
.5iAl’’Qv--MQn-

sfwxq9- /0063’
r

● 2

Server-Side JavaScript Debugging:

Viewing the Contents of an Object

Randall Simons and Jeff Hampton

SandiaNational Laboratories

JavaScript allows the definition and use of large, complex objects. Unlike some other object-oriented languages, it also

allows run-time modifications not only of the values of object components, but also of the very structureof the object

itself. This feature is powerfnl and sometimes very convenient, but it can be difficult to keep track of the object’s

structureand values throughout program execution. What’s needed is a simple way to view the current stateof an

object at any point during execution.

There is a debug function thatis included in the Netscape server-side JavaScript environment. The fiction outputs the

value(s) of the expression given as the argument to the function in the JavaScriptApplication Manager’s debug

window [SSJS]. For example, the following lines in Figure 1 of a server:side JavaScriptprogram

function myObj () {

this .myVal = 1;

this .myArr = new Array (2, 3) ;

this .myStr = new String (“test”) ;

this .myFunc = myFunc;

}
f unct ion myFunc (argl, arg2) {

return (argl – arg2) ;

}
var x = new myObj () ;

debug (“x. myVal = “, x.myVal) ;

debug (’’x. myArr [O] = “, x.myArr[O]);

debug (’’x. myStr = “r x.myStr) ;

debug (“x. myFunc = “, x. myFunc) ;

debug (“sum = “, x.myVal + x.myArr [l]);

debug(”x = “, x) ;

RECEIVED

APR2m99

(?M3?Tl

Figure 1. Example code.

produce the output in Figure 2:

Debug message: x.myVal = 1

Debug message: x.myArr[O] = 2

Debug message: x.myStr = test

Debug message: x.myFunc = function myFunc (argl, arg2) { return (argl – arg2) ; }

Debug message: sum = 4

Debug message: x = [object Object]

Figure 2. Example code output.

This fhnction is usefhl for checking the values of individual variables or expressions. But it doesn’t tell you much

about more complex data structures,such as the object variable ‘x’ in the example. It would be more useful to see the

values of all elements in an arrayor properties in an object. (For purposes of this discussion, an array can be

considered a type of object. When the word “object” appearsbelow, interpretthatto include arrays also.) To aid us in

viewing object structurein our programs, we have written a recursive function called dumpObj which steps through all

the properties in an object, outputting a type, name, and value for each. Using the same example object above, a

fhnction call such as the one in Figure 3:

1 Introduction

We consider the application of evolutionary algorithms (EAs) to solve unconstrained minimization problems

min f(x)

subject to z E Rn
(1)

where f : Rn + R, as well as bound constrained problems

tin f (x)

subject to XERn (2)

l< X<U,

where 1,u E Rn, and 1 < u. These proble~ have been solved using EAs like evolutionary programming

: (EP),,evolutionary strategies (ESS) and genetic algorithms (GAs). In this paper we introduce and analyze,. .,,

evolutioriary patte& s&rch algorithms (EPSAS), a class of EAs that can be used to solve problems (1) and (2).
.’. ,

EPSAS tire adaptive EAs like EPs and ESS, which modify the mutation step length during optimization.

However, EPSAS have an absolute step length that is used to generate a finite set of offsets, while EPs and

ESS generate mutations by adding a continuous random variable that is scaled by a step length parameter.

Also, EPSAS adaptively modify the mutation step length using a global step length parameter instead of the

per-individual step length parameter commonly used by ESS and EPs.

Like most other EAs, EPSAS are direct search methods, methods that do not use either the derivative

or an approximation to the derivative of f to perform optimization. EPSAS are, however, distinguished

from other EAs by the fact that they can be cast as stochastic pattern search methods. Pattern search

methods are direct search methods that examine a pattern of exploratory moves in search of points with

lower functional values [36, 25]. We extend the definition of pattern search to provide a correspondence

between pattern search and EPSAS. In pmticular, the exploratory moves in the pattern are allowed to be

stochastically selected.

The main result of this paper is to demonstrate how the correspondence between stochastic pattern search

and EPSAS can be exploited to provide a convergence theory for EPSAS. We generalize the convergence

analysis for pattern search to stochastic pattern search. Formally, this convergence theory guarantees that

for an unconstrained continuously differentiable function the sequence of best points found by a stochastic

pattern search method, {x;}, has the property that

()P Iin@ Ilg(z;)]l = o =1,

where g(x) is the gradient of f at z. This means that the set sequences that do not converge has probability

zero of occuring, and this convergence is said to occur almost surely [9]. Further, for a bound constrained

continuously different iable function a subsequence of {z;} converges almost surely to a constrained stationary

point (equivalently, a Karush-Kuhn-Tucker point for problem (2) [13]). These results can be extended to

prove convergence almost surely on continuous nondifferentiable functions to limit points where the gradient

2

DISCLAIMER

This report was prepared as an account of work sponsored

byanagency of the United States Government. Neither the

United States Government nor any agency thereof, nor any

of their employees, make any warranty, express or implied,

or assumes any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or

service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United

States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or

any agency thereof.

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

does not exist or where the gradient is not continuous [36, 37]. Preliminary analyses of EPSAS and stochastic

pattern search methods are given in Hart [16, 17]. Our present analysis extends the analysis in Hart [16] to

(a) allow the mutation step length to be expanded and contracted by an arbitrary rational value, (b) allow

a broader set of possible mutation steps, and (c) consider the application of EPSAS to bound constrained

problems.

This convergence theory for EPSAS is the first proof of probabilistic convergence to a stationary point

for adaptive EAs on nonconvex continuously differentiable functions. Although this convergence theory does

not guarantee convergence to a global optimum, it does capture an important aspect of EAs: how they refine

and focus their search to converge upon a final estimate of the global optimum. Furthermore, Rudolph’s

recent analysis whkh shows that ESS fail to converge to a global optimum almost surely [32] suggests that

simultaneously ensuring convergence to a gIobal optimum and convergence to a stationary point is not

possibIe.

In the next section we provide more background about EAs and pattern search methods. Section 3 defines

stochastic pattern search algorithms, describes their convergence properties and proves the convergence of

these methods. Section 4 defines EPSAS and demonstrates their correspondence with stochastic pattern

search. Finally, Section 5 discusses these results and points to ongoing work with EPSAS.

2 Background

Let R, Q, Z and N denote the sets of real, rational, integer and natural numbers, respectively. All norms

will be Euclidean vector norms or the associated operator norm. Let Q = {z c Rn I1< z < u}. We define

LQ(Y) = {z = Q] ~(z) < ~(y)} and for convenience let L(Y) = LR (y). We use the notation X = [YZ] to

denote that the matrix X is partitioned into the matrices Y and Z. If v is a vector and A is a matrix, then

we define y c A to mean that y is a column of A.

2.1 Pattern Search

Pattern search methods were first formally defined by Torczon [36], and they provide a general framework

for describing a wide variety of direct search methods. This class of direct search methods has been used

since the 1950s for optimization in a wide variety of applications [40]. In fact, many of the arguments for

using EAs [6, 14, 12, 34] have been used to promote direct search methods like pattern search: they can

be used when the function is nondifferentiable, they are effective when the function is highly nonlinear and

multimodal, and they are insensitive to noise (or inaccuracies) in the function.

