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ABSTRACT

Motivated by results implying that the constituents of dark matter (DM) might be collisional, we consider a cosmological (toy-) model,
in which the DM itself possesses some sort of thermodynamic properties. In this case, not only can the matter content of the Universe
(the baryonic component, which is tightly gravitationally-bounded to the dark one, also being included) be treated as a classical
gravitating fluid of positive pressure, but, together with all its other physical characteristics, the energy of this fluid’s internal motions
should be taken into account as a source of the universal gravitational field. In principle, this form of energy can compensate for the
extra (dark) energy, needed to compromise spatial flatness, while the post-recombination Universe remains ever-decelerating. What
is more interesting, is that, at the same time (i.e., in the context of the collisional-DM approach), the theoretical curve representing
the distance modulus as a function of the cosmological redshift, μ(z), fits the Hubble diagram of a multi-used sample of supernova Ia
events quite accurately. A cosmological model filled with collisional DM could accommodate the majority of the currently-available
observational data (including, also, those from baryon acoustic oscillations), without the need for either any dark energy (DE) or
the cosmological constant. However, as we demonstrate, this is not the case for someone who, although living in a Universe filled
with self-interacting DM, insists on adopting the traditional, collisionless-DM approach. From the point of view of this observer, the
cosmologically-distant light-emitting sources seem to lie farther (i.e., they appear to be dimmer) than expected, while the Universe
appears to be either accelerating or decelerating, depending on the value of the cosmological redshift. This picture, which, nowadays,
represents the common perception in observational cosmology, acquires a more conventional interpretation within the context of the
collisional-DM approach.
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1. Introduction

The beginning of the 21st century was one of the most excit-
ing epochs for cosmology as a science. According to obser-
vational data on the temperature variations in the cosmic mi-
crowave background (CMB) that became in public at that epoch
(de Bernardis et al. 2000; Jaffe et al. 2001; Padin et al. 2001;
Stompor et al. 2001; Netterfield et al. 2002), now, we are quite
confident that the Universe can be adequately described by a spa-
tially flat Robertson-Walker (RW) cosmological model.

As a consequence, the total energy density, ε, of the Universe
matter-energy content, in units of the energy density εc = ρcc2

(equivalent to the critical rest-mass density, ρc =
3H2

0

8πG , where H0
is the Hubble parameter at the present epoch, c is the velocity
of light, and G is Newton’s universal constant of gravitation),
should be very close to unity, Ω = ε

εc
� 1, i.e., much larger than

the measured quantity,ΩM =
ρ
ρc
� 0.3 (Komatsu et al. 2009).

At the same time, high-precision distance measurements,
performed with the aid of the supernovae Ia (SNe Ia) standard
candles, indicated that, in any cosmological model with vanish-
ing cosmological constant, Λ, the far-off light-emitting sources
appear to be dimmer than expected (Riess et al. 1998; Perlmutter
et al. 1999).

The observational data then seemed to favour a Universe of
collisionless content (i.e., filled with matter in the form of dust)

and Λ � 0, in which ΩM � 0.3 and ΩΛ = Λc2

3H2
0
� 0.7 (Riess

et al. 2001, 2004). Since a non-vanishing cosmological constant
(necessarily) involves a repulsive (gravitational) force (see, e.g.,
Sahni 2004), the apparent dimming of the distant light-emitting
sources was attributed to a relatively recent phase of accelerated
expansion (see, e.g., Linder 2008).

The onset of the dimming of the cosmologically distant in-
dicators used (hence, the associated transition from acceleration
to deceleration), takes place at a relatively low value of the cos-
mological redshift, z, the so-called transition redshift, zt, which,
nowadays, is being (observationally) set at zt = 0.46 ± 0.13
(Riess et al. 2004, 2007). In this case, the cosmological constant
can be determined observationally, since, on theoretical grounds,

zt =
(
2 ΩΛ
ΩM

)1/3
−1 (see, e.g., Perivolaropoulos 2007, Eq. (21)), i.e.,

the transition redshift depends on the value of Λ. The particle-
physics vacuum does contribute an effective cosmological con-
stant, which could serve (also) as compensation to the extra en-
ergy needed to flatten the Universe (Sahni & Starobinsky 2000).
Unfortunately, the energy-density attributed to such a source is
10123 times larger than what is observed (see, e.g., Padmanabhan
2003; Sahni 2004).

Hence, it became evident that, for the above-mentioned ob-
servational results to be reconciled within a unified theoretical
framework, a different approach (i.e., other than the cosmologi-
cal constant) was needed.
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In this context, theorists have focused on two main ar-
eas: (i) the introduction of an exotic, negative-pressure fluid,
the dark energy (Caldwell et al. 1998), occasionally referred
to as quintessence (Carroll 1998); and (ii) the consideration
of alternative-gravity theories, such as the scalar-tensor theo-
ries (Esposito-Farese & Polarski 2001) and the f (R)-gravity
(Capozziello et al. 2003), together with several braneworld sce-
narios, including DGP-gravity (Dvali et al. 2000) and the land-
scape scenario (Bousso & Polchinski 2000).

Other physically-motivated models, predicting an acceler-
ated expansion, have also appeared in the literature, involv-
ing holographic gravity (Cohen et al. 1999; Li 2004; Pavón &
Zimdahl 2005), Chaplygin gas (Kamenshchik et al. 2001; Bean
& Doré 2003; Sen & Scherrer 2005), Cardassian cosmology
(Freese & Lewis 2002; Wang et al. 2003), theories of compact-
ified internal dimensions (Perivolaropoulos 2003), and mass-
varying neutrinos (Fardon et al. 2004; Peccei 2005).

However, most of these attempts were inhibited by the so-
called coincidence problem, i.e., the need to explain why the
Universe transferred from deceleration to acceleration so re-
cently (see, e.g., Perivolaropoulos 2007).

It has been more than a decade since the first observations,
which provoked the aforementioned scientific (r)evolution, be-
came in public, and, still, no undisputed theoretical framework
has been developed to accommodate them (for a detailed review
see, e.g., Caldwell & Kamionkowski 2009). In the meantime, the
need for an extra (dark) energy component has been confirmed
by other observational methods, including galaxy clusters dy-
namics (Allen et al. 2004), the integrated Sachs-Wolfe (ISW)
effect (Boughn & Crittenden 2004), and baryon acoustic oscilla-
tions (BAO) (Eisenstein et al. 2005; Percival et al. 2010). In spite
of the wealth of references, previous studies have been far from
exhaustive (see, e.g., Albrecht et al. 2006; Peacock et al. 2006)
and, perhaps, we should keep our options open, also, to more
conventional interpretations (see, e.g., Buchert 2000, 2001; Kolb
et al. 2006; Celerier 2007; Ellis 2009).

On the other hand, much evidence has already been accu-
mulated in support of a (non-baryonic) DM component in the
Universe matter-content (see, e.g., Tegmark et al. 2006; Spergel
et al. 2007). Among other pieces of evidence, this support in-
cludes flattened galactic rotation curves (Begeman et al. 1991;
Borriello & Salucci 2001), the weak gravitational lensing of
distant galaxies by (some dark) foreground structure (Hoekstra
et al. 2002), and the weak modulation of strong lensing around
individual massive elliptical galaxies (Moustakas & Metcalf
2003). On the scale of galaxy clusters, observations (of radial ve-
locities, weak lensing, and X-ray emission) indicate a total mass
density almost ten times higher than the corresponding density
in baryons (Bahcall & Fan 1998; Kashlinsky 1998; Tyson et al.
1998). On cosmological scales, the anisotropies observed in the
CMB have led to an estimate of the total-mass density of the or-
der of ΩMh2 = 0.1358 ± 0.0037, where h is the Hubble param-
eter in units of 100 km s−1 Mpc−1 (Komatsu et al. 2009). In con-
trast, measurements of the light-chemicals’ abundances (Olive
et al. 2000) have led to an estimate of the baryonic-mass density
of the order of ΩBh2 = 0.02273 ± 0.00062. The combination of
these results suggests that, more than 85% (by mass) of the mat-
ter in the Universe consists of non-luminous and non-baryonic
material.

Although we do not know for certain how the DM came
to be formed, a sizeable relic abundance of weakly-interacting
massive particles (WIMPs) is generally expected to have been
produced as a by-product of the Universe’s hot youth (see, e.g.,
Kolb & Turner 1990, p. 369). These particles decouple from

radiation much earlier than pure-baryonic matter does. Hence,
very soon after recombination (tR), the baryons fall into deep
potential wells of the already evolved DM-perturbations and be-
come bounded to them, i.e., for t > tR, there are no freely-
floating baryons around (Olive 2003).

Among the various candidates for DM constituents, the
thermal WIMPs remain one of the most attractive. They ap-
pear, generically, in theories of weak-scale physics beyond the
standard model, while giving the appropriate relic abundance
(Srednicki et al. 1988; Gondolo & Gelmini 1991). These par-
ticles are also helpful to consider in terms of direct and indirect
detection of DM (see, e.g., Jungman et al. 1996; Bertone et al.
2005), because they must have some connection to standard-
model particles (see, e.g., Hooper 2009). In addition to debating
their precise nature, the scientific community used to argue that
the WIMPs should be collisionless.

