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Abstract—Robots are expected to expand their range of ac-
tivities to human environment. Robots in human environment
need redundancy for environmental adaptation. Furthermore,
they have to automatically modify their controllers in response
to varying conditions of the environment. Therefore, the authors
have proposed a method to design a hyper-DOF control system
efficiently. The method decouples a large control system into
small independent components so-called function. Motion of the
entire control system is expressed as superposition of multiple
functions. Combination of some functions realizes many patterns
of motion. Hence various motions are realized with much smaller
efforts on controller design. Additionally, the controller design is
explicit since a controller and a function corresponds directly.

This study expands the method to multi-DOF robots in three-
dimensional space since the conventional method was limited to
a multi-robot system in one-dimensional space. A new problem
of interference among function-based systems occurs along with
the expansion. Disturbance observer is applied on each actuator
to eliminate the interference. Procedures of controller design
under varying conditions are also shown. The proposed method is
applied to a grasping manipulator with 18DOF. Its experimental
results show validity of the method.

Index Terms—fault tolerance, decentralized control, distur-
bance observer, acceleration control, motion control, mechatron-
ics

I. I NTRODUCTION

Ability of motion control has recently improved due to
development of mechatronics technology. From now on, mo-
tion control systems such as robots, electric vehicles and so
on are expected to expand their applicable scope to human
environment. Robots in human environment need redundancy
for adaptation. Furthermore, they are often required to execute
a complicated task concurrent with adaptation to environment.
It is therefore necessary to solve a design problem of large-
scale systems with a complicated task.

Decentralized control is a promising method for large-scale
systems. It is preeminent in many features such as flexibil-
ity, fault tolerance, expandability, and rapid response. Many
studies applied it to robot control systems. Among them, in-
teresting concepts such as subsumption architecture[1], multi-
agent system[2] and cell structure[3] have been proposed.
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Holonic architecture[4] is an interesting concept that allows
reconfiguration of a large control system in manufacturing
environments. Artificial intelligence is often introduced to
solve the design problem of these methods. Decentralized
control is also utilized for fault tolerant systems[5]. More
explicit and simple framework in view of controller design is
desired although the methods for decentralized control systems
are interesting as concepts.

Decomposition block control[6] is one of the efficient solu-
tions. It transforms a control system into BCD-form and sim-
plifies the design problem. Arimoto and Nguyen showed that
overall control input can be designed by linear superposition of
all signals under the condition of unique stationary resolution
of the controlled position variables[7]. Okada, Tatani and
Nakamura proposed a method to symbolize the robot motion
based on the singular value decomposition[8]. Lee and Li
presented a decoupled design method that makes a bilateral
control system behave as a common passive rigid mechanical
body[9]. Control methods that apply the idea of modal decom-
position have been recently developed[10], [11], [12]. Modal
decomposition is a way to decompose a control system into
multiple subsystems based on modal information. The word
“mode” in these studies denotes essential information for the
control system. For example, the study in [10] extracts two en-
vironmental modes: inclination and heaving modes. Note that
the environment may have infinite modes due to its diversity.
Biped locomotion on rough terrain was achieved by a hybrid
control system decoupled to heaving and inclination modes
controllers since the two modes are information essential for
adaptation to environment. Tsuji, Nishi and Ohnishi extended
the idea of environmental modes to function modes, which cor-
responds to other general tasks[13], [14]. Onal andŠabanovíc
implemented a sensitive bilateral control using sliding mode
control based on function modes[15]. Function modes provide
a unified design method that deals with both task variation
and exception handling. Although controller design becomes
simple and explicit with the framework, the study was limited
to one-dimensional space. This paper therefore extends the
framework for robots in three-dimensional space. The largest
problem here is dynamical interaction between decoupled
modes. Disturbance observer(DOB)[16] is applied to cancel
the dynamical interference and assure independence of each
function mode. An extended form of function-based controller
design is also described.

This paper is organized as follows. Section II describes the
basic idea of functionality and extend it to three-dimensional
systems. Section III shows a design flow of function-based
controller design and describes the way of configurating the



controller. Section IV shows an example of a control system
for a parallel link manipulator. Section V shows its experi-
mental result. Section VI is the conclusion of this paper.

