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Abstract. The Yee scheme is the principle finite difference method used in computing time
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1. Introduction. The Yee scheme is the principle finite difference method used in
the electromagnetism community and has been developed and extended extensively (cf.
for example [9]). In this paper we shall analyze its order of accuracy for approximating
the Maxwell system with simple boundary conditions [11]. We shall concentrate on
studying the order of convergence in space (the time discretization is quite standard
and is a second order conditionally stable leap—frog scheme), our main concern being
the effect of mesh non-uniformity on the accuracy of the scheme, and in particular
the sensitivity of the scheme to mesh stretching and compressing in the coordinate
directions. It is easy to see that the Yee scheme is second order accurate in space on
a uniform grid (cf. [7]). However, if the grid is non-uniform (but still orthogonal), the
local truncation error is only first order at the meshpoints. Nevertheless, we are able to
show that Yee’s scheme is second order accurate regardless of mesh non—uniformity. The
phenomenon whereby the global error of the finite difference scheme is of higher order
than the truncation error is usually referred to as supraconvergence and has recently
been the subject of intensive research [5, 6, 3, 1, 2].

The technique of analysis we use is motivated by the work of Siili [8] where the
accuracy of finite volume approximations of Laplace’s equation is analyzed on non-
uniform meshes. Our approach here is based on the fact that the Yee scheme is also a
finite volume scheme (i.e. it arises from the integral formulation of Maxwell’s equations)
and hence the truncation error of the scheme is of the special form T} = Vj x5+, where
V, is a suitable discrete gradient and the functions 5 and 4 in this decomposition are
O(h?) as h, the maximum gridsize, approaches 0. By performing a duality argument
which amounts to manipulating the truncation error in a discrete negative Sobolev
norm, we show that the method is second order accurate. In fact, since the proof of
this result does not require any hypothesis on the regularity of the mesh, we deduce
that the accuracy of the Yee scheme is insensitive to mesh stretching and compressing
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in the coordinate directions. The main result of this paper is encapsulated in Theorem
3.1

2. Derivation of the Yee scheme. The original Yee scheme was constructed on
a uniform grid. The method can be extended to non—uniform grids and we describe
next the extension presented by Weiland [10] which is based on the integral form of
Maxwell’s equations.

First let us state the problem to be approximated. For simplicity we start by
considering a rectangular parallelepiped cavity Q = [0, L.} x [0, Iy] x [0, L,] containing
an isotropic, linear dielectric (extensions to more exotic geometries and materials will
be discussed later), We suppose that a sufficiently smooth vector function J(w,?) is
known which specifies the current density in { at position @ and time {. We desire
to compute the resulting electric and magnetic fields E = E(w,t) and H = H(z,?)
which satisfy the Maxwell system in :

(1a) %?——VXH = J inQ, t>0,
(1b) %If—+V><E = 0 in{, t>0.

We assume that the field satisfies a perfectly conducting boundary condition on the
boundary of { {denoted I') so that

(2) Exn=0 onl), t>0.

Po complete the specification of the electromagnetic field, we suppose that initial fields
E, = Eo(x) and Ho = Hof) are given such that

(3) E(z,0) = Eo(®) and H(x,0)= Hy(z) Vecll.

It is well-known that, for suitably smooth data, equations (1)~(3) have a unique solution
for all time [4]. We wish to analyze the use of finite differences to approximate E and

H.
Let us consider an arbitrary tensor-product grid on {2, defined as the Cartesian

product of the following one-dimensional meshes:

O = {z,i=0,1,...,Ny: 29 =0, xp41 — 7 = hf >0, an, = L.},
93 = {yjaj':oala"-:Ny Yo =0, Y41 — ¥ = hf >0, YNy =Ly}!
O = {2,k=0,1,...,N,:20=0, zpg1 =2z = h] > 0, 2n, = L} .

The mesh on (1, denoted by {*, is therefore 0 = Qf % Qg x (U, We further define
Tipr =@ + hil2, Y =ui+ hif2  and  zyy =2+ R%/2.

