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A controlled-NOT gate for frequency-bin qubits
Hsuan-Hao Lu 1, Joseph M. Lukens 2, Brian P. Williams2, Poolad Imany1, Nicholas A. Peters 2,3, Andrew M. Weiner 1 and
Pavel Lougovski 2

The realization of strong photon–photon interactions has presented an enduring challenge across photonics, particularly in
quantum computing, where two-photon gates form essential components for scalable quantum information processing (QIP).
While linear-optic schemes have enabled probabilistic entangling gates in spatio-polarization encoding, solutions for many other
useful degrees of freedom remain missing. In particular, no two-photon gate for the important platform of frequency encoding has
been experimentally demonstrated, due in large part to the additional challenges imparted by the mismatched wavelengths of the
interacting photons. In this article, we design and implement an entangling gate for frequency-bin qubits, a coincidence-basis
controlled-NOT (CNOT), using line-by-line pulse shaping and electro-optic modulation. We extract a quantum unitary fidelity of
0.91 ± 0.01 via a parameter inference approach based on Bayesian machine learning, which enables accurate gate reconstruction
from measurements in the two-photon computational basis alone. Our CNOT imparts a single-photon frequency shift controlled by
the frequency of another photon—an important capability in itself—and should enable new directions in fiber-compatible QIP.
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INTRODUCTION
As carriers of quantum information, optical photons feature a host
of valuable attributes, such as immunity to environmentally
induced decoherence, availability of precise tools for state control,
and room temperature operation, enabling quantum information
processing (QIP)1 in a variety of encodings such as space/
polarization2–4 and temporal modes.5–7 Frequency-bin encoding
—which offers additional advantages in terms of compatibility
with state-of-the-art fiber-optic networks—has advanced rapidly
in recent years, facilitated by the development of integrated
frequency-bin photon sources8–11 and quantum gates based on
both nonlinear-optical12,13 and electro-optical14,15 mixing
approaches. However, two-photon entangling gates for frequency
bins have yet to be realized on any platform.
Such entangling gates are required for universal QIP, for an

arbitrary quantum operation can be constructed with single-qubit
rotations plus a two-qubit entangling gate.1 While photonics
excels for single-qubit gates, the inherent difficulty in realizing
photon–photon interactions has made the two-qubit gate a
persistent obstacle in photonic QIP. In the absence of a sufficient
nonlinearity, such gates can still be achieved via quantum
interference, ancilla photons, and single-photon detection. While
two-qubit gates succeed only probabilistically in this paradigm,
linear-optical quantum computation (LOQC)2 is in principle
scalable with polynomial auxiliary resource requirements and
has laid the foundation for many subsequent advances in
photonic QIP.3,16–25 It is this approach which we invoked in
proposing spectral LOQC—a universal QIP scheme tailored to
frequency-bin qubits which makes use of electro-optic phase
modulators (EOMs) and Fourier-transform pulse shapers (PSs).26

Systems implementing designs from spectral LOQC, termed

“quantum frequency processors” (QFPs), have been utilized to
demonstrate coherent single-photon operations with near-unity
fidelity,14,15 but a two-photon gate has heretofore proven elusive.
Theoretically, we previously discovered EOM/PS configurations

capable of realizing ancilla-based two-qubit gates in spectral
LOQC.26 Yet if one relaxes the gate requirements slightly, by
conditioning on the presence of a photon in each pair of qubit
modes, it is well-known in standard LOQC that one can engineer a
two-qubit gate with no ancillas and success probability
P ¼ 1=9.18,19 Assuming a quantum nondemolition measurement
is unavailable, such gates are destructive (succeeding only when
both information-carrying photons are detected). Yet they require
only two-fold coincidences for characterization, making them
excellent choices for experimental studies of basic quantum
computing functionalities.
To explore two-qubit coincidence-basis gates with a QFP, we

follow the optimization approach in refs. 14,26, numerically finding
phase patterns for an EOM/PS sequence which maximize success
P constrained to fidelity F � 0:9999. Specifically, with Uideal

defined as the desired two-qubit unitary and W the actual Hilbert
space transformation,

P ¼ TrðWyWÞ
d

(1)

F ¼
TrðUy

idealWÞ
���

���
2

d2P ;
(2)

where d= 4 is the dimensionality of the subspace spanned by the
coincidence basis.26 In order to facilitate experimental implemen-
tation, we restrict our simulations to sinewave-only electro-optic
modulation. We find that a 3EOM/2PS QFP can realize a
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frequency-bin CNOT at the optimal success probability of
P ¼ 1=9, while a smaller 2EOM/1PS circuit can do so with
reduced success: P ¼ 0:0445. (See Methods for the specific EOM/
PS modulation patterns.) Due to equipment availability and
system complexity, we elect to implement this simpler 2EOM/
1PS CNOT in the experiments below.

