
A Convergence Theory for Deep Learning via Over-Parameterization

Zeyuan Allen-Zhu * 1 Yuanzhi Li * 2 3 Zhao Song * 4 5 6

Abstract

Deep neural networks (DNNs) have demon-

strated dominating performance in many fields;

since AlexNet, networks used in practice are go-

ing wider and deeper. On the theoretical side, a

long line of works have been focusing on why

we can train neural networks when there is only

one hidden layer. The theory of multi-layer net-

works remains unsettled. In this work, we prove

simple algorithms such as stochastic gradient de-

scent (SGD) can find global minima on the train-

ing objective of DNNs in polynomial time. We

only make two assumptions: the inputs do not de-

generate and the network is over-parameterized.

The latter means the number of hidden neurons

is sufficiently large: polynomial in L, the num-

ber of DNN layers and in n, the number of train-

ing samples. As concrete examples, starting from

randomly initialized weights, we show that SGD

attains 100% training accuracy in classification

tasks, or minimizes regression loss in linear con-

vergence speed ε ∝ e−Ω(T), with running time

polynomial in n and L. Our theory applies to the

widely-used but non-smooth ReLU activation,

and to any smooth and possibly non-convex loss

functions. In terms of network architectures, our

theory at least applies to fully-connected neural

networks, convolutional neural networks (CNN),

and residual neural networks (ResNet).

*Equal contribution . Full version and future updates are avail-
able at https://arxiv.org/abs/1811.03962.

This paper is a follow up to the recurrent neural network (RNN)
paper (Allen-Zhu et al., 2018b) by the same set of authors. Most
of the techniques used in this paper were already discovered in the
RNN paper, and this paper can be viewed as a simplification (or
to some extent a special case) of the RNN setting in order to reach
out to a wider audience. We compare the difference and mention
our additional contribution in Section 1.2.

1Microsoft Research AI 2Stanford University
3Princeton University 4UT-Austin 5University Wash-
ington 6Harvard University. Correspondence to:
Zeyuan Allen-Zhu <zeyuan@csail.mit.edu>, Yuanzhi Li
<yuanzhil@stanford.edu>, Zhao Song <zhaos@utexas.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1 Introduction

Neural networks have demonstrated a great success in

numerous machine-learning tasks (Amodei et al., 2016;

Graves et al., 2013; He et al., 2016; Krizhevsky et al., 2012;

Lillicrap et al., 2015; Silver et al., 2016; 2017). One of the

empirical findings is that neural networks, trained by first-

order methods from random initialization, have a remark-

able ability of fitting training data (Zhang et al., 2017).

From a capacity perspective, the ability to fit training data

may not be surprising: modern neural networks are always

heavily over-parameterized — they have (much) more pa-

rameters than the total number of training samples. Thus,

there exists parameter choices to achieve zero training error

as long as data does not degenerate.

Yet, from an optimization perspective, the fact that ran-

domly initialized first-order methods can find optimal so-

lutions on the training data is quite non-trivial: neural net-

works are often equipped with the ReLU activation, mak-

ing the training objective not only non-convex, but even

non-smooth. Even the general convergence for finding

approximate critical points of a non-convex, non-smooth

function is not fully understood (Burke et al., 2005), and

appears to be a challenging question on its own. This is in

direct contrast to practice, in which ReLU networks trained

by stochastic gradient descent (SGD) from random initial-

ization almost never face the problem of non-smoothness

or non-convexity, and can converge to even a global min-

imal over the training set quite easily. This was demon-

strated by Goodfellow et al. (2015) using experiments for a

variety of network architectures, and a theoretical justifica-

tion remains missing to explain this phenomenon.

Recently, there are quite a few papers trying to understand

the success of neural networks from optimization perspec-

tive. Many of them focus on the case when the inputs

are random Gaussian, and work only for two-layer neural

networks (Brutzkus & Globerson, 2017; Du et al., 2018b;

Ge et al., 2017; Li & Yuan, 2017; Panigrahy et al., 2018;

Soltanolkotabi, 2017; Tian, 2017; Zhong et al., 2017a;b).