It will also be convenient to introduce h®; = k¥, = h?; = h§_ =k}, = hf, =0and to
define the averaged mesh sizes

(4) B = E__hf;l

hi + ki
1 2 ¥ PeE——

2

¥
i =

h% 4+ h%_ .
9_2.._3_1 and B =

2



In keeping with the Yee scheme we shall associate each electric field degree of freedom
(or unknown) with the mid-point of an edge in the mesh, and associate each degree of
freedom for the magnetic field with the centroid of a face in the mesh. Thus the electric
field is approximated as follows:

0<i< N, -1
(5a) B ia(®) & Euegg,y,o1) {05 <N,
0<k< N,
0<i< N,
(5b) Ei,j-}-%,k(t) ~ Eg(m;,yj+%,zk,t) 0 Sj S Ny —1
0<k<N,,
0<i< N,
(50) El',j,k-!-% (t) o E3(a:;,yj,zk+%,t) 0 Sj S Ny
0<kE<N,—-1
The magnetic field unknowns are
0<t: <N,
(63*) Hi,j-]-%,k+-,;1,-(t) ~ Hl(miayj+%azk+%’t) 0<j<N,—1
0<k<N,—1,
0<i< N, -1
(6b) Hi+%.j.k+-%-(t) = H2($i+%syj:zk+%’t) 0<j<N,
0<k<N, -1,
0<i<N;—1
(68) Hi+%,j+%,k(t) > H3($i+%1yj+-;-azkat) 0<s5< Ny -1
0<k<N,.

We shall usually drop the explicit dependence on time of the discrete quantities. The
notation and geometry for a single grid cell is shown in Figure 1.

To discretize (1) we consider each component in turn, and proceed in the following
heuristic fashion. First let us consider (1b). For any suitably smooth surface S with
boundary 85, Stokes theorem applied to (1b) shows that

oH

— . dA=—-—¢ E.dS.
s Ot 98

Now we pick § to be a face in the mesh. For example
S={e=w;, y;<y<yir, % <z<zu}.

With this choice, we approximate fg 8H /8t-d A by quadrature using a single quadrature
point at the centroid of the face, and approximate fyg F - dS by mid-point quadrature
on each straight segment of 85. Finally we use the approximate, finite difference, values
in the quadrature (see (5), {6)) to obtain

z d z
() Ak gt + MRy peg — B iprs) (B s — Bijygpga) =0
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|
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Fia. 1. A parallelepiped in the mesh showing the geometry of the unknowns in the finile difference
grid. The magnetic field unknowns (H; ;1179 k4142 etc) are associated with the ceniroids of faces of
the element. Electric field unknouwns are associated with mid-points of the edges of the element. For
simplicily we have only shown the degrees of freedom entering into the equations for Hy iy ky1/2,

H£+1/2,j,k+1/2 and Hi+1/2,j+1/2,k‘



which holds for 0 < < N, 0<j<Ny,—1and0<k< N, - 1.
Proceeding similarly, using successively

S={.’B;<:E<3}i+1, ¥ =¥ zk<z<zk+1}
and
S={z:i <z <ziy1, ¥ <Y <Yj+1, 2= %},

we obtain the remaining equations for the magnetic field

d T
(8)  AFhi— iy ey + P Bijhey = Biprinrg) + 0 (Birg g = Birg i #) =0

for 0 <i< N, —L0<j<N,0<k<N,—1,and

R
9)  hERY— Higs jua e+ W (B gk = By o) B (Bigg i —Ei1500) =0

for 0 <i< N, —~1,0<j<N,~land0< k<N,

A glance at (7) (9) shows that these equations are nothing more than standard
centered finite difference approximation to (1b). Thus for these equations the local
truncation error is second order (see Section 3).

To discretize the electric field equations we use the integral form of (1a):

(10) /(%—J)-dzl: ) H.dS.

For the electric field, we must use the “dual grid” formed by connecting centroids of
elements in Q. To discretize the equation for the first component of E, we pick

Again, we use one point quadrature formulae to approximate the integrals in (10) (but
these quadratures are no longer mid-point quadratures since the unknowns are generally
no longer at the centroid of § or the mid-points of its edges). See Figure 2 for a typical
geometry in this case (actually the picture pertains to the derivation of equation (12)
below). We obtain

d
hyhkdt H— Js ( +2,_7+ H gj—-l-,k) Tl( +%,j,k—- Ht‘-l—%,j,k—]—%)

(].].) = h hk 1+§p31
where Ji 1 i = Ji (:c;_,,%,yj, 2x, 1), and (11) holds at interior edges so that 0 < i < Np—1,

1<j<N,—l,and1 <k<N, -1
Simila,rly taking S in (10) to be

SZ{:E,-_%<:L‘<:I:,-+%, y=yj+%, Zk_%<z<zk+%}
5
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(a) A diagram showing the faces of the mesh meeling at the edge associated with
B jkvif2-
Hi 204172
—_—
Y
hY/2
(22,', Yjs zk+1/2)f\E£,jsk+1/2
S
. ' By
Hi_y1p2,5k41/2 Higrpo k4172 | 7
By
“hi_1/2
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(b) A projection of the face in the “dual” mesh associated with
Ei k4172 down the z azis. Solid lines represent edges in the mesh,
and dotted lines are edges in the dual mesh.

