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Virtual immersive environments or telepresence setups often consist of multiple

cameras which have to be calibrated. We present a convenient method for doing

this. The minimum is three cameras, but there is no upper limit. The method is

fully automatic and a freely moving bright spot is the only calibration object. A set

of virtual 3D points is made by waving the bright spot through the working volume.

Its projections are found with sub-pixel precision and verified by a robust RANSAC

analysis. The cameras do not have to see all points, only reasonable overlap

between camera subgroups is necessary. Projective structures are computed via

rank-4 factorization and the Euclidean stratification is done by imposing geometric

constraints. This linear estimate initializes a post-processing computation of non-

linear distortion which is also fully automatic. We suggest a trick on how to use a

very ordinary laser pointer as the calibration object. We show that it is possible to

calibrate an immersive virtual environment with 16 cameras in less than 30 minutes

reaching about 1/5 pixel reprojection error. The method has been successfully

tested on numerous multi-camera environments with a varying number and quality

of cameras used.

1 Introduction

With decreasing prices of powerful computers and cameras, smart multi-camera systems have

started to emerge [4, 6, 17, 27, 30]. A complete multi-camera calibration is the inevitable step
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towards the efficient use of such systems even though many things can be accomplished with

uncalibrated cameras in virtual environments and telepresence setups. To our best knowledge,

no fully automatic calibration method, for multi-camera environments, exists.

Very recent multi-camera environments [22] or [7], which are primarily designed for real-

time 3D acquisition, use advanced calibration methods based on a moving plate [1, 32]. These

calibration methods do not require a 3D calibration object with known 3D coordinates. However,

they share the main drawback with the old classical methods. The moving calibration plate is not

visible in all cameras and the partially calibrated structures have to be chained together whose

procedure is very prone to errors. Kitahara et al., [18] calibrated their large scale multi-camera

environment by using a classical direct method [31]. The necessary 3D points are collected by

a combined use of a calibration board and a 3D laser-surveying instrument. Lee et al., [19]

established a common coordinate frame for a sparse set of cameras so that all cameras observe a

common dominant plane. They tracked objects moving in this plane and from their trajectories

they estimated the external parameters of the cameras in one coordinate system. Baker and

Aloimonos [3] proposed a calibration method for a multi-camera network which requires a

planar pattern with a precise grid.

We propose a fully automatic calibration method which yields complete camera projection

models and requires only a small, easily detectable, bright spot. The bright spot can be created

from a laser pointer by using a small trick. The user is required to wave the bright spot throughout

the working volume. This is the only user action required. The projections of the bright spot are

detected independently in each camera. We reach sub-pixel precision by fitting 2D Gaussian as a

point spread function. The points are validated through pairwise epipolar constraints. Projective

motion and shape are computed via rank–4 factorization. Geometric constraints are applied

and projective structures are stratified to Euclidean ones. The parameters of the non-linear

distortion are computed through iterative refinement. All these steps are described in this paper.

The calibration software yields less than 1/5 pixel reprojection error even for cameras with

significant radial distortion. The software is freely available.

Section 2 explains the mathematical theory behind the algorithm. Practical implementation

of the algorithm is described in Section 3. Experiments on several different multi-camera

environments are presented in Section 4. The results are shortly summarized in Section 5.

2 Algorithm — theory

Let us consider m cameras and n object points Xj = [Xj , Yj , Zj , 1]
⊤, j = 1, . . . , n. We assume

the pinhole camera model, see [12] for details. The 3D points Xj are projected to 2D image

points ui
j as

λi
j





ui
j

vi
j

1



 = λi
ju

i
j = P

iXj , λi
j ∈ R+ (1)

where each Pi is a 3×4 matrix that contains 11 camera parameters, and u, v are pixel coordinates.

There are six parameters that describe camera position and orientation, sometimes called external

parameters, and five internal parameters which describe the inner properties of the camera, ui
j

are observed pixel coordinates. The goal of the calibration is to estimate scales λi
j and the camera
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Figure 1: Multi-camera setup with 4 cameras.

projection matrices Pi. We can put all the points and camera projections (1) into one matrix Ws:
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3m×4

[X1 · · ·Xn]
4×n (2)

Ws = PX , (3)

where Ws is called the scaled measurement matrix, P = [P1 · · · Pm]⊤ and X = [X1 · · ·Xn]. P and

X are referred to as the projective motion and the projective shape, respectively. If we collect

enough noiseless points (ui
j , v

i
j) and the scales λi

j are known, then Ws has rank 4 and can be

factored into P and X [26]. The factorization of (3) recovers the motion and the shape up to a

4 × 4 projective transformation H:

Ws = PX = PHH
−1
X = P̂X̂ , (4)

where P̂ = PH and X̂ = H−1X. Any non-singular 4 × 4 matrix may be inserted between P and

X to get another compatible motion and shape pair P̂, X̂. The self-calibration process computes

such a matrix H, that P̂ and X̂ become Euclidean. This process is sometimes called Euclidean

stratification [12]. The task of finding the appropriate H can be solved by imposing certain

geometrical constraints. The most general constraint is the assumption that rows and columns

of camera chips are orthogonal. Alternatively, we can assume that some internal parameters of
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the cameras are the same, which is more useful for a monocular camera sequence. The minimal

number of cameras for a successful self-calibration depends on the number of known camera

parameters, or on the number of parameters that are unknown but are the same for all cameras.

For instance, 8 cameras are needed when the orthogonality of rows and columns is the only

constraint and three cameras are sufficient if all principal points are known or if the internal

camera parameters are completely unknown but are the same for all cameras [12]. We describe

the Euclidean stratification in more detail in Section 2.2.

2.1 Projective reconstruction by factorization with filling the missing points

Martinec & Pajdla’s method [20] was used for recovery of projective shape and motion from

multiple images by factorization of a matrix containing the images of all scene points. This

method can handle perspective views and occlusions jointly. The projective depths of image

points are estimated by the method of Sturm & Triggs [23] using the epipolar geometry. Occlu-

sions are solved by the extension of the method by Jacobs [14] for filling the missing data. This

extension can exploit the geometry of the perspective camera so that both points with known

and unknown projective depths are used. The method is particularly suited for wide base-line

multiple view stereo.

It would be ideal to first compute the projective depths of all known points in Ws and then to

fill all the missing elements of Ws by finding a complete matrix of rank 4 that would be equal

(or as close as possible) to the rescaled Ws in all elements where Ws is known. Such a two-step

algorithm is almost the ideal linearized reconstruction algorithm, which uses all data and has

good statistical behaviour. We have found that many image sets, in particular those resulting

from wide base-line stereo, can be reconstructed in such two steps. Otherwise, the two steps

have to be repeated, while the measurement matrix Ws is not complete. In what follows, we shall

describe the two steps of the algorithm.

Projective depth estimation

We used Sturm & Triggs’ method [23] exploiting the epipolar geometry but other methods may

be applied too. The method [23] was proposed in two alternatives. The alternative with a central

image is more appropriate for wide base-line stereo while the alternative with a sequence is

more appropriate for video-sequences. In this paper, only the former alternative is explained,

see Algorithm 1. For more details see [20].

As noted in [23], any tree structure linking all images into a single connected graph can

be used. This is especially advantageous when a large amount of occlusions is present in the

data because then at least some depths can be recovered in each image and consequently all

cameras can be estimated simultaneously. This modification will appear in a new version of the

calibration package.

Filling of missing elements in Ws

The filling of missing data was first realized by Tomasi & Kanade [28] for orthographic camera.

Jacobs [14] improved their method and we used our extension of his method for the perspective
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1. Set λc
p = 1 for all p’s corresponding to known points uc

p.

2. For i 6= c do the following: If images i and c have enough points in common to compute a

fundamental matrix uniquely (see [20] for details) then compute the fundamental matrix Fic,

the epipole eic, and depths λi
p according to

λi
p =

(eic × ui
p) · (F

icuc
p)

‖eic × ui
p‖

2
λc

p

if the right side of the equation is defined, where × stands for the cross-product.

Algorithm 1: Depth estimation using image c as the central image

case. Often, not all depths can be computed because of missing data. Therefore, we extended

the method from [14], so that points with unknown depths are exploited also. At first, the case

when the depths of all points are known will be explained.

Jacobs treated the problem of missing elements in a matrix as fitting an unknown matrix of

a certain rank to an incomplete noisy matrix resulting from measurements in images. Assume

noiseless measurements, for a while, to make the explanation more simple. Assuming perspective

images, an unknown complete 3m× n matrix W̃s of rank 4 is fitted to Ws. Technically, a basis of

the linear vector space that is spanned by the columns of W̃s is found.

Let the space generated by the columns of W̃s be denoted by B. Let Bt denote the linear hull

of all possible fillings of the unknown elements of the t-th four-tuple of columns of Ws which

are linearly independent in coordinates known in all four columns. B is included in each Bt and

thus, also in their intersection, i.e. B ⊆
⋂

t∈T Bt where T is some set of indices. When the

intersection is 4D, B is known exactly. If it is of a higher dimension, only an upper bound on

B is known and more constraints from four-tuples must be added. Any column in W̃s is a linear

combination of vectors of a basis of W̃s. Thus, having a basis B of W̃s, any incomplete column

c in Ws containing at least four known elements, which in practice means six elements resulting

from two known points, can be completed by finding the vector c̃ generated by B which equals c
in the elements where c was known in Ws.