In Li & Liang (2018), it was shown that for a two-layer net-

work with ReLU activation, SGD finds nearly-global op-

timal (say, 99% classification accuracy) solutions on the

training data, as long as the network is over-parameterized,

meaning that when the number of neurons is polynomi-

https://arxiv.org/abs/1811.03962

A Convergence Theory for Deep Learning via Over-Parameterization

ally large comparing to the input size. Moreover, if the

data is sufficiently structured (say, coming from mixtures of

separable distributions), this perfect accuracy extends also

to test data. As a separate note, over-parameterization is

suggested as the possible key to avoid bad local minima

by Safran & Shamir (2018) even for two-layer networks.

There are also results that go beyond two-layer neural net-

works but with limitations. Some consider deep linear neu-

ral networks without any activation functions (Arora et al.,

2018a; Bartlett et al., 2018; Hardt & Ma, 2017; Kawaguchi,

2016). The result of Daniely (2017) applies to multi-layer

neural network with ReLU activation, but is about the con-

vex training process only with respect to the last layer.

Daniely worked in a parameter regime where the weight

changes of all layers except the last one make negligible

contribution to the final output (and they form the so-called

conjugate kernel). The result of Soudry & Carmon (2016)

shows that under over-parameterization and under random

input perturbation, there is bad local minima for multi-layer

neural networks. Their work did not show any provable

convergence rate.

In this paper, we study the following fundamental ques-

tion

Can DNN be trained close to zero training error

efficiently under mild assumptions?

If so, can the running time depend only polynomially in

the number of layers?

Motivation. In 2012 AlexNet (Krizhevsky et al., 2012)

was born with 5 convolutional layers. Since then, the com-

mon trend in the deep learning community is to build net-

work architectures that go deeper. In 2014, Simonyan &

Zisserman (2014) proposed a VGG network with 19 layers.

Later, Szegedy et al. (2015) proposed GoogleNet with 22
layers. In practice, we cannot make the network deeper by

naively stacking layers together due to the so-called vanish-

ing / exploding gradient issues. For this reason, in 2015, He

et al. (2016) proposed an ingenious deep network structure

called Deep Residual Network (ResNet), with the capabil-

ity of handling at least 152 layers. For more overview and

variants of ResNet, we refer the readers to (Fung, 2017).

Compared to the practical neural networks that go much

deeper, the existing theory has been mostly around two-

layer (thus one-hidden-layer) networks even just for the

training process alone. It is natural to ask if we can the-

oretically understand how the training process has worked

for multi-layer neural networks.

1.1 Our Result

In this paper, we extend the over-parameterization the-

ory to multi-layer neural networks. We show that over-

parameterized neural networks can indeed be trained by

regular first-order methods to global minima (e.g. zero

training error), as as long as the dataset is non-degenerate.

We say that the dataset is non-degenerate if the data points

are distinct. This is a minimal requirement since a dataset

{(x1, y1), (x2, y2)} with the same input x1 = x2 and dif-

ferent labels y1 6= y2 can not be trained to zero error. We

denote by δ the minimum (relative) distance between two

training data points, and by n the number of samples in the

training dataset.

Now, consider an L-layer fully-connected feedforward

neural network, each layer consisting of m neurons

equipped with ReLU activation. We show that,

• As long as m ≥ poly(n, L, δ−1), starting from ran-

dom Gaussian initialized weights, gradient descent

(GD) and stochastic gradient descent (SGD) find ε-

error global minimum in ℓ2 regression using at most

T = poly(n, L, δ−1) log 1
ε iterations. This is a linear

convergence rate.

• Using the same network, if the task is multi-label clas-

sification, then GD and SGD find an 100% accuracy

classifier on the training set in T = poly(n, L, δ−1) it-

erations.

• Our result also applies to other Lipschitz-smooth loss

functions, and some other network architectures includ-

ing convolutional neural networks (CNNs) and residual

networks (ResNet).