F1a. 2. These figures show the geometry of the unknowns in the equation for Io ; xy173. The geomelry
is similar for other electric fleld variables. The direction of the electric field variable is normal fo o
face in the “dual” grid. 6



we can derive the approximate equation for E, given by
d g .
WR Bigrd e = Bty — Higagpg) = BHig g — Hii1440)
(12) =R hk‘]:',j-}-%,k

where J; bk = Jg(:r:,,yJ+ 2z t)for1 i< N,—1,0<j < Ny—land1 <k < N,—L
Fmally, choosing

S = {.‘Bi_% <z < 5[?"_'_%, yj—% <y < yj.;_%: z= zk+%}
we obtain

d
RIS B gy — WY (Hig ey = Himgipng) = B0 (Higogng = Hijrgiry)
(13) = B e

where J, Dk = J3('c,,y3,zk+1,t)for1 <i<N,~1,1<j<N,—l,and0 <k < N,—1
Tn Section 3 we shall show that (11)-(13) are first order approximations to (1a).

Equations (7)-(9) and (11)-(13) approximate equations (1). The boundary con-
dition (2) is easily satisfied by selecting suitable unknowns to be zero. We choose all
degrees of freedom for E associated with edges on T’ to be zero:

(j=0o0rj=N, and
0<:<N,—1 and0<Ek<N,
if < or

k=0ork=N, and

([ 0<i<N, -1 and0<Z 3SR,
(i =0orz=N, and
0<j<N,—1 and0<EZN,
(14b) Eijpae = 0 if o or

k=0ork=N, and
(0<j<N,—-1 and0<i< N,
(2 =00ri=0N, and

Il
=]

(14a) Biv 1k

0<; <N, and 0<k<N,-1
(14¢c) Eijpps = 0 f S or

j=0orj=N, and

<1< N, and 0 <k <N, 1.

Finally, the initial data (3) is imposed by requiring that (5) is satisfied exactly at time
t=0.

To obtain a fully discrete scheme, (7)-(9) and (11)—(13) must be discretized in time.
This is usually done using the leap—frog scheme [11], but we shall ignore this step here
since we wish to analyze spatial accuracy.



3. Error Analysis. This section is devoted to proving the error estimate in The-
orem 3.1 (stated below) which shows that the scheme outlined in the previous section
is second order convergent regardless of mesh non-uniformity. We define the following
mesh dependent error norms

N,—1Ny—1 N -1

1B = BME = 30 3 3 MR (Bu(ei b ) — Fiagia)”

k=1 =1 =0
N.—1 Ny— INx

F S 3 MM Falei sy ) — By

k=1 j=0 =1
N,—1Ny=1N.—1

(15) £ Y Y (B v 2reg) — Brgary)?
k=0 j=1 i=1
and
N.-1Ny—1L N,

1o —EHMY = X 3 SRRy (Y5 ps 2y) — Higagery)”

k=0 j=0 i=0
N.—1 Ny N,—1

-+ E Z Z h?hghf:(ﬂﬁ(xi-f-%ayj:zk-}-%) —'Hi+%,j‘k+%)2

k=0 j=0 i=0
Nz Ny le
2
(16) 30 20 2 WPRSR(Ha(@ing Yirgs ) — Hivgjeg )
k=0 j=0 1i=0
‘THEOREM 3.1. Suppose that F and H are three times continuously differentiable
on Q, that H, is twice continuously differentiable on § and that all the previously
mentioned derivatives are conlinuous in time. Then for any fired T > 0 there is a
constant C depending on T' such that

|B - BMg + | H — H | < CH2.

In order to prove this theorem we shall first establish a sequence of preliminary
results which are stated in Lemmas 3.1-3.8.

Our first lemma shows that the electric field equations (11)-(13) have a first order
local truncation error but with a special structure. Let us define

(17) ef,ﬁ,qr(t) = B0y Y8, 791 8) — Bopal(t)
for all valid choices of subscripts £, a, § and 7 (see equations (5)) and define
(18) eCYH,ﬁ,’]'(t) = HE(:BQU yﬁ’ z’)"’t) - Hanﬁﬂ'(t)

for all valid choices of subscript in (6). Let us also define
1 -4
(193‘) ﬁi,j+-§-.k+% = 3 [(hg)zHlyy(mhyj+%3zk+%) + (hk)2H122(miayj+%:zk+%)] )

1 xr z
(19b)  Bipg e = g[(hn‘)zﬂi’m(mH%:yiszk-}-%)+U"k)thz(mH%aybzk+-12—)}:
1

(190) ﬁi+%,j+%,k = '8' [(hg)zHSyy(xi+%ayj+%;zk) + (h?)zH3xw(${+%:yj-[-%)zk)] y
8



for all valid choices of 4, j and k given in (6). In writing (19) we have used the notation
Hy = a% ’ H, ete. and have suppressed dependence on time.