RESULTS
Figure 1 provides a schematic of the setup. The gate itself
comprises the central EOM/PS/EOM sequence (the QFP), and the
frequency bins for encoding are defined according to ωn=ω0+
nΔω, where ω0= 2π × 193.45 THz and Δω= 2π × 25 GHz, corre-
sponding to the standard ITU grid and facilitating low-crosstalk,
line-by-line shaping by our 10 GHz resolution pulse shapers. The
specific bins for encoding follow in Fig. 2a, where {C0, C1} and {T0,
T1} denote logical |0〉 and |1〉 for the control and target,
respectively. This particular mode placement makes sense
conceptually: mode C0 is spectrally isolated from the target’s
logical bins, ensuring a photon in mode C0 leaves the target
unchanged; on the other hand, bin C1 is close to both target bins,
able to be coupled to T0 and T1 with equal strength.
Since this gate is based on a linear-optical network, we can

estimate its performance using coherent-state-based characteriza-
tion,14,27 i.e., probing it with an electro-optic frequency comb and
measuring the output spectrum for different input frequency
superpositions. This technique allows us to estimate the mode
transformation matrix V, which controls how input mode
operators ân at each frequency ωn transform to the output
operators b̂n : b̂n ¼

P
n0 Vnn0ân0. The mode matrix V, averaged over

five independent measurements and projected onto the four
computational modes, is shown in Fig. 2b. We utilize phasor
notation to represent the complex elements Vnn0 ; the filled color
reflects the amplitude on a logarithmic scale, normalized to the
maximum value in the matrix (0.499), and the arrow marks out the
phase. (See Methods for values of all matrix elements including
uncertainty.) From this matrix V, we can compute the equivalent
two-photon state transformation matrix W,26 plotted for the
coincidence basis in Fig. 2c and also normalized to its peak
magnitude of 0.222. We note that the implemented mode
transformation (Fig. 2b) has the same eight high-amplitude
elements as in the original path-encoded CNOT.18 The phases
differ, however, as there are a continuum of combinations which
can yield the desired two-photon transformation W. The particular

set was selected numerically as optimal given our experimental
constraints.
Because this estimate predicts all four of the large elements of

W to be in-phase, the corresponding inferred fidelity is
F inf ¼ 0:995± 0:001; the success probability is
Pinf ¼ 0:0460 ± 0:0005. Both values are with respect to the ideal
CNOT and in good agreement with theory. We emphasize that,
unlike single-qubit gates which act on photons independently,
two-qubit entangling gates rely on quantum interference effects
that are inherently absent with high-flux laser fields. Thus this
inferred fidelity is only an indirect estimate, based on extrapolat-
ing measured one-photon interference results to the two-photon
case. Nevertheless, it provides strong initial evidence for the phase
coherence and proper operation of our gate.
To test our gate with truly quantum states, however, we prepare

a biphoton frequency comb (BFC) by pumping a 35mm-long
periodically poled lithium niobate (PPLN) waveguide with a
continuous-wave Ti:sapphire laser (at ~4.5 mW) under type-0
phase matching, followed by filtering with a Fabry–Perot etalon
with 25 GHz mode spacing and a full-width at half-maximum
linewidth of 1.8 GHz (see Fig. 1). The BFC pulse shaper
subsequently selects specific modes as input to the gate. By
translating the pump frequency to four different values (as shown
in Fig. 2a) and filtering out all but the desired modes using the BFC
pulse shaper, we can prepare all inputs from the two-qubit
computational basis: jC0T0i ¼ j1ω01ω7i, jC0T1i ¼ j1ω01ω8i,
jC1T0i ¼ j1ω61ω7i, and jC1T1i ¼ j1ω61ω8i. To ensure the photon
flux remains constant across the four inputs, we tune the PPLN
waveguide temperature to align the peak of the phase-matching
spectrum with the pump laser frequency. After the gate, the
output photons are frequency-demultiplexed: we send control
photon bins to detector A and target photon bins to detector B.
Figure 3a is a conceptual example of the interference under-

pinning the CNOT, where the rails denote particular frequency
bins and the lines trace out probability amplitudes of single
photons initially in bins C1 and T1; blue follows the control, red the
target, and the thickness is proportional to the squared amplitude.
Each EOM serves as a multimode interferometer mixing all bins
simultaneously; in this particular example, the phases applied by
the QFP shaper produce destructive interference of the two
amplitudes yielding the output |C1T1〉, leaving only the possibility
|C1T0〉 in the coincidence basis (the characteristic CNOT bit flip).
This picture highlights that, while the general interference
phenomena remain the same between path and frequency
encoding, the basic manipulations are significantly different:
standard beamsplitters interface two input modes with two
outputs, while EOMs couple, in principle, infinitely many.
Accordingly, this schematic cannot be taken as fully quantitative,
but it does, through line weights, give an idea of the coupling
magnitudes in this example. Such a lack of direct correspondence
between frequency-bin and path primitives is the reason for our
use of numerical optimization of the full transformation, rather
than constructing and combining individual frequency-bin
beamsplitters.
Figure 3b shows the measured coincidences for all 16 input/

output mode combinations, integrated over 600 s for each point.
As expected, inputs with a photon in control mode 0 retain their
quantum state, whereas a photon in control mode 1 leads to a flip
in the output target qubit. In Fig. 3c, we plot the accidentals as
determined by the product of the singles counts and our timing
resolution.28,29 The nonuniform distribution of accidentals stems
from the fact that the singles counts vary significantly across
input/output state combinations. Indeed, this is a natural feature
of coincidence-basis gates: they are designed to discard cases
when one of the qubit spaces is empty or doubly occupied, so that
photon detection rates in a specific mode can change without
impacting the designed operation.