In a general sense, pattern search methods sample the objective function from a given pattern of points

that represents offsets from the current best point. If there is a better point in this pattern, then it is

accepted as the new iterate and the sampling is repeated about it. If not, then the scale of the pattern is

reduced (e.g. by haIving it), and the function is again sampled about the best point.

3

,

Pattern search methods use an explorato~ moves algorithm to conduct a series of exploratory moves

about the current iterate before identifying a new iterate. A pattern matrix is used to define the set of

possible exploratory moves. Thepattern matrix is decomposed into a nonsingular basis matrix BE R.nx”

and a generating matrix ck ~ Qnxp, p > n+l; the index k denotes the iterationa of the pattern search

algorithm. Each 6’k is constrained to include a subset of core search directions that span R“. Given a

pattern matrix Pj$ = ~Ck, there are p possible exploratory moves in Akpk, where Ak is a step-length

parameter. Conceptually, the generating matrix defines the pattern of directions that are searched, while

the basis matrix rotates and scales the search directions to determine the coordinate system used during the

search. We refer the reader to Lewis and Torczon [36, 25, 23] for a complete description of pattern search

methods. The framework for stochastic pattern search that we describe in Section 3 is directly related to

Lewis and Torczon’s framework. A key element of pattern search methods is that the restrictions made on

the pattern, the contraction factor and the expansion factors guarantee that a31of the iterates lie on a scaIed,

translated and rotated integer lattice. Consequently, pattern search methods can be viewed as adaptive grid

search methods [7].

Lewis and Torczon’s analysis provides a set of conditions which, if satisfied, guarantee a weak stationary

point convergence [25, 23]. For unconstrained pattern search methods, they show that

Let

{

li ift<lz

pi(t) = t ifli~t~Ui

Ui ift<Uz

and consider the projection of z E R~ onto the feasible region of problem (2),

where ei is the ith standard basis vector. It is well known that z is a stationary point of (2) if and only

if q(z) = Q(z – g(z)) – x = O. In the bound constrained theory, the quantity q(z) plays the role of

g(z), providing a continuous measure of how close z is to a constrained stationary point. The framework for

constrained pattern search methods imposes additional restrictions on the core search directions to guarantee

that

lik~~f Ilq(z;)]l = o.

2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) area class of adaptive search algorithms that are inspired by the mechanisms

of natural evolution. Unlike many other optimization methods, EAs process a collection of points in each

iteration. The main search mechanisms in EAs are competitive selection and genetic operators; competitive

4

selection is used to bias the EAs search towards promising regions of the search space, and the genetic

operators are used to generate new points in the space.

The pseudo-code in Figure 1 describes the steps executed in a canonical EA that minimizes an uncon-

strained or bound constrained objective function on Rm. The population used by an EA consists of an

N-tuple of points xi E R~. Each point xi, called an individual of the population, is a feasible point to the

problem, and the value j(q) is said to be the fitnessof the point. Let Xt = {x; ,. ... z~} be the N points

in a population at time t, and let ~ and ~ be sets of N points used by the EA. Let unifo return a uniform

random value in [0, 1], amd let uint (N) return a uniform random integer in 1, ..., N. Let ~ = R~.

~elect an initial population {z?, . . . ,zfi}, z? e R“

z~= argmin{f(z~), . . . ,t(z~)}

Repeat t =0,1,. . .

Z = selection

fori=l:~

if (unifo < x) then

f~ = CrOsSOver(?tui.q~J,~.i~~(~))

else”

&j,= ~~i~t(jv)

fori=l:N

z~= mutation

if (enforcing-bounds && feasible(z)) then i = z

X,+l = compose(X~, X)

~~+1 = ~gmin{~(~~), ~(z~+l), ..., ~(z~~l)}

LJntilsome stopping criterion is satisfied

Figure 1: A Canonical Evolutionary Algorithm

The pseudo-code in Figure 1 relies on five subroutines: selection : II*’ + DN, crossover : D x D + D,

mutation : D + D, compose : DN x DN + DN, and feasible : D + {O, 1}. These routines are typically

randomized. We omit a detailed discussion of these methods since our analysis only requires the specification

of general properties for each of them. For further details see Fogel [11, 12] for descriptions of EP, Back

and Schwefel [3] and B~ck, Hoffmeister and Schwefel [1] for descriptions of ES, and Goldberg [14] and

Davis [6] for descriptions of GAs. The selection operator performs a stochastic competitive selection; if

~ = selection(Xt), then ~ contains a multiset of the points in Xt, often with a bias towards points that

minimize f (x:) – f (z*). This subset of points is then used to generate new points using the crossover and

mutation operations. The crossover operator combines two points to form a third. For example, if we have

points z and y, then a coordinate-wise crossover operator would generate points from the coordinate values

5

in x and y, such as

CK)SSOV6X({ZI,.. . ,%}, {Vi)... ,Vn}) ~ {~1,~2,?/3,v4,. . . ,Yn–l, %}.

The mutation method modifies a single point, typically by modifying each dimension of the point with a

fixed probability. For example, a normally distributed random variable could be added to each dimension

of the point with probability p. The compose method selects the set of points that are included in the

subsequent population from the previous population and the newly generated points. Finally, the feasible

function determines whether a point is feasible with respect to bound the constraints.

The principle feature distinguishing EP, ES and real-coded GAs is the choice of operators used to perform

the evolutionary search. EP utilizes mutation to generate new points. ES and GAs utilize both mutation and

crossover, although crossover is usually applied with a higher probability in GAs than in ES. The mutation

operators commonly used in EP and ES employ a mechanism for adapting the step length.

For continuous domains, convergence analyses of EAs can be distinguished in two ways. First, whether

or not the analysis pertains to adaptive EAs. Second, whether the analysis proves the convergence of the

entire population or of the best point found in each iteration. In most cases, convergence analyses of EAs

concern population convergence. For example, analyses of real-coded GAs [39, 15, 10, 26, 27] focus on how

crossover processes schemata, which are subsets of the search domain that are implicitly represented by the

distribution of points in a population. Unfortunately, these analyses have not provided provable convergence

guarantees for real-coded GAs. In fact, Rudolph’s [30] analysis of binary-coded GAs makes it clear that

“The schema theorem [21] does not imply that the Canonical GA will converge to the global optimum in

static optimization problems.”

Convergence analyses of EP, ES and real-coded GAs that focus on the role of mutation have been more

successful at providing provable convergence guarantees. Qi and Palmeri [26] consider a real-coded GA

with an infinite population size and show that the distribution of points generated with selection alone

converges in distribution to the distribution concentrated at the optimum, and that the mean fitness of the

populations of a real-coded GA with selection and mutation converges to the fitness of the optimal point.

For EP, ES and real-coded GAs with finite populations, a proof of convergence the best point to a point

wit h near-optimal fitness can be shown using the Borel-Cantelli Lemma [1, 2, 30]. This proof requires that

the mutation operator be applied with nonzero probability such that the joint distribution of possible new

points has nonzero probability everywhere. Unfortunately, the assumptions used by these convergence proofs

make them only of theoretical interest. In particular, practical EAs adapt the scale of search used by the

mutation operator to adapt to local characteristics of the objective function.