However, many results from high-energy particle detectors,
such as the ATIC (Chang et al. 2008) and PAMELA (Adriani
et al. 2009), combined with data from the Wilkinson microwave
anisotropy probe (WMAP) survey (Hooper et al. 2007), have
revealed an unusually high electron-positron production in the
Universe, much more than anticipated by SNe explosions or
cosmic-ray collisions. These results have led many scientists to
argue that among the best candidate sources of these high-energy
events are the annihilations of WIMPs (see, e.g., Barger et al.
2008; Bergstrom et al. 2008; Cirelli & Strumia 2008; Regis &
Ullio 2008; Baushev 2009; Cholis et al. 2009a,b; Fornasa et al.
2009; Fox & Poppitz 2009; Kane et al. 2009; Zurek 2009, for an
extensive, though incomplete list), i.e., that the DM constituents
can be slightly collisional (see, e.g., Spergel & Steinhardt 2000;
Arkani-Hamed et al. 2009; Cirelli et al. 2009; Cohen & Zurek
2010), although, some studies disagree with this interpretation
(see, e.g., Feng et al. 2010).

A cosmological model filled with self-interacting DM could
be a relatively inexpensive solution to the DE problem, and, sev-
eral ways of accommodating both the DM and the DE into a
unified theoretical framework have been considered (see, e.g.,
Zimdahl et al. 2001; Bilić et al. 2002; Balakin et al. 2003;
Scherrer 2004; Lima et al. 2008; Basilakos & Plionis 2009,
2010; Dutta & Scherrer 2010). In this context, we suggest that,
phenomenologically, the self-interacting DM could attribute to
the Universe matter-content some sort of fluid-like properties,
and (so) lead to a conventional approach to the DE concept.

The main outstanding problem of the current cosmological
picture is that the Universe must contain an amount of energy
that is considerably higher than the equivalent of the total rest-
mass of its matter content. However, if the DM constituents col-
lided with each other frequently enough, enabling their (kinetic)
energy to be re-distributed, i.e., if the DM itself possessed some
sort of thermodynamic properties, a conventional extra-energy
component might be present in the Universe, given by the en-
ergy of the internal motions of the collisional-DM fluid.

On this basis, it is worth examining the evolution and the
dynamical characteristics of a cosmological model (not neces-
sarily reflecting our own Universe), in which (in principle) there
is no DE at all. The matter-energy content of this model consists
solely of two components, i.e., the DM (dominant) and the bary-
onic one (subdominant), both having the abundances attributed
to them by analyses of the five-year survey of the WMAP
(Dunkley et al. 2008; Komatsu et al. 2009). Accordingly, we
demonstrate that these two components are (by themselves)
sufficient (i) to reproduce the result that (today) Ω = 1;
(ii) to account for the observed dimming of the distant light-
emitting sources; and (iii) to explain the apparent accelerated
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expansion of the Universe. All the above provided that, macro-
scopically, these two constituents (basically the dark one) form
a gravitating fluid with a thermodynamical content. In this case,
together with all the other physical characteristics, the energy
of this fluid’s internal motions should (also) be taken into ac-
count as a source of the universal gravitational field. Although
speculative, the idea that the extra (dark) energy needed to flat-
ten the Universe could be attributed to the internal motions of a
collisional-DM fluid is (at least) intriguing.

This paper is organized as follows. In Sect. 2, we explore
the dynamical characteristics of a cosmological model driven
by an ideal fluid, consisting (mainly) of (thermodynamically-
involved) DM, with positive pressure, the volume elements of
which perform adiabatic flows. Accordingly, after deriving the
corresponding scale factor, we determine the functional form
of several parameters of cosmological significance, each one
depending on the cosmological redshift, such as the luminos-
ity distance and the distance modulus of the cosmologically-
distant light-emitting sources, together with the Hubble and the
deceleration parameters, which characterize the cosmic expan-
sion. The corresponding results suggest that, in the context of
the collisional-DM treatment, the extra (dark) energy (needed
to compromise spatial flatness) can be compensated by the
energy of the internal motions of this fluid, while, the post-
recombination Universe remains ever-decelerating. However, as
we demonstrate in Sect. 3, this is not the case for someone who
(although living in a Universe filled with collisional DM) insists
on adopting the traditional (collisionless-DM) approach. From
the point of view of this observer, besides the need for an extra-
energy component (for confronting the CMB-based observa-
tional results), the cosmologically-distant light-emitting sources
seem to lie farther (i.e., they appear to be dimmer) than expected,
while the Universe appears to be either accelerating or decelerat-
ing, depending on the value of the cosmological redshift. Finally,
we conclude in Sect. 4.

2. A Universe filled with collisional dark matter

It is generally accepted that the study of the CMB has proven to
be a powerful tool in exploring the post-recombination Universe.
According to the various CMB-oriented observational data, the
Universe has emerged out of the radiation epoch as a spatially-
flat RW model (see, e.g., de Bernardis et al. 2000)

ds2 = S 2(η)
[
c2dη2 −

(
dx2 + dy2 + dz2

)]
, (1)

where η is the conformal time and S (η) is the scale factor. As a
consequence, the value of the Hubble parameter at the present
epoch is, by definition, given by

H2
0 =

8πG
3
ρc (2)

(see, e.g., Peacock 1999, p. 77). The evolution of this model de-
pends on the nature of the source that drives the universal gravi-
tational field, i.e., its matter-energy content.

Along the lines of the collisional-DM approach, in speci-
fying the Universe matter-energy content, we assume that, in
principle, there is no DE at all. Instead, we admit that the DM,
together with the small, baryonic “contamination” (the latter
is too tightly gravitationally-bounded to the former), possess
fluid-like properties. In this sense, the collisions of the WIMPs
maintain a tight coupling between them and their energy can
be re-distributed, i.e., the DM itself also possesses some sort of

thermodynamical content. In this case, the evolution of the post-
recombination Universe is no longer driven by dust, but, by a
gravitating fluid of positive pressure, p, satisfying the equation
of state

p = wρc2, (3)

where ρ is the rest-mass density (the part, equivalent to the en-
ergy density ρc2, that remains unaffected by the internal motions
of the cosmic fluid) and 0 ≤ w = ( cs

c )2 ≤ 1 is a dimension-
less constant, which measures the square of the speed of sound,
cs, in units of c2. Now, the fundamental units of the Universe
matter-content are the volume elements of the collisional-DM
fluid (elements of fluid, each one consisting always of the same
particles).

The motions of the volume elements in the interior of a con-
tinuous medium are governed by the equations

T μν;ν = 0, (4)

where Greek indices refer to the four-dimensional space-time (in
connection, Latin indices refer to the three-dimensional spatial
slices), the semicolon denotes covariant derivative, and T μν is the
energy-momentum tensor of the Universe matter-content, i.e.,
basically (but not solely), of the collisional-DM fluid.

Confining ourselves to the particular case of a perfect fluid,
T μν takes on the standard form

T μν = (ε + p)uμuν − pgμν, (5)

where uμ = dxμ/ds is the four-velocity (uμuμ = 1) at the posi-
tion of a fluid’s volume element, gμν are the contravariant com-
ponents of the Universe metric tensor, and ε is this fluid’s total-
energy density. In an (ideal) equilibrium state, i.e., in the absence
of shear, viscocity and heat conductivity, ε is decomposed to

ε = ρc2 + ρΠ (6)

(for a detailed analysis see, e.g., Fock 1959, pp. 81−83 and
91−94), where Π is the potential energy per unit rest-mass, as-
sociated with the infinitesimal deformations (expansions or/and
compressions) of the fluid. Upon consideration of adiabatic pro-
cesses, Π coincides with the energy of this fluid’s internal mo-
tions (per unit rest-mass), thus defining ρΠ as the corresponding
energy density, associated with the thermodynamical content of
the (collisional) DM.

Along these lines, the equations represented by Eq. (4) are
the hydrodynamic flows of the volume elements in the interior
of a perfect-fluid source

uμ;νu
ν =

1
ε + p

p,κ
(
δκμ − uμu

κ
)
, (7)

where the comma denotes a partial derivative and δκμ is the
Kronecker symbol. The equations given in Eq. (7) can be cast
in the more convenient form

duκ

ds
+ Γκμνu

μuν =
1
ε + p

hκλp,λ, (8)

where Γκμν are the Christoffel symbols corresponding to the
Universe metric tensor, gμν, and hκλ = gκλ−uκuλ is the projection
operator.

However, in a maximally symmetric cosmological setup,
there is no real difference between hydrodynamic flows and
the ballistic motions along the (non-intersecting) geodesic tra-
jectories xμ = const., since the equations of motion given by
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Eq. (8) are trivially satisfied by the fluid’s volume elements
with uμ = (1, 0, 0, 0). In other words, in comoving coordinates,
both sides of Eq. (8) vanish identically, resulting in the geodesic
equations

duκ

ds
+ Γκμνu

μuν = 0 (9)

and the equations of the ballistic trajectories

hκλp,λ = 0. (10)

Notice however that, in this case, Eq. (10) is satisfied only be-
cause of the form of the metric tensor in Eq. (1), i.e., even if p, λ
does not vanish. Hence, in comoving coordinates, the geodesic
motions and the hydrodynamic flows of the cosmological model
given by Eq. (1) are, practically, indistinguishable. Therefore,
a comoving observer of the cosmic expansion also traces the
hydrodynamic flow of the homogeneous cosmic fluid and the
Weyl’s postulate is valid (see, e.g., Narlikar 1983, p. 91).