We shall only provide details of the local truncation error estimates for the first
component of {1a) since the remaining components are similar. With the above defini-

tions we can state and prove the following lemma:
LEMMA 3.2. Suppose H and E are smooth enough, so that all indicated derivatives

exist (see the conditions of Theorem 3.1) then

d

e ¥Rz _ L E __pziEfH _LH L RERY( L _H

(20)  hERhE—eiy i — hERE(eliy e g — it imga) ~ RERS (i n- €iyd ki)
— rEZ Fof 2 Y EZ

= R By rin — Birdioin) + RERS(Bivginry — Prrgin—y) T RGREYir sk

for0<i<N,—1,1<j<N,—1 and 1 < k < N, — 1 where

1Y [(RY)?
Yitgak T T (ﬁ?’) {_8__ [I13yy($i+%ayi:zk) - H3yy(33i+%:yj+%,zk)]
d(hif;)z [Flog(i430 35 2) = Moy iy i3 2] §
+ (ﬁiﬁ) {(héc)z [ngz(a:,-+%,y5, 2) = Hasa(2i3 1, Uiy zk+%)}
._.(h_i‘S“L)i [ngz(a:‘-_,_%,yj,zk) _ ngz(a:,-_tr%, Yis zk_%)] }
+(—;‘% [Hasa(®iy 3, U340 %) — Hons(@i0y Uiy %)
_(g,;“;%z [Hzxa:(mi-i-%a Yi» zk+%) - H2w($i+-;- 2 Y5 zk—%)]
+4_§h—§-’ [(h?)3H3yyy($i+§a§§+’ ) + (h?-1)3H3yyy(wi+%: ;’r—:zk)]
(21) +4glﬁi [(hi)Sngzz(a:H_%,yj, i)+ (hi_l)aszzz(rm%,yj,éi")] -

Here y;_q1 < & < §f+ <y; end zpy <& < &Y < .
Proof. The proof of Lemma 3.2 is easy but tedious. We use the fact that if v is a
suitably smooth function (three times continuously differentiable on [a, 8] is sufficient)

and a < ¢ < b then
2

hZ — h? 1
(02) () — (o) = wl(e) + TR0 4 o [ (Er) K (E)
where hy = 2(b—¢), h. =2(c—a), h = (hy + h_)/2and a < { <c < Y < b
Estimate (22) is proved using standard Taylor series expansion.

Let R% ; ., denote the left-hand side of (20), then expanding e and e on the

i+3:d,
left-hand side of (20) and using (11) we obtain
zy—1 D=z zaEl z
(hi) ! itk h?hkﬁ—(img,yj,zk) - hk(HS(wi+%,}yj+%1zk) - HB(CL'H%; j..%:zk))

—TLZ(Hz(mH%a yj,zk_%) - H2($i+%:yj: zk+%)) - h?ﬁzjﬁé,j,k-
9



Now using (22) first with u(y) = H3(:c‘+ 1,y,2) and @ = Yiebr C =1, and b=y;,1, and
then with u(z) = H2($'+1 Uiy 2),8 = 2 1,€ = Zky b= Zppls and using the equation for
E; (first component of (1a)) we obtain

-1 (h3)? — (Bi_1)?
Ry = 1P v,
1 -
T [(hg)aﬂ%yy(mﬂ%sfy{-a ) + (hg-l)SHSyyy(mH‘ &5 :zk)]
48 z
hz 2z _ hz_ 2
+h?(( k) 8( k 1) szz(ﬂ),'.}.%,yj,zk)
1 Y
(23) +?4—8" [(hz)3H2zzz($.‘+%:yjs£i+) + (hz—1)3H2zzz($i+%syi:£k )] )

On a uniform mesh the terms (hY)? — (hY_;)* and (hf)? — (Ri_;)* vanish, but on a
non—uniform mesh these terms give rise to a first order local truncation error. However,
as we shall see, this local truncation error has a special form. We exploit this to rewrite
the right-hand side of (23) so that the first order error term appears as the discrete curl
(in the sense of equations (11)-(13)) of a second order quantity. We rewrite the term

((h?)2 - (hg—1)2)Hayy($.-+%,yj, zi) as follows
((hg)z - _(h?—l)2)H3yy($i+%:yjazk)
() Hyy @iy 1, ¥51.40 ) = (B2 oy (221 B g )
+(h?)2 [H3yy(mi+% s Yis zk) - Hayy(m;+%,yj+% s ZA)]

(24) _(h?—l)g [H3yy(3’i+%ayjazk) - Hayy(ﬂi.-+%,yj_%,zk)] .