II. FUNCTION BASED CONTROLLER DESIGN

A. Concept of functionality

In this study, a complicated control system is decoupled into
small independent components based on modal information
named function mode. Function mode is an idea proposed
in [13]. Each function mode corresponds to a simple motion
named function. Fig. 1a) shows one of the examples of mobile
robots in one-dimensional space. In order to convey a load,
robot A and B have to move the load after they grasp it. Entire
motion of robot A and B can be decoupled to simplified motion
of grasping and moving. These simple motions decoupled from
a complicated motion are called function. Function mode is
modal information that represents a function. Function mode is
easily derived through a matrixT as shown in Fig. 1b). Here,
xA and xB denote position of robot A and B respectively.
xGR andxMV denote function mode of grasping and moving
functions. Moving function is realized by a position controller
on function modexMV . On the other hand, grasping function
is realized by a force controller on modexGR. If the system
has limited range of movement or velocity, exception handling
such as position limit and velocity limit can be implemented as
a function. Fig. 1c) shows an example when robot B comes to
position limit. Here,xPL denotes function mode of position
limit. Position controller is applied onxPL, equal toxB in
this situation, so that robot B does not exceed the position
limit. Although moving function is halted then, grasping
function is sustained under exception. The examples show that
flexibility of controller design is enhanced by manipulating the
combination of functions.

Assuming that functions are independent to each other, mo-
tion of the entire control system is represented as superposition
of these functions. This property is named ”functionality”
in this study. Combination of some functions realizes many
patterns of motion. Hence various motions are realized with
much smaller efforts on controller design. Furthermore, the
controller design is explicit since a controller and a function
corresponds directly.

The entire block diagram is shown in Fig. 2.

B. Advantage of function-based controller design

The originality of function-based controller design is to
design each controller as a detachable component. It is similar
to design of peripheral equipment for PC as shown in Fig. 3.
Many kinds of function-based controllers are designed in
advance like peripheral equipment. Among them, requisite
functions are exerted depending on the varying system role.
Great patterns of tasks are realized with such a framework.
Furthermore, the design is still simple and explicit. In sum,
this framework is useful for control of robots adaptive to
complicated environments since it solves the issues of task
variation and exception handling of complicated systems[14].
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Fig. 1. Function mode in one dimensional space
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Fig. 2. Block diagram of function-based control system

C. Coordinate transformation based on function

The controller design based on functionality needs coordi-
nate transformation. Motor information should be transformed
into modal information, which corresponds to functions such
as “moving function” and “grasping function”. This subsection
describes an extended form of the coordinate transformation.

There exist many kinds of functions for tasks, exception
handling, and so on. These functions require various kinds of
information such as arm tip position, motor angles and other
modal information. Multi-layered transformation is therefore
introduced. An outline of the transformation is shown in Fig. 4.

The coordinate transformation introduced in [14] is to derive
function coordinate space from workspace information of
each robot. Note that workspace of a one-dimensional robot

Fig. 3. Design as detachable component



corresponds to its joint space. A Jacobian matrix is known for
transformation from joint space to workspace. Additionally,
transformation from real motor coordinate space to virtual
motor coordinate space of sum and differential motor is
introduced for a twin drive system. The mechanism of the
twin drive system is described in the Appendix.

Several coordinate spaces are transformed through transfor-
mation matrices.fT r, a transformation matrix from real motor
coordinate space to function coordinate space, is derived by
multiplying the matrices between each space.

At first, function coordinate space is transformed from arm
coordinate space (i.e. workspace of each robot) as follows:

xf = fT axa (1)

ẋf = fT aẋa (2)

ẍf = fT aẍa (3)

ff = fT afa (4)

xa = [xa1,xa2, · · · , xam]T

fa = [fa1, fa2, · · · , fam]T .

Here, xai ∈ R3 and it denotes position of an end effector
on the ith robot.fai ∈ R3 and it denotes external force on
the end effector. The subscriptf denotes function coordinate
space and the subscripta denotes arm coordinate space.fT a ∈
RN×M , m is total number of robots,M is total DOF of robots,
andN is total DOF of functions.

fT a corresponds to the transformation matrix in [14]. In
most cases, it is composed of1, 0 and−1 to derive modal
information of related arm tip variables.