As a consequence, the dynamical evolution of the model
given by Eq. (1) is governed by the Friedmann equation (with
Λ = 0) of the classical Friedmann-Robertson-Walker (FRW)
cosmology

H2 =
8πG
3c2
ε, (11)

where

H =
S ′

S 2
(12)

is the Hubble parameter as a function of the scale factor, and the
prime denotes differentiation with respect to η.

Nevertheless, inherently, there is an essential difference be-
tween our model and the rest of the classical FRW cosmologies.
In our case, the basic matter constituents (although they may re-
semble test particles receding from each other) are the volume
elements of a collisional-DM fluid, i.e., they possess some sort
of internal structure, hence thermodynamical content. Therefore,
the functional form of ε in Eq. (11) is no longer given by ρc2

alone, but by Eq. (6) (see also Narlikar 1983, pp. 61, 62).
In this model, the first law of thermodynamics for adiabatic

flows, given by,

dΠ + pd

(
1
ρ

)
= 0 (13)

(see, e.g., Chandrasekhar 1965), results in

Π = Π0 + wc2 ln

(
ρ

ρ0

)
, (14)

where the constants ρ0 and Π0 are assumed to denote the cor-
responding present-time values. Accordingly, the total-energy
density of the Universe matter-energy content is written in
the form

ε = ρc2

[
1 +
Π0

c2
+ w ln

(
ρ

ρ0

)]
· (15)

On the other hand, for every value of w, the conservation law
T 0ν

;ν = 0, in terms of the metric tensor of Eq. (1), yields

ε′ + 3
S ′

S
(ε + p) = 0, (16)

which, upon consideration of Eqs. (3) and (6), results in

ρ = ρ0

(S 0

S

)3

, (17)

where S 0 is the value of S (η) at the present epoch. Equation (17)
represents the conservation of the total mass in a cosmological
model in which matter dominates, i.e., for every η within the
post-recombination epoch (see, e.g., Tsagas et al. 2008).

With the aid of Eqs. (15) and (17), Eq. (11) is written in
the form

H2 =
8πG

3
ρ0

(S 0

S

)3 [
1 +
Π0

c2
+ 3w ln

(S 0

S

)]
· (18)

Now, combining Eqs. (2) and (18), we obtain(
H
H0

)2

= ΩM

(S 0

S

)3 [
1 +
Π0

c2
+ 3w ln

(S 0

S

)]
· (19)

At the present epoch, where S = S 0 and H = H0, we have

ΩM

(
1 +
Π0

c2

)
= 1, (20)

from which, the present-time value of the internal energy per
unit rest-mass, Π0, emerges as

Π0 =

(
1
ΩM
− 1

)
c2. (21)

Since ΩM < 1, Eq. (21) suggests that, at the present epoch, the
energy density, ρ0Π0, of the internal motions of a gravitating
perfect fluid (consisting, mainly, of collisional DM and a small
baryonic contamination) dominates over the corresponding rest-
mass quantity, i.e.,

ρ0Π0 =

(
1
ΩM
− 1

)
ρ0c2 > ρ0c2. (22)

But, what is more important, is that, at the same time, the com-
bination of Eqs. (6) and (21) results in the following value of the
total-energy density parameter

Ω =
ε0

εc
=
ρ0c2

ρcc2
+
ρ0Π0

ρcc2
= ΩM + ΩM

Π0

c2
= 1. (23)

In view of Eq. (23), the extra (dark) energy, needed to flatten the
Universe, can be provided by the energy of the internal motions
of a thermodynamically-involved-DM fluid.

On the other hand, upon consideration of Eq. (21), Eq. (19)
is written in the form(

H
H0

)2

=

(S 0

S

)3 [
1 + 3wΩM ln

(S 0

S

)]
· (24)

Equation (24) can be solved, explicitly, in terms of the error
function (see Appendix A). However, it can become particu-
larly transparent (and useful) if we take into account that, since
0 ≤ w ≤ 1 and ΩM � 0.3, the combination wΩM can be quite
small, i.e., wΩM � 1. In this case, we may take the natural log-
arithm on both sides of Eq. (24), to obtain

ln

(
H
H0

)2

= ln
(S 0

S

)3

+ ln

[
1 + wΩM ln

(S 0

S

)3]
· (25)
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Within the post-recombination era, S 0
S ≤ 1090, hence ln

(
S 0
S

)3
≤

21. Therefore, as long as wΩM � 1, we have

ln

[
1 + wΩM ln

(S 0

S

)3]
� wΩM ln

(S 0

S

)3

, (26)

so that, to terms linear in wΩM, Eq. (24) results in

H � H0

(S 0

S

) 3
2 (1+wΩM)

· (27)

In this case, using Eq. (12), we can solve Eq. (27), to determine
the scale factor of the collisional-DM model (1), as follows

S = S 0

(
η

η0

) 2
1+3wΩM

, (28)

where we have defined the present-time value, η0, of the confor-
mal time, η, as

η0 =
2

(1 + 3wΩM) H0S 0
· (29)

For w � 0, Eq. (28) is the natural generalization of the corre-
sponding collisionless-DM model, the well-known Einstein-de
Sitter (EdS) Universe (S ∼ η2) (see, e.g., Peacock 1999, pp. 77,
83 and 142−144).

Eventually, in the collisional-DM model given by Eq. (1),
the cosmological redshift parameter is defined as

z + 1 =
S 0

S
, (30)

thus Eq. (27) is written in the form

H = H0(1 + z)
3
2 (1+wΩM). (31)

We note the striking functional similarity between Eq. (31)
and the corresponding result for a dark-energy fluid with equa-
tion of state in the form of Eq. (3) (cf. Eqs. (13) and (14) of
Perivolaropoulos 2007). In our case, however, w ≥ 0 and, there-
fore, on the approach to z = 0, H(z) decreases monotonically. In
other words, a cosmological model filled with collisional DM,
necessarily, decelerates its expansion.

This can be readily verified, by expressing the corresponding
deceleration parameter, q, in terms of H and z, as

q(z) =
dH/dz
H(z)

(1 + z) − 1 (32)

(cf. Eq. (16) of Perivolaropoulos 2007), which, in view of
Eq. (31), yields

q(z) =
1
2

(1 + 3wΩM) > 0, (33)

independently of z, even for w = 0. In other words, the model
of a gravitating perfect-fluid source, as it stands, i.e., either pres-
sureless (geodesic motions) or not (hydrodynamic flows), seems
to be inappropriate for explaining the apparent accelerated ex-
pansion of the Universe.

The actual reason is that it does not have to account for
any acceleration at all. As we demonstrate in the next section,
in a Universe filled with collisional (i.e., thermodynamically-
involved) DM, the observed dimming of the distant light-
emitting sources can be explained without the assumption of the
accelerated expansion.

3. Mistreating the dark matter as collisionless

When the (unexpected) dimming of the SNe Ia standard candles
was first discovered, the common perception about the cosmos,
to the best of our knowledge, was that the DM constituents are
collisionless, thus the various motions in the Universe were (nec-
essarily) interpreted as geodesic motions of test particles reced-
ing from each other, i.e.,

dũκ

ds̃
+ Γ̃κμνũ

μũν = 0. (34)

Tilde variables are used, to distinguish the various quantities
in Eq. (34) from the corresponding quantities used in Eq. (9),
thus reflecting that the physical content of a collisionless-DM
Universe (in which both the pressure and the energy of the inter-
nal motions are assumed to be negligible and, therefore, disre-
garded) is entirely different from that of the thermodynamically-
involved-DM model (where p, Π � 0).

In other words, the dynamical properties of a dust model are
no longer described by gμν, i.e., Eq. (1), but rather in terms of an-
other metric tensor, g̃μν, for which the corresponding (spatially-
flat) line-element is written in the form

ds̃2 = R2(η)
[
c2dη2 −

(
dx2 + dy2 + dz2

)]
. (35)

Clearly, the evolution of this model is given in terms of the
scale factor R(η). From the point of view of an observer who
(mis)treats the DM as collisionless, g̃μν is the metric tensor upon
which he/she should rely on, in interpreting observations.

However, we recall that, for this observer, the accumulated
evidence in favour of spatial flatness (necessarily) leads to the
assumption of an extra (dark) energy component, in contrast to
the collisional-DM case, where this assumption would no longer
be necessary. In the latter case, the appropriate candidate to pro-
vide the extra energy needed to flatten the Universe is already
included in the model (the energy of the internal motions).

Furthermore, in the collisionless-DM scenario, every theo-
retical effort to interpret the (apparent) dimming of the SNe Ia
standard candles, naturally, should also be based on g̃μν and the
cosmologically relevant parameters arising from it. Accordingly,
a possible explanation could be that, recently, the Universe ac-
celerated its expansion (Riess et al. 1998; Perlmutter et al. 1999).
This assumption, however, attributes unnecessarily-exotic prop-
erties to the extra amount of energy needed to account for the
spatial flatness (e.g., it should be repulsive in nature, i.e., of neg-
ative pressure, etc.). Therefore, we cannot help but wondering
whether there is another (more conventional) explanation to be
found (also) within the context of the collisional-DM model.

