification Complexity (MC) metric (Tables 5 and 6), are
shown for each of the lowly (Element1) and highly
(Element2) coupled elements in each experimental service,
where a lower value of a given dependent variable indicates
better maintainability. Note that in contrast to FAE, which is
only related to outgoing coupling (refer to Section 5), the
MC metric is used to evaluate both incoming and outgoing
coupling types given that: 1) The changeability of a system
was hypothesized to be related to the number of incoming
relationships (Hypothesis Hcoup1:2), and 2) the changeability of
an element was hypothesized to be related to the number of
outgoing relationships (Hypothesis Hcoup1:4).
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7. Conventionally, a test with a power value of 0.8 (that is, � < = 0.2) is
considered statistically powerful [14].



Three general observations can be made by examining

data shown in all three tables:

1. The means of FAE and MC (both incoming and
outgoing) values collected for all lowly-coupled
elements are smaller (i.e., better) compared to the
meanscollected for the correspondinghighly-coupled

elements. This can be visualized in the graphs shown
in Figs. 2, 3, 4, and will be tested for statistical
significance in Section 6.2.2.

2. The means of FAE and MC (both incoming and
outgoing) values collected for the elements exhibiting
high indirect and direct extra service coupling are
larger (i.e.,worse) than themeans collected for highly-
coupled intraservice elements, but there is little
difference between the means of elements exhibiting
high indirect and direct extraservice coupling. This is
showngraphically in Figs. 2, 3, 4, andwill be tested for
statistical significance in Section 6.2.3.

3. There is no obvious pattern in the dispersion (i.e.,
standard deviation [std. dev.] and variance [var.])
values for the examined lowly and highly-coupled
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TABLE 3
Summary of the Statistical Analysis Techniques

TABLE 4
Descriptive Statistics: TASK-COUP1
(FAE Values—Outgoing Coupling)

TABLE 5
Descriptive Statistics: TASK-COUP2
(MC Values—Incoming Coupling)



elements. Although the standard deviation and
variance of FAE and MC (both incoming and
outgoing) values collected for the highly-coupled
elements are generally larger than those collected for
the corresponding lowly-coupled elements; this can
be attributed to the proportionally larger mean
values. Specifically, the difference in coefficient of
variation (CV)8 values within all examined element
pairs was low (< 0:1).

6.2.2 Hypothesis Testing: Maintainability Impact

(Hcoup1:1 �Hcoup1:6)

Nine two-tailed paired t-tests for dependent samples were
conducted in order to examine the impact of low and high
design-level coupling on the analyzability and changeabil-
ity of service-oriented software according to hypotheses
Hcoup1:1 �Hcoup1:6, defined in Section 6.1.3. In summary, the
results indicate that there is a statistically significant
relationship between the SO coupling metrics presented in
Section 5, and the ISO/IEC analyzability (FAE), and

changeability (MC) metrics. This, in turn, suggests that all
evaluated coupling metrics can be used as early indicators of
analyzability and changeability of service-oriented software.

Specifically, Table 7 shows the results of a two-tailed
paired t-test used to determine whether the population
means (�) of the groups ofmaintainability values sampled for
each lowly (e1) and highly (e2) coupled element in each of the
experimental services are not equal (that is, �ðe1Dep VarÞ !¼
�ðe2Dep Var), where DepVar stands for a dependent variable).

For example, the t-test related to Hypothesis Hcoup1:1

(Table 7, column 2) was used to test inequality of the
population means of the MC9 values obtained for two
experimental elements (e1 which has WISICE value of 1,
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TABLE 6
Descriptive Statistics: TASK-COUP2
(MC Values—Outgoing Coupling)

Fig. 3. TASK-COUP2—Modification Complexity (MC)—incoming.

Fig. 4. TASK-COUP2—Modification Complexity (MC)—outgoing.

Fig. 2. TASK-COUP1—Failure Analysis Efficiency (FAE).