Because of noise in real data, the intersection
⋂

t∈T Bt quickly becomes empty. This is why

B is searched for as the closest 4D space to spaces Bt in the sense of the minimal sum of square

differences of known elements. More details are reported in [20].

Recently, new constraints on the consistent set of all camera matrices were found. They are

more robust to both significant camera movement and occlusions. The new method is to appear

in an upcoming conference.

Filling of missing elements for unknown depths

Jacobs’ method [14] cannot use image points with unknown depths. But, matrix Ws constructed

from measurements in perspective images often has many such points where the corresponding

depths cannot be computed using Algorithm 1, due to occlusions. Therefore, we extended

the method to also exploit points with unknown depths in order to provide more and stronger

constraints on the basis of the measurement matrix.
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Let us first explain the extension for two images. Suppose that λi
p and ui

p are known for

i = 1, 2, and for p = 1 . . . 4, except λ2
4. Then, consider the first four columns of Ws to be the t-th

four-tuple of columns, At. A new matrix Bt, whose span will be denoted by Bt, can be defined

using known elements of At as

At =

[

λ1
1u

1
1 λ1

2u
1
2 λ1

3u
1
3 λ1

4u
1
4

λ2
1u

2
1 λ2

2u
2
2 λ2

3u
2
3 ? u2

4

]

−→ Bt =

[

λ1
1u

1
1 λ1

2u
1
2 λ1

3u
1
3 λ1

4u
1
4 0

λ2
1u

2
1 λ2

2u
2
2 λ2

3u
2
3 0 u2

4

]

It can be proven, that if Bt is of full rank (i.e. five, here) then B ⊆ Span(Bt), which is exactly the

constraint on B. See [20] for details how to construct the matrix Bt in a general situation. By also

including image points with unknown projective depths, the spaces Bt, spanned by four-tuples

of columns, become smaller, thus, solving the reconstruction problem becomes more efficient.

Combining the filling method with depth estimation

Due to occlusions, the projective depth estimation can be carried out in various ways depending

on which depths are computed first and if as well as how those already computed are used to

compute the others. One way of depth estimation will be called a strategy. Depending on the

strategy chosen, different subsets of depths are computed and different sub-matrices of Ws are

filled. It may happen that when some strategy exploiting the epipolar geometry of some image

pair is used, that the fundamental matrix cannot be computed due to occlusions. Consequently,

depths needed to form a constraint on B in one of the images cannot be estimated, thus the

missing data in the image cannot be filled and the two steps of the depth estimation and filling

has to be repeated.

From the structure of the missing data, it is possible to predict a good strategy for depth

estimation that results in a good reconstruction. Some criterion on the quality of a strategy is

needed. For scenes reconstructible in more steps, such criterion also determines which subset of

depths is better to be computed first.

The following two observations have been made: First, the more iterations performed, the

results obtained are less accurate because the error from the former iteration spreads in subsequent

iterations. Second, assuming the data is contaminated by a random noise, unknown elements

should not be computed from less data, when they can be computed from more data, and thus

more accurately due to the law of big numbers. For more details on choosing the best strategy

for depth estimation see [20].

2.2 Euclidean stratification

Assume the projective factorization is complete. Here, we provide a simplified derivation on

how to get a full camera calibration without measuring coordinates of any set of 3D points. Our

stratification is based on the concept of the absolute conic [12]. Several possibilities for the

derivation of the absolute conic constraint exist. In our implementation, we put the origin of

the world frame to the centroid of the (unknown) reconstructed 3D Euclidean points, which is

the approach used in [11]. However, the formulation, where the origin of the world frame is

in the first camera center [12, 21], is equivalent. We extend the notation used in the previous
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sections. As already mentioned, the Euclidean projection matrices contain internal parameters

Ki and external camera parameters, rotation Ri and translation ti,

P̂
i = µi

K
i
[

R
i ti

]

, (5)

where µi is some non-zero scale, and

K
i =





f i 0 ui
0

0 αif i vi
0

0 0 1



 , R
i =







ii
⊤

ji
⊤

ki⊤






, and ti =





tix
tiy
tiz



 .

Putting all the camera projections (5) together yields

P̂3m×4 = [M3m×3 T3m×1] , (6)

where

M =
[

m1
x m1

y m1
z · · · mm

x mm
y mm

z

]⊤
,

T =
[

T 1
x T 1

y T 1
z · · · T m

x Tm
y Tm

z

]⊤
,

and
mi

x = µif iii + µiui
0k

i ,
mi

y = µiαif iji + µivi
0k

i ,

mi
z = µiki .