Remark. This paper does not cover the the generalization

of over-parameterized neural networks to the test data. We

refer interested readers to some practical evidence (Sri-

vastava et al., 2015; Zagoruyko & Komodakis, 2016) that

deeper (and wider) neural networks actually generalize bet-

ter. As for theoretical results, over-parameterized neural

networks provably generalize at least for two-layer net-

works (Allen-Zhu et al., 2018a; Li & Liang, 2018) and for

three-layer networks (Allen-Zhu et al., 2018a).1

A concurrent but different result. We acknowledge a

concurrent work of Du et al. (2018a) which has a similar

abstract to this paper, but is different from us in many as-

pects. Since we noticed many readers cannot tell the two

results apart, we compare them carefully below. Du et al.

(2018a) has two main results, one for fully-connected net-

works and the other for residual networks (ResNet).

For fully-connected networks, they only proved the training

time is no more than exponential in the number of layers,

leading to a claim of the form “ResNet has an advantage be-

cause ResNet is polynomial-time but fully-connected net-

1If data is “well-structured” two-layer over-parameterized
neural networks can learn it using SGD with polynomially many
samples (Li & Liang, 2018). If data is produced by some un-
known two-layer (resp. three-layer) neural network, then two-
layer (resp. three-layer) neural networks can also provably learn
it using SGD and polynomially many samples (Allen-Zhu et al.,
2018a).

A Convergence Theory for Deep Learning via Over-Parameterization

work is (possibly) exponential-time.” As we prove in this

paper, fully-connected networks do have polynomial train-

ing time, so their logic behind this claim is ungrounded.

For residual networks, their training time scales polynomial

in 1
λ0

, a parameter that depends on the minimal singular

value of a complicated, L-times recursively-defined kernel

matrix. It is not clear whether 1
λ0

is small or even poly-

nomial from their original writing. In their version 2, they

have sketched a possible proof to bound 1
λ0

in the special

case of residual networks.

Their result is different from us in many other aspects.

Their result only applies to the (significantly simpler2)

smooth activation functions and thus cannot apply to the

state-of-the-art ReLU activation. Their ResNet requires the

value of weight initialization to be a function polynomial

in λ (which is our δ); this can heavily depend on the input

data. Their result only applies to gradient descent but not

to SGD. Their result only applies to ℓ2 loss but not others.

1.2 Other Related Works

Li & Liang (2018) originally proved their result for the

cross-entropy loss. Later, the “training accuracy” (not the

testing accuracy) part of (Li & Liang, 2018) was extended

to the ℓ2 loss (Du et al., 2018c).

Linear networks without activation functions are impor-

tant subjects on its own. Besides the already cited refer-

ences (Arora et al., 2018a; Bartlett et al., 2018; Hardt &

Ma, 2017; Kawaguchi, 2016), there are a number of works

that study linear dynamical systems, which can be viewed

as the linear version of recurrent neural networks or rein-

forcement learning. Recent works in this line of research

include (Alaeddini et al., 2018; Arora et al., 2018b; Dean

et al., 2017; 2018; Hardt et al., 2018; Hazan et al., 2017;

2018; Marecek & Tchrakian, 2018; Oymak & Ozay, 2018;

Simchowitz et al., 2018).

There is sequence of work about one-hidden-layer (mul-

tiple neurons) CNN (Brutzkus & Globerson, 2017; Du

et al., 2018b; Goel et al., 2018; Oymak, 2018; Zhong et al.,

2017a). Whether the patches overlap or not plays a cru-

cial role in analyzing algorithms for such CNN. One cate-

gory of the results have required the patches to be disjoint

(Brutzkus & Globerson, 2017; Du et al., 2018b; Zhong

et al., 2017a). The other category (Goel et al., 2018; Oy-

mak, 2018) have figured out a weaker assumption or even

removed that patch-disjoint assumption. On input data dis-

tribution, most relied on inputs being Gaussian (Brutzkus

& Globerson, 2017; Du et al., 2018b; Oymak, 2018; Zhong

et al., 2017a), and some assumed inputs to be symmet-

2For instance, we have to establish a semi-smoothness the-
orem for deep ReLU networks (see Theorem 4). If instead the
activation function is Lipscthiz smooth, and if one does not care
about exponential blow up in the number of layers L, then the

network is automatically 2O(L)-Lipschitz smooth.

rically distributed with identity covariance and bounded-

ness (Goel et al., 2018).