Similarly we rewrite ((h%)® — (hf_1)*}Haas(2iyq, ¥, 2) as a difference of two second
order quantities. Using these expansions in (23) shows that

(h2)" IR:L+2,J,, _ —hk((h;) Hayy($,+ ,yj+1,zk) (hf"’8 1) Hayy(e ‘+_,yj_-,zk))

+h§ (g%ﬁHm(mH%,yj,zH%) _ (B 3 1) szz(’B,Jr_,yg,z;,_;))
) Hoa(sy o8 78) = Fom(eang Va4l
+%(h?—1)2 [H3yy(:n,-+_1§,yj,zk) - HSyy(mi-}-%’yj—%:zk)]
+%§!(hf‘) [szz(a;t+1,y;,,zk) ngz(m,+_,y,,zk+ )]
_%g(hZ—l)z [H2zz($i+%ryja z) — H2zz(ﬂ;;+§:yj, = )]
g () Hoa(@ia g €7, 20)  (r) Hopa 114,872

(25) b [ (135 03s 657) + (B Faon (01,95, 67)]

10



Equation (25) still does not contain all the terms necessary, so we add and subtract the

term
2 (R§)?
_le 3 [Haxa:(fvi+%1yj+%, Zk) - Hamz(aj.-_*_%, y'j_% ; zk)]
o (RE)?
+hj 8 [HZQ,‘.‘L‘(:C:'{-%! yJ, zk-}-%) —_ Hgm(mt_l_%,y“ z’\—%)] R

The resulting equation is exactly (20). 0
Lemma 3.2 gives the desired decomposition of the local truncation error, but we

need an estimate of the remainder terms, This is supplied in the next lemma where we
have used the notation ||f||e = max [f(=)]
z€

LEMMA 3.3. Suppose E and H are three times continuously differentiable on 8,
suppose that H, is twice continuously differentiable on Q, and suppose all previously
mentioned derivalives are continuous in time, then

1 1 1 1
Mirial < 0[5 1 Hsualoo + 51 Pceslles + 5 1 Hsanleo + 5 1zl
(26) < B*Mf

where M = max 11 (%) () ()" Hlle

T30,120,k30

(272) Bsepans] < 1 [Ellalleo + SlHieelle] < 22
(21b) Brogirrg] < 1 [olHaelle + 21l < E2E
(27¢) Birgivinl < B %I[H;syylloﬁ%llﬂmlloo: Shzig[-
Finally

(28a) |%ﬁi,j+§,k+§| < ET_{{’

(281) L pnng] <

(280) lggﬁw%g,u%l < %ﬂ_@?_’

i i k
where M;{ - 15,{5]:}:1:'23&&:,, ” ('585) ("59%) (-3%) (%) H"’”‘x"
120,720,k 20

Remark: This lemma shows that the error term 7,1 ;5 in (20) is second order
but that the term involving 3 is only first order.

Proof. This result follows trivially from the mean value theorem. 01

We now state, without proof, the analogous results to (20) for the remaining com-
ponents of (1a).

11



LEMMA 3.4, Suppose H and E are smooth enough (see Lemma 3.3) then

. "
(29) hyhkdt F:-i-l v~ R hy(el Gty T ..1+~1- k-‘) hihi (e,__ J+3k ef&%,ﬁé.k)

= —h{hY(Bi et prd — Bigayney) — BIRL(Biog jusn — Birgirs ) + BERTIA st i

for1 <i<N;,—1,0<j<Ny,—1landl <k <N, —1 where the remainder term
Vijrik 15 0 complicated expression similar to that for v, 1 ;. in (25) and satisfying the
estimate kst sl < B *ME.

In addition

x d T
(30) h hyhkdt 'Jk“}" hyh (61"}'1 3k+2 eﬁ%ljtk"‘l) ﬁ h (etj E!k'*"- !j+;lk+1)

= —hghk(ﬂ“"i'hk'*‘i B""":JIL""I) hwh (ﬁ 3'_ l - ﬂ rJ+21k+1) + hxhyhk’}’i:j'k"}"ﬁ"

2
for1 <i<Ny,—1,1 <7< Ny,—-1and0 <k <N, —1 where Yi g4k satisfies the
estimate |fy”k+1| < hZME.
Our next lemma gives the local truncation error for the discrete approximation to

the first component of (18) by (7).
LEMMA 3.5. Assuming that E and H are sufficiently smooth (see Lemma 3.5).