EPs and ESS are the two main classes of adaptive EAs that modify the mutation scale, and these methods

have been the subject of much analysis. Although many of these analyses consider EPs and ESS with fixed

mutation scale, Beyer [4], Rappl [28, 29] and Rudolph [31] have examined the convergence of adaptive EAs.

These results focus on the convergence of the population to the local minima of simple convex probIems. In

particular, these analyses focus on how the step length should be adapted to maximize the rate of convergence

6

of the population. Rudolph [32] also examines how the use of adaptive methods to modify the mutation

scale can limit an ESS ability to perform global optimization.

Our analysis differs from prior analyses of adaptive EAs in several respects. We analyze adaptive EAs

that perform mutation with an absolute step length and which select mutation steps from a finite set of

mutation offsets. Further, our analysis focuses on the convergence of the best point in the population. As

a result, our analysis does not assume that the entire population is clustered about the best point. Finally,

our analysis considers convergence for nonconvex problems, and thus provides a broader justification for

self-adaptation than previous analyses.

3 Stochastic Pattern Search

3.1 Overview

Randomness can be introduced into pattern search methods in several different ways. A simple example

would be to simply shu.%lethe order in which the exploratory moves algorithm considers the exploratory

moves. Since each move will be considered once and since there are a bounded number of exploratory

moves, this randomized exploratory moves algorithm is guaranteed to return a decreasing step if one exists.

Consequently, the convergence theory for pattern search methods is immediately applicable to this class of

stochastic pattern search methods.

In this section, we define a class of stochastic pattern search methods in which the exploratory moves al-

gorithm is only probablistically guaranteed to terminate. In these pattern search algorithms, the exploratory

moves algorithm contains an iterative loop, indexed by h. In each iteration, the exploratory moves algo-

rithm may randomly consider an exploratory move from a generating matrix C:. Although this matrix may

vary in each iteration, the set of core exploratory moves remains the same for all h. The simple stochastic

pattern search method shown in Figure 2 illustrates this type of method. The inner for-loop represents the

exploratory moves algorithm. In each iteration the exploratory moves defined by the coordinate vectors +ei

can always be sampled, which represent a set of core exploratory moves. Additionally, the algorithm samples

from among the 2- 3n steps in {O, 1, – 1}“ and {O, h, –h}” in a random fashion, and the matrix (5’$ changes

in each iteration because the vectors in {O, h, –h}n are included in this set. Using exploratory moves defined

by vectors in {O, h, –h}n may not be of practical interest, but our analysis of evolutionary pattern search in

Section 4 provides a well-motivated use of this flexibility in stochastic pattern search.

Because the exploratory moves algorithm is only probablistically guaranteed to terminate, it is possible

that an “unlucky” sequence of exploratory moves could fail to ever provide a simple decrease. To ensure

that the exploratory moves algorithm terminates with high probability, the probability of selecting each of

the core exploratory moves must be greater than or equal to some constant greater than zero. Further,

the exploratory moves algorithm terminates if all of the core exploratory moves have been sampled without

finding a decreasing step. These conditions ensure that all of the core exploratory moves are eventually tried

7

~iven Z. and AO.

?ort=l,2, . . .

Forh=l,2,...

Randomly select s c {O, 1, –l}n U{O, h, –h}”

If(~(z~ + Ais) < f(w)) ~

st = Ats

Break

Else If (s == ei for some i)

If(all vectors +ei have been generated)

St = {0}’J

Break

EndFor

z~+l =Zt+st

If (f(zt) <= ~(zt + St))

A,+l = A,/2

Else

At+l = At

EndFor

Figure 2: A simple stochastic pattern search algorithm

almost surely. Although the exploratory moves algorithm can run an arbitrarily long time: the expected

length in which it terminates is bounded.

In this section, we define a class of stochastic pattern search methods that extends the definitions of

pattern search provided by Lewis and Torczon [36, 25, 23]. Specifically, we generalize the definitions of

positive basis pattern search methods and bound constrained pattern search methods. These algorithms

allow stochastic selection of exploratory moves as we have described. Further, they allow the noncore

search directions in the generating matrix CL to be rational vectors. This generalization allows the noncore

exploratory moves to search on the most refined integer lattice considered by the pattern search so far.

3.2 Definitions

The following definition of stochastic pattern search extends the abstract description of pattern search

methods provided by Lewis and Torczon [36, 25, 23]. The definitions of the main loop and step-length

update algorithm are virtually the same as standard pattern search methods. The definition of the pattern

genertilzes the definition of the generating matrix, and the definition of the exploratory moves algorithm is

8

extended to include stochastically selected exploratory moves. The restrictions required to define a bound

constrained stochastic pattern search method are explicitly noted. In Section 3.3 we discuss the differences

between this method and standard pattern search methods.

From the theory of positive linear dependence [5] we have the following definitions. A positive span of a

set of vectors {al, ..., a,} is the cone

{a c R“ a=clal +... + era,,cz20 for all i}.

The set {al,.. .,a~ } is caIled positively dependent if one of the ai’s is a nonnegative combination of the others;

otherwise the set is positively independent. A positive busis is a positively independent set whose positive

span is R“.

The (Bound Constrained) Stochastic Pattern Search Method Figure 3 defines the main elements

of a stochastic pattern search method for bound constrained and unconstrained minimization. To define a

stochastic pattern search method, it is necessary to specify the basis matrix 13, the initial value of C!, the

xploratory moves algorithm, and the algorithms for updating C~ and A~.

Let X. c R“ and A. >0 be given.

Fork =O,l,...

Compute ~(x~).

Determine a step Sk using an exploratory moves algorithm.

Compute pk = ~(z~) – .f(zk + s~).

If p~ >0, then z~+l = Z~ + Sk. Otherwise s~+l = Zk.

Update C~tl and A~+l.

Figure 3: Stochastic Pattern Search

The Updates Figure 4 defines the algorithm that updates the step size, f!+. This algorithm reduces the

step size if the exploratory moves algorithm has examined all feasible core trial steps and they fail to produce

a simple decrease. If the exploratory moves algorithm returns a core trial step that gives a simple decrease,

then this algorithm either increases the step size or preserves the current step size.

After k iterations, the value of A~ is

Ak = ACIdaO~~’ ...A2 =Ao#’,

where ai E Z and rk E Z; the ai are simply values that arise in the expression of A~. Let r:= = maxi=l,..,,~ rL.

and r~i~ = rnini=l (–~:lin)#-:ax),,,,~ rk. We define ~k = Tn

9

Suppose T e Q, such that T >1 and T = %/7d, where T., Td C N and T. and Td are relatively prime. Let

6 = ‘r”” and ~k E A = {W1,..., T},}, where {LJ@,wl,... ,wL}c Z, L=lAl<co, wO<O, andw 20,

i=l,L.

If p~ <0 then Ak+l = 6A~.

If p~ >0 and Sk is a core trial step then Ak+l = ~kAk.

Figure 4: Updating Ak

The Pattern To define a pattern we need two components, a basis matrix and a generating matrix. A

basis matrix can be any nonsingular matrix B c R“x”. A generating matrix is a matrix Cl E Z’xp, where

p > n +1, h is the iteration number of the exploratory moves algorithm and k is the iteration number of the

stochastic pattern search algorithm; the value p - p/@, but we drop the indeces for simplicity. A generating

matrix is partitioned into components

where L! and rk are integral matrices with n rows, and O in the last column of C: is a single column of

zeros. We call I’~ the core generating matrix, and we require that r~ ● M, where M is a finite set of integral

matrices, each of which form a positive basis for R’. It follows that 17~must have at least n + 1 columns.