As shown from (1) to (4), position, velocity, acceleration
and external force are all transformed byfT a. Position of
arm tip is calculated by direct kinematics based on a real
motor response. Force on arm tip is measured by reaction
force observer (RFOB)[18] in this study while the proposed
method is also applicable for robots with force sensors. Then,
position and force information for function-based controller
are derived from (1) and (4), respectively. Velocity and accel-
eration information on function coordinates are derived from
a real motor response by (5) and (6).

ẋf = fT rẋr (5)

ẍf = fT rẍr (6)
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fT r = fT a
aT v

vT r (7)

The subscriptr denotes real motor coordinate space while
the subscriptv denotes virtual motor coordinate space for the
twin drive system.aT v is a transformation matrix similar to a
Jacobian matrix. It transforms virtual motor coordinate space
to arm coordinate space.vT r is a transformation matrix from
real motor coordinate space to virtual motor coordinate space.
aT v ∈ RM×M and vT r ∈ RM×M .

vT r is a specific transformation matrix only for a twin drive
system. It is a unit matrixI for other systems. In a one-
dimensional system, the Jacobian matrixaT v is also a unit
matrix I.

fT r can be explained as an extended Jacobian matrix. It is
extended for a twin-drive system and cooperative work of a
multi-robot system. It is therefore called “cooperative Jacobian
matrix”. fT a, which is simply named “transformation matrix”
in [14], is called “function matrix” for distinction.

Control input uf is derived from controllers on function
coordinate space. Here,uf is in acceleration dimension.
Torque input in real motor coordinate is derived from (8).

τ r = Mn
fT +

r uf (8)
fT +

r = (fT T
r

fT r)−1 fT T
r

Here, Mn ∈ RM×M . Mn is a nominal inertia matrix of
robots. The condition for deriving torque input is

rank(Mn
fT +

r ) = M. (9)

Therefore, if any of functions are dependent on each other,
a new function should be added. On the other hand, if
rank(Mn

fT +
r ) > M , one of the functions with the lowest

priority should be halted.

D. Dynamics in function coordinate space

It is to be anticipated from the name of cooperative Jacobian
matrix that the coordinate transformation is for kinematics of a
large-scale system. Virtual dynamics in a function coordinate
interferes with each other, contrary to the method proposed
in [14]. The interference occurs due to the generalization to
three-dimensional systems.

DOB is applied to all of real motors in this method to cancel
the interference. Fig. 5 shows a block diagram of DOB. DOB
estimates and compensates disturbance on the control system.
(10) shows the estimated disturbance value.

τ̂dis =
Gdis

s + Gdis

(
KtnIref

a − Gv

s + Gv
Jnωs

)
(10)

Since the estimated disturbance value is proportional to ac-
celeration value, DOB achieves acceleration control. It is
well known that the plant works as a nominal system when
acceleration control is acquired[16]. Hence inputs from posi-
tion/force controller based on functions are superposed without
any interference in the control frequency range lower than the
cutoff frequency of DOB. Multirate control with a short sensor
sampling rate[19] is a good candidate to heighten the cutoff
frequency. Modal decomposition in acceleration dimension
provides explicit controller design. In this point of view, this
method has an advantage over other decomposition methods.



III. C ONFIGURATION OF FUNCTION-BASED CONTROL

SYSTEM

A. Procedures of controller design

A design flow of function-based control system is shown in
Fig. 6. Firstly, the system role is determined by a designer of
the control system. Secondly, the designer divides the system
role into functions. Thirdly, a priority order of functions is
determined. Important functions should be secured even if the
number of active functions alters. Then, the transformation
matrix fT r is derived. The number of functions is modified so
that rank ofMn

fT r agrees with total DOF of robotsM . Oth-
erwise, (9) is unsatisfied. Finally, function-based controllers
are designed individually.