In what follows, we demonstrate that both the observed dim-
ming of the distant light-emitting sources and the accelerated
expansion of the Universe could be only apparent, based on the
misinterpretation of several cosmologically-relevant parameters,
by someone who (although living in a Universe filled with colli-
sional DM) insists on adopting the traditional (collisionless-DM)
approach.

To explore this possibility, we note that the collisional-DM
treatment of the Universe’s matter content (in terms of which
p � 0 and the motions of its constituents are, in principle, hydro-
dynamic flows) can be related to the collisionless-DM approach
where p̃ = 0 and the corresponding motions are, necessarily,
geodesics, by means of a conformal transformation of the metric
tensor (Kleidis & Spyrou 2000; Spyrou 2005; Spyrou & Tsagas
2004, 2010). Accordingly, from the original metric, gμν, in terms
of which the hydrodynamic flows have their well-known form
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given by Eq. (8), we can transfer the problem to a virtual metric,
g̃μν, in terms of which the volume elements of the fluid move
along geodesic-like trajectories, i.e., their velocity-vector obeys
Eqs. (34) (in connection, see Synge 1937; Lichnerowicz 1967,
pp. 24−29 and 54−61; Carter 1979). The appropriate (confor-
mal) transformation for such a transition is

g̃μν = F2 (xκ) gμν, (36)

where, upon consideration of isentropic flows, the conformal
factor F(xκ) takes on the functional form (Kleidis & Spyrou
2000)

F (xκ) = C
(
ε + p
ρc2

)
= C

[
1 +

1
c2

(
Π +

p
ρ

)]
, (37)

with C being an arbitrary (integration) constant. From Eq. (37),
it becomes evident that F(xκ) is, essentially, the specific enthalpy
of the ideal fluid under consideration.

Verozub (2008) extrapolated these results to include every
Riemannian space-time and not just the metric attributed to a
bounded, perfect-fluid source. In particular, he showed that the
adiabatic hydrodynamic motion of an ideal-fluid element in a
space-time with metric tensor gμν, takes place along the geodesic
lines of a Riemannian manifold with metric tensor given by the
combination of Eqs. (36) and (37).

With the aid of the technique developed by Kleidis & Spyrou
(2000), we then determine the scale factor of the spatially-
flat cosmological model in Eq. (35), i.e., the scale factor of
the Universe as inferred by someone who, although living in a
collisional-DM Universe (where p, Π > 0 and dp

dη � 0), misin-
terprets the DM as collisionless ( p̃ = 0).

In principle, one can (always) use a (conformal) transforma-
tion to remove (from the rhs of Eqs. (8)) either the pressure gra-
dient, which measures the response to non-gravitational forces,
or the pressure itself (see, e.g., Lichnerowicz 1967, p. 26).
Nevertheless, something like this (usually) comes with a price
(see, e.g., Bruneton & Esposito-Farese 2007): the new metric, in
terms of which the DM appears to be pressureless, is no longer
a solution of general relativity (GR), but, rather, a solution to a
modified theory of gravity. The reason is that, in terms of this
new metric (i.e., after the transformation (36) is applied), the ac-
tion of the original gravitational field is also modified, acquiring
extra terms in addition to the Einstein-Hilbert Lagrangian (see
Appendix B). In other words, every effort to treat a collisional-
DM fluid as pressureless, cannot be accomplished in the context
of GR. As a consequence, R(η) is no longer a solution of the
original Friedmann equation, given by Eq. (11).

In view of Eq. (36), the scale factor of the Universe as it is
inferred by a supporter of the collisionless-DM scenario, R(η),
is related to the corresponding quantity of the collisional-DM
model, S (η), as follows

R(η) = F (xκ) S (η), (38)

where, by virtue of Eqs. (7), (17), and (30), F(xκ) is given, in
terms of z, by

F(z) =
C
ΩM

(1 + wΩM [1 + 3 ln(1 + z)]) . (39)

In Eq. (39), the arbitrary integration constant, C, can be deter-
mined, by demanding that, in the (isobaric) pressureless case,
these two models should coincide, i.e., g̃μν = gμν. In other words,
for w = 0 = p, R(η) = S (η, w = 0), which represents the EdS
model. Hence, F(w = 0) = 1.

For p = const. = p0, the first law of thermodynamics given
in Eq. (13) yields

Π +
p0

ρ
= const., (40)

which, in the particular case of dust, where p0 = 0, results in
Π = const. = Π0. Now, from Eq. (19) it becomes evident that,
at the present epoch, Π (= Π0) is (also) given by Eq. (21), even
for w = 0. Accordingly, inserting Eq. (21) into Eq. (37), we find
that, the condition F(w = 0) = 1 leads to

C = ΩM. (41)

As a consequence, Eq. (39) results in

F(z) = 1 + wΩM [1 + 3 ln(1 + z)] . (42)

Using Eqs. (38) and (42), we can then express several cosmolog-
ically relevant parameters of the collisional-DM model in terms
of their collisionless-DM counterparts, such as the cosmologi-
cal redshift, the luminosity distance, and the distance modulus
of the various light-emitting sources, together with the Hubble
and the deceleration parameters, which characterize the cosmic
expansion.

3.1. The cosmological redshift

A supporter of the collisionless-DM scenario would define the
corresponding cosmological redshift parameter, z̃, as

z̃ + 1 =
R (η0)
R(η)

, (43)

which, upon consideration of Eq. (38), is written in the form

z̃ + 1 =
F (η0)
F(η)

(z + 1), (44)

where

F (η0) =
R (η0)
S (η0)

= 1 + wΩM. (45)

Taking into account Eq. (42), Eq. (44) results in

z̃ + 1 =
1 + wΩM

1 + wΩM[1 + 3 ln(1 + z)]
(z + 1). (46)

Confining ourselves to relatively low values of the cosmological
redshift parameter (e.g., z < 5), to ensure that the combination
3wΩM ln(1+z) remains sufficiently-lower than unity even for rel-
atively large values of the combination wΩM (e.g., wΩM ∼ 0.1,
i.e., w ∼ 1

3 ), we can apply the technique used in Eqs. (25)−(27),
to obtain

1 + z̃ � (1 + z)1−3wΩM . (47)

In this case, we note that, for every (fixed) value of the cosmo-
logical redshift z, i.e., as defined in the collisional-DM model,
the corresponding collisionless-DM quantity z̃ is always a little
bit smaller (z̃ < z).

In other words, on observing a light-emitting source of the
collisional-DM model, an observer who adopts the collisionless-
DM scenario (realizing redshifts as z̃ instead of z), necessarily
admits that this source lies a little bit farther (z) than expected (z̃).
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3.2. The luminosity distance and the distance modulus

Nowadays, the most direct and reliable method for determining,
observationally, the (relatively) recent history of the Universe
expansion, is to measure the redshift and the apparent luminos-
ity (equivalently, the apparent magnitude, m) of cosmologically-
distant indicators (standard candles), whose absolute luminos-
ity (equivalently, the absolute magnitude, M) is assumed to be
known.

SN Ia events constitute one of the most suitable cosmo-
logical standard candles (Plionis et al. 2009). With the aid of
these events, a number of scientific groups have attempted to
find evidence in support of a recently-accelerating stage of the
Universe (Garnavich et al. 1998; Riess et al. 1998, 2001, 2004,
2007; Perlmutter et al. 1999; Knop et al. 2003; Tonry et al.
2003; Astier et al. 2006; Wood-Vasey et al. 2007; Kowalski et al.
2008; Hicken et al. 2009). In each and every one of these sur-
veys, the SN Ia events, at peak luminosity, appear to be dimmer
(i.e., they seem to lie farther away) than expected. This result
was, eventually, accommodated within the context of the concor-
dance model, by a DE fluid of negative pressure, with ΩX ∼ 0.7
(see, e.g., Spergel et al. 2003; Tonry et al. 2003). However, in
view of Eq. (47), there may be also another, more conventional
interpretation.

Photons travel along null geodesics, ds̃2 = 0 = ds2, which re-
main unaffected by conformal transformations. Accordingly, in
both the collisional-DM and collisionless-DM approaches, the
radial distance of a light-emitting source (in comoving coordi-
nates) is the same, i.e.,

r̃ = c (ηr − ηe) = r, (48)

where ηr and ηe are the conformal times of reception and emis-
sion of light, respectively (usually, ηr = η0).

In this case, with the aid of Eq. (47), the formula determining
the luminosity distance in a spatially-flat collisional-DM model

dL(z) = rS (η0) (1 + z) (49)

(see, e.g., Peacock 1999, p. 92) can be expressed in terms of the
corresponding collisionless-DM quantity

d̃L (z̃) = r̃R (η0) (1 + z̃) (50)

as

dL

d̃L
=

1
1 + wΩM

(1 + z)3wΩM . (51)

This relation is very interesting. It suggests that, in a Universe
containing collisional DM (i.e., as long as w � 0), there exists a
characteristic (transition) value of the cosmological redshift,

zc = (1 + wΩM)
1

3wΩM − 1, (52)

such that, the luminosity distance of the various light-emitting
sources located at z > zc, is always larger than what is inferred by
a supporter of the collisionless-DM scenario. Therefore, an ob-
server who treats the DM as collisionless (measuring distances
in terms of d̃L) necessarily admits that any standard candle lo-
cated at z > zc lies farther than expected, i.e., d̃L < dL.