= d H E x E
RN i iy T TR0y — o FIRVE L CITPEL (IR
(31) = h?hghiai,ﬁé,kﬂ
for0<i< N, 0<j <N, and 0 <k <N —1 where the remainder term is given by
(hy)2 (hz. 2
(32) gl gkrd = 24 Esyyy(a?u ﬂg,zk+1) - 2‘:1) EZzzz(mi:yj-{--;—:ni)'

Here y; < ¥ <yjpr and 2, < 9§ < z41. Hence

Rt
(33) Iai+§,j,k+%|_ —M;

: : .
;= &) &) &)
where M, = . (5] (55) (5) Eelleo
20,5 20,k>0
Proof. This is a simple use of Taylor series since (7) is a centered difference approx-

imation to the first component of (1b). O
We now summarize the truncation error results for (8) and (9)
LEMMA 3.6. Assuming that E and H are sufficiently smooth (see Lemma 3.5)

d
PRI ety ey + REB(CE
(34) = hxhyhkaa+—,:r,k+%

Likts T =‘+1,j,k+;) +hihG ( Citd k1 s‘+%,j,k)

hmhyhkdt i+3.d+3 A+h hz(em dHgk T ‘:j+.;, )-Hﬁhz( Civd ik~ :’+%,j+1,k)
(35) = hihiRia g s n
12



where |ai+%,j,k+%[ < h2ME /12 and Iai+%,j+l,k| < h*ME/12.

Lemmas 3.2-3.6 express the behavior of the local truncation error. Next we need to
analyze how this local error contributes to the global error. This is done by deriving a
discrete energy estimate for the error equations. First we summarize the discrete error
equations and analyze the form of these equations.

Let us enumerate the electric and magnetic unknowns (i.e. form long vectors of
electric and magnetic unknowns) then (20), (29) and (30) may be written

d iy —H - —
(36) Mpr—; e —Cgr ¢ = Cgr 8 +MEgg v

—E . —H . -

where @ is the electric error vector, € the magnetic error vector, 8 the vector of
values (see (19)) enumerated like the magnetic field and ~ the vector of v values (see
(21) and Lemma 3.3) enumerated like the electric field. The matrix Mgg is a diagonal
matrix with diagonal entries AZhYhE, h¥AI R or AFhYRE depending on which of (7), (8)
or (9) is relevant. The matrix Cgy is a sparse matrix corresponding to the discrete curl

in (7)-(9). The choice of E was dictated (see Lemma 3.2) by the need for Cgn ﬁ to
appear on the right-hand side of (36). Let us note that

Y — —
(37) u Mpgu= || u ||}
where the discrete norm || % ||z is defined in (15).
Using the same enumeration of unknowns we may write (31), (34) and (35) as

d —H —y —
(38) Myn— ¢ +Cyp e = Myy o

where @ is the vector of o values (see (32) and Lemma 3.6) enumerated like the magnetic
unknowns. Mpy is a diagonal matrix and Cyg corresponds to the discrete curl in (31),
(34) and (35).

Note that

T — —
(39) v My v=|"v %

where || @ || is defined in (16).

An important point is that the extension of the Yee scheme to a non-uniform grid
has preserved the relationship between Cyp and Cgy which is present for a uniform
grid. The next lemma shows that

Cug = (Cen)t

hence we may write C = Cyg and rewrite (36) and (38) as

d -E —H = -

(40&) MEEE [+ —CT € = OT ﬂ +MEE Y
d - - o
(401)) MHH:E E‘.H +C GE = MHH 04

13



LEMMA 3.7. Suppose that the discrete function (v,+ ks Vg d o .,k+1) is defined
for all values of the subscripts in (5) and that it satzsﬂes the boundary conditions (14).
Suppose another discrete function (U ;4141 1, %41 k11 ,+§,J+%,k) is defined for all
values of the subscripts in (6) then

Nz—l Ny 1 Nx
> 20 Dok (RN ES {hk(” ikt T '.:'+1,k+%) + h} (”i,5+%,k+1 - ”i,:‘+%,k)}
k=0 j=0 =0
N.—1 Ny N.-1
+ E 33 iy erd (B irngars — Viieed) T A ipdin — isdine)}
=0 =0 i=0
Nz Ny -1 Nz
+3 >, Z ARty v d (Wi 5050 = Virrged ) +h?(vi+%,j+1,k_vi+%,_j'k)}
k=0 j=0 i=0
(41)
Ngl Ny-1N,—-1