B. Reconfiguration for alteration of system role

When the system role alters, combination of functions and
its transformation matrix should be modified. At first, new
combination of task functions should be given by the designer.
Here, a task function is a function to acquire the system role
while a performance-limit function is a function to deal with
an exception. In the next place, the transformation matrix
should be modified along with the functions. Majority of task
functions control relative position or relative force between
arm tips. In this study,fT a denotes the relation between arm
tips. In sum,fT a should be modified in a similar way in [14]
by modifying T when the system role alters.

C. Reconfiguration for exception handling

Reconfiguration for exception handling is more difficult
compared to that for alteration of the system role. There are
three reasons:

• exceptions occur all of a sudden;
• the control system should choose the combination of

functions autonomously; and
• not only fT a but alsoaT v or vT r should be modified

since performance-limit functions that deal with excep-
tions are often based on a real motor output or a virtual
motor output.

A method to modify a transformation matrix is introduced
below.
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Fig. 5. Disturbance Observer

fT r is described as follows:

fT r =
[

f tT
r1,

f tT
r2, · · · , f tT

rN

]T
. (11)

f tri ∈ RM , it extracts the coordinate of theith function. It
denotes a function mode and depends on the characteristics
of the function. Function modes for task functions are derived
all at once from (7).

On the other hand, performance-limit functions, which are
activated in a special case also have their function modes.
The function mode of the performance-limit function should
be derived individually when the function is activated. The
function mode of the performance-limit function is derived
from various ways since performance-limits may exist in
each layer of the multi-layered coordinate transformation. For
example, a function mode of a velocity-limit function on the
kth real motor is derived as follows:

f tT
r,PL =

[
t1, t2, · · · , tM

]
{

ti = 1 (i = k)
ti = 0 (otherwise). (12)

Here,f tr,PL denotes a function mode of a performance-limit
function.

A position-limit function for avoidance of a singular point is
shown as another example of a performance-limit function. A
joint angle of the twin drive system corresponds to a response
value of a virtual differential motor. Hence a singular point
is avoided by setting a position-limit on the virtual motor. A
function mode of the position-limit function for thekth virtual
motor is derived as follows:

f tr,PL =v trk (13)

where,vT r =
[

vtT
r1,

vtT
r2, · · · , vtT

rN

]T
. When thekth

virtual motor response extracted byvT r,PL exceeds its limit,
a position controller is implemented to the function mode to
keep within the limit value.

A function mode of a position-limit function on an arm tip
is derived as follows:

f tr,PL =a trk (14)

where,aT r =
[

atT
r1,

atT
r2, · · · , atT

rN

]T
. In this case,

it is assumed that the position limit is set for thekth element
of xa.

A procedure for exception handling is as follows:

Decide system role of entire system

Divide system role into functions

Decide order of priority

Configure transformation matrix

Figure out rank of transformation matrix

Design controller on each function coordinate

Add/reduce functions

Mrank r
f =)( TMrank r

f ≠)( T

Exception occurs

Fig. 6. Flow of controller design



Fig. 7. Parallel link manipulators

1) keep observing variables for detecting exceptions;
2) select a relevant performance-limit function when one

of the variables exceeds its limit;
3) derivef tr,P L , a function mode of the performance-limit

function;
4) derivef t

r,low
, the function mode of the lowest-priority

function;
5) derive fT r,PL, the new transformation matrix for per-

formance limit, by substitutingf tr,P L to f t
r,low

in fT r;
6) if rank(Mn

fT r,PL) 6= M , select the function with the
next-lowest priority, derive its function modef t

r,low
, and

go to 5.
7) implement a function-based controller on each function

coordinate

IV. FUNCTION-BASED CONTROLLER DESIGN FOR

COOPERATIVE GRASPING MOTION

A control system for parallel link manipulators is shown in
this section as a typical example of a function-based system.
A picture of manipulators is shown in Fig. 7. The entire
system consists of three parallel link manipulators with 3 DOF.
There are 6 motors on each manipulator since the manipulator
consists of twin drive systems. The details of the manipulators
are shown in [20].

Three manipulators are fixed with orientation difference of
120 degrees respectively. Absolute position of the arm tip is
presented by cylindrical coordinates as shown in (15).

xai = [ di, θi, zi ]T (15)

whered denotes distance from the z-axis based on the center of
three manipulators,z denotes up-down position, andθ denotes
rotation angle in a horizontal plane.