Fig. 1 Experimental setup. PPLN (SRICO Model 2000-1550), Etalon
(Optoplex 25 GHz C-Band), BFC Shaper (Finisar WaveShaper 1000A),
EOMs (EOSpace 40 Gbps phase modulators), QFP Shaper (Finisar
Waveshaper 4000A), WSS wavelength selective switch (Finisar 1 × 9
Flexgrid), SNSPD superconducting nanowire single-photon detector
(Quantum Opus model Opus One, >80% detection efficiency), ATT
variable radio-frequency (RF) attenuator, AMP RF amplifier
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Such information-bearing features in the accidentals suggest
that incorporating knowledge from single-detector events—as
well as the coincidences—can add significant value for quantify-
ing the performance of our gate in the presence of noise. To utilize
all of our experimental data in a consistent fashion, we make use
of Bayesian machine learning techniques to implement a
numerical parameter inference approach built on Bayesian mean
estimation (BME).30 In the context of quantum state retrieval, BME
is a powerful method which returns uncertainties on any quantity
directly and makes efficient use of all available information, in the
sense that the confidence in any estimate naturally reflects the
amount of data gathered.31 BME models for photon pairs
including single-detector events have been developed as well,
permitting extraction of the quantum pathway efficiencies in
conjunction with estimates of the input density matrix.32 In our
BME model here, not only do we account for noise effects, but we
can also retrieve meaningful estimates of the full complex matrix
V, even though we only prepare and measure states in the
computational basis. This represents an entirely new capability in
two-photon gate analysis, for previously such truth-table mea-
surements as in Fig. 3b have only been used to establish
magnitudes in the matrix transformation, with superposition states
required to assess the phase.20

In our model, the unknown parameters to retrieve include the
mode matrix V, the pair generation probability μ, and the total
system efficiencies ηA and ηB preceding detection at the control
and target photon detectors, respectively. Obtained from inde-
pendent measurements, and thus taken as fixed and known, are
the dark count probabilities dA and dB. All probabilities {μ, dA, dB}
are specified for one resolving time τ (~1.5 ns). For the input
photon state |CkTl〉 (k, l∈ {0, 1}) with detectors A and B set to
respond to output modes Cr and Ts (r, s∈ {0, 1}), respectively, the
probability of a coincidence between detectors A and B is

pAB ¼ μηAηB VCrCk VTsTl þ VCrTl VTsCkj j2þ2pApB: (3)

Here, pA and pB are the marginal probabilities for clicks on A or B,
irrespective of clicks on the other, during a given time τ. This
formula thus contains both a correlated term (from photons of the
same pair) and an accidental term. The latter, equal to 2pApB,

28,29

represents the chance of simultaneous clicks in which at least one
detector registers a dark count, or the photons come from
different pairs (see Methods for details).
The marginal probabilities pA and pB can be found by summing

the contributions from each possible number of photons N being
present in the monitored mode, sketched formally as, e.g.,
pA ¼ P

N PðclickjN photonsÞPðN photonsÞ. Writing out each term
for N= 0, 1, 2, and simplifying, we ultimately arrive at the
probabilities for a click on either detector within a time τ (see

Methods):

pA ¼ μηA VCrCkj j2þ VCrTlj j2� �þ dA

pB ¼ μηB VTsCkj j2þ VTsTlj j2� �þ dB;
(4)

valid under the assumptions μ; ηA; ηB; dA; dB � 1—satisfied in our
experiment. In words, a detector can click from either of the
following: (i) a photon pair is generated (μ), one of the photons is
sent to the monitored frequency bin (through V), and the photon
reaches the output and is successfully detected (ηA, ηB); or (ii) the
detector fires spontaneously (dA, dB). Crucially, the singles
probabilities [Eq. (4)] depend only on the moduli of the V-matrix
elements, whereas the coincidences also depend on the relative
phase [via the permanent term in Eq. (3)]. It is this complementary
dependence which underpins our ability to extract the full
complex matrix from experimental data.
Specifically, for a single preparation/measurement configuration

we possess three numbers as data: clicks on A (NA), clicks on B (NB),
and coincidences (NAB). This gives us the multinomial likelihood
for this specific input/output configuration (|CkTl〉→ |CrTs〉):

P DCrTs
CkTl

jβ
� �

¼ ðpA � pABÞNA�NABðpB � pABÞNB�NAB

´ pNAB
AB 1� pA � pB þ pABð ÞM�NA�NBþNAB ;