Z Z E h' U’+2$3rk {hk(u1+grj k - ui+%1j+%,k)

=0 j=1 k=1

_hy( ’+2,.TJ‘""" ui-l-%,J,k-l—%)}
N!J"lN::'—i Nz
+ E Z E h_’.l i+ 1 .k {h?(ui,j-l-%,k—% ,3+—,H—l)
=0 i=1 k=1

z
—ﬁk(u;_;,j+ bk T u-‘+%,:'+%.k)}
Nz—1 Nz—1 Ny—1

+ Z Z E hAU ikt {;"1 (ut—g,g,k-}-? u:—-,g,k+5)

=0 i= i=1

—hE (g ped ~ Uigrard)}

Remark: We may rewrite {41) compactly using matrix notation as

-, =T —
u [Cug v]=v [Cex u]
which implies that Cry = Chp.

Proof. We use repeatedly the following summation by parts formula. Let the

N-
sequence {s;}i=0 be such that so = sy = 0 and let {t, +1 } be another sequence then

N-1 N-1

(42) Yo tips(sipn = si) = — 3 silty —tiog)-

i=0 1=1

As noted in the remark following the lemma, the left hand side of (41) is just ET Cyg 0.
Applying (42) to each term we obtain

—1 N;—~1 Ny‘“"l

T —
Cypv = — Z Z hi Z hiv; J,k+2(u ij—3.k+3 -—u,ﬁ?,kh)

k=0 i=0
14



Ny-1 N N;-1

+ 20 DR Z ki v,J+2,k(u itgk-3 T "J'"i'%:k*'%)

=0 i=0
N.—1 Ny N.-1
+ E Z hy E hkvt _‘),}'C-l-1 (ut—-i,_?,k‘l'z 3+%’j’k+%)

k=0 J-—O $=0
Ny Nz

_2 Z hy E h v‘+§r3ik(u’+2 J:k_‘_ ui"‘%!jlk'*‘%)
j=0 i=0
Nz Ny

DI IR Z $Viitd ke (Wisd jrd ke — ird i p)
k=0 j=0

Ny Nx—1 Ny"'l

+D, D0 B D0 hvigia(tigiote — g sed k)

k=0 =0 j=1
Regrouping the terms we obtain

Nz—1 {Ny -1 N,

T
i Cup @ = 3 MY D0 Do Mg ia(uingiosh — Wil it p)
P

j=1 k=0
Ny N;—1

¥ — .
+2 2 LW Ty “f+%.:,k+%)}
=0 k=1
nyg—1

+ ZO h,!;{ZU ; 1 |,_1+2, ,J'+2,k—— —u,3+2‘k+%)

N N:.~1

-2 > ki J+2:k(u¢—§1.’o‘+“ u*+%'j+%"“)}
k=0 i=1
N:—1 Nz—1 Ny
+ Z hi{ Z Zﬁjv:,j,k-}-l(u:—i,j,k-}-? i+%,j,k+%)
k=0 i=1 ;=0
Ny—1 Ny-1
~ 2 2 hiv, erg (Uiimd s — uvﬂ'av“l)}
=0 j=1

Now we use the boundary data (14) (for example v;, 10 = 0) to modify the limits of

summation to obtain the right hand side of (41). O
Next we state and prove a stability result for (40).

LEMMA 3.8. Suppose ¥ ande" satisfy (40) and that " (0)=0and e (0) =0
(ie. (5) and (6) are satisfied exactly at t = 0). Suppose in addition that @, ﬁ and ¥

are continuous in time and that f is continuously differentiable in time then
1€ n +1 2" e <3(2 a1 B ()l

+ [13 l+ 1Bl 17 (5)lsds):

15



Proof. If we multiply (40a) by (ZH)T and (40b) by (E’E)T then add the equations
and use (37) and (39) we obtain

i = — T — — T —
S+ 1 1 = @B+ () M7+ () Mun @

But by (40b) My P —Mpy th, 80

2
m{ TS I
T = — T — - T —
= (Of) Mun ﬂ — (_f;f) Mug B+ (6E) Mgr v + (BH) My o .

