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Abstract

We have proposed a block sparse approximate inverse with cutoff (BSAIC) preconditioner for
relatively dense matrices. The BSAIC preconditioner is effective for semi-sparse matrices which
have relatively large number of nonzero elements. This method reduces the computational
cost for generating the preconditioning matrix, and overcomes the performance bottlenecks
of SAI using the blocked version of Frobenius norm minimization and the drop-threshold
schemes (cutoff) for semi-sparse matrices. However, a larger parameter of cutoff leads to a less
effective preconditioning matrix with a large number of iterations. We analyze this convergence
deterioration in terms of eigenvalues, and describe a deflation-type method which improves
the convergence.
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1. Introduction

Linear systems

Ax = b,

where A ∈ Cn×n is a semi-sparse matrix which is rela-
tively dense, appear in nano-simulations. A sparse ap-
proximate inverse (SAI) technique is proposed as a par-
allel preconditioner for sparse matrices [1]. This precon-
ditioner has a good parallel performance. However, the
arithmetic costs of constructing the preconditioning ma-
trix grow cubically with the number of nonzero entries
per row. We have proposed a block sparse approximate
inverse with cutoff (BSAIC) [2] preconditioner for such
semi-sparse linear systems.
The BSAIC preconditioner can reduce the computa-

tional cost for constructing the approximate inverse ma-
trix, and overcome the performance bottlenecks of SAI
using the blocked version of Frobenius norm minimiza-
tion and the cutoff strategy for semi-sparse matrices. A
large cutoff parameter leads to a further decrease cost of
constructing the approximate inverse matrix. Thus, we
want to use a larger cutoff parameter as much as possi-
ble. However, a convergence of Krylov subspace methods
preconditioned with BSAIC deteriorates when the cut-
off parameter is large. In this paper, this deterioration
of convergence is investigated in terms of eigenvalues,
and a method of the convergence improvement is also
presented.
This paper is organized as follows. In Section 2, our

method, the BSAIC preconditioner, is described. We de-
scribe the convergence deterioration by large cutoff pa-
rameters, and how to improve this convergence deteri-

oration and algorithms of the method in Section 3. In
Section 4, the BSAIC preconditioner applied to the im-
proving method is verified by numerical experiments, fol-
lowed by the concluding remarks in Section 5.

2. Block SAI with Cutoff (BSAIC)

We describe the block SAI with cutoff (BSAIC) pre-
conditioner. In the BSAIC preconditioner, the cutoff is
applied to the coefficient matrix A in order to reduce
the computational cost of least square problems which
appear in block SAI. Firstly, the approximate coefficient
matrix Ac is generated by the following cutoff:

Ac = [ãij ], ãij =

{
aij , (|aij | > θ or i = j),

0, otherwise,
(1)

where θ is a nonnegative real value. After applying the
cutoff, least square problems with the approximate ma-
trix Ac:

min
M

∥AcM − I∥2F ≈
L∑

k=1

min
Mk

∥AcMk − Ek∥2F, (2)

where l is a block size, L = ⌈n/l⌉ and Ek is a submatrix
of the identity matrix I such that I = [E1, E2, . . . , EL]
are solved. The matrix M = [M1,M2, . . . ,ML] is em-
ployed as the preconditioning matrix. The initial spar-
sity pattern M0 of the preconditioning matrix is decided
by the following:

spy(M0) = spy(Ac), (3)

where “spy” denotes the sparsity pattern of a matrix.
We overcome a performance bottleneck by using a

blocked version of SAI with drop-threshold schemes to
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reduce the computational cost for constructing the ap-
proximate inverse matrix and to improve the conver-
gence of Krylov subspace methods. However, a larger
value of θ leads to a less effective preconditioning ma-
trix with a large number of iterations, but a value of θ
is preferred to be large as much as possible. In the next
section, we describe this convergence deterioration and
the improvement method.