8. The coefficient of variation (CV) is a normalized measure of dispersion
of a probability distribution, being defined as the ratio of the standard
deviation to the mean. CV is useful when comparing a dispersion of data
sets with different means [28].

9. The analyzability (FAE metric) was not evaluated in this particular test
since it was hypothesised in Sections 5 and 6.1.3 that incoming coupling will
not affect the analyzability of an element.

TABLE 7
Paired T-Test and Wilcoxon Matched Pairs Test Results

for Hypotheses Hcoup1:1�Hcoup1:6 (N ¼ 10)



and e2 which has WISICE value of 5) belonging to the SER-
COUP1a service. This particular test indicated a significant
variance in the MC values collected for elements e1 and e2
(p value ¼ 0:0003). Similarly, all remaining t-tests showed a
significant variance in the FAE and MC values in each pair
of lowly and highly-coupled elements at a statistically
significant level of 0.05.

In addition, a nonparametric Wilcoxon matched pairs test
also indicates a significant variance (p < 0:05) in all examined
groupsof FAEandMCvalues, as shown inTable 7.Therefore,
we accept alternative experimental hypotheses Hcoup1:1 �Hcoup1:6

and conclude that a highly-coupled SO design element has a
significantly negative impact on the analyzability and
changeability compared to a lowly-coupled element.

Note that this outcome is not surprising since it was
shown in previous paradigms that the structural property
of coupling is correlated to the maintainability of software.
Nevertheless, accepting hypotheses Hcoup1:1�Hcoup1:6 gives
us confidence that the investigated SO coupling metrics are
empirically valid (or useful) measures of coupling.

6.2.3 Hypotheses Testing: Strength of Coupling

(Hcoup2:1 �Hcoup2:6)

Three one-way ANOVA for repeated measures tests were
conducted to determine whether the specific types of
coupling relationships have a significantly different impact
on analyzability and changeability according to hypotheses
Hcoup2:1 �Hcoup2:6. The stability subcharacteristic was again
not tested, given that all values of the corresponding metric
(MIL) were equal to zero. In summary, the results of one-
way ANOVA tests indicate that:

1. All extraservice coupling metrics (ESICSI, EESIOC,
WESICE, and WESOCE) should be weighted higher than
the intraservicemetrics (WISICEandWISOCE) in order to
reflect their relatively stronger impact on the changeability
of SO software. This in turn suggests that the
investigated extraservice metrics can potentially be
more accurate indicators of changeability of service-
oriented software, compared to the widely used OO
metric, Coupling Between Objects (CBO), which is
considered to be structurally equivalent to the
intraservice WISICE/WESOCE metrics.

2. There is no statistically significant variance in the
analyzability metric (FAE) values collected for
the three different types of coupling relationships:
intraservice outgoing coupling, indirect extraservice
outgoing coupling, and direct extraservice outgoing
coupling. The observed effects were in the hy-
pothesized direction, but were not significant
enough to reliably establish that both extraservice
(indirect and direct) coupling types have a greater
effect on the analyzability of SO software than
intraservice coupling.

The specifics of the statistical tests are given below:

. Six individual test conditions (one condition per
experimental hypothesis10), given below, were
established in order to test the inequality of

variance in the groups of analyzability and change-
ability values collected for six elements under study
(shown in Table 8):

- Test condit ion TC1 ðHcoup2:1Þ : �ðe1MCÞ !¼
�ðe3MCÞ

- Test condition TC2 ðHcoup2:2Þ : �ðe2FAEÞ !¼
�ðe4FAEÞ ^ �ðe2MCÞ !¼ �ðe4MCÞ

- Test condit ion TC3 ðHcoup2:3Þ : �ðe1MCÞ !¼
�ðe5MCÞ

- Test condition TC4 ðHcoup2:4Þ : �ðe2FAEÞ !¼
�ðe6FAEÞ ^ �ðe2MCÞ !¼ �ðe6MCÞ

- Test condit ion TC5 ðHcoup2:5Þ : �ðe3MCÞ !¼
�ðe5MCÞ

- Test condition TC6 ðHcoup2:6Þ : �ðe4FAEÞ !¼
�ðe6FAEÞ ^ �ðe4MCÞ! ¼ �ðe6MCÞ

. The individual test conditions were then aggregated
according to the direction of coupling communica-
tion and the associated dependent variables in order
to minimize the number of required tests (thereby
decreasing the likelihood of committing a Type I
error [28]), and evaluated using three one-way
ANOVA tests:

- Test 1 (combines test conditions TC1, TC3, and
TC5):

��ðe1MCÞ !¼ ��ðe3MCÞ !¼ ��ðe5MCÞ;
- Test 2 (covers TC2, TC4, and TC6):

��ðe2FAEÞ !¼ ��ðe4FAEÞ !¼ ��ðe6FAEÞ;
- Test 3 (covers TC2, TC4, and TC6):

��ðe2MCÞ !¼ ��ðe4MCÞ !¼ ��ðe6MCÞ.

For example, the aim of Test 1 is to determine whether

the population means (�) of the groups of changeability

(MC metric) values collected for three elements exhibiting

high incoming: intraservice (e1), indirect extraservice (e3),

and direct extraservice (e5) coupling are not equal.
ANOVA results are presented below individually for

each aggregated test (Tests 1-3).

. Test 1 : �ðe1MCÞ !¼ �ðe3MCÞ! ¼ �ðe5MCÞTest 1 : �ðe1MCÞ !¼ �ðe3MCÞ! ¼ �ðe5MCÞ

Table 9 shows that the population means of the three
sampled groups of MC values collected for the elements
exhibiting high incoming coupling were not equal, with
F statistic (3.68) exceeding the F critical value (3.35) at the
statistically significant level of 0.05 (p-value ¼ 0:038).
Moreover, the results of a nonparametric Kruskal-Wallis
test also show a significant variance between the groups of
MC values (the Kruskal-Wallis’ statistic (H) ¼ 6:63, with
p ¼ 0:036 (corrected for ties)).
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TABLE 8
Experimental Service Implementation Elements

10. Note that, as described in Section 6.1.3, some hypotheses (e.g.,
Hypothesis Hcoup2:2) were defined in terms of multiple dependent variables
in order to minimize the total number of hypotheses, thereby improving the
readability of the manuscript.



The statistically significant ANOVA results indicate that
there is more variation between tested groups than would be
expected by chance, but they did not identify which specific
group pairs are significantly different from one another.
Therefore, the Fisher’s Least-Significant Difference (LSD)
mean comparison test was applied for the purpose of
comparing differences between the individual groups of
MC values. The results of this test are shown in Table 10,
wherein a Boolean value reflects the significance of investi-
gatedgrouppairs. The results indicate a significantdifference
in population means of the MC values11 for: 1) intraservice
incoming coupling (e1) and indirect extraservice incoming
coupling (e3), and 2) intraservice coupling (e1) and direct
extraservice incoming coupling (e5); but the relationship
between indirect (e3) and direct (e5) extraservice incoming
coupling types is not significant at 0.05 level.

Therefore, we accept the changeability-related component of
the combined (refer to Section 6.1.3) alternative hypotheses
Hcoup2:1 and Hcoup2:3, but reject the changeability-related compo-
nent of the alternative hypothesis Hcoup2:5. This leads to a
conclusion that both indirect and direct extraservice incom-
ing coupling types have relatively stronger impact on the
changeability of SO software compared to intraservice
coupling.

.

Test 2ðHcoup2:2; Hcoup2:4; and Hcoup2:6Þ :

�ðe2FAEÞ !¼ �ðe4FAEÞ! ¼ �ðe6FAEÞ

Table 11 shows that the F statistic (1.73) is below the
F critical value (3.35) with p-value ¼ 0:197. As such, we
reject the analyzability-related component of the alternative
hypotheses Hcoup2:2, Hcoup2:4, and Hcoup2:6 and conclude that

different types of investigated coupling relationships do not

result in a significantly different impact on the analyzability

of service-oriented products. Consequently, the LSD mean

comparison test was not conducted.