(5)

where DCrTs
CkTl

¼ fNA;NB;NABg contains all data values for the
specific configuration. We have also reexpressed the events to
make them mutually exclusive: click on A only, happening NA−
NAB times; click on B only, occurring NB− NAB times; coincidence
between A and B (NAB times); and no clicks (all remaining frames).
The symbol β is shorthand for all model parameters (β= {V, μ, ηA,
ηB}), and M equals the total number of τ frames considered in one
counting period (~4 × 1011 in our tests). The complete likelihood
comprises 16 factors in the manner of Eq. (5) for all combinations
of inputs and outputs. Incidentally, one could retrieve estimates of
the system parameters from this likelihood directly, via conven-
tional maximum likelihood estimation (MLE). Computationally
simpler than BME, MLE generates only a point estimate, without
intrinsic error bars, in contrast to BME which quantifies uncertainty
by integrating over the full probability distribution.31,32We must
emphasize that our model relies on explicit enumeration of
system noise sources, and thus is restricted to a parameter space
smaller than the set of all two-qubit operations. This stands in
contrast to the standard procedure for gate characterization,
quantum process tomography (QPT),1,21,33,34 which is designed to
recover a quantum operation treating the system as a black box.
Nevertheless, process tomography is complex, requiring a number
of measurements that grows exponentially with system size—and
in our case these measurements require more components than
what we have available. Physically motivated simplifications35 and
alternatives36 to QPT are thus of significant value in quantum
information, and so, in our particular case, the key question is
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Fig. 2 aMode definitions for frequency-bin control and target qubits. The labels {Ω00, Ω01, Ω10, Ω11} mark the pump frequency values (divided
by two) needed to produce each of the computational basis states. b Experimentally obtained complex mode transformation V. c Inferred
two-photon transformation W obtained from permanents of 2 × 2 submatrices of V. For b and c, we use phasor notation to represent the
complex elements, with filled color signifying the amplitude (normalized by the matrix’s maximum value, and shown on a logarithmic scale),
and the arrow depicting the phase. Dotted circles denote phases we could not retrieve due to weak amplitudes. (See Methods for details.)
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whether the model encompasses all relevant physical effects.
Theoretically, our understanding of photon generation, frequency-
bin operations, and detection suggest no additional sources of
decoherence. Empirically as well, we previously explored
frequency-bin Hong–Ou–Mandel interference in this QFP (the
basic effect behind two-photon LOQC gates2,3) measuring ~97%
visibility, where the reduction from unity was attributable to
accidental coincidences resulting from system inefficiencies and
dark counts.15 Accordingly, our total channel model—linear-
optical multiport plus loss, dark counts, and accidentals—is
strongly justified, as well as validated ex post facto by the
agreement with experiment below. Finally, it is important to note
that Bayesian machine learning techniques can be applied toward
any model, whether custom-tailored or built on more conven-
tional quantum tomography, indicating additional opportunities
for data analysis in a variety of quantum information
experiments.15,31,32

Returning to details of the Bayesian analysis, we next assume
uniform prior distributions over the interval (0, 1) for the unknown
parameters μ, ηA, and ηB. For the complex matrix V, we express
each element in terms of amplitude and phase: Vnn0 ¼ rnn0eiϕnn0 .
Since an overall scaling factor on V is indistinguishable from
changes to ηA and ηB [Eqs. (3) and (4)], for concreteness we fix the
Hilbert–Schmidt norm TrðVyVÞ ¼ 1:6558, to match the ideal V
matrix obtained from the numerical optimization [see Eq. (7)], thus
constraining the sum of the squares of rnn0. Otherwise, we let the
squared amplitudes vary uniformly over all possible values subject
to this condition. Because phase shifts on each of the modes
before and after the multiport V are not physically significant, we
are free to take some of the ϕnn0 as given as well.27 For
convenience, we fix ϕC0C0 ;ϕC1C1 ;ϕC1T0 ;ϕC1T1 ;ϕT0C1 ;ϕT1C1

� �
to their

theoretical predictions, thus leaving 10 phases to be retrieved via
BME.
With the likelihood and prior formally defined, in principle we

are done: we have the posterior probability distribution from
Bayes’ rule, which represents complete knowledge of the
parameters given the observed data. However, practically speak-
ing, computing integrals or, equivalently, sampling from this
many-parameter multimodal distribution is a formidable chal-
lenge. It is here that the techniques of Markov chain Monte Carlo
(MCMC) sampling offer a solution, which—with minimal input—
enable Bayesian machine learning of complex models. In our case,
we employ slice sampling, an MCMC algorithm designed to
produce a sequence of samples whose stationary distribution
converges to the posterior.37

Using the predicted matrix V as an initial guess for the slice
sampler, a procedure which we found important to speed up
convergence given the large search space of 28 independent
variables, we ultimately converge to the Bayesian fidelity estimate
F BME ¼ 0:91 ± 0:01, where F is defined according to Eq. (2). Our
truly quantum measurement does not reach the >0.99 classically

inferred F inf , which is a consequence of the relatively few
coincidence counts (<100 in all cases) and additional noise from
residual light. Nevertheless, the low uncertainty on F BME indicates
high confidence in our BME model, especially in light of its ability
to retrieve the full complex fidelity with computational basis
measurements. To see how F BME translates into output state
probabilities in the coincidence basis, we plot the Bayesian-
estimated pathway probabilities in Fig. 4, where the four
outcomes for each input state are normalized to sum to unity.
The average probability for obtaining the correct output is 0.92 ±
0.01, computed by taking the mean of the four peaks in Fig. 4.
(See Methods for details on all retrieved parameters, including the
mode matrix V.)