For bound constrained pattern search, rk = [M~ – MK], where Mk is a diagonal integer matrix (so 17~is a

maximal positive basis [23]). A pattern is defined by the columns of the matrix P~ = BC~. Because both

B and C: have rank n, the columns of P: span Rn.

Given Ak G R, A~ >0, we define a trial step s; to be any vector of the form s; = A~Bc~, where c:

denotes a column of C:. The core trial steps are defined by A@rk. h-ote that Bc~ determines the direction

of the step, while Ak serves as a step length parameter. For bound constrained pattern search, a trial step

s; is feasible if xk + s; ~ fl. At iteration k, a trial point is any point of the form x~ + s;, where x~ is the

current iterate.

The Exploratory Moves Pattern search methods proceed by conducting a series of exploratory moves

about the current iterate before identifying a new iterate. The stochastic pattern search methods we consider

differ from non-stochastic methods in that the exploratory moves algorithm is only probablistically guaran-

teed to terminate. Consequently, there is no fixed number of iterations for the stochastic exploratory moves

algorithm; the algorithm terminates when a decreasing step has been found or after all feasible core trial

steps have been examined. In addition, the stochastic nature of the exploratory moves algorithm enables the

generating matrix C: to vary with each iteration h of the algorithm. The following two sets of conditions

are placed on the exploratory moves sk generated by an exploratory moves for unconstrained and bound

constrained problems respectively.

10

Condition 1 Unconstrained Stochastic Pattern Search

1.

2.

3.

sk=s; GA@,h = 0,1,2,...

~ffin{f(~k + y) I y ~ &Br~} < f(~k) then f(~k + Sk) < f(~k).

The exploratory moves algorithm terminates andreturnssk =0 if each of the core steps defined by

A@rk has been examined without identifying a decreasing step. At each iteration of the explomto?y

moves algorithm, the probability of selecting each of the wre steps is greater than or equal to a wn-

stant u >0.

Condition 2 Bound Condrained Stochastic Pattern Search

1.

2.

3.

4.

sk=S; EAkp:, h=o, 1,2, . .

x~+ik~fl

If fin{f(Zk ~ y) I y 6 &~rk,Zk + y ● ~} < f(~k) then f (~k + Sk) < f(Zk).

The exploratory moves algorithm terminates and returns “sk = O if each of the feasible core steps defined

by AkB~k has been examined m“thout identifying a decreming step. At each iteration of the explomto~

moves algon”thm, the probability of selecting each of the feasible core steps is greater than or equal to a

wn.stant v >0.

The addition of Condition 1.3 and 2.4 is the difference between these conditions and the hypotheses on

exploratory moves for unconstrained and bound constrained pattern search [36, 25]. This restriction uses the

observation that the convergence theory for pattern search relies solely on the ability of the core generating

matrix 17kto generate a decreasing step. Since the other trial steps are not critical to ensure the convergence

of the pattern search method, it is safe to terminate the exploratory moves algorithm after all of the feasible

core steps have been examined.

3.3 Comparison

There are three main differences between the stochastic pattern search methods that we have defined and

the pattern search methods defined by Lewis and Torczon [36, 25]. First, these methods randomly select

trial steps to find an improving point. Condition 1 and 2 both restrict the probability of selecting a core

trial step above a fixed probability for every iteration. This requirement ensures that the sequence of calls to

the exploratory moves algorithm terminates almost surely. Clearly, the expected length of the exploratory

moves algorithm depends on the precise value of v.

Next, the step length may only be increased when the exploratory moves algorithms finds a core trial

step that provides a simple decrease. Thus both reductions and expansions of the step length are tied to the

search characteristics of the core trial steps. Consequently, the restrictions on the core search steps ensure

11

that the sequence of improving trial steps eventually provides a “gradient related” search that can be used

to provide a stationary-point convergence guarantee [36].

Finally, the noncore elements of the generating matrix are allowed to assume fractional values. The

fractional columns of the generating matrix are integer vectors scaled by ~. This enables new iterates to

lie on the lattice scaled by AO/Tk. Thus if Ak increases, the pattern search method can still search with a

scale that is bounded by the smallest value of Ak.

3.4 Convergence Analysis

Our main results are Theorems 1 and 2, which prove a stationary-point convergence for unconstrained and

bound constrained stochastic pattern search respectively. The proofs of these theorems are given in the next

section. Recall that L~(y) = {Z E Q I f(z) S j(Y)} and L(Y) = LR,” (Y).

Theorem 1 Let L(xo) be compact and suppose that f : R’ + R is wntinuously differentiable on an open

neighborhood of L(zo).

pattern search method,

Theorem 2 Let LQ(zO)

neighborhood of LQ (ro).

pattern search method,

Then for the sequence of itemtes {x~ } produced by the unconstmined stochastic

(-)P liLrn~[lg(QJll = o =1.

be compact and suppose that f : R’ -+ R h wntinuously differentiable on an open”

Then for the sequence of iterates {Zk } produced by the bound constrained stochastic

()P lik.~f][q(zk)ll = o = 1.

This convergence guarantee is weak, since it only implies that the gradient is sampled infinitely often

near a stationary point. Thus it is possible for lim sup~_m llg(x~) II > 0 for an unconstrained stochastic

pattern search method. However, the sequence of iterates generated by a pattern search method is monotone

nonincreasing and bounded below on a compact set, so lim~_m ~(z~) = ~ for some fixed value ~. Note that

this is a “global” convergence analysis since it guarantees convergence to a stationary point from any starting

point.1

Although Theorems 1 and 2 require that ~ is continuously differentiable on an open set containing the

compact sets L(zo) and LQ(zo) respectively, these results could be proven when ~ is simply continuously

differentiable on L(zO) and Lo (zo). However, the assumption that ~ is continuously differentiable on a set

slightly larger than L(zo) or LQ(zo) makes the proof shorter with little expense of generality (see Lewis and

Torczon [23] for further discussion of this point).

1This terminology is unfortuntite in that convergence to ~ global minimizer of the function is not implied. However, “locally

corwcrgcnt” is reserved for another use for nonlinear optimization [8].

12

3.5 Proof of Theorems 1 and 2

The proof of Theorem 1 follows the same basic structure as the proof for the positive basis pattern search

methods described by Lewis and Torczon [23], and the proof of Theorem 2 follows the same basic structure

as the proof for bound constrained pattern search methods described by Lewis and Torczon [25]. The main

differences are that (a) the noncore steps are allowed to search a more refined lattice and (b) we show how

the randomness in stochastic pattern search guarantees convergence almost surely.

Lemma 1 illustrates the manner in which Ak represents a step length. Unliie the pattern search methods

described by Lewis and Torczon [36, 25, 23], Ak may only represent a step length for core trial steps.

Lemma 1 There exists a constant q > 0, independent of k, such that for any wre trial step s~ we have

lls~[l z qA~.