.

Test 3ðHcoup2:2; Hcoup2:4; and Hcoup2:6Þ :

�ðe2MCÞ !¼ �ðe4MCÞ! ¼ �ðe6MCÞ

Table 12 shows that the population means of the three

sampled groups of MC values collected for the elements

exhibiting high outgoing coupling were not equal, with the

F statistic (3.46) exceeding the F critical value (3.35) at the

statistically significant level of 0.05. This is further sup-

ported by the Kruskal-Wallis tests (H ¼ 7, with p ¼ 0:03).
The Fisher’s Least-Significant Difference (LSD) test was

again applied with the results, shown in Table 13, being

similar to the results obtained in Test 1. To this end, we

accept the changeability-related component of the alternative

hypotheses Hcoup2:2 and Hcoup2:4, and reject the changeability-

related component of the alternative hypothesis Hcoup2:6.
In summary, the following conclusions can be made

based on the results of Tests 1-3:
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TABLE 9
One-Way ANOVA Results for MC Values

(TASK-COUP2)—Incoming Coupling (N ¼ 30)

TABLE 10
LSD Groups Comparison of One-Way ANOVA Results

for MC Values—Incoming Coupling (N ¼ 30)

TABLE 11
One-Way ANOVA Results for FAE Values

(TASK-COUP1)—Outgoing Coupling (N ¼ 30)

TABLE 12
One-Way ANOVA Results for MC Values

(TASK-COUP2)—Outgoing Coupling (N ¼ 30)

TABLE 13
LSD Groups Comparison of One-Way ANOVA Results

for MC Values—Outgoing Coupling (N ¼ 30)

11. The LSD test does not indicate the relative direction of the groups’
difference; therefore, the original mean values for each examined group
(refer to Tables 4, 5, 6) should be used to interpret the direction of difference
(e.g., �ðe1MCÞ < �ðe3MCÞ).



1. Indirect and direct incoming and outgoing extraservice
coupling types, as measured by the ESICSI, WESICE,
EESIOC, and WESOCE metrics respectively, should
be weighted higher than intraservice coupling
(measured using the WISICE/WISOCE metrics)
because they have a stronger influence on the
changeability of SO software. Note that the actual
weight values are not defined in this paper due to a
lack of empirical data. The weights could be
established and validated in future work as dis-
cussed further in Section 7.

2. The ESICSI, WESICE, EESIOC, and WESOCE me-
trics appear to be more accurate indicators of the
changeability of SO systems compared to the CBO
metric, which is considered to be syntactically and
structurally similar to the intraservice WISICE/
WISOCE metrics. This is because WISICE/WISOCE,
and correspondingly CBO, were designed to quanti-
fy the general coupling between elements (OO
classes in a case of CBO) disregarding the strength
of specific types of coupling relationships, which
have been shown in this paper to have varying
impact on changeability.

3. The current statistical evidence is not strong
enough to establish that: 1) extraservice coupling
types have a stronger influence on the analyzability
of SO software compared to intraservice coupling,
and 2) direct extr-service coupling should be
weighted higher than indirect extraservice coupling.
Nevertheless, since the obtained results were in the
hypothesized direction, it is possible that the results
would have been statistically significant if a larger
number of participants were used in the study
thereby making the study more sensitive to a
smaller effect sizes (refer to Section 6.1.9).

6.3 Practical Implications

The experimental results presented in the previous section
suggest that intraservice coupling can potentially have a
lesser effect on maintainability than indirect and direct
extraservice coupling. This indicates that it might be
beneficial to design SO systems in terms of coarse-grained
services so as to increase intraservice coupling and reduce
extraservice relationships. However, since coupling is not
an independent structural property, designers should also
consider the cohesiveness of individual services [38]. Speci-
fically, coupling and cohesion are commonly considered to
be conflicting factors, and developing excessively coarse-
grained services (in order to minimize extraservice cou-
pling) can have a negative effect on their cohesion. To this
end, one of the major challenges of SO design is to find the
“right” balance between system-level coupling and service-
level cohesion.