DISCUSSION
Moving forward, it will be valuable to implement this gate with
input states beyond just the computational basis, useful for
implementing photonic QIP algorithms such as the variational
quantum eigensolver38 and Shor factoring.39 Fundamentally, such
states would also enable direct demonstration of the gate’s ability
to entangle two photons, offering independent verification of the
quantum phase coherence which here we have estimated
through Bayesian machine learning. Probing with such states is
readily attainable in the QFP paradigm; for example, one could
precede the CNOT operation with Hadamard gates on one or both
input photons.14,15 Yet cascading additional elements at the
moment is limited by technical loss; we predict that we could not
at present obtain coincidences above the accidental level with the
additional equipment required. In order to concentrate on the
basic physics in this proof-of-principle experiment, we have
constructed our frequency-bin CNOT with off-the-shelf fiber-
optic components. While the phase-only EOM/PS operations
themselves are unitary, such commercial devices introduce
significant additional loss, on the order of 3–4 dB per element.
Accordingly, in scaling up to larger QIP systems, improving
throughput is a substantial engineering goal.
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Fortunately, state-of-the-art fabrication techniques presage
significant improvements just over the horizon, via on-chip
integration of the fundamental QFP elements. For example,
process design kits from photonics foundries40 suggest that the
loss through a pulse shaper channel can be less than 1 dB, while
recent experiments have demonstrated lithium-niobate EOMs
with loss below 0.5 dB41 and foundry-compatible EOMs with losses
on the order of 1–2 dB.42 Thus, an on-chip CNOT—identical to the
present configuration in terms of functional components, but
attaining <3 dB insertion loss—seems feasible with current
technology, and we certainly anticipate even better performance
as on-chip photonics continues to progress over the coming years.
In conclusion, we have realized an entangling gate on

frequency-bin qubits. We confirm high-fidelity operation of the
CNOT with two forms of characterization: coherent-state-based
matrix retrieval and photon pair measurements in the computa-
tional basis. The classically inferred fidelity of F inf ¼ 0:995± 0:001
and Bayesian estimate F BME ¼ 0:91± 0:01 both demonstrate high
performance in our system. As the sole realization of a two-photon
entangling gate in frequency—and only the second CNOT in the
entire field of time-frequency quantum information5—our gate
significantly expands the potential of single-spatial-mode, fiber-
optic-based QIP. More generally, our Bayesian characterization
approach provides further evidence of the potential of machine
learning in analyzing quantum systems, particularly for extracting
information within measurements which traditional methods
overlook.

METHODS
Gate design
The optimization approach for designing quantum frequency gates using a
series of EOMs/PSs was first proposed in ref. 26, and adopted to
experimentally demonstrate a single-photon gate in ref. 14. In this work,
we follow the same procedures, utilizing the MATLAB Optimization
Toolbox to search for an optimal set of phases for a particular EOM/PS
sequence, constraining fidelity F � 0:9999 and maximizing the success
probability P for the two-photon state transformation matrixW. Compared
to single-qubit gates, where only one frequency scale appears (the spacing
between the two computational bins), two-qubit gates provide a much
richer parameter space; namely, the placement of the four computational
modes relative to each other can have a profound impact on the EOM/PS
complexity needed to realize a specific operation. We have performed a
thorough—though non-exhaustive—search over these possible mode
placement combinations in each round of optimization. In general, we are
guided by the intuition to spectrally isolate control mode 0 (C0) while
packing control mode 1 (C1) close to both target modes.

For reference, the ideal CNOT matrix is

Uideal ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775; (6)

against which we compare the numerically obtained two-photon matrix W
(a function of V) via Eq. (2). The optimal solution we found for the CNOT
gate using a 2EOM/1PS circuit is presented in Fig. 5, with F ¼ 0:9999,
P ¼ 0:0445, and modes {C0, C1, T0, T1} at frequency bins {0, 6, 7, 8},
respectively. The temporal phase modulation on both EOMs are simply
π-phase-shifted sinewaves, and combined with the spectral phase
modulation imparted by the PS, the corresponding mode transformation
matrix V is numerically calculated as:

V ¼ rnn0∡ϕnn0½ � ¼

0:4407∡� 2:5976 0:0022∡0:2103 0:0026∡1:2938 0:0010∡� 2:0353

0:0022∡0:2104 0:4343∡� 2:6045 0:4596∡� 1:5754 0:4549∡1:5710
0:0026∡1:2939 0:4596∡� 1:5754 0:4830∡2:5973 0:0030∡� 2:8778

0:0010∡� 2:0352 0:4549∡1:5710 0:0030∡� 2:8779 0:4783∡2:5979

2
6664

3
7775;

(7)

using the phasor shorthand rnn0∡ϕnn0 � rnn0eiϕnn0 . This provides a reference
to compare the experimental mode transformations below, obtained
either by coherent state characterization or BME.