(7)

Similar formulas hold for elements of T. The shape matrix is represented by

X̂ =

[

ν1s1 ν2s2 · · · νnsn

ν1 ν2 · · · νn

]

,

and

sj = [xj yj zj ]
⊤ ,

X̂j =
[

νjs
⊤
j νj

]⊤

.

We put the origin of the world frame into the centroid of the scaled 3D points

n
∑

j=1

νjsj = 0 .

Expressing elements of the scaled measurement matrix Ws yields

n
∑

j=1

λi
ju

i
j =

n
∑

j=1

(mi
xνjsj + νjT

i
x) = T i

x

n
∑

j=1

νj . (8)

Similarly
n

∑

j=1

λi
jv

i
j = T i

y

n
∑

j=1

νj and

n
∑

j=1

λi
j = T i

z

n
∑

j=1

νj . (9)

7



Let us define

H4×4 = [A4×3 b4×1] , (10)

putting (10) and (6) into (4) yields

[M T] = P [A b] , (11)

we have

T i
x = Pi

x

⊤
b , T i

y = Pi
y

⊤
b , T i

z = Pi
z

⊤
b .

From (8, 9) we get

T i
x

T i
z

=

∑n
j=1

λi
ju

i
j

∑n
j=1

λi
j

and
T i

y

T i
z

=

∑n
j=1

λi
jv

i
j

∑n
j=1

λi
j

.

Thus, we have 2m equations for the four unknown elements of b.

From (11),

MM
⊤ = PAA

⊤
P
⊤ .

Define a new 4 × 4 symmetric matrix

Q = AA
⊤ .

We show how to propagate the constraints on MM⊤ to the constraints on 10 unknown elements of

Q in the case of unknown focal lengths.

We assume square pixels and principal points to be known. We can then transform the pixel

points ui
j and write

ui
0 = 0 , vi

0 = 0 , and αi = 1 .

We insert these assumptions into (7) which yields

‖mi
x‖

2 = ‖mi
y‖

2 ,

mi
x
⊤
mi

y = 0 ,

mi
x
⊤
mi

z = 0 ,

mi
y
⊤
mi

z = 0 ,

(12)

We have 4m equations for 10 unknowns of Q, and therefore at least three cameras are needed for

the self-calibration. Reminder, we know that MM⊤ = PQP⊤. Thus

‖mi
x‖

2 = Pi
x

⊤
QPi

x .

Similarly for the other constrained elements of (12). After some manipulation we can rewrite

the constraints (12) into a set of linear equations and solve them by using singular value decom-

position (SVD). Once Q is estimated, we can recover the A matrix by rank-3 factorization.

Most modern cameras have square pixels. However, we can self-calibrate from three cameras

with non-square pixels too. The first constraint from (12) does not hold, since αi 6= 1, thus

leaving only 3m constraints. However we can add one more constraint fixing one of the scales

µi in (7). Thus, for instance

‖m1
z‖ = 1 ,
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completing 3m + 1 constraints.

Once are A and b estimated, we compose the stratification matrix H = [A b]. Then, the

Euclidean shape X̂ = H−1X and the Euclidean motion P̂ = PH is computed. Indeed, the

knowledge of P̂ is all we need to know for 3D reconstruction. However, sometimes it is useful

to separate the external and internal parameters. We know that

P̂
i = µi

[

K
i
R

i
K

iti
]

.

The first 3 × 3 sub-matrix of P̂i may be decomposed into the orthonormal rotation matrix Ri

and the upper triangular calibration matrix Ki by RQ matrix decomposition. The position of the

camera centre may be then computed as

Ci = −Ri⊤ti .

2.3 Estimation of the non-linear distortion

Lenses with short focal lengths are often used in immersive environments to guarantee sufficient

field of view. However, such lenses have significant non-linear distortion which has to be

corrected for precise 3D computation. We propose a reliable procedure for estimating the

distortion which needs no additional information and uses the linear estimate as the initial step.

The principle is as follows. First, reconstruct the calibration points by using the linear

parameters and then feed these 3D-2D correspondences into a standard method for estimation

of the nonlinear distortion. The linear self-calibration is then repeated with the corrected point

coordinates. This estimate-and-refine cycle is repeated until the required precision is reached.

The complexity of the distortion model, i.e. the number of parameters to be estimated gradually

increases between the cycles. This iterative approach yields an average reprojection error of

around 1/5 pixel assuming a carefully synchronized set of multiple cameras.