The same also happens in the case of the distance moduli
corresponding to dL and d̃L. The K-corrected distance modulus,
μ(z) = m − M, of a light-emitting source in the collisional-DM
model is given by

μ(z) = 5 log

(
dL

Mpc

)
+ 25 (53)

(see, e.g., Narlikar 1983, Eqs. (13.10) and (13.12), p. 359),
where dL is measured in megaparsecs (Mpc). In a similar
fashion,

μ̃ (z̃) = 5 log

(
d̃L

Mpc

)
+ 25 (54)

is the distance modulus of the same source, as defined by
someone who, although living in the collisional-DM model, in-
sists on adopting the (traditional) collisionless-DM approach.
Subtracting Eqs. (53) and (54) by parts, and using Eq. (51), we
obtain

μ = μ̃ + 15wΩM log(1 + z) − 5 log (1 + wΩM) . (55)

According to Eq. (55), any light-emitting source of the
collisional-DM Universe located at z > zc, from the point of view
of an observer who insists on adopting the collisionless-DM ap-
proach (treating the various distance moduli in terms of μ̃), ap-
pears to be dimmer than expected, i.e., μ̃ < μ.

We cannot help but notice the prominent similarity between
the characteristic value zc and the transition redshift, zt, which,
according to a supporter of the collisionless-DM scenario, sig-
nals the onset of the dimming of the SNe Ia standard candles,
something that is interpreted (by such an observer) as an entry
into a phase of accelerated expansion. As we see, what actu-
ally happens in a collisional-DM model is that, from the point
of view of someone who incorrectly assumes the DM as colli-
sionless (i.e., measuring cosmological distances in terms of d̃L
instead of the truly-measured quantity dL), an inflection point
in the d̃L versus z diagram (namely, zc) will arise anyway. For
wΩM = 0.1, i.e., w = 1

3 (the DM consists of relativistic particles),
the characteristic transition value in Eq. (52) is set at zc = 0.37,
while, for lower values of w, zc reaches up to 0.39. These results
lie within the observationally traced range of values concern-
ing zt, namely zt = 0.46±0.13 (Riess et al. 2004, 2007). In other
words, the spatially-flat collisional-DM model given by Eq. (28)
does not suffer from the coincidence problem.

Therefore, if the DM possesses some sort of thermodynami-
cal content, then, it is possible that (i) the “infernous” discrep-
ancy between the expected value of the distance modulus (μ̃) of
a SN Ia standard candle and the corresponding observed one (μ);
and (ii) the accompanying inflection point, zt, that signals the
transition from deceleration to acceleration, may both arise only
because many cosmologists (although living in a collisional-DM
model) insist, instead, on adopting the (traditional) collisionless-
DM approach. In the next section, we demonstrate that this is
exactly what happens in a collisional-DM Universe.

3.3. The Hubble and the deceleration parameters

By virtue of Eq. (38), the Hubble parameter inferred by a sup-
porter of the collisionless-DM scenario, H̃, is written in terms
of H as

H̃ =
1
F

H − 1
S

d
dη

(
1
F

)
, (56)

from which, a much more interesting relation can be obtained in
terms of the cosmological redshift. By taking into account that

1
S

d
dη

(
1
F

)
= −(1 + z) H

d
dz

(
1
F

)
, (57)

Eq. (56) is written in the form

H̃ = H
d
dz

(
1 + z

F

)
, (58)
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which, in view of Eq. (42), results in

H̃ = H
1 − 2wΩM + 3wΩM ln(1 + z)

(1 + wΩM [1 + 3 ln(1 + z)])2
(59)

or else

H̃ = H0(1 + z)
3
2 (1+wΩM)

×
1 − 2wΩM + 3wΩM ln(1 + z)

(1 + wΩM[1 + 3 ln(1 + z)])2
, (60)

where we have also used Eq. (31). We note that, to terms linear
in wΩM,

H̃0 = H0 (1 − 4wΩM) , (61)

i.e., within the context of the collisionless-DM approach, at the
present epoch (when z = 0), the Universe expands only as long
as wΩM <

1
4 , and, in any case, at a lower rate than the collisional-

DM treatment (H0) implies. In view of Eq. (47), i.e., at relatively
low values of z, Eq. (60) can be written in terms of z̃, as

H̃ = H0 (1 + z̃)
3(1+wΩM)
2(1−3wΩM) (1 − 3wΩM)

× 1 − 5wΩM + 3wΩM ln (1 + z̃) + O (wΩM)2[
1 − 2wΩM + 3wΩM ln (1 + z̃) + O (wΩM)2

]2
· (62)

We verify that, to terms linear in wΩM, Eq. (61) is (also) valid at
z̃ = 0.

By analogy with Eq. (32), a supporter of the collisionless-
DM scenario would define the corresponding deceleration pa-
rameter, q̃, as

q̃ (z̃) =
dH̃/dz̃

H̃ (z̃)
(1 + z̃) − 1, (63)

which, by virtue of Eq. (62), yields

q̃ (z̃) =
1
2

[
1 − 4wΩM + 6wΩM ln (1 + z̃) + O (wΩM)2

1 − 10wΩM + 6wΩM ln (1 + z̃) + O (wΩM)2

]
· (64)

Now, the condition for accelerated expansion (q̃ < 0) is trans-
lated to

[1 − 4wΩM + 6wΩM ln (1 + z̃)]

× [1 − 10wΩM + 6wΩM ln (1 + z̃)] < 0, (65)

from which, to terms linear in wΩM, we obtain

q̃ (z̃) < 0⇔ 1 − 14wΩM + 12wΩM ln (1 + z̃) < 0. (66)

From Eq. (66) it becomes evident that, from the point of view
of someone who insists on adopting the collisionless-DM ap-
proach, q̃(z̃) < 0 at cosmological redshifts

z̃ < z̃t = e
14wΩM−1

12wΩM − 1. (67)

This relation is very interesting: it suggests that, if the Universe
matter-content is treated as a collisional-DM fluid with w being
larger than a critical value, wc, such that

wΩM > wcΩM =
1
14
≈ 0.0714 (68)

(i.e., w > wc ≈ 0.238), then, from the point of view of someone
who incorrectly assumes the DM as collisionless, there exists a

transition value, z̃t, of z̃, below which, the post-recombination
Universe (as being realized by such an observer) is accelerating,
independently of any notion of DE or the cosmological constant.

In other words, if the Universe evolution is driven by a
collisional-DM fluid with w > wc, then, the apparent acceler-
ation of the cosmic expansion could (very well) be due to a mis-
interpretation of several cosmologically-relevant parameters, by
an observer who (although living in a cosmological model filled
with collisional DM) insists on adopting the collisionless-DM
approach. At the same time, for this observer, the cosmologically
distant indicators would appear to be dimmer than expected (cf.
Eq. (55)).

We recall here that the recent observational data concerning
the SNe Ia standard candles set the transition redshift between
accelerated and decelerated expansion at zt = 0.46± 0.13 (Riess
et al. 2004). In this case, the combination of Eqs. (47) and (67)
results in the non-linear algebraic equation involving the transi-
tion value, zt, of the truly-measured quantity z

(1 + zt) e0.25/3wΩM = 3.2114 (1 + zt)3wΩM . (69)

Equation (69) can be solved numerically with respect to the com-
bination wΩM. Accordingly, we verify that the value

(wΩM)t = 0.0932 ± 0.0060 (70)

reproduces (exactly) the above observational result for zt.
By virtue of Eq. (70), we note that w � 1

3 , i.e., compatibility
of the collisional-DM approach with the observational data, cur-
rently available, suggests that, in Eq. (3), the pressure of the cos-
mic fluid under consideration is due to radiation. Nevertheless,
in view of Eq. (17), the evolution of the rest-mass density indi-
cates that, for every value of w, the spatially-flat model given by
Eq. (28) is matter-dominated. Taken together, these results im-
ply that the DM itself, being responsible for the non-vanishing
pressure, consists of relativistic particles (“hot” DM). We verify
this result by overplotting Eq. (55) in the Hubble (μ versus z)
diagram of a SN Ia dataset.

3.4. Application to a sample of SN data

An extended sample of 192 SN Ia events has been used by Davis
et al. (2007) to scrutinize the viability of various DE scenarios.
This sample1 consists of 45 SNe from a nearby SN Ia dataset
(Hamuy et al. 1996; Riess et al. 1999; Jha et al. 2006), 57 events
from SNLS – the SuperNova Legacy Survey (Astier et al. 2006),
60 intermediate-redshift events from ESSENCE – the Equation
of State: SupErNovae trace Cosmic Expansion program (Wood-
Vasey et al. 2007), and 30 high-z SNe from the Gold-07 sample
(Riess et al. 2007).