Coherent state measurements
To investigate the performance of a linear-optical multiport, ref. 27 provides
an efficient characterization method utilizing only coherent states as
sources and power measurements at the output. We follow similar
procedures (adopted in ref. 14 for single-qubit frequency gates) by probing
our frequency multiport with an electro-optic frequency comb, and
measuring the output spectrum for different input frequency super-
positions. We first send a continuous-wave laser with center frequency
Ω01= 2π × 193.550 THz (see Fig. 2a) into an additional EOM modulated at
25 GHz to create ~10 comb lines, and we utilize a subsequent pulse shaper
to prepare specific input states. To obtain the modulus of every matrix
element in the four columns of V, each time we send in only one input
mode from the set {C0, C1, T0, T1} and measure the spectrum at the output
of the gate, collecting all the output modes with power levels within 60 dB
of the maximum. This allows us to retrieve the amplitudes rnn0 . Then by
sending in two lines and scanning their relative input phase, we can map
out the V-matrix phases ϕnn0 , where we compute all unknown values
relative to phase values we are free by physical considerations to define a
priori.27 We perform five identical measurements of V in order to estimate
uncertainty; following are the resulting amplitudes and phases, with each
number averaged individually over the five successive, independent matrix
acquisitions:

rnn0½ � ¼

0:428± 0:008 0:0030± 0:0003 0:0027± 0:0001 0:0017± 0:0001

0:0031± 0:0001 0:427± 0:001 0:451 ± 0:002 0:451± 0:002

0:0028± 0:0002 0:465± 0:005 0:478 ± 0:003 0:041± 0:003

0:0018± 0:0003 0:458± 0:002 0:036 ± 0:004 0:499± 0:006

2
6664

3
7775 (8)

ϕnn0½ � ¼

�2:5976± 0 ¼ ¼ ¼
¼ �2:6045± 0 �1:5754± 0 1:5710± 0

¼ �1:5754± 0 2:621 ± 0:002 �2:89 ± 0:05

¼ 1:5710± 0 �2:7± 0:1 2:631 ± 0:006

2
6664

3
7775:

(9)

The phase values with ±0 uncertainty are those we could fix to the
theoretical prediction [Eq. (7)], found by the optimizer to yield high CNOT
fidelity. Because the coupling between mode C0 and {C1, T0, T1} is too weak,
we could not extract meaningful phase estimates of the elements
delineated by “…” in the ϕnn0 matrix. However, we have confirmed that
setting these phases to any set of random values impacts our calculation of
the fidelity at only the fifth decimal place, so that it has no influence on our
computed F inf ¼ 0:995± 0:001. From the retrieved amplitudes and
phases, we find uncertainties for the eight large elements rnn0>0:4ð Þ at
the third significant digit, an indication of the high precision possible with
this high-flux characterization method.

Parameter model
In order to make use of the observed data to estimate the key parameters
of our quantum gate, we first derive a realistic model connecting the

P
ha

se
 [r

ad
]

0 0.5 1−2.5

0

2.5
a b

−10 0 10−5 5
−3

0

3

1.5

−1.5

Time t/T
15

Frequency Bin ωn

Fig. 5 Numerical solutions for the time-frequency phases required
to implement coincidence-basis CNOT gate. a Temporal phase
modulation applied to the first EOM (solid red) and second EOM
(dotted blue), plotted over one period. b Phases applied to each
frequency mode by the pulse shaper, where modes 0 and 6 denote
the control bins {C0, C1}, and modes 7 and 8 represent the target
bins {T0, T1}
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underlying gate operation to photon counts, encapsulated in a likelihood
function PðDjβÞ, for the model parameters β given data D (proportional to
the conditional probability of D given β). In our case, the set β contains not
only the mode transformation matrix V, but also the pair generation
probability μ and the system efficiencies ηA and ηB.
Initially, we focus on how the input quantum state propagates through

the multiport—for the moment neglecting loss, which will be incorporated
later. The total optical network (defined over countably infinite frequency
bins) maps inputs ân to outputs b̂n according to

b̂n ¼
X1

n¼�1
Vnn0 ân0 ; (10)

with V unitary when considered over all modes. For a particular counting
experiment, we take the prepared input state as

Ψj i ¼ 1u1vj i ¼ âyuâ
y
v vacj i; (11)

where u ≠ v. Specifying such a state relies on several assumptions. For one,
it neglects contributions from other frequency-bin pairs, justified
experimentally by the BFC shaper’s ability to suppress adjacent frequency
bins by >40 dB. Additionally, this state expression—and the multiport
model in general—treats each frequency bin as a pure single mode.
Experimentally, as a consequence of the pump laser’s ~kHz linewidth
(much narrower than our 1.8 GHz-thick bins), a given photon pair is highly
frequency-entangled, containing substructure absent in the separable
state of Eq. (11). While such hidden entanglement would markedly reduce,
e.g., the purity of heralded frequency-bin photons, it does not degrade the
correlations in the two-photon experiments we conduct here. The counts
registered for a particular pair of bins do result from a continuum of
photon pairs with slightly different frequency offsets, implying that the net
result is the incoherent sum of partially distinguishable probability
amplitudes. However, as all such frequency pair combinations under the
same bin lineshapes undergo matching frequency operations, the net
measurement result is identical to the case in which all bins are purely
single mode, apart from an overall scaling constant (see discussion of
frequency filtering below). Finally, Eq. (11) does not include higher-order
pair generation (e.g., four, six, eight, etc., photon terms) explicitly.
Incidentally, the ansatz we incorporate for accidental coincidences [see
Eq. (17) below] ends up capturing the main effects of multiple photon pairs
on our data in a simpler fashion.
We define pμ(1m1n) as the probability for one photon to be found in

mode m and the other in mode n at the output (again assuming no loss).
This is given by

pμ 1m1nð Þ ¼ VmuVnv þ VmvVnuj j2 ðn ≠ mÞ: (12)