In general, any calibration package can be used for estimation of the non-linear distortion.

We decided to apply a part of the Caltech camera calibration toolbox [5]. Its Matlab codes are

freely available and the estimated parameters are compatible with the OpenCV library [1] which

is useful for eventual on-line distortion removal.

2.4 Critical configurations of points and cameras

It is well known that there are critical configurations of cameras and points for which the self-

calibration is not possible, in principle. We do not go into theoretical details, we rather give

some advice how to avoid potential problems arising from this degeneracy.

First of all, the calibration points should fill up the working volume. This demand naturally

disqualifies one of the degenerate configurations when all points are coplanar [13]. We should

note that the coplanarity of all points makes not only the projective reconstruction ambiguous

it also makes the computation of epipolar geometry impossible [12]. Moreover, given m ≥ 3
cameras, configuration is critical if all points and cameras lie in the intersection of two distinct

ruled quadrics [15]. This may happen, however, hardly in practice.

Even though the projective structure and motion are estimated correctly there are still critical

positions of cameras which make the Euclidean stratification impossible. Such positions are
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called critical motions of cameras [16, 24]. If all cameras and lenses are the same we shall

consider the critical motions for self-calibration with constant internal parameters [24]. In fact,

in multi-camera systems there are several critical motions we may get quite close to in practice:

(i) rotation around parallel axes and arbitrary rotations, (ii) orbital motion, (iii) pure translations,

and (iv) planar motion (this also includes the orbital motion). When the internal parameters of

the cameras are different, the critical motions are a bit more obscure. The critical motions vary

depending on the number of internal parameters we know in advance, however we should try to

avoid the following camera motions: (i) rotation with at most two distinct centers (twisted pair

ambiguity), or (ii) motion on two conics whose supporting planes are orthogonal and where the

optical axis is tangent to the conic at each position, or (iii) translation along the optical axis, with

arbitrary rotations around the optical axis, or (iv) motion with two viewing directions (orientation

of optical axes) at most. See [16] for more thorough explanation.

It should be noted that there is one more important motion which is not critical for our self-

calibration method but is critical for an alternative method based on Kruppa’s equations. The

method based on Kruppa’s equations fails, in the case where the optical centers of all cameras

lie on a sphere and if the optical axes pass through the sphere’s center, a very natural situation in

many multi-camera systems [25].

The section about critical configuration and motions might be summarized in the following

suggestions: To avoid numerical instability we should: (i) fill up the working volume with

calibration points as completely as possible, avoiding coplanarity, (ii) and cameras as well as

their positions and orientation shall be varied as much as is reasonable. This first suggestion is

clear and mostly satisfiable. The second suggestion about cameras typically narrows down to

not have the cameras all coplanar or with parallel optical axes.

3 Algorithm — practical implementation

In the previous section, we have argued that the data matrix W containing the image points is the

only input we need for the calibration. This matrix may contain some missing points however,

the more the matrix is full, the more accurate and stable the calibration results may be expected.

Finding points ui
j and establishing correspondences across many images, a process called image

matching, is a difficult task. We overcome the problem by waving a slightly modified laser

pointer through the working volume, see Figure 2. We attach a small piece of transparent plastic

on the top of the laser pointer in order to get better visibility from different viewpoints. The very

bright projections of the laser can be detected in each image with sub-pixel precision by fitting

an appropriate point spread function. These particular positions are then merged together over

time thus, creating projections of a virtual 3D object. Our proposed self-calibration scheme can

be outlined as follows:

1. Find the projections of the laser pointer in the images.

2. Discard misdetected points by pairwise RANSAC analysis [9].

3. Estimate projective depths λi
j and fill the missing points by the method described in

Section 2.1.
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Figure 2: Immersive virtual environment BlueC [10] and our modification of a laser pointer.

A small piece of transparent green or red plastic is attached to the laser pointer.

The modification has been invented in order to get better visibility from different

viewpoints. However primitive a solution it is, it does the job very well. The working

volume is inside the glass CAVE. Four cameras are mounted on the top four corners of

the construction and the remaining 12 cameras are mounted on the aluminum scaffold

that encompasses the CAVE.
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4. Optimize the projective structure by using the Bundle Adjustment [29], if applicable.

5. Perform the rank 4 factorization of the matrix Ws to get projective shape and motion [12].

6. Upgrade the projective structures to Euclidean ones by the method described in Section 2.2.

7. Detect the remaining outliers by evaluating the 2D reprojection error. Remove them and

repeat steps 3–6 until no outlier remains.

8. Estimate the parameters of the non-linear distortion repeat the steps 2–7. Stop if the

reprojection error is below the required threshold or if the number of iteration exceeds the

maximum allowed.