3. Convergence improvement by defla-

tion

We consider to solve preconditioned linear systems
(AM)(M−1x) = b, by some Krylov subspace methods.
We investigate an eigenvalue distribution of AM . The
block size l is fixed and the cutoff parameter θ is varied
in BSAIC. The preconditioning matrix M approximates
the inverse of matrix A, and AM is nearly equal to the
identity matrix I when M is a good approximation to
A−1. Eigenvalues of AM are clustered around 1 when
M is a good approximation to A−1.
In the restarting GMRES (GMRES(m)) [3] method,

the information concerning the eigenvalues around the
origin is discarded at the restart. These small eigenvalues
often slow the convergence. As GMRES iterations are
performed, deflation-type schemes (e.g. GMRES-IR [4]
and GMRES-DR [5]) calculate small approximate eigen-
values and corresponding eigenvectors. These eigenvec-
tors are added to the Krylov space in a bid to speed
convergence. An implicitly restarted GMRES (GMRES-
IR) [4] proposed by Morgan is employed in Section 4.
In the GMRES-IR(m, k) method, we compute the

eigenpairs of the eigenvalue problem from an Arnoldi
process of length m. We then apply an implicitly restart-
ing Arnoldi (IRA) [6] with the unwanted harmonic Ritz
values [7] as shifts. The IRA method filters a chosen
harmonic Ritz value away from the Arnoldi process.
Here, small harmonic Ritz values are chosen, and k small
eigenvalues near the origin can be deflated. Therefore,
the convergence will be improved by this deflation. Fig. 1
shows the algorithm of GMRES-IR. Our experiments in
Section 4 indicate the validity of the GMRES-IR method
preconditioned with BSAIC.

4. Numerical experiments

In this section, firstly, the performance of the Krylov
subspace method preconditioned with the BSAIC pre-
conditioner corresponding to θ is verified. Secondly, we
analyze the convergence deterioration by a larger value
of θ and apply the improvement strategy to the BSAIC
preconditioner. All experiments are carried out by MAT-
LAB 7.4 on MacBook (CPU: Intel Core 2 Duo 2.26GHz,
Memory: 4.0Gbytes, OS: Mac OS 10.6.3). The test
problems are solved by the preconditioned GMRES(50)
method. The stopping criterion for the relative residual
is 10−10. The initial guess x0 is set to 0 and all elements
of b are set to 1. The notation #MVs means the num-
ber of matrix-vector products, and the dagger (†) means
that the stopping criterion is not satisfied in 5, 000 MVs.
The test matrix is derived from the computation of the

molecular orbitals of an epidermal growth factor (EGF).

Algorithm GMRES-IR(m,k) method

1: Compute p = m− k and r0 = b−Ax0

2: Compute β = ∥r0∥2 and v1 = v0/β
3: Compute Vm+1, H̄m with Arnoldi method
4: Compute y, the minimizer of ∥V ⊤

m+1r0 − H̄my∥2,
and xm = x0 + Vmy

5: If satisfied Stop, else proceed
6: Compute the harmonic Ritz values θ̃1, . . . , θ̃m
7: Sort |θ̃1∥ ≥ · · · ≥ ∥θ̃m|
8: Set shift θ̃1, . . . , θ̃p
9: Update Vk+1 and H̄k with IRA method
10: Go to 3, and resume the Arnoldi method from step

k + 1

Fig. 1. Algorithm of the GMRES-IR(m, k) method.
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Fig. 2. The computational time of GMRES(50) with BSAIC cor-
responding to θ for EGF.

The size of A is 4, 505 and the number of nonzero ele-
ments is 5, 254, 215 (25.89%). In this example, the block
size l of BSAIC is set to 30.
The computational time of GMRES(50) with precon-

ditioned BSAIC corresponding to θ for EGF is reported
in Fig. 2. Our BSAIC preconditioner can solve this prob-
lem faster than SAI and block SAI. However, as Fig. 2
indicates, GMRES(50) preconditioned with BSAIC does
not converge when θ is larger than 10−5. Fig. 2 also
shows that the cutoff parameter θ is preferred to be
large as much as possible (e.g. θ = 10−3) for the pre-
conditioning time. We investigate the slow down of the
convergence in terms of eigenvalue distributions of AM .
Figs. 3(a), 3(b), . . . , 3(e) show eigenvalue distribu-