This study verifies the validity of the proposed method by an
experiment of a human support operation with task variation.
The operation is composed of 4 steps as illustrated in Fig. 8.
Each step is described below.

Firstly in Step 1, the arm tips of the three manipulators move
in compliance with external force only in the grasping mode, a
mode that denotes sum ofdA,dB anddC . Step 2 starts after the
operator inserts a cylindrical object between the three arm tips.
In Step 2, the object is cooperatively grasped by the three arms
while position and attitude of the object is kept constant under

external force. In Step 3, the object moves in compliance with
external force only in the pitching mode while it is grasped.
The position of the object is kept constant at that time. In
Step 4, it moves only in the up-down mode while its attitude
is kept constant and it is grasped. Task functions for acquiring
the system roles in Step 1 to Step 4 are shown in Table I. The
overview of the coordinate transformation is shown in Fig. 9.

TABLE I
FUNCTIONS FOR PARALLEL LINK MANIPULATORS

Step 1 Step 2 Step 3 Step 4
Based ond
Mode 1(Grasping) SC (1) GR (1) GR (1) GR (1)
Mode 2 RC (2) RC (2) RC (2) RC (2)
Mode 3 RC (3) RC (3) RC (3) RC (3)
Based onθ
Mode 1(Rolling) RC (9) RC (9) RC (9) RC (9)
Mode 2 RC (8) RC (8) RC (8) RC (8)
Mode 3 RC (7) RC (7) RC (7) RC (7)
Based onz
Mode 1(Up-down) RC (6) RC (6) RC (6) SC (6)
Mode 2(Pitching) RC (5) RC (5) SC (5) RC (5)
Mode 3(Yawing) RC (4) RC (4) RC (4) RC (4)
Based on virtual
sum motors
Mode 1 VC (10) VC (10) VC(10) VC(10)

...
...

...
...

...
Mode 9 VC (18) VC (18) VC(18) VC(18)

Here, RC, SC, VC, and GR denote functions of rigid
coupling, spring coupling, velocity control, and grasping,
respectively. Numbers in parentheses denote the priority order
in task functions. The grasping function has higher priority
to secure the object. Velocity control functions on sum motor
coordinates keep velocity of virtual sum motors constant to
cancel static friction. The velocity control functions therefore
have lower priority since outputs of the functions have rela-
tively small effects on the operation. The priority order of other
task functions is given arbitrarily. Performance-limit functions
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Fig. 8. Illustration of human support operation
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exist in addition to the task functions. Priority of performance-
limit functions is set higher than that of task functions so that
they are compulsively activated when exceptions occur.

The function matrixfT a for such functions is given as
follows:

fT a =




I9

T d

T θ

T z


 fSa (16)

fSa = [s1, s2, s3, s7, s8, s9, s13, s14, s15,

s4, s10, s16, s5, s11, s17, s6, s12, s18]T (17)

sj = [ s1, s2, · · · , s18 ]{
si = 1 (i = j)
si = 0 (otherwise).

T d =




1 1 1
1 −1 0
1 0 −1


 (18)

T θ =




1 1 1
1 −1 0
1 0 −1


 (19)

T z =




1 1 1
1 −1 0
−1 −1 2


 (20)

where, fSa is a permutation matrix to change an order of
variables from an arm-based order to a function-based order.
In, annth order unit matrix, corresponds to virtual sum motor
coordinates.T d denotes a function matrix ind coordinates
while T θ andT z denote that inθ andz coordinates. The first,
second and third rows ofT d extract function modes named
Mode 1, Mode 2 and Mode 3, respectively. Modes extracted by
T θ andT z are also named in the same way. Mode 1 is sum of
three manipulators’ responses. Mode 1 ofd coordinate denotes
grasping motion while that ofθ coordinate denotes rolling
motion and that ofz coordinate denotes up-down motion. The

second and the third rows ofT d and T θ are to derive the
difference value of the Arm A and others. The second and the
third rows of T z extract pitching and yawing motion of the
object, respectively.