When n=m (two photons in the same mode), the probability is

pμ 2mð Þ ¼ 2 VmuVmvj j2; (13)

with the factor of two a consequence of boson statistics. From these
results, we can also compute the marginal probability for one-photon
occupancy in a particular mode,

pμð1mÞ ¼
P1

n¼�1
n≠m

VmuVnv þ VmvVnuj j2

¼ P1
n¼�1

VmuVnv þ VmvVnuj j2� �� 4 VmuVmvj j2

¼ Vmuj j2þ Vmvj j2�4 VmuVmvj j2;

(14)

with the last line following from the unitarity of V and the fact that u ≠ v in
our input state.
We then map these fundamental “per-pair” probabilities to expected

detection rates. For accounting purposes, we define all detection
probabilities within a specific temporal frame τ, the time within which
clicks on detector A (tA) and B (tB) are deemed coincident: |tA− tB| < τ. Our
stationary (continuous-wave pumped) source ensures that all such
probabilities are equal in every length-τ time bin. With μ defined as the
pair generation probability within such a frame, the marginal probabilities
for single-detector clicks are

pA ¼ μ ηA þ ð1� ηAÞηA½ �pμð2mÞ þ μηApμð1mÞ þ dA
pB ¼ μ ηB þ ð1� ηBÞηB½ �pμð2nÞ þ μηBpμð1nÞ þ dB

(15)

for detector A monitoring frequency bin m and B frequency bin n. The
probabilities dA and dB represent the dark (or more generally, background)

count probabilities; we measure these independently and take them as
fixed at dA= 9.60 × 10−7 and dB= 7.77 × 10−7, corresponding to dark
count rates of 640 Hz and 518 Hz, respectively. The efficiencies ηA and ηB
include all loss effects through the system, from generation in the crystal
to photon detection; we assume them to be mode-independent—
validated by the relatively small bandwidth comprising all modes of
interest (~500 GHz)—yet they can vary by the different relative efficiencies
of our superconducting nanowire detectors. And while spectral filtering
per se does not modify these general considerations, the multimode
frequency substructure (mentioned above), coupled with the Lorentzian
linewidth profile of the etalon, introduces an effective transmission given
by the average over all frequency offsets—we believe this contributes to
lower overall ηA and ηB retrieved in BME. Next, we make use of the fact that
the system efficiencies ηA; ηB � 1. Plugging in Eqs. (13) and (14), we obtain

pA ¼ μηA Vmuj j2þ Vmvj j2� �þ dA

pB ¼ μηB Vnuj j2þ Vnvj j2� �þ dB:
(16)

The simple addition of pair and dark-count contributions is justified in our
case by their small values (~10−6), so that there is no concern for pA or pB
approaching or exceeding 1 in the numerical analysis below.
To establish the probability for a coincidence between detectors A and B

in our model, we make a sharp distinction between two types of events: (i)
correlated coincidences, deriving from two photons of the same pair; and
(ii) accidental coincidences, in which two random clicks (from at least one
dark count, or photons from two different pairs) overlap within the
resolving time τ. We note that, in principle, such a distinction is not
necessary: it should be possible to derive a completely ab initio model for
coincidences, with an input density matrix including higher-order pair
generation effects, and positive-operator valued measures (POVMs)
incorporating dark count noise. However, our approach proves much
simpler, requiring fewer parameters while still satisfying conceptual
demands.
For event (i), the click probability follows from multiplying the per-pair

probability pμ(1m1n) by μηAηB, so that pðiÞAB ¼ μηAηB VmuVnv þ VmvVnuj j2,
which assumes that τ is sufficiently large to integrate over the full two-
photon correlation time. Regarding event (ii), in general the rate of
accidental coincidences between two independent detectors is given by a

product of the rates of the two detectors individually: RðiiÞAB ¼ 2τRARB ,
28,29

where the factor of two follows from the fact that—under our definition of
τ—all events such that (tA− tB)∈ (−τ, τ) register as coincidences. Making

the connection pj= τRj then allows us to write pðiiÞAB ¼ 2pApB , so that the
total coincidence probability becomes

pAB ¼ pðiÞAB þ pðiiÞAB

¼ μηAηB VmuVnv þ VmvVnuj j2þ2pApB;
(17)

with pA and pB defined as in Eq. (16). Expanding 2pApB, the expected noise
sources appear naturally: a μ2 term reflects clicks from two different pairs,
while μdA and μdB terms give coincidences from a photon and dark count.
In this way, we can recover noise effects otherwise absent in the physical
model, via what can be called an “accidentals correction” term 2pApB.
Finally, we emphasize that the accuracy of Eq. (17) relies again on the

relative order of magnitudes of the probabilities involved: pðiÞAB � 10�10, so
that the differences between alternative forms one could conceivably

argue for—such as pB ! pB � pðiÞAB , to help ensure that singles counts
from correlated coincidences do not also count toward accidental
probabilities—become numerically inconsequential.
Finally, with these probabilities established, we can write the likelihood

using a multinomial distribution for all event types. Over the course of a
single measurement of duration T, we experience M= T/τ total frames, in
which we can register one of the four mutually exclusive outcomes: click
on A only, click on B only, coincidence, or no clicks. The likelihood for the
specific input/output mode configuration (defined by the mode numbers
uv→mn) is