To overplot Eq. (55) on the μ versus z diagram of this dataset,
first of all, we need to determine the functional form of the lu-
minosity distance d̃L(z̃) (and, through it, the corresponding form
of the distance modulus, μ̃(z̃)), used by someone who, although
living in a collisional-DM model, insists on the collisionless-
DM approach. This observer performs calculations in the (tradi-
tional) framework of a pressureless Universe, adopting the cor-
responding formula of the luminosity distance. In a spatially-flat
model, this formula is given by (see, e.g., Carroll et al. 1992)

d̃L (z̃) =
2c

H̃0
(1 + z̃)1/2

[
(1 + z̃)1/2 − 1

]
, (71)

1 Available at http://www.ctio.noao.edu/essence or at
http://braeburn.pha.jhu.edu/~ariess/R06
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representing the luminosity distance in the EdS Universe, the
(conformally) pressureless counterpart of the collisional-DM
model given by Eq. (28).

However, we need to stress that, in a collisional-DM
Universe, the measured quantity (corresponding to the cosmo-
logical redshift) is z and not z̃, as it is (falsely) admitted by some-
one who (mis)treats the DM as collisionless. Therefore, in order
to include, also, the function μ̃(z̃) in the Hubble diagram of the
SN Ia dataset used by Davis et al. (2007), we have to express
d̃L(z̃) in terms of the truly-measured quantity, z. It can be done
(appropriately) by inserting Eqs. (47) and (61) into Eq. (71), to
obtain

d̃L(z) =
2c

(1 − 4wΩM) H0
(1 + z)

1
2 (1−3wΩM)

×
[
(1 + z)

1
2 (1−3wΩM) − 1

]
. (72)

However, as we have already mentioned, this is not the case
for a supporter of the collisionless-DM scenario. In depicting
Eq. (54) – with d̃L(z̃) being given by Eq. (71) – on the μ ver-
sus z diagram of a sample of SN events, this observer (admitting
that w = 0), unavoidably, misinterprets the measured quantity z
as z̃ (and the quantity H0 as H̃0). In other words, the theoretical
formula of the luminosity distance that is used by someone who,
although living in a (spatially-flat) collisional-DM model, insists
on adopting the collisionless-DM approach is (incorrectly) writ-
ten in the form of Eq. (71) with z̃ simply replaced by z

d̃L(z) =
2c
H0

(1 + z)1/2
[
(1 + z)1/2 − 1

]
, (73)

instead of that given by Eq. (72). In what follows, we admit that
H0 = 70.5 km s−1 Mpc−1 (Komatsu et al. 2009), hence 2c/H0 =
8509.8 Mpc.

We then overplotted in the Hubble diagram of the SN Ia
dataset used by Davis et al. (2007) the theoretical curves cor-
responding to the distance moduli: μ(z) for wΩM = 0.16 (green
solid line); μ̃(z) (also for wΩM = 0.16) with d̃L(z) being given
by Eq. (72) (orange solid line); and μ̃(z) with d̃L(z) being given
by Eq. (73) (dashed line). The outcome is presented in Fig. 1.
We observe that, the (appropriately translated in terms of z)
collisionless-DM quantity μ̃(z) – with d̃L(z) being given by
Eq. (72) (orange solid line) is quite far from being able to re-
produce these data, although, for z ≤ 1.75, it is much closer to
the “real world” (the μ versus z distribution of the SN Ia data
available) than the incorrectly used quantity μ̃(z) – with d̃L(z)
being given by Eq. (73) (dashed line).

The situation changes, completely, when someone takes into
account the thermodynamical content of a collisional-DM fluid
with wΩM = 0.16, thus using Eq. (55) instead of Eq. (54) alone.
In this case, the function μ(z) (green solid line) seems to fit the
entire dataset under consideration quite accurately.

As we observe in Fig. 2, apart from a small number of SN
events (4 of 192), the entire dataset used by Davis et al. (2007)
lies within the stripe formed by the theoretical curves μ(z), cor-
responding to wΩM = 0.10 (red solid line) and wΩM = 0.19
(blue solid line), while the best fit to this sample appears to be
achieved for wΩM = 0.16 (green line). In a spatially-flat cos-
mological model, it is clear that, the collisional-DM treatment is
not only much closer to, but, actually, can reproduce quite ac-
curately the μ versus z distribution of the SN Ia sample used by
Davis et al. (2007).

Nevertheless, there is a “delicate point” in this treatment. For
wΩM ≥ 0.10, we have w ≥ 1

3 . In other words, compatibility
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Fig. 1. Hubble diagram of the SN Ia sample used by Davis et al.
(2007). Overplotted are the theoretical curves, corresponding to the dis-
tance moduli: μ(z) for wΩM = 0.16 (green solid line); μ̃(z) (also for
wΩM = 0.16) with d̃L(z) being given by Eq. (72) (orange solid line); and
μ̃(z) with d̃L(z) being given by Eq. (73) (dashed line). We observe that,
after the thermodynamical content of a collisional-DM fluid is taken
into account, the theoretical curve representing the distance modulus,
μ(z) (Eq. (55)), fits the entire dataset quite accurately (green line).
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Fig. 2. Overplotted in the Hubble diagram of the SN Ia sample used
by Davis et al. (2007), are the theoretical curves of the distance mod-
ulus in the collisional-DM model, i.e., Eq. (55), for several values of
the combination wΩM. Almost the entire dataset lies within the stripe
formed by the curves μ(z), corresponding to wΩM = 0.10 (red solid
line) and wΩM = 0.19 (blue solid line), while, the best fit to this sample
is achieved for wΩM = 0.16 (green line). Once again, the dashed line
represents the (incorrectly used) theoretical curve μ̃(z) with d̃L(z) being
given by Eq. (73).

of the collisional-DM approach with the currently available ob-
servational data, suggests that the cosmic fluid (i.e., above all,
the DM itself) consists of relativistic particles.

Taken together, these results strongly suggest that, if the DM
constitutes a perfect fluid (of relativistic particles) with ther-
modynamical content, then, what is interpreted as the “dim-
ming” of the SNe Ia standard candles might only be apparent,

A26, page 9 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016057&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016057&pdf_id=2


A&A 529, A26 (2011)

provided that the cosmologists no longer insist on adopting the
collisionless-DM approach.

In other words, in a Universe filled with collisional (and
relativistic) DM, the unexpected dimming of the distant light-
emitting sources can be explained in a more conventional way,
than that implemented within the context of the accelerated ex-
pansion. Hence, before inventing any new theory, it is useful
to allow for a suitable use of the (so far) neglected degrees of
freedom (energy of the internal motions, pressure, etc.). As we
have shown, these internal physical characteristics can reveal
their influence on several parameters of cosmological signifi-
cance (scale factor, cosmological redshift, luminosity distance,
Hubble and deceleration parameters) and yield a consistent al-
ternative to the currently-accepted DE concept.

3.5. An independent confirmation from BAO’s data analysis

Among the various (currently available) techniques for tracing
the expansion history of the Universe, baryon acoustic oscilla-
tions (BAO) appear to have the lowest level of systematic uncer-
tainty (Albrecht et al. 2006).

BAO is a series of peaks and troughs, with wavenumber
(approximately) 0.06 h (Mpc)−1 (Eisenstein et al. 2005), aris-
ing, on large scales, in the power spectrum of matter fluctu-
ations after recombination. They occur because the primordial
cosmological perturbations excite sound waves in the relativistic
plasma of the early Universe (Silk 1968; Peebles & Yu 1970;
Sunyaev & Zel’dovich 1970; Bond & Efstathiou 1984, 1987;
Holtzman 1989; Hu & Sugiyama 1996). This process contin-
ues for a short time-interval after recombination, until the epoch
known as baryon-drag epoch (zd � 1089), when, eventually,
the baryons are released from the Compton “drag” of photons
(Eisenstein & Hu 1998).

The BAO’s wavenumber is related to the comoving distance
of the sound horizon at the baryon-drag epoch, rs, which depends
on both the total-mass density of the Universe and the corre-
sponding baryonic quantity (see, e.g., Wang 2006). WMAP con-
straints on ΩMh2 and ΩBh2 (Komatsu et al. 2009) suggest that
rs(zd) � 153.5 Mpc. In other words, BAO are met on relatively-
large scales, which, at the present epoch, are (still) in the linear
regime. It is, therefore, expected that, these acoustic signatures
should be present (also) in the distribution of galaxies (Goldberg
& Strauss 1998; Meiksin et al. 1999; Seo & Eisenstein 2005;
Eisenstein et al. 2007).

Since the comoving distance of the sound horizon at the
baryon-drag epoch is known, we can use BAO as standard
rulers, to determine the functional form of the distance – redshift
relation in the Universe. In particular, by determining observa-
tionally the apparent size of a BAO’s peak (it is identified as a
clustering within a galaxy distribution), we can extract reliable
estimates of the Hubble parameter, as well as the angular diame-
ter distance, at the cosmological redshift, in which, this acoustic
signature is observed (Blake & Glazebrook 2003; Hu & Haiman
2003; Seo & Eisenstein 2003).