2dt

If we integrate this expression from ¢ = 0 to ¢t = ¢, and use the fact that P (0)=0
—H )
and e (0) = 0, we obtain

1(, =E —H tf T -~ LE\T =
S0 @+ 1 @l = [ & b 4 () e 7
T T -
+ (ZH) Mgy a — (zf) My p } ds
T -
Integrating (’é’f) Myy B by parts we arrive at
1 —F —H
ST ol + 12" @l
~H T - b = L\T -
— (6 (tl)) Mpy B (4) +./0 o Mgy B+ (8 ) Mge v

() M (34 5.)}

Now using the Cauchy-Schwarz inequality it is apparent that
11, ~E —H
e @+ 1 el
—H - t — —y —
e Ellull 8 (t1)||H+/O i e zllBlla+ 1 e llzll 7 e

—)H — -
(43) N N (13l + 1 B ) s,
Suppose that t* is chosen so that
(49) s | 2 )l + 1" Gl = 12" @)l +1 27 @)l

Then, using (43) with #; = t*, the arithmetic-geometric mean inequality, obvious esti-
mates for product terms and (44), we have

(12 @M 413" @) <5 (15 @M+ 1" @)

16



< [0l B s+ (1" @+ 12" @) (15
+f:t 15 1l + 1 &l + 1l B ||Hds) .

But by another application of the arithmetic-geometric mean inequality
1/ =B wH 2 LN
5 (17 @Me 412" @) < [ 13 allgllr ds
1/, =E . oH ., Z
g (17 @)ls +1€" @)ln)
3 — . * - - — 2
by (1B @+ [ 17 e+ 13 -+ 1B )

Rearranging this equation and replacing ¢t* by ¢ on the right-hand side we obtain
| AN SH o, 2
(17 @ls+ 12" @) <
3 t—
S aax 1B @llr [ 11l ds

(max 13 @+ [ 13 41 Bl +17 sds)

In obtaining the above estimate we have also used a crude bound on the overall constant.
Taking square roots we obtain

127 @z+1e" @)
<3 (2 max | B M+ [ 1+ 1 Bl +117 e ds) .

-y —H —E —=H
But | e Wle+le @laslle @)e+ll e (t)|ln so we have proved the
desired inequality. O
Proof. [of Theorem 3.1}, By Lemma 3.8,

(45) |E— B + |1 H ~ H"l
< 3(2gax B G [ NG N+l Bl +117 llmds ).

But by (27) and (28) of Lemma 3.3 and the definition of || - ||#,

17 @l < Bmess@ ),
— 2A4H 3
1B, )l < yf3meas ()22,

where meas(?) is the volume of (2.

17



By Lemmas 3.5 and 3.6 and the definition of || « ||g imply that

2AfE s
17 ()lls < mhﬂ;’_y

Finally by Lemmas 3.5 and 3.6

13 @l < /Brcns (@) 22 ()

In these expressions we have explicitly shown that the bounds MZ, M M} and MJ
depend on time. Let M(T) = Joax {MZH(S), MH(s), ME(s), MSH(S)} then (45) can be

written
5 5
. h _ h < 2 el -
I|E — BMls + ||1H — H|y < h1/3mea,s(ﬂ){4M+t12M}
5 5
< K2 - ——-}
< h \/3meas(9){4+12T M

as claimed in the theorem. O
Remarks:
1. The theorem is proved for the case when {) is a rectangular parallelepiped.
However the geometry of §) only enters into the proof of Lemma 3.7. Moreover
Lemma 3.7 holds in much greater generality than we have stated (for example
it holds for regions made up of the union of finitely many rectangular paral-
lelepipeds). Hence Theorem 3.1 holds on such regions. We only present the
proof on a simple rectangular parallelepiped to simplify notation and argu-
ments.
2. The smoothness restrictions on E and H might be reduced (to Sobolev space

bounds) if the right-hand side of (11}, (12) and (13) is replaced by a suitable
integrated current density. For example in (11) we could replace R¥AzJ;, 1.k
by

1 x§ Y. %

— f / [ g ety

T .
hg’ i—1 y}_% zk—%

Then the Bramble-Hilbert Lemma rather than the Taylor series remainder
might be used to bound the error terms (see [8] for this type of argument in
other contexts).

3. Our result remains true for the more general problem approximating F and 1T
which satisly

cFi+oFE -VxH = J in Q
pH:+VxE = 0 m Q

provided € and g are strictly positive continuous functions on { and ¢ is a non-
negative continuous function on £ (and the required smoothness on E and H
is present). For discontinuous ¢ or & a new formulation of the discrete problem
is needed (cf. [9]).

18



[9]

(10]

(11]

4, Finally, we note that the proof of second-order accuracy in Theorem 3.1 did not

K.

> o® Y OR OHAE @ W

require any assumptions on the mesh. In particular the mesh does not have to
be quasi-uniform. Thus the accuracy of the Yee scheme is insensitive to mesh
stretching and compressing in the coordinate directions.
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