Proof. The columns of the core generating matrix satisfy the same conditions as the columns in standard

pattern search methods, so this follows from Lemma 3.1 in [36]. m

The following theorem demonstrates that the iterates generated by stochastic pattern search methods

(r~in)Tj-t,mx)Aremain on a translated, scaled integer Iattice, G. This lattice is scaled by Tn o, and rotated by

B.

Theorem 3 Any iterate z~ produced by a stochastic pattern search method am be expressed as

k=o

forsome zL~Zn, k= O,...,l–l.

Proof. The stochastic pattern search algorithm guarantees

t–1
—

that any iterate zt is of the form

zt=zo+~sk.

k=O

The trial steps are of the form sk = A~Bc~, so we have

t-1

w = 270+ ~AkBck,

k=O

Now recall that 7 = r./~~, where ~n, ‘rd c N are relatively prime. Let lr be the set of iterations for which

c~ is a core step, and let lL be the set of iterations for which c~ is not a core step. Then we have

t– 1

(rAin)Tj-r&ax)
= Zl)+ ‘rn &B~zk,

k=O

13

(3)

for Some ~k,Z?+~ Zn.

The following lemma guarantees that each of the exploratory moves terminate with probability one.

m

Lemma 2 Let A be the set of sequences of trial steps for which each exploratory move terminates. Then

P(A) =1.

Proof. Recall that the exploratory moves algorithm terminates if a simple decrease is found or if all

~~ = lJ7~I S 2n core trial steps have been sampled. Thus it suilices to show that all core trial steps will

eventually be sampled almost surely. Let Rr,i,j be the set of sequences of trial steps for which the exploratory

moves algorithm does not sample the jth core trial step in steps T + 1 through r + i, and let &,i be the set

of sequences of trial steps for which the exploratory moves algorithm does not sample one or more of the

core

trial

trial steps in all of the r + 1 through r + i steps. Note that %,i = (J~L1 R-,i,j, where r~ defines the core

steps. Consequently,
Th.

‘(E,2) < ~p(~,i,j) S 272(1– V)i.
j=l

Let & be the set of sequences of trial steps for which the exploratory moves algorithm does not sample one

or more of the core trial steps in all of the trial steps following the rth trial step. Note that % = fl~l ~,i,

and that %,i ~ %,i+l. Thus we have

SOW P(A) = 1 – P(AC) and A= = lJ~=l &. Since & c R+l, we have P(AC) = lim,+m P(&.) = 0, so

P(A) = 1. ■

Theorem 4 uses the previous results to demonstrate that the sequence of step lengths approaches zero

with probability one for the unconstrained and bound constrained cases. This proof is analogous to the

proofs of Theorem 3.3 in [36] and Theorem 5.5 in [25].

Theorem 4 For unconstrained (bound con.stmined) stochastic pattern search, suppose that L(xo) (LQ (xo))

is compact. Then P(lim inf ~+m A~ = O) = 1.

Proof. Suppose that each exploratory move terminates. Now suppose that O < A~i. ~ Ah = T“ A. for

all k. The hypothesis that A ~in ~ Ak for all k means that the sequence {T”} is bounded away from zero.

We also know that the sequence {A~} is bounded above because all iterates Zh lie inside L(zo) (LQ(zo)),

which is compact; Lemma 1 then guarantees that the upper bound A~~ < co for {A~ }. Thus the sequence

{#’} is bounded above, from which it follows that the sequence {7r’ }

sequence {~k } is bounded above and below. Let

is a finite set. Equivalently, the

(4)

14

Then Equation (3) holds for the bounds given in Equation (4), so Z~ lies in a translated, scaled integer

lattice G for all k. The intersection of -L(zO) (Lo(xo)) with the lattice G is finite, so there must exist a point

X* for which xk = x. for infinitely many k.

However, this is a contradiction since we cannot revisit a point on the lattice infinitely many times. We

accept a new step sk if and ordy if ~(~k) > f(Zk + Sk),so there exists N such that for all k z N, Zk = z..

This implies that p~ = O for k 2 N, but this impIies that Ak ~ O, which gives a contradiction to our

assumption that Ak ~ Amin >0.

From Lemma 2 we know that the set of sequences for which each exploratory move terminates has mea-

sure one, so P (liminfz+m Ak = O) = 1. ■

The previous results provide the basis for the convergence of unconstrained and bound constrained

pattern search methods. Specifically, they guarantee that the sequence of iterates is implicitly constrained to

a translated, scaled and rotated integer lattice, and that the step size asymptotically converges to zero almost

surely. The following proposition follows directly from Proposition 3.4 in Torczon [36] and Corollary 5.4 in

Lewis and Torczon [23]. This proposition uses Theorems 3 and 4, and it uses the fact that the core steps

provide a simple decrease in the objective function if one exists. We omit the details of this proof since they

are virtually identical to the lengthy proofs. of Proposition 3.4 in Torczon [36] and Corollary 5.4 in Lewis

and Torczon [23]. The principle difference is that these proofs implicitly rely on the search behavior of the

pattern search with respect to the core trial steps. Consequently, we can apply these results to the stochastic

pattern search methods that we have defined because (a) they apply the same restrictions to the core search

directions and (b) they tie changes in the step length Ak to the search among the core search directions.

Proposition I For unconstrained (bound an-strained) stochastic pattern search, assume that L(xo) (LQ(xo))

is compact, that f is continuously differentiable on L(xo) (LQ (xo)), and that there exists a sequence {xk } gen-

erated by the stochastic pattern search algorithm for which fim idk_m llg(~k) If# O (hm infk_m [l~(~k) [1# O).

Then there exists a constant A~in >0 such that for ail k, Ak > A~i~.

We are now ready to prove Theorems 1 and 2.

15

Proof. The proof is by contradiction. For an unconstrained (bound constrained) stochastic pattern

search algorithm, suppose that P (lim inf~+m llg(~k) II= O) < 1 (P (lim inf~+m llq(z~) II= O) < 1). Then

there exists a set of sequences of iterates with measure greater than zero for which limi~k+m llg(z~) II# O

(Iim infk+~]lq(~k) II# O). For these sequences, we know from Proposition 1 that there exists A~i~ >0 such

that Ak > A~i.. But this contradicts Theorem 4. ■

4 Evolutionary Pattern Search Algorithms

Consider the pseudo code in Figure 5 which defines EPSAS. Various conditions are placed upon this class of

EAs to ensure that they can be cast as stochastic pattern search methods. iMild restrictions are placed upon

the selection and compose functions to ensure that (a) the best point in the population is selected with

probability of at least m >0 in each iteration and (b) the best point in Xt U X is is always included in Xt+I.

The crossover function is also restricted to generate a point such that crossover(z, y) E {q, VI} x {x2, y2} x

. . . x {xn, yn }, which is consistent with most standard crossover operators (e.g. two-point crossover).

The call to tint(j) uniformly generates an integer from 1 to j. The x is the probability of crossover and p

is the probability of mutating a point in the population by adding a mutation offset. The vector q ~ {O, 1} ~

serves as a counter to determine whether all of the mutation offsets have been generated on the best point

in the population. The contraction factor for At is 6 = (~n/7~)’0, ~n, 7~ G N, ~n > rd and ~0 < 0. The

expansion factor is ~t G {l, d~’, . . . ,O”d}, ~~ E Z and IQ >0.