The spectroscopic Sloan Digital Sky Survey (SDSS) Data
Release 7 (DR7) represents the final set of galaxies, observed us-
ing the original SDSS-target selection criteria (York et al. 2000).
When combined with the data released from the 2-degree Field
(2dF) galaxy-redshift survey (Colless et al. 2003), the resulting
sample comprises 89 3319 galaxies and covers a solid angle of
9100 deg2. An analysis of the clustering of galaxies within this
sample, inferred BAO signals in the power spectrum measured in
several slices of the cosmological redshift (Percival et al. 2010).

To minimize the systematic errors arising from treating the
line-of-sight dilation in an equivalent manner to the transverse
one (a common bias, involving the so-called Alcock-Paczyński
1979, effect), cosmologists defined the distance measure

DV(Z) ≡ 3
√

r||r2
⊥ =

[
(1 + Z)2D2

A(Z)
cZ

H(Z)

]1/3

(74)

(Eisenstein et al. 2005; Percival et al. 2007), where Z is the
observationally-determined (i.e., spectroscopically-measured)
value of the cosmological redshift of a large-scale structure, and

DA(Z) =
S (η0) r
1 + Z

(75)

is the corresponding angular diameter distance in a spatially-flat
cosmological model (see, e.g., Peacock 1999, p. 22). The com-
bination of Eqs. (74) and (75) results in

DV(Z) =

[
S 2 (η0) r2 cZ

H(Z)

]1/3

, (76)

where, once again, r is the radial distance (in comoving coordi-
nates) of the structure formation under consideration.

According to Percival et al. (2010), there exists a ro-
bust, statistically-independent (distance) constraint, arising from
BAO’s data, which involves the value of the ratio

f =
DV(0.35)
DV(0.2)

= 1.736 ± 0.065. (77)

Clearly, in a collisional-DM model, Eq. (77) represents the truly-
measured value of f . In this case, we ask ourselves what is ob-
served by someone who, although living in a collisional-DM
model, insists on adopting the (traditional) collisionless-DM
approach.

To answer this question, we note that, when, either
the collisional-DM-oriented observer or the corresponding
collisionless-DM one, spectroscopically measures the cosmo-
logical redshift of a particular large-scale structure, they both
refer to the same quantity, Z. Accordingly, a supporter of the
collisionless-DM scenario would express Eq. (76) in the form

D̃V(Z) =

[
R2 (η0) r2 cZ

H̃(Z)

]1/3

, (78)

where we have also used Eq. (48). Equation (78) differs from
Eq. (76) only in the definition of the present-time value of the
scale factor and in the functional dependence of the Hubble
parameter on Z. In this case, upon consideration of Eqs. (45)
and (60), we obtain

D̃V(Z)
DV(Z)

= (1 + wΩM)2/3
(H

H̃

)1/3

⇒

D̃V(Z)
DV(Z)

= (1+wΩM)2/3 [1+wΩM+3wΩM ln(1 + Z)]2/3

[1−2wΩM+3wΩM ln(1 + Z)]1/3
· (79)

Now, as far as a supporter of the collisionless-DM scenario
is concerned, the BAO’s constraint given by Eq. (77) is trans-
lated as

f̃ =
D̃V(0.35)

D̃V(0.2)
=

[
1 − 2wΩM + 3wΩM ln(1.2)

1 − 2wΩM + 3wΩM ln(1.35)

]1/3

×
[
1 + wΩM + 3wΩM ln(1.35)
1 + wΩM + 3wΩM ln(1.2)

]2/3

×DV(0.35)
DV(0.2)

, (80)
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which for, wΩM = 0.10, results in

f̃ |wΩM=0.1 =
D̃V(0.35)

D̃V(0.2)
= 1.766, (81)

and for wΩM = 0.16, we have that

f̃ |wΩM=0.16 =
D̃V(0.35)

D̃V(0.2)
= 1.788. (82)

Both values of f̃ lie within the range of values [1.671, 1.801] of
the measured quantity, f , given by Eq. (77). Therefore, as far as a
supporter of the collisionless-DM scenario is concerned, the ob-
servational constraint, f̃ , inferred from BAO’s data, is (at least)
compatible with (if not almost identical to) the corresponding
constraint, f , obtained within the context of the collisional-DM
model.

However, when the collisionless-DM-oriented observer at-
tempts to verify Eq. (81) (or Eq. (82)) theoretically, a contro-
versy arises. This observer applies Eq. (78) to the EdS Universe
(the pressureless counterpart of the collisional-DM model un-
der study), which accommodates the standard (w = 0) cold dark
matter (S CDM) cosmology. In this case,

D̃V(Z) = 22/3 c

H̃0
Z1/3

[
(1 + Z)1/2 − 1

]2/3

(1 + Z)5/6
, (83)

hence, a supporter of the collisionless-DM scenario obtains

f̃SCDM =
D̃V(0.35)

D̃V(0.2)
= 1.553 (84)

(see, also, Percival et al. 2010). Clearly, there is a difference be-
tween the theoretical result of Eq. (84) and the observational one
given by Eq. (81) (or Eq. (82)). As far as the supporter of the
collisionless-DM scenario is concerned, one way to compensate
this difference, is to impose the existence of an extra (dark) en-
ergy component or the cosmological constant. However, even
when he/she does so, i.e., within the context of the ΛCDM
model, the theoretical value of the distance constraint, f̃ , induced
by the signature of BAO on cosmic structure, reaches up to

f̃ΛCDM = 1.670 (85)

(Eisenstein et al. 2005; Percival et al. 2010). Although
marginally, f̃ΛCDM lies outside the range of values of the truly-
measured quantity, f , given by Eq. (77). In view of the above-
mentioned results, we may conclude that, within the context of
the collisional-DM approach, the BAO’s-oriented observational
data require (and acquire) a more sophisticated interpretation
than the one provided by the (collisionless) ΛCDM model.

4. Discussion

We have examined the possibility that the extra (dark) energy
needed to flatten the Universe is represented by the energy of the
internal motions of a collisional-DM fluid. Accordingly, we have
considered the evolution of a cosmological (toy-) model driven
by a gravitating fluid (consisting of DM – dominant – and bary-
onic matter – subdominant) with thermodynamical content. As a
consequence, the energy of this fluid’s internal motions has also
been taken into account as a source of the universal gravitational
field. Accordingly, we have asked ourselves, whether this model
can also accommodate the apparent dimming of the cosmolog-
ically distant indicators and the associated phase of accelerated
expansion.

In particular, since observational data indicates that WIMPs
(of which the DM is believed to consist) can be collisional,
we have assumed that the matter of the Universe (although re-
sembling test particles receding from each other) can be repre-
sented by the volume elements of a (classical) collisional-DM
fluid with some sort of internal structure, hence thermodynam-
ical content. In this way, we have been able to determine the
“correct” form of the scale factor, which (under the assumption
that the DM is thermodynamically involved) governs the evo-
lution of the Universe (modeled as a spatially-flat RW space-
time), in addition to a series of parameters of cosmological
significance.

Our findings are quite promising. In principle, the energy of
the internal motions of the collisional-DM fluid can account for
the (extra) DE, so that, at the present epoch,Ω = 1 (cf. Eq. (23)),
while the post-recombination Universe remains ever-decelerated
(cf. Eq. (33)).

We next attempted to determine what is inferred by some-
one who, although living in a collisional-DM model, insists on
adopting the (traditional) collisionless-DM approach.

To do so, we have applied the technique developed by
Kleidis & Spyrou (2000). With the aid of this technique, we have
derived the (conformal) transformation (cf. Eqs. (38) and (42)),
which relates the collisional-DM description of a cosmological
model (in terms of which p, Π > 0 and dp

dη � 0) to the corre-
sponding collisionless-DM (pressureless) approach. With such a
“tool” at hand, we have explored the way that a supporter of the
collisionless-DM scenario interprets observations carried out in
a collisional-DM Universe. In passing, we note that, within the
context of general relativity, every effort to treat a collisional-
DM model as pressureless is questioned (Appendix B).

The debate between collisional- and collisionless-DM ap-
proach is, definitely, in favor of the former. In particular, for
every value of the cosmological redshift (z), as it is defined in
the collisional-DM model, the corresponding collisionless-DM
quantity, z̃, is always a little bit smaller (cf. Eq. (47)). As a con-
sequence, in the collisional-DM model there is a characteristic
value of the cosmological redshift, zc (cf. Eq. (52)), above which,
the luminosity distance of the various light-emitting sources is
always higher than what is inferred by an observer who treats the
DM as pressureless (cf. Eq. (51)). In other words, from the point
of view of someone who (although living in a collisional-DM
model) insists on adopting the (traditional) collisionless-DM ap-
proach, the cosmologically-distant indicators, located at z > zc,
seem to lie farther away (i.e., appear dimmer) than expected (cf.,
also, Eq. (55)).

The similarity between the characteristic value zc and the
(observationally-traced) transition redshift, zt, which, according
to a supporter of the collisionless-DM scenario, signals the onset
of the dimming of the SNe Ia standard candles, is obvious.