P Dmn
uv jβ

� �¼ ðpA � pABÞNA�NAB ðpB � pABÞNB�NAB

´ pNAB
AB 1� pA � pB þ pABð ÞM�NA�NBþNAB ;

(18)

where we emphasize that both the dataset Dmn
uv ¼ fNA;NB;NABg and

probabilities {pA, pB, pAB} themselves depend on the mode configuration
uvmn. The total likelihood follows by multiplying out all 16 individual
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combinations

P Djβð Þ ¼
Y

u;m 2 fC0; C1g
v; n 2 fT0; T1g

P Dmn
uv jβ

� �
;

(19)

where the modes {C0, C1, T0, T1} are as defined in the main text. (We also
neglect unimportant scaling factors which do not depend on the
parameters β.) This likelihood forms the basis for estimating the
parameters β= {V, μ, ηA, ηB} from the dataset D ¼ ∪Dmn

uv .

Bayesian machine learning
To estimate these values along with their uncertainties, we make use of
Bayes’ rule for the posterior probability distribution

PðβjDÞ ¼ 1
Z P Djβð ÞPðβÞ; (20)

with Z ¼ R
dβ P Djβð ÞPðβÞ the (undetermined) normalizing factor. P(β)

represents the prior probability distribution for the parameters. We take
P(β) as uniform over (0, 1) for each of μ, ηA, and ηB; uniform over (0, 2π)
for all phases ϕnn0 ¼ arg Vnn0 which are not taken as fixed
ϕC0C0 ;ϕC1C1 ;ϕC1T0 ;ϕC1T1 ;ϕT0C1 ;ϕT1C1

� �
; and uniform for all squared moduli

r2nn0 subject to the constraint
P

nn0 r
2
nn0 ¼ 1:6558 from Eq. (7). This

uninformative prior allows the estimates to be fully determined by the
counting data itself.
Due to the complexity of integrating Eq. (20) over our parameter space,

we employ slice sampling37 and retrieve 4096 samples of all 28 parameters
from the unnormalized P Djβð ÞPðβÞ. We use best guesses of all parameters
as the starting point to enable convergence, invoking a burn-in period and
thinning until stationarity is achieved. At each sample of β, we can
compute any quantity of interest, and use the statistics over all samples to
produce the mean and standard deviation. Specifically, we find

μ ¼ 0:024± 0:002 (21)

ηA ¼ ð3:5 ± 0:3Þ ´ 10�4 (22)

ηB ¼ ð4:7 ± 0:3Þ ´ 10�4 (23)

F BME ¼ 0:91 ± 0:01: (24)

The retrieved pathway efficiencies are smaller by ~9 dB compared to our
insertion loss alone, which we estimate to be ~25 dB from generation to
detection. While we have fully characterized the insertion loss of the gate
components themselves (12.9 dB in total: each EOM contributes ~2.8 dB;
the pulse shaper, ~4.7 dB; and the remainder comes from polarization
controllers and fiber patch cords), uncertainties remain in the state
preparation and measurement components, such as the breakdown of loss
inside the fiber-pigtailed photon source, as well as questions of how
strongly the spectrally varying transmission of the etalon reduces its
effective transmission from its peak value. Otherwise, the retrieved μ and
fidelity match predictions. Even though F BME is smaller and has higher
uncertainty than the classically inferred F inf , the fact it still exceeds 90%
with fairly sparse measurements is strong confirmation of excellent
performance, particularly in light of the uninformative prior, which permits
high fidelity only based on the strength of the observed data.
We also compute the mean and standard deviation for all elements of

the retrieved transformation V, for both the magnitude and phase:

rnn0½ � ¼

0:452± 0:005 0:124± 0:009 0:06 ± 0:01 0:02 ± 0:02

0:06 ± 0:03 0:465± 0:008 0:475± 0:006 0:411± 0:006

0:04 ± 0:01 0:463± 0:005 0:470± 0:005 0:03 ± 0:01

0:028± 0:009 0:455± 0:005 0:02 ± 0:01 0:413± 0:005

2
6664

3
7775

(25)

ϕnn0½ � ¼

�2:5976± 0 �2:8 ± 0:2 1:3 ± 0:1 �2:01± 0:09

0:30± 0:09 �2:6045± 0 �1:5754± 0 1:5710± 0

1:35± 0:09 �1:5754± 0 2:6 ± 0:1 0:7 ± 0:2

�2:0 ± 0:1 1:5710± 0 0:3 ± 0:1 2:5 ± 0:1

2
6664

3
7775:

(26)

As before, the phases with uncertainties ±0 are those fixed prior to
parameter retrieval. Comparing this result to the design [Eq. (7)] and
coherent-state-retrieved matrix [Eqs. (8) and (9)], the most significant

mismatch occurs for the element in row 1, column 2 (the coupling from
mode C1 to C0). At 0.124, this value is significantly larger than designed,
and contributes to the higher error for the cases |C1T0〉→ |C0T0〉 and
|C1T1〉→ |C0T1〉 in Fig. 4. While the source of this error is still uncertain,
experimentally we did observe extraneous counts on detector A during
these integration times, beyond the theoretical prediction. Bayesian
retrieval succeeds in finding matrix elements to account for this
observation, as intended.
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