To highlight the relationship between EPSAS and stochastic pattern search algorithms, we consider the

revised EPSAS defined in Figures 6 and 7. Figure 6 defines an exploratory moves algorithm that is comprised

of the iterations of an EPSA in which no improvement in the objective function is found. Figure 7 defines the

main loop of the EPSA that uses this exploratory moves algorithm. Together, these routines perform exactly

the same search as the EPSA in Figure 5. Each iteration of the loop in the exploratory moves algorithm

corresponds to a set of moves of a stochastic pattern search algorithm with generating matrix C:. The

restriction on the replacement strategy ensures that the best individual found is kept for further processing.

We will see that these restrictions enable EPSAS to be viewed as a stochastic pattern search method with

respect to the best individual in the each generation. Finally, note that step 15.a in Figure 5 and step 10.a

in Figure 6 are only used for bound-constrained EPSAS.

4.1 EPSAS as Stochastic Pattern Search

Otherwise, these conditions are always true.

In what follows we describe how the three central components of stochastic pattern search – updating step

length, the generating matrix, and the exploratory moves algorithm - are implemented by EPSAS. This

demonstrates that EPSAS can be described as stochastic pattern search methods.

Updating the Step Length Steps 8 through 11 of Figure 7 perform the update to the step length A~.

Because of the restrictions on O and Ak, this update is exactly as given in Figure 4. When the inner loop

fails to generate a simple decrease on ~, the step length is decreased by a factor of O. Otherwise, if the

decrease is due to an offset of the best point in the population then the step length may be increased by a

factor of Ak. The step length is not allowed to expamd when any decreasing step is generated because only

the mutation offsets of the best point in the population correspond to core trial steps in a stochastic pattern

search method.

16

(1) Given AO c Q’”

(2) Given S={s1,..., s~ }, where s~ & Z~ forms a positive basis

(3) Let q = {o}~

(4) Select an initial population xo = {z?,..., z}}, z: E Qn

(5) fc~ = argmin{~(z~),..., f(zfi)}

(6) Repeat t = 0,1,...

(7) ~ = selection(X~)

(8) Fori=l:N

(9) If (unifo < X) then

(lo) ii = CrOSSOV@uin~t~], 3~i.t(~))

(11) Else

(12) 22 = =“i~t(.~)

(13) Fori=l:N

(14) If (unifo < V) then

(15) j = uint(m)

(15.a) If (2Z + AL . sj is feasible)

(16) If (iii ‘= ~~) qj = 1

(17) ki=~i+At. sj

(18) X,+l = compose(X,, X)

(19) ~~+1 = argmin{~(z~+’),..., ~(z~l)}

(20) If (j(z;+l) < ~(~;))

(21) If (% ● S s.t. Z;+l = x; + S) At+l = At * At

(22) q = {o}~

(23) ElseIf (Iql == m.)

(24) q = {o}~

(25) At+l = AtO

(26) Else

(27) A~+l = At

(28) Until some stopping criterion is satisfied

Figure 5: Pseudo Code for EPSAS

[1) Repeat h = 0,1,..

[2)

[3)

(4)

(5)

(6)

(7)

(8)

(9)

(lo)

(10.a)

(11)

(12)

(13)

(14)

(15)

X = selection .

Fori=l:N

If (unifo < x) then

2Z = crossover (Zuintt~J,z~i~t(~))

Else

ii = 3Ui~t(~)

Fori=l:N

If (unifo < p) then

j = tint(m)

If (fi + At . sj is feasible)

If (ii ==z:) qj = 1

2Z=?i+A~. sj

Xt+l = compose(Xt, X)

Z;+l = argmin{f(z~+l)j

t=t+l

(16) Until (t(z:) < j(z~_l)) or

. . . j(x:’):

Iql == m)

Figure 6: Pseudo Code for the EPSA exploratory moves algorithm.

18

.

~1) Given A. c Q’”

[2) Given S= {s1,..., s~ }, where s~ E Z~ forms a positive basis

[3) Let q = {0}~

:4) Select an initial population XO = {z!,. ... z%}, z! E Qn

:5) X6 = argmin{j(z~),..., j(zj)}

:6) t=O

:6) Repeat k =0,1,...

:7) Determine a population X~+l using the EPSA exploratory moves algorithm

:8) If(\ql == m)

[12) q = {o}~

[13) Until some stopping criterion is satisfied

Figure 7: Pseudo Code for the main loop of EPSAS

The Generating Matrix Pattern search methods are designed to generate test patterns from a single

solution. To cast EPSAS within this framework, the individuals generated at each generation are viewed

as patterns with respect to the best individual in the population. Figure 8 illustrates the pattern vectors

generated by individuals created by crossover and mutation. Points A and B represent individuals created

by mutation from the best individual, Z1. Point C represents an individual created by crossover from ZI and

Zi. Point D represents an individual created by mutation of Zi, and point E represents an individual created

by crossover from ZI and ZZ followed by mutation. The solid arrow lines represent the pattern vectors, which

are implicitly scaled by the basis matrix.

The generating matrix C: is constructed using all possible individuals that can be generated in the

current generation t (as indexed by k and h). Let ~(z~) < ~(z~), j = 2,..., N, for all t. Let lcd(ql, q~)

denote the least common denominator of q;, qi ~ Q. Then let ~ = lcd(l/Ao, x~,j, Si,j, i = 1, m, k =

1,. ... iv, j= l,.. ., n); which represents the least common denominator of the current points, the initial step

length and the mutation offset vectors.

The basis matrix implicitly used by EPSAS is B = *1, where 1 is the identity matrix. The generating

matrix rk = V3[s1 . . . Sm] defines the mutation offsets around the best individual in each generation. The

columns of L! are implicitly defined by taking each individual 2 that can be generated by an EPSA at

3 t-r~i.)r~’~a.) (j – ~~)/Ao. Thus the trial step generated by ageneration t and constructing the vector ~ ~n

19

E

4

B ~c

,!‘\
A

xi\
/’ s,----- --- +

xl

D

Figure 8: Illustration of pattern vectors that are offsets from the best individual, ZI. Solid arrows represent

the vectors in the generating matrix and dashed arrows represent the genetic operations in an EPSA that

generate new solutions.

The number of columns in C$ is bounded by the maximum number of points that can be generated from

crossover and mutation by a finite population of size N. Thus there are 0(miV2) distinct columns in C’:.

The following lemma confirms that the columns of L! are in Z“.

Lemma 3 L! E Znx: jorsome z>landjor allh=O,l,... andk=O,l,

Proof. Let 1: = ~3T~-”AHII)Tj”;,U)(? – Z~)/Ao be a column of L:. Consider the i-th dimension of the

vector 2 – x;. Because crossover is coordinate-wise, the i-th dimension of 2 is equal to

for some j, sequence hl ,., .,ht andsequence gl,..., gt. Here, Sg,(j) refers to the jth element of the vector

sg,. Similarly, the i-th dimension of z; is equal to

for some j’, sequence h;, h; and sequence g;,g;.

h70w ~/A. ● Z, ysij c Z, vi, j, and yx$’ c Z, Qj. Also, we know that 7~–T;in)T~;lnx)Aj ~ Z, b’j. It

follows that i: is an integer vector. Since .l~ was chosen arbitrarily, L~ 6 Znx’ for some z >1 and for all

h=o,l,... andk=O, l,.... ■

Exploratory Moves As required by the exploratory moves hypotheses (Conditions 1 and 2), the ex-

ploratory moves algorithm described in Figure 6 only terminates if a solution is found that generates a

simple decrease, or if all (feasible) core steps defined by A~ B17k have been examined.