9. Optionally, if some true 3D information is known, align the computed Euclidean structures

with a world system.

It should be noted that the complicated scheme proposed above is rather conservative in rejecting

misdetected points. Some validation steps may be left out when calibrating well controlled setups.

3.1 Finding corresponding points

We need a rather robust method for finding points since it is not always possible to make the

working volume completely dark. The camera room may have windows and glossy surfaces

thus making misdetection probable. The finding procedure has to be entirely automatic. Any

user interaction is not an option because of the large number of images and cameras. However,

it is assumed that the imaging conditions provide enough contrast between the bright spot and

background. Our automatic finding procedure contains the following steps:

1. The mean image I i
µ and the image of standard deviation I i

σ is computed for each camera.

These two images represent the static scene and the projections of the laser pointer are

found by comparing the actual image with these two.

2. The differential image is computed by using the appropriate color channel depending on

the color of the laser pointer. A threshold is set to 4/5 of the maximum of the differential

image. The image is discarded if any of the following conditions hold:

a) The number of pixels in the thresholded differential image is much higher than the

expected LED size.

b) The maximum of the differential image is less than 5 times the standard deviation in

this pixel.

c) The thresholded pixels are not connected, i.e. they compose more than one blob.

d) The eccentricity of the detected blob exceeds a predefined threshold. This condition

is against motion blur.

3. The neighborhood of the detected blob is resampled to a higher resolution by using bicubic

interpolation in order to reach sub-pixel accuracy and robustness against irregular blob

shapes.
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4. A 2D Gaussian is fitted to this interpolated sub-image by 2D correlation to get the final

position of the LED projection.

The detection sequence above is very robust and works well in very different multi-camera

setups. The color of the LED and the approximate expected size of the LED may vary for

different setups. If the size is not sure it is more robust to set the size a bit bigger. In practice, this

value turned out to be extremely stable. The desired sub-pixel accuracy may be also specified

however, 1/5 of a pixel is the reasonable maximum which should suffice for most cases. Some

of the validation steps above may be skipped when the imaging environment is more controlled.

The 2D correlation in step 4 is the most computationally expensive operation. Steps 2–4 take

about 100 ms together for one 640 × 480 image with expected LED size 7 pixels and a 1/3

sub-pixel accuracy on a 2 GHz P IV machine (highly vectorized Matlab code).

3.2 Discarding misdetected points

Even though the procedure described in the previous section is fairly robust, some false points

may survive. When some glossy surfaces are present in the scene, e.g. glass walls, the reflection

of the laser light might be detected instead of the direct projection. These outliers, would spoil the

projective reconstruction and have to be discarded in advance. There are two discarding steps:

First step is a robust pairwise computation of epipolar geometry and removing points that lie too

far from epipolar lines. This step clears the data at the very beginning of the whole process. The

second step is an iterative loop which removes outliers by analyzing 2D reprojection error.

3.2.1 Finding outliers in image pairs

The image pairs are iteratively re-selected according to the number of visible corresponding

pairs. The points that were already detected as outliers are removed from the list of points found

in these two cameras. The epipolar geometry is robustly computed via the RANSAC 7-point

algorithm [12]. The initial tolerated distance from epipolar lines has to be pre-set by the user.

The exact value of the threshold does not matter very much. It should not be too low when using

lenses with significant radial distortion because it would discard too many good but distorted

points. Too high a value just adds a few more iterations in the subsequent discarding steps.

Importantly, any value between one and fifteen should do the job. We use ten pixels which

works well for all our datasets which include cameras with severe radial distortions. The initial

threshold is iteratively decreased during the refinement steps (section 2.3) as the camera models

become more and more precise.

3.2.2 Finding outliers in reprojected points

The validation step based on the epipolar geometry may fail to discard a misdetected projection if

it lies along the epipolar lines. However, such a point can often be correctly reconstructed in 3D

space from other (good) projections. If projected back to the cameras where it was misdetected

it exhibits large 2D reprojection errors. Such problematic points are discarded from further

computation.
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There is no additional fixed threshold for deciding what is large and what is not large reprojec-

tion error. The threshold is computed dynamically from the threshold pre-set for the RANSAC

computation as well as from the mean and variance of the reprojection errors.

3.3 Euclidean stratification

The stratification works rather well when reliable projective structures are estimated in the

previous steps. We assume that cameras are different, have orthogonal rows and columns,

no skew, square pixels, and we initialize the principal points to be in the image centres. It

follows, from the counting argument [12], that we need at least three cameras to perform the

self-calibration. The resulting Euclidean projection matrices (5) may be decomposed into the

internal and external parameters. The initial assumption about zero skew and known principal

points is not used in the final decomposition. The stratification, without assuming known aspect

ratios, is generally less robust and may occasionally fail in the case of somehow unbalanced

input data. We had no camera with non-square pixels to perform tests with real data. However,

this case was implemented, too.