In terms of the general impact of low versus high
coupling on maintainability, the experimental results were
in line with expectations (and a general understanding of
the structural property of coupling) showing significant
differences in terms of the amount of effort required to
correct and perfect SO software. Specifically, the results
suggest that producing quality design artifacts with low
levels of coupling can potentially reduce the time required

to perform future maintenance tasks by 40-60 percent.

Although additional project resources can be required to

produce quality designs in the early stages of the SLDC, the

maintainability improvements should leverage initial ex-

penditure and decrease the total lifetime cost of the system.

Moreover, it is expected that improvements in maintain-

ability will be more pronounced in industrial scale systems

containing larger services requiring more complex main-

tenance tasks.

6.4 Threats to Validity

This section describes threats to validity, primarily in terms

of how they were alleviated, but also in terms of limitations

in the few cases in which they were not adequately

addressed. The threats are described according to the

classification of Wohlin et al. [45].

6.4.1 Construct Validity

Construct validity refers to the degree to which experi-

mental variables accurately measure the concepts they

purport to measure.
The service-oriented coupling metrics used as the

independent variables in the study were defined in a formal

manner and also validated theoretically [35], thereby

satisfying the criteria for construct validity. The dependent

variables used to measure the subcharacteristic of maintain-

ability are part of a standard suite of ISO/IEE metrics, and

thus can also be considered constructively valid.

6.4.2 Internal Validity

Internal validity refers to the degree to which conclusions

can be drawn about the causal effect of independent

variables on dependent variables.
Differences among participants. The study used a

within-subjects design; therefore, error variance due to

differences among participants was reduced. Furthermore,

purposive sampling [41] was employed to select partici-

pants with comparable knowledge and experience. Never-

theless, the development experience of participants was

relatively broad, ranging from six months to five years, and

as such, it would be desirable to conduct experimental

studies targeting participants with more constrained ex-

perience profiles as described in Section 7.
Practice [learning and fatigue] effects. The random

starting order with rotation [41] technique was used to

assign participants to experimental services in a systematic

counterbalancing manner in order to reduce any potential

learning and fatigue effects.
Instrumentation effects. The experimental services were

related to the same universe of discourse (AMS). Also, an

effort was made to manipulate only the coupling of

services, while keeping other structural properties (con-

trolled variables) as constant as possible. Finally, a pilot

study was conducted to ensure that the experimental tasks

were comparable in terms of their complexity.
Anticipation effects. The participants were not told about

the expected outcomes or the structural specifics of experi-

mental services in order to ensure that expectations about

specific levels of treatment did not influence their responses.
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6.4.3 External Validity

External validity refers to the degree to which the results
can be generalized to applied software engineering practice.

Participants. Experienced OO developers were recruited
to participate in the study; therefore, our sample is likely to
be representative of the overall population of software
practitioners. However, the participants had more limited
exposure to SOC. Consequently, we acknowledge that
different results could be obtained with participants having
more substantial experience with SO development.

Environment. A widely used IDE (Eclipse 3.3), modeling
language (UML), and programming language (J2EE) were
used in the experiment. These technologies can be con-
sidered as representative of an industrial environment.

Experimental materials and tasks. This particular
threat was difficult to address due to the controlled
nature of the experiment. Specifically, the experimental
system may not be representative of an industrial product
in terms of size, and the complexity of the maintenance
tasks was low. Also, the participants were asked not to
test the implemented changes, thereby posing a threat to
participant effort since one can always implement a quick
change poorly if one is not concerned with quality.
Nevertheless, despite some limitations, we believe the
findings of this study are valuable and provide a solid
foundation for further empirical studies of the structural
properties of SO software.