tions of AM corresponding to θ = 10−6, 10−5, . . . , 10−2,
respectively. Fig. 3(f) shows the eigenvalue distribution
of A. The red line in Fig. 3 denotes a zero eigenvalue. In
Figs. 3(a)–3(e), the eigenvalue distributions of AM are
clustered around 0 as θ becomes larger. The eigenvalue
ditribution of A in Fig. 3(f) is expanded and clustered
around 0 more than that of AM . It is predicted that the
coefficient matrix A is ill-conditioned. This clustering
of eigenvalues is one of the key reasons for the conver-
gence deterioration. Therefore, we apply the BSAIC pre-
conditioner and GMRES-IR, which deflates the smallest
eigenvalues, to these linear equations, and we improve
the convergence of Krylov subspace methods.
Table 1 shows the results of GMRES-IR without pre-

conditioner and GMRES-IR preconditioned with ILU(0)
[8] and ILUT [8]. The ε in Table 1 denotes the threshold
of ILUT. The GMRES-IR method does not converge ex-
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(a) θ = 1.0× 10−6.
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(b) θ = 1.0× 10−5.
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(c) θ = 1.0× 10−4.
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(d) θ = 1.0× 10−3.
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(e) θ = 1.0× 10−2.
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(f) Eigenvalue distribution of A.

Fig. 3. Eigenvalue distributions of AM and A for EGF.

Table 1. Results of preconditioned GMRES-IR(50, 25) for EGF.

Preconditioner #MVs
Wall clock time [sec]

Precond. Iter. Total

None † — — —

ILU(0) † 11.04 — —

ILUT(ε = 10−2) † 20.51 — —

ILUT(ε = 10−3) 74 33.49 16.76 50.25

Table 2. Results of BiCGSTAB, GMRES(50) and GMRES-IR
preconditioned with BSAIC (l = 30, θ = 1.0× 10−3) for EGF.

Krylov #MVs
Wall clock time [sec]

Cutoff Precond. Iter. Total

BiCGSTAB † 0.59 36.89 — —

GMRES(50) † 0.59 36.89 — —

IR(50, 5) † 0.59 36.89 — —
IR(50, 10) 331 0.59 36.89 15.91 53.39
IR(50, 15) 262 0.59 36.89 12.55 50.03

IR(50, 20) 233 0.59 36.89 10.90 48.38
IR(50, 25) 226 0.59 36.89 10.83 48.30

Table 3. Results of BiCGSTAB, GMRES(50) and GMRES-IR
preconditioned with BSAIC (l = 30, θ = 5.0× 10−3) for EGF.

Krylov #MVs
Wall clock time [sec]

Cutoff Precond. Iter. Total

BiCGSTAB † 0.56 17.09 — —

GMRES(50) † 0.56 17.09 — —

IR(50, 5) † 0.56 17.09 — —
IR(50, 10) † 0.56 17.09 — —
IR(50, 15) † 0.56 17.09 — —

IR(50, 20) 351 0.56 17.09 15.15 32.80
IR(50, 25) 329 0.56 17.09 15.85 32.50

cept ILUT(ε = 10−3). GMRES-IR preconditioned with
ILUT(ε = 10−3) has good convergence. However, ILUT
does not have good parallel efficiency such as SAI.
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Fig. 4. The computational time of GMRES-IR(50, 25) with
BSAIC corresponding to θ for EGF.