3.4 Alignment with a world coordinate system

The self-calibration yields the external camera parameters in an unknown world coordinate frame

with the origin in the centroid of the point cloud. In practical applications, it is often desirable to

have all parameters in some well–founded coordinate frame. For CAVE environments for instance,

we would like to have the z = 0 plane to be coincident with the CAVE floor. Several different

approaches might be applied. Scene objects with known dimensions and positions might be

localized in image(s) and used for the alignment. However, an automatic localization of such

objects might be difficult in practice. We offer an alternative way to do the alignment. We utilize

the knowledge of the approximate camera positions. Since we know the physical dimensions of

the CAVE construction, we can approximate the positions of the camera centres without actually

measuring them. The precision in range of several centimeters or even less precise is enough for

a reliable alignment. We need to know at least three camera positions, while having more will

increase the robustness. The used cameras must not lie on one line. The similarity transformation

between the camera positions which are computed by the self-calibration and the desired ones is

computed using the algorithm [2]. The similarity transformation is then applied to all Euclidean

structures.

The positions of the cameras may not be always available. We can often assume generally

planar movement of the user and not a complete alignment is required. Sometimes, a “bird’s eye

view” of the overall arrangement is enough. A plane is fitted to the reconstructed point cloud

made under the coplanarity assumption and then rotated to the desired orientation.

3.5 Issues in estimation of the non-linear distortion

The complexity of the non-linear model gradually increases during the iteration. The iterative

estimate and refine process is surprisingly stable. The process may occasionally fail for cameras

which have weak coverage of the image plane or too many outliers. To stabilize the estimation, it
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is sometimes better to decrease the complexity of the non-linear model and disable the automatic

increasing number of free parameters. A typical example is the estimation of the point of zero

distortion. The estimation becomes unstable if the points are scattered only on one side of the

image. It is better to disable the estimation of this parameter and put it into the image center

in case of such incomplete data. The final reprojection error may remain rather high, say about

one pixel. However, wrongly estimated non-linear parameters by overfitting could destroy the

overall geometric consistency.

The filled 3D points are also used for the estimation. The number of iterations is by default

constrained to 10. According to our experience, the whole refinement should converge within

5-6 iterations. If not, the desired model precision is perhaps set too optimistically, with respect

to the quality of the data.

3.6 Validation of an existing calibration

Sometimes, we would like to know if the calibration is still valid or not. We may always re-

calibrate the system completely. However, this takes some time, and the resulting parameters

will not be exactly the same as the old ones even though the setup remained the same. We

suggest the following practical sampling approach:

1. Capture about 100 frames whilst waving the calibration object (bright spot).

2. Find the projections.

3. Perform a robust Euclidean reconstruction by trying all combinations of camera n-tuples,

where n can be typically 2–4.

4. Select the camera n-tuple with the lowest reprojection error and its variance.

5. Evaluate the reprojection errors of this most consistent reconstruction.

The first two steps are the same as for the self-calibration itself. However, essentially, less

points are required and there are no refinement loops and no bundle adjustment either. Thus the

complete validation may be completed in a few minutes.

4 Experiments

We would like to demonstrate two major features in which our solution outperforms competitors:

• The bright spot acting as a calibration device needs not be visible in all cameras simulta-

neously.

• The parameters of the non-linear distortion are estimated without any additional informa-

tion.

The ability of filling missing points significantly broadens the possible application of our al-

gorithm. Multiple cameras for immersive environments or telepresence virtual rooms often

encompass the whole volume thus posing challenges in visibility. Our Blue-C [10] setups each
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Figure 3: Filling “invisible” points. On the left, a Blue-C camera mounted on the ceiling. On the

right, a camera from a ViRoom installation. The cameras have limited fields of view

and do not see the whole working volume. The filling feature is clearly observable.

Some points which have been reconstructed in 3D are clearly projected outside the

image sensor (dashed line). They are visible in other cameras and filled into the

measurement matrix.

with 16 cameras, have almost no occlusion because of a relatively empty working volume. Still,

the calibration point is visible in all cameras in only a fraction of all calibration frames. Worse,

points which are visible in all cameras usually span a small part of the possible working volume

thus making the estimation unstable. Occlusions and very different, or even disjoint, fields of

view were common problems when using the mobile version of our ViRoom [8, 27] system.