20

.

Equation 5 shows that all possible feasible points that can be generated by EPSAS are captured in patterns

in C:. The core generating matrix represents the mutation offsets from the best point in the population. The

restriction on the selection strategy ensures that the point z; is included in ~ with probably at least T. Thus

the probability that each of these mutation steps can occur on z~ is greater than or equal to T(1 – x)p/m >0.

Thus, the exploratory moves algorithm implicitly defined by EPSAS satisfies the hypothesis on exploratory

moves.

4.2 Generalizations

The formulation of EPSAS given in Figures 5, 6 and 7 was designed to provide the simplest modification

to the canonical EA in Figure 1 that captures both crossover and mutation operators. There are many

other related classes of EAs that can be cast as stochastic pattern search. For example, this description of

EPSAS can be extended to include EAs that perform mutation by adding each mutation offset with a fixed

probability. If the set of mutation offsets are the unit vectors and their complements, this form of mutation

is analogous to the mutation performed in real-valued GAs. Using this form of mutation extends the set of

possible points that can be generated in each generation, but the analysis remains the same because the same

set of core trial steps is preserved in this class of EPSAS. Hart and Hunter [17, 20] consider the empirical

impact of using different forms of mutation in EPSAS.

Another way that this framework can be modified is by using a hybrid form of randomization. Since an

explicit check is made to determine whether a mutation is an offset horn the best point in the population, the

mutation steps applied to the best point can be selected without replacement. This can be achieved using

a shuffled list of indices into the list of mutation offsets. This modification preserves the basic properties of

the EPSA while (a) increasing the rate at which all of the trial points about the best point are selected and

(b) allowing other random trial steps to be selected in a less structured manner.

5 Discussion

The central contribution of this work is the development of a convergence theory for a class of EAs that

guarantees convergence almost surely to a stationary point for any continuously differentiable function. This

is the first stationary-point convergence proof for any class of EAs that optimizes a general class of nonconvex

continuous functions. Consequently, this convergence theory also provides a rigorous justification for the use

of adaptive EAs in a broad range of problems; previously, methods for adapting the mutation operator have”

been analyzed for specific classes of functions (e.g. see Rappl [29]).

Torczon [35, 36] notes that the convergence analysis for pattern search methods can be easily extended

to handle cases when the function ~ is nondlfferentiable. This is reassuring since these methods are often

applied to nondifferentiable functions. Let X* include the set of stationary points of the function ~ in L (ZO),

the set of all points in L(xo) where ~ is nondifferentiable, and the set of all points in L(xo) where the

21

,

I

I derivative off exists but is not continuous. Then Theorems 1 and 2 can be extended to ensure convergence

I to a point in X*.

The convergence theory for EPSAS is qualitatively different from proofs of convergence for EAs that

converge almost surely to a global optimum. The difference stems from the fact that the problem of finding

a solution Z* for which f (z*) is the global optimum is ill-conditioned [38]. Consequently, these proofs of

I convergence to the global optimum only guarantee that the estimate of the optimal fitness, ~(z~), converges

to f (z”). Although the convergence theory for EPSAS only guarantees convergence to some stationary point

‘*, it can guarantee that the sequence of improving solutions Z; weakly converges to Z“.x

Since EAs,are typically cast as global optimization methods, it is natural to consider the relevance of this

form of local convergence. Like EPSAS, EAs such as EPs and ESS employ adaptive mechanisms for adjusting

the mutation step length. It is well recognized that these adaptive mechanisms are important for effective

refinement of points during the evolutionary search. However, Rudolph [32] has recently shown that the self-

adaptive mechanism used by ESS limits the global search performed by these EAs; for nonconvex problems

the probability that an ES converges to a globally optimal point may be less than one. Consequently, the

local nature of the EPSA’S convergence theory is not inconsistent with our current understanding of EAs for

1 continuous problem domains.

Additionally, since convergence to a global optimum requires convergence to some local optima, the

dynamics and performance of EPSAS can provide insight into the behavior of EAs as they approach the

global optimum. For example, the convergence analysis of pattern search methods highlights the fact that

the rate of convergence of EPSAS is likely to decrease as the dimension of the problem increases [36]. Also,

I pattern search methods can provide insight into the requirements for stopping rules. Although direct search

methods cannot guarantee that they will terminate at (or near) a stationary point, a variety of stopping

rules have been successfully applied for these methods. Stopping rules based on weaker analyses of EAs (like

the Borel-Cantelli lemma) force EAs to terminate only after a very large number of generations.

Finally, recent experimental work with EPSAS confirms that their empirical performance is comparable

with EPs. Hart and Hunter [20] evaluate the impact of a variety of algorithmic parameters on the performance

of EPSAS. The performance of the EPSA design that their experiments recommend is at least as good as

EPs on a suite of standard global optimization test functions. IWrther, Hart [19] confirms this result on a

challenging drug docking application. These results confirm that EPSAS can perform a global sear@ that is

comparable to other EAs.

It has long been recognized that pattern search methods do not enjoy fast local convergence properties [36,

40], so it is reasonable to expect that EPSAS converge slowly. Although crossover has proved a valuable

search mechanism for a variety of problems, the expected length of the inner loop of an EPSA could be

increased by a factor of approximately 1/(1 – X) when the step length needs to be reduced [18]. Hart and

Hunter [17, 19, 20] show how using crossover can lead to a trade-off between the rate of convergence of EPSAS

and the degree of global search. Using crossover in an EPSA appears to decrease its rate of convergence to

22

.
,4

a final solution, but it may find a better solution overall.

The connection that we have established between stochastic pattern search and evolutionary algorithms

provides insight into the fundamental relationship between evolutionary algorithms and direct search. The

extensions that we have made to pattern search highlight the general nature of this framework. Since the

analysis of direct search methods is more mature than the analysis of EAs, the connection we have made

will further our understanding of the basic theoretical properties of EAs. We conclude by mentioning several

extensions that this analysis suggests:

Although our focus in this paper is unconstrained and bound constrained optimization, the analysis

of pattern search can be extended to linearly constrained and nonlinearly constrained optimization

problems [22, 24]. We expect that EPSAS can be generalized to match these convergence analyses.

Lewis and Torczon’s analysis for linearly constrained problems is also interesting because it suggests

how the core search steps can be adapted to accommodateconstraint boundaries only when the current

iterate is near the constraint boundary. We expect that this can be used to improve the empirical

efficiency of bound-constrained EPSAS.

The analysis of EPSAS in this paper focuses on

best point in each population. Consequently, the

the relative success of mutation offsets from the

mutation step length is uniform across the entire

population. If crossover is not used in an EPSA, this restriction can be relaxed, which may improve the

performance of these methods by allowing the mutation step length to be locally adapted throughout

the search space.