Tables 2 and 3 show the results for EGF with θ = 1.0×
10−3 and 5.0 × 10−3, respectively. When BiCGSTAB
[9] and GMRES(50) are used, the stopping criterion
is not satisfied in both Tables 2 and 3. In Table 2,
the GMRES-IR method preconditioned with BSAIC
converges except GMRES-IR(50, 5). As a result, the
GMRES-IR(50, 25) method converges faster than other
Krylov subspace methods. Table 3 shows that each of
GMRES-IR(50, 20) and GMRES-IR(50, 25) converges,
and GMRES-IR(50, 25) converges faster than any other
method. Fig. 4 shows that a larger value of θ can be ap-
plied by using GMRES-IR. The convergence is depen-
dent not only on the cutoff parameter θ but also on the
restart value m and the number of deflated eigenvalues
k. Thus, we need to set an appropriate m and k. Morgan
also mentioned that the choice of m and k changes the
convergence in [4].
Tables 4 and 5 show the real part of harmonic Ritz

values of GMRES-IR(50, 25) and the real part of small
eigenvalues of AM , respectively. In Table 4, the param-
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Table 4. The harmonic Ritz values of GMRES-IR(50, 25) and
the eigenvalues of AM (l = 30, θ = 1.0 × 10−3). Underlines

indicate the correct digits.

Re(H. R.) Re(eig(AM))

λ1 0.000001191238635 0.000001191238641

λ2 0.000225851028469 0.000225851028462
λ3 −0.000307394803250 −0.000307394803254
λ4 0.002204006095033 0.002204006095033
λ5 −0.003517837137617 −0.003517837137617

Table 5. The harmonic Ritz values of GMRES-IR(50, 25) and
the eigenvalues of AM (l = 30, θ = 5.0 × 10−3). Underlines

indicate the correct digits.

Re(H. R.) Re(eig(AM))

λ1 −0.000072402852854 −0.000072402852260
λ2 0.000197498551705 0.000197498552292
λ3 −0.001027046005229 −0.001027046005286

λ4 0.002560480805997 0.002560480809970
λ5 0.002632881319376 0.002632881318118

Table 6. The number of eigenvalues of AM around 0 (l = 30).

θ #(|d| < 10−1) #(|d| < 10−2) #(|d| < 10−3)

1.0× 10−6 6 2 0

1.0× 10−5 10 3 0
1.0× 10−4 18 6 2
1.0× 10−3 26 9 3
5.0× 10−3 39 11 2

eters of BSAIC are set at l = 30 and θ = 1.0 × 10−3.
In Table 5, the parameters of BSAIC are set at l = 30
and θ = 5.0× 10−3. “Re” and “H.R.” denote a real part
and a harmonic Ritz value, respectively. The MATLAB
command eig is used to calculate the eigenvalues of AM .
Both Tables 4 and 5 show that the harmonic Ritz values
approximate the eigenvalues of AM well. Hence, small
eigenvalues of AM are deflated, and Tables 2 and 3 also
show that the GMRES-IR method improves convergence
more than any other Krylov subspace method.
The number of eigenvalues of AM around 0 corre-

sponding to θ is reported in Table 6. The block size l is
fixed at 30. #(|d| < value) in Table 6 denotes the num-
ber of absolute eigenvalues which are less than value.
When θ = 1.0× 10−6 and 1.0× 10−5 are used, #(|d| <
10−3) is zero and the GMRES(50) method with BSAIC
converges in Fig. 2. However, when θ which is larger than
10−5 is used, #(|d| < 10−3) is not zero and GMRES(50)
with BSAIC does not converge in Fig. 2. Thus, a larger
value of θ increases the number of eigenvalue of AM
around 0 and eventually deteriorates the convergence of
Krylov subspace methods.

5. Conclusions

We proposed a method to improve the convergence of
the BSAIC preconditioner using the deflation of small
eigenvalues. Our BSAIC preconditioner reduces the con-
structing cost of the approximate inverse M for semi-
sparse matrices. However, a larger value of cutoff param-
eter θ increases iteration counts and makes convergence
difficult. We investigate this convergence deterioration
with respect to eigenvalue distributions of AM . As a re-
sult, a larger value of θ leads the eigenvalue distribution

of AM to be expanded and clustered around 0. This
cluster of small eigenvalues makes the convergence slow,
and thus the deflation-type Krylov subspace methods
improve the convergence.
In future work, we will try to find an automatic pro-

cedure for selecting the cutoff parameter θ, the restart
count m and the number of small eigenvalue k. We also
apply for large scale problems.
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