Calibration based only on the points visible in all cameras would be virtually impossible here.

The filled points also take part in the estimation of the non-linear distortion.

We will show that our automatic estimation of the non-linear lens parameters is able to

compensate for a huge distortion in the fish-eye lenses. This feature is necessary for very precise

shape reconstruction applications.

We have used our algorithm on several multi-camera setups scaling both quality and quantity

of the cameras, used. The two Blue-C setups have 16 cameras each. Firewire cameras are

synchronized by an external sync signal, each camera has its own computer running under Linux

for acquisition. The calibration sequences were acquired at 3–5 frames per second. The lower

capturing frequency allows us to fill the working volume without accumulation of an unnecessary

high number of points. The speed of the waving is dictated by the shutter time of the cameras.

It is desirable not to move very fast to avoid motion blur. The lenses span from 2.8 mm to

12 mm exhibiting considerable radial distortion. Both Blue-C setups are used for high quality

reconstructions, which calls for a very high precision of the camera models. We show that we

are able to calibrate the setups, achieving a reprojection error of about 1/5 pixel.
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Figure 4: Results of the Euclidean stratification for the Blue-C (top row) and ViRoom (bottom

row) setups. Small blue circles with numbers denote positions of the camera centers,

blue lines denote orientation of the optical axes. The red circles show the reconstructed

positions of the laser pointer.
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Figure 5: Results of the Linear model estimation. The left figure shows the point reprojections

in one of the cameras with significant radial distortion. The small circles denote the

detected points, the red ones are tentative outliers which were detected in the pairwise

RANSAC validation. The crosses are back-projected reconstructed calibration points.

The right figure shows average reprojection errors and standard deviations in each

camera. You can clearly distinguish cameras No. 9, 10, 17, 18 which are mounted

inside CAVE and have the shortest lenses and thus significant distortion.
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Figure 6: Complete projection model. The left figure shows the same camera as in the left figure

in Fig 5. The green circles are the originally detected points, the blue ones show points

after compensating for radial distortion. The right graph illustrates the well–balanced

reprojection error of around 1/5 a pixel. Compare with the reprojection of the linear

model in Fig. 5.
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Figure 7: Results of the Linear model estimation. Example of an unbalanced multi-camera

system. Camera 12 has a fish-eye lens with huge radial distortion.
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Figure 8: Results of the complete model estimation. Camera 12 still has a higher reprojection

error than the others. However, from the initial error of about 7 pixels, it decreased

to less than 0.4 pixels. The extreme radial distortion of the camera can be clearly

recognized in considerably different positions of the green (original points) and blue/red

circles (undistorted points).
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Figure 9: Example of a less controlled multi-camera setup. Note significant differences in the

camera fields of view. The filled points essentially go outside the image planes (in

graphs, denoted by the dashed rectangle). The last camera (bottom-right) is quite far

from the others and the points are clustered around the image centre only. The first

camera (top-left) has a very unbalanced spread of points. Note also the considerable

number of outliers caused by very difficult imaging conditions. The cameras are

synchronized based on TCP/IP communication only. Nevertheless, the 6-camera setup

is reliably calibrated, with less than a two pixel reprojection error.

The ViRoom setups, both mobile and static ones pose different challenges. Sub-pixel accuracy

is not strictly required, 3D shape reconstruction is not the main application here. The setups

are used for multi-camera tracking, activity monitoring, and telepresence applications. The

mobile version with six cameras and two laptops has been successfully used in a real factory

environment. Both static and mobile setups can contain varying number of simple firewire

cameras without external synchronization. One computer, a standard PC or a laptop running

on Linux, often has to serve more than just one camera. The acquisition is synchronized via

TCP/IP communication [8] which is naturally far less precise than external synchronization by

a HW system. The working volume often contains furniture and computers and it cannot be

completely darkened. The situation can be even worse. Frequently the camera fields of view only

marginally overlap. Still, our system is able to calibrate such setups with sufficient precision.

The estimation of the non-linear distortion is difficult in such environments and may fail. It

is typically necessary to fix the centre of the non-linear distortion to the image centre. Simply

speaking, you cannot get better precision of the calibration than your points are.
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5 Conclusion

A reliable scheme for a complete and fully automatic calibration of a multi-camera network has

been presented. A laser pointer or any similar bright spot object is the only required additional

hardware. Waving the object through the working volume is the only hand work required. The

object needs not to be visible in all cameras. The non-linear distortions are estimated from the

same data set.

Experiments with different multi-camera setups scaling quality and quantity demonstrated the

broad usability of our algorithm.
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We thank Ondřej Chum for his implementation of the 7-point RANSAC algorithm, Tomáš
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