aT v in this study is as follows:

aT v =




aT vA
aT vB

aT vC


 (21)

aT vA =
[

I3

JA

]
(22)

aT vB =
[

I3

JB

]
(23)

aT vC =
[

I3

JC

]
. (24)

Here,JA, JB and JC denote Jacobian matrices for arm A,
B and C, respectively.

vT r in this study is as follows:

vT r =




vT rA
vT rB

vT rC


 (25)

vT rA = vT rB =v T rC

= vSr




H2

H2

H2


 (26)

vSr = [s1, s3, s5, s2, s4, s6]T (27)

sj = [ s1, s2, · · · , s6 ]{
si = 1 (i = j)
si = 0 (otherwise)

H2 =
[

1 1
1 −1

]
(28)

where, vSr is a permutation matrix to change an order of
variables from real motors to virtual motors.H2 is a second-
order Hadamard matrix.

Block diagrams of function-based controllers are shown in
Fig. 10. Each function consists of a simple position/force
controller.

V. EXPERIMENT

Experimental results are shown in this section. Table II
shows control gains in the experiment. Figs. 11 and 12 show
responses ind coordinate and inz coordinate, respectively.

When the operator maneuvered the Arm A in Step 1,
all three manipulators moved only in grasping mode and
accomplished open-close motion. Force responses of Arm A
fluctuated due to the operator’s force.

An object was grasped in Step 2 after the operator inserted
the object. Then, force responses in grasping mode was about
13 N on average. The average is the grasping force. Grasping
motion was retained while combination of functions was
changed in later steps. Force responses in grasping mode
fluctuated as the operator maneuvered the object. As indicated
by the result, the condition to retain the grasping motion is to
keep the external force smaller than the grasping force. Force
responses in up-down mode show that about -3 N on average
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was acting on the manipulators. Since the object weighed
330 g, it seems that the average shows gravity force of the
object.

The object was tilted in the pitching mode in Step 3 when
the operator applied force in thez direction. On the other hand,
the object went up and down in Step 4 when the operator
applied force in the same direction. Position responses of
Mode 1 inz coordinate was almost constant during Steps 1 to
3 while it varied relative to force response of Arm A during
Step 4. At the same time, position responses of Mode 2 inz
coordinate was almost constant during Steps 1,2 and 4 while it
varied during Step 3. External force affected in all directions
since the operator did not accurately maneuver. The object,
however, moved only in the mode of spring coupling functions.
The direction of free motion was changed by modifying the
combination of functions while grasping motion was retained
then. Interference between each mode rarely occurred due to
acceleration control based on DOB.

TABLE II
CONTROL PARAMETERS

Position gain Kp 600.0
Velocity gain Kv 70.0
Force gain Kf 8.0
Cutoff-frequency of DOB [rad/sec] Gdis 30.0
Cutoff-frequency of RFOB [rad/sec] Gf 15.0

VI. CONCLUSION

This study expanded the framework of function-based con-
troller design to multi-DOF robots in three-dimensional space.
The expanded form is also applicable to twin drive systems.
A new problem of interference among function-based systems
occurs after the expansion. DOB is applied on each actuator to
eliminate the interference. The simplicity and explicitness of
function-based controller design carry on despite the expan-
sion since function-based systems are decoupled with DOB.
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Motor R

Motor L

Friction wheel

Cam follower

Rθ
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Motor R

Motor L

Friction wheel

Cam follower

Fig. 13. Mechanism of twin drive system

APPENDIX

This section briefly describes a mechanism of a twin drive
system[17]. Fig. 13 shows a schematic diagram of the twin
drive system. The twin drive system is composed of a differ-
ential mechanism with two motors. Here,θR and θL denote
the angle of motor R and motor L, respectively. Sum and
difference of these two angles represent angles of a virtual
sum motor and a virtual differential motor. These two virtual
motors could be treated as two systems with independent
coordinates.θ−, the differential motor coordinate, appears as
rotation of the joint. On the other hand, sum motor coordinate
θ+ do not affect the joint response. The velocity in sum motor
coordinateθ̇+ is controlled to hold a certain value to cancel
the effect of static friction on real motors.
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