7 CONCLUSION AND FURTHER RESEARCH

This paper presented the results of a controlled experiment
examining the relationship between SO design coupling, as
measured by the metrics proposed by Perepletchikov et al.
[35], and three specific subcharacteristics of software
maintainability: analyzability, changeability, and stability. This
was done to investigate: 1) the use of metrics as early
indicators of the maintainability of service-oriented soft-
ware, and 2) the relative strength of different SO coupling
relationship types (intraservice, indirect extraservice, and
direct extraservice coupling).

The results of the experiment provide empirical evidence
of the causal relationship between the investigated SO
coupling metrics, and the dependent variables used in the
study (ISO/IEC maintainability metrics). Specifically, the
results suggest that highly-coupled elements have a
negative influence on the analyzability and changeability of
SO software compared to lowly-coupled elements disre-
garding of the specific coupling type or locus of impact.

As for the evaluation of the relative strength of coupling
types, it was discovered that:

. Indirect and direct extraservice coupling relation-
ships have a more negative effect on the changeability
of SO software than intraservice relationships.

. The relative impact of indirect and direct extra and
intraservice relationships on analyzability did not
indicate any statistically significant differences.

. There was no statistical significance between any
combination of incoming and outgoing indirect and
direct extraservice coupling relationships. Never-
theless, it is expected that performing structural

changes (e.g., merging or removing services) could
show larger differences since, intuitively, it would be
harder to perform such changes on a system
containing elements coupled via direct extraservice
relationships. Additionally, the reusability of such
services could also be decreased.

While the size of the system under study was relatively
small compared to industrial systems and the number of
participants low, the experiment was carefully controlled,
thereby allowing for a stronger case to be made for
causation between the investigated variables. Nevertheless,
this experiment should be replicated and extended in
future work in order to confirm the validity of the initial
results. Specifically, a complete family of experiments that
captures multiple studies can be defined according to the
framework of Ciolkowski et al. [13] along the following
four dimensions:

1. Nature of the study and experimental tasks:

a. Additional controlled studies should be con-
ducted in order to replicate the overall experi-
mental design and tasks of the study presented
in this paper.

b. Larger-scale industrial studies should be con-
ducted in order to increase the external validity
of the results (refer to Section 6.4). Larger studies
would also facilitate the derivation of ratio scale
metrics weights to improve the fidelity of
maintainability prediction.

c. Since the study conducted in this research
evaluated only functional changes, future work
could investigate the impact of structural
changes (such as merging/removing services)
on the maintainability of SO software. The
complexity of the experimental failures and
changes should also be varied.

2. Technology:

a. The experimental system developed for the
study presented in this paper was implemented
using Java EE 5 with the business logic and rules
encapsulated in stateless Session Beans. It would
be advisable to also use existing business
process orchestration languages (such as WS-
BPEL) to encapsulate compositional and busi-
ness logic in dedicated business process.

b. Different implementation paradigms/languages
(e.g., scripting languages such as PHP and
procedural languages such as C) could be used
to implement the experimental services.

3. Target systems:

a. For each investigated type of coupling, the
number of relationships could be varied across
a number of linearly increasing levels (as
opposing to the arbitrary chosen [low/high]
levels used in the present study). This in turn
would allow further evaluating the predictive
capability of the coupling metrics using linear
regression analysis, as well as providing more
statistical power to reevaluate the negative
findings presented in this paper.
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b. Large-scale, operational software products
should be investigated, with the data required
to calculate the dependent variables (ISO/IEC
metrics) extracted from maintenance-related
documentation collected over a longer period
of time (for example, one or more years).

4. Participants:

a. Larger sample sizes should be used to increase
internal validity.

b. Participants possessing greater experience with
SOC should be used since those involved in the
present study had limited exposure to service-
oriented development.

c. Participants with more constrained experience
profiles should be sought (for example, novice
software engineers with experience ranging
from 1 to 12 months, and experts with experience
ranging from 10 to 20 years).
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