Although our analysis of EPSAS indicated how EPSAS use an implicit basis matrix, these methods

can be adapted to use an explicit basis matrix that rotates and scales the search offsets. For example,

if variables are known to differ by severaJ orders of magnitude, then this can be taken into account

by the appropriate choice of the basis matrix. Previously, researchers have examined problems for

which coordinate transformations were shown to provide measurable changes in the performances of

EAs (e.g., see [33]). Thus the use of a different basis matrix could be interesting, particularly when

the basis matrix can be used to incorporate prior knowledge of an objective function into the EA.

The convergence theory for sequential EPSAS should be extensible to related parallel EAs. For example,

consider an island model EA for which each population begins with the same step size and reduces the

step size by the same fraction. For this EA, the combined populations can be shown to lie on a common

translated, scaled integer lattice. This is an important property of pattern search methods. If we view

the steps taken by all processors as patterns with respect to the best individual on all processors, then

the convergence theory applies to this island model EA.

23

,

Acknowledgements

We thank John DeLaurentis, Virginia Torczon, Mkhael Lewis, Bruce Hendrickson and Juan Meza for their

helpful discussions. We also thank Margaret Wright for detailed comments on an earlier version of this

paper. Thk work was performed at Sandla National Laboratories. Sandia is a multiprogram laboratory

operated by Sandia corporation, a Lockheed Martin Company, for the United States Department of Energy

under Contract DEAC0494AL85000.

References

[1]

[2]

[3]

{4]

[5]

[6]

[7]

[8]

[9]

[10]

T. Back, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In R. K. Belew and

L. B. Booker, editors, Proc. of the Fourth Intl. Conf on Genetic Algorithms, pages 2-9, San Mateo,

CA, 1991. Morgan-Kaufmarm.

T. Back, G. Rudolph, and H.-P. Schwefel. Evolutionary programming and evolution strategies: Simi-

larities and differences. In Proc. of Sewnd Annual Con$ on Evolutionary Programming, pages 11-22,

1993.

T. Blick and H.-P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evo-

lutionary Computation, 1(1):1-23, 1993.

H.-G. Beyer. Toward a Theory of Evolution Strategies: Self-Adaptation. Evolutionary Computation:

3:311-347, 1995.

C. Davis. Theory of positive linear dependence.

1954.

L. Davis, editor. Handbook of Genetic Algorithms.

American Journal of Mathematics, pages 733-746,

van Xostrand Reinhold, 1991.

J. E. Dennis and V. J. Torczon. Derivative-free pattern search methods for multidisciplinary design

problems. In The jifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, pages 922-932, 1994.

J. J. Dennis and R. B. Schnabel. Numerical Methods jor Unwnstrained Optimization and Nonlinear

Equations. Prentice-Hall, 1983.

J. L. Doob. Stochastic Processes. John Wiley and Sons, Inc., New York, 1953.

L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval schemata. In L. D.

Whitley, editor, Foundations of Genetic Algorithm 2, pages 187–202. Morgan-KaUfTmann, San Mateo,

CA, 1993.

24

● ✌

.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Tkan.sNeural Networks,

5(1):3-14, 1994.

D. B. Fogel. Evolutionary Computation. IEEE Press, Piscataway,

P. E. Gill, W. Murray, and M. H. Wright. Practical optimization.

NJ, 1995.

Academic Press, 1981.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley

Publishing Co., Inc., 1989.

D. E. Goldberg. The theory of virtual alphabets. In H.-P. Schwefel and R. M~ner, editors, Parallel

Problem Solving from Nature, pages 13-22, New York, 1990. Springer-Verlag.

W. E. Hart. A generalized stationary point convergence theory for evolutionary algorithms. In T. Baeck,

editor, Proc 7th Ml Conf on Genetic Algorithms (ICGA97), pages 127-134, San Francisco, CA, 1997.

Morgan Kaufmann.

W. E. Hart. A stationary point convergence theory for evolutionary algorithms. In R. K. Belew and

.M. D. Vose, editors, Foundations of Genetic Algorithms ~, pages 325-3.42, San Fransico, CA, 1997.

.Morgan Kaufmann Publishers, Inc.

W. E. Hart. On the application of evolutionary pattern search algorithms. In Proc Evolutional

Programming VII, pages 303-312, New York, 1998. Springer.

W. E. Hart. Comparing evolutionary programs and evolutionary pattern search algorithms: A drug

docking application. In Proc. Genetic and Evolutiona~ Computation Conf, 1999. (to appear).

W. E. Hart and K. Hunter. A performance analysis of evolutionary pattern search with generalized

mutation steps. In Proc Conf Evolutional Computation, 1999. (to appear).

J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1976.

.JI. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization.

1998. (to appear).

M. Lewis and V. Torczon. Rank ordering and positive bases in pattern search algorithms.

P~ogramming, 1998. (submitted).

R. .M. Lewis and T. V. J. A globally convergent augmented Lagrangian pattern search

SIAM J Opt,

Mathematical

algorithm for

optimization with general constraints and simple bounds. SIAM J Opt, 1999. (submitted).

R. M. Lewis and V. J. Torczon. Pattern search methods for bound constrained minimization. SIAM J

Optimization, 1997. (to appear).

25

●

[26]

[27]

[28]

[291

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39J

[40]

X. Qi and F. Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size in

continuous space part I: Basic properties of selection and mutation. IEEE Trans. on Neural Network+

5(1):102-119, 1994.

X. Qi and F’. Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size

in cent inuous space part II: Analysis of the diversification role of crossover. IEEE Trans. on Neural

Networks, 5(1):120-129, 1994.

G. Rappl. Konvergenzraten von Random Search Verfahren zur globalen Optimierwng. PhD thesis, HSBW

Miinchen, Germany, 1984.

G. Rappl. On linear convergence of a class of random search algorithms. Zeit-schrifl f. angew. Math.

Mech., 69(1):3745, 1989.

G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE 21an-s Neural Networks,

5(1):9W101, 1994.

G. Rudolph. Local convergence rates of simple evolutionary algorithms with cauchy mutations. IEEE

Trans Evolutional Computation, 1(4):249-258,1998.

G. Rudolph. Self-adaptation and global convergence:

appear).

A counter example. In Proc CEC99, 1999. (to

R. %lomon. Performance degradation of genetic algorithms under coordinate rotation. In L. J. Fogel,

P. Angeline, and T. Btick, editors, PTOC.of the Fifth Annual Conf. on Evolutionary Programming, pages

155–161, Cambridge, iMassachusetts, 1996. MIT Press.

H.-P. Schwefel. Evolution and Optimtim Seeking. John Wiley & Sons, New York, 1995.

V. Torczon. on the convergence of the multidirectional search aigorithm. SIAM J. optimization,

1:123-145, 1991.

V. Torczon. On the convergence of pattern search methods. SIAM J Optimization, 7(1):1-25, Feb 1997.

V. Torczon, February 1999. Personal Communication.

A. Torn and A. ~ilinskas. Global Optimizatio~ volume 350 of Lecture Notes in Computer Science.

Springer-Verlag, 1989.

A. H. Wright. Genetic algorithms for real parameter optimization. In G. J. Rawlins, editor, Foundations

of Genetic Algorithms, pages 205–218. Morgan-Kauffmann, San Mateo, CA, 1991.

M. Wright. Direct search methods: Once scorned, now respected. In Proc 1995 Dundee Biennial Conf

in Numerical Analysis, pages 191–208, Harlow, United Kingdom, 1996. Addison Wesley Longrnan.

26