On the other hand, after the thermodynamical content of a
collisional-DM fluid is taken into account, the theoretical curve
representing the distance modulus, μ(z) (now given by Eq. (55)),
fits the Hubble diagram of an extended sample of SN Ia standard
candles quite accurately (green solid line in Fig. 1), in contrast
to the corresponding collisionless-DM quantity, μ̃(z̃), given ei-
ther (appropriately) by the combination of Eqs. (54) and (72)
(orange solid line in Fig. 1) or (incorrectly) by the combination
of Eqs. (54) and (73) (dashed line in Fig. 1). In fact, a cosmo-
logical model filled with collisional DM could accommodate the
majority of the currently-available observational data, including,
also, those related to BAO, without the need for any dark energy
or the cosmological constant (cf. Eqs. (81) and/or (82)).
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At the same time, from the point of view of an observer who
treats the DM as collisionless, the Universe appears to be either
accelerating or decelerating, depending on the value of the cos-
mological redshift (cf. Eq. (67)).

In this case, the quantity w, which, in the collisional-DM
approach, parameterizes the various flows, also plays another
(more interesting) role. As we have found, for wΩM ≥ 0.0714,
there exists a (theoretically-determined) transition value, z̃t, of
the (collisionless-DM-oriented) cosmological redshift, z̃, such
that, for z̃ < z̃t, we have q̃ < 0, i.e., from the point of view
of someone who adopts the (traditional) collisionless-DM ap-
proach, the Universe is accelerating, without the need for any DE
or the cosmological constant. Accordingly, taking into account
the observational result that the transition redshift between ac-
celerated and decelerated expansion is set at the value zt =
0.46 ± 0.13 of the truly measured quantity z, we have deter-
mined the precise value of the combination wΩM, for which the
collisional-DM approach to the post-recombination Universe is
compatible with observations, i.e., (wΩM)t = 0.0932 ± 0.0060.
This result is in complete agreement with what is implied
by Fig. 2, i.e., w � 1

3 . In other words, compatibility of the
collisional-DM treatment under study with the observational
data currently available, suggests that the DM itself consists of
relativistic particles (hot DM).

In conclusion, the assumption that the DM constituents can
be both collisional and relativistic, could provide a reasonable
and conventional explanation for several open aspects of modern
cosmology, including: (i) the extra (dark) energy needed to flat-
ten the Universe, which can be compensated by the energy of the
internal motions of the collisional-DM fluid; (ii) the observed
dimming of the SNe Ia standard candles and the apparent accel-
erated expansion of the Universe, both of which might be due to
the misinterpretation of several cosmologically relevant parame-
ters by those observers who, although living in a collisional-DM
Universe, insist on adopting the collisionless-DM approach. The
absence of any ad hoc fine-tuning in our study, makes the above
(purely theoretical) results very promising.

In spite of all the above advantages of our model, we have to
point out that this is, definitely, a toy model. The collisional-DM
approach, developed in this article, can (and should) be debated,
at least, along the following lines:

(i) The collisional-DM treatment of the Universe does not al-
leviate the age problem, but, rather, makes it harder. In the
model given by Eq. (28), the coordinate time, t, is related
to the corresponding conformal quantity (η) by

t =
∫ η

0
S (η)dη =

1
1 + wΩM

(
2

3H0

) (
η

η0

) 3(1+wΩM)
1+3wΩM

· (86)

Admitting that, at the present epoch (when t = t0 and
η = η0) H0 ≈ 70.5 km s−1 Mpc−1 (Komatsu et al. 2009),
we find that, within the context of the model given by
Eq. (28), the age of the Universe is

t0 =
1

1 + wΩM
× 9.3 Gys, (87)

i.e., less than 9.3 billion years. Clearly, Eq. (87) could
be a serious drawback of the spatially-flat collisional-DM
model.

(ii) The compatibility of the collisional-DM approach with
the observational data currently available (cf. Eq. (70)
and/or Fig. 2), suggests that the matter content of the dark

sector consists of hot DM. For the time being, the con-
ventional theory of hot DM does not appear to conform
with the large-scale structure of the Universe (see, e.g.,
Hooper 2009), although there are recent studies that ap-
pear to challenge this result (see, e.g., Farrar & Peebles
2004; Gubser & Peebles 2004). Nevertheless, a hot-DM
model looks much less exotic than most of the (currently-
investigated) DE scenarios.

In any case, the assumption that the Universe matter content (ba-
sically its DM component) can be collisional (in the sense that it
also possesses some sort of thermodynamical content), is to be
seen as a natural effort to take into account all the (so far, prac-
tically, neglected) internal physical characteristics of a classical
cosmological fluid as sources of the universal gravitational field.

As we have shown, under this assumption, one can compen-
sate for the majority of the recent observational data, inferring
that Ω � 1, as well as the “unexpected” dimming of the SNe Ia
standard candles and the “apparent” accelerated expansion of the
Universe, not to mention the compatibility with BAO’s data anal-
ysis, without the need for any DE or the cosmological constant,
and (certainly) without suffering from the coincidence problem.
From the point of view of someone who (although living in the
collisional-DM model) insists on adopting the collisionless-DM
approach, an inflection point (in the d̃L versus z diagram) arises,
anyway, at relatively low values of the cosmological redshift.

Although speculative, the idea that the DE (needed to flat-
ten the Universe) could be attributed to the internal motions of
a collisional-DM fluid, is (at least) intriguing and should be ex-
plored further and scrutinized in the search for conventional al-
ternatives to the DE concept.
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Appendix A

In this Appendix, we present the exact solution to Eq. (24) in the
text and its subsequent reduction to Eq. (28). In paricular, upon
consideration of Eq. (12), Eq. (24) reads(

S ′

S 2

)2

= H2
0

(S 0

S

)3 [
1 + 3wΩM ln

(S 0

S

)]
(A.1)

and can be cast in the (more convenient) form⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
√

S
S 0

⎞⎟⎟⎟⎟⎠′
⎤⎥⎥⎥⎥⎥⎦

2

=

(H0S 0

2

)2 [
1 + 3wΩM ln

(S 0

S

)]
· (A.2)

In an expanding Universe, Eq. (A2) is valid for every η within
the past light-cone (where S < S 0) and it can be solved in terms
of the error function (see, e.g., Abramowitz & Stegun 1970,
p. 297) as

√
π

√
6wΩM

e1/6wΩM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣er f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

1 + 3wΩM ln
(

S 0
S

)
6wΩM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
± (1 + 3wΩM)

H0S 0

2
η. (A.3)

A26, page 12 of 14



K. Kleidis and N. K. Spyrou: A conventional approach to the dark-energy concept

Equation (A3) becomes particularly transparent (and useful) if
we restrict ourselves to the limiting case, where wΩM � 1.

For wΩM � 1, the argument of the error function in Eq. (A3)
becomes very large. In this case, the special function under con-
sideration behaves as

er f (ϕ) � 1 − 1
√
π

1
ϕ

e−ϕ
2

(A.4)

(see, e.g., Lebedev, Eq. (2.2.4), p. 19) and, therefore, Eq. (A3)
results in(

S
S 0

)
1 + 3wΩM ln

(
S 0
S

) = (1 + 3wΩM)2
(H0S 0

2

)2

η2. (A.5)

We now take the natural logarithm on both sides of Eq. (A5), to
obtain

ln

(
S
S 0

)
− ln

[
1+wΩM ln

(S 0

S

)3]
= ln

[
(1+3wΩM)2

(H0S 0

2

)2

η2

]
.

(A.6)

Within the post-recombination era, S 0
S ≤ 1090, hence ln

(
S 0
S

)3
≤

21. Therefore, as long as wΩM � 1, Eq. (26) holds, hence
Eq. (A6) is written in the form(

S
S 0

)1+3wΩM

= (1 + 3wΩM)2
(H0S 0

2

)2

η2, (A.7)

which, in view of the definition given by Eq. (29), results in

S = S 0

(
η

η0

) 2
1+3wΩM

, (A.8)

that is, Eq. (28).

Appendix B

In curved space-time, the Einstein-Hilbert (EH) action, which
governs the dynamical evolution of the gravitational field, gμν,
within the context of GR, is given by (see, e.g., Papapetrou 1973,
Eq. (33.29), p. 122)

IEH =

∫ √
−g (R + κT ) d4x, (B.1)

where g is the determinant of the metric tensor gμν, R is the
scalar curvature, κ = 8πG/c4, and T is the trace of the energy-
momentum tensor of the Universe matter-energy content. In a
similar fashion, the action of the gravitational field in terms of
g̃μν, i.e., after the transformation indicated in Eq. (36) is per-
formed, is written in the form

Ĩ =
∫ √

−g̃
(
R̃ + κT̃

)
d4x, (B.2)

which, upon consideration of Eqs. (36) and (39) of Kleidis &
Spyrou (2000), results in

Ĩ = IEH − 12
∫ √

−g ΔF
F

d4x, (B.3)

where ΔF = gμνF; μν is the d’Alembert operator with respect
to the original metric, gμν. It is evident that, every effort to ex-
press Ĩ in terms of the original gravitational field, gμν, yields the
appearence of extra terms in the gravitational action, in addition
to the EH one. In this way, variation of Eq. (B3) with respect
to gμν does not lead to the Einstein field equations of GR (i.e.,
those derived from Eq. (B1)), thus (necessarily) resulting in a
modified theory of gravity (in connection, see, e.g., Bruneton &
Esposito-Farese 2007).
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