As for ResNet, Li & Yuan (2017) proved that SGD

learns one-hidden-layer residual neural networks under

Gaussian input assumption. The techniques in (Zhong

et al., 2017a;b) can also be generalized to one-hidden-layer

ResNet under the Gaussian input assumption; they can

show that GD starting from good initialization point (via

tensor initialization) learns ResNet. Hardt & Ma (2017)

deep linear residual networks have no spurious local op-

tima.

If no assumption is allowed, neural networks have been

shown hard in several different perspectives. Thirty years

ago, Blum & Rivest (1993) first proved that learning the

neural network is NP-complete. Stronger hardness results

have been proved over the last decade (Daniely, 2016;

Daniely & Shalev-Shwartz, 2016; Goel et al., 2017; Kli-

vans & Sherstov, 2009; Livni et al., 2014; Manurangsi &

Reichman, 2018; Song et al., 2017).

An over-parameterized RNN theory. For experts in

DNN theory, one may view this present paper as a deeply-

simplified version of the recurrent neural network (RNN)

paper (Allen-Zhu et al., 2018b) by the same set of authors.

A recurrent neural network executed on input sequences

with time horizon L is very similar to a feedforward neu-

ral network with L layers. The main difference is that in

feedforward neural networks, weight matrices are differ-

ent across layers, and thus independently randomly initial-

ized; in contrast, in RNN, the same weight matrix is applied

across the entire time horizon so we do not have fresh new

randomness for proofs that involve in induction.

So, the over-parameterized convergence theory of DNN is

much simpler than that of RNN.

We write this DNN result as a separate paper because: (1)

not all the readers can easily notice that DNN is easier to

study than RNN; (2) we believe the convergence of DNN

is important on its own; (3) the proof in this paper is much

simpler (30 vs 80 pages) and could reach out to a wider au-

dience; (4) the simplicity of this paper allows us to tighten

parameters in some non-trivial ways; and (5) the simplic-

ity of this paper allows us to also study convolutional net-

works, residual networks, as well as different loss functions

(all of them were missing from (Allen-Zhu et al., 2018b)).

We also note that the techniques of this paper can be com-

bined with (Allen-Zhu et al., 2018b) to show the conver-

gence of over-parameterized deep RNN.

2 Preliminaries

We use N (µ, σ) to denote the Gaussian distribution of

mean µ and variance σ; and B(m, 1
2) to denote the binomial

distribution with m trials and 1/2 success rate. We use ‖v‖

A Convergence Theory for Deep Learning via Over-Parameterization

to denote Euclidean norms of vectors v, and ‖M‖2, ‖M‖F
to denote spectral and Frobenius norms of matrices M. For

a tuple
−→
W = (W1, . . . ,WL) of matrices, we let ‖−→W‖2 =

maxℓ∈[L] ‖Wℓ‖2 and ‖−→W‖F = (
∑L

ℓ=1 ‖Wℓ‖2F)1/2.

We use φ(x) = max{0, x} to denote the ReLU func-

tion, and extend it to vectors v ∈ R
m by letting φ(v) =

(φ(v1), . . . , φ(vm)). We use 1event to denote the indicator

function for event.

The training data consist of vector pairs {(xi, y
∗
i)}i∈[n],

where each xi ∈ R
d is the feature vector and y∗i is the label

of the i-th training sample. We assume without loss of gen-

erality that data are normalized so that ‖xi‖ = 1 and its last

coordinate (xi)d = 1√
2

.3 We make the following separable

assumption on the training data (motivated by (Li & Liang,

2018)):

Assumption 2.1. For every pair i, j ∈ [n], we have ‖xi −
xj‖ ≥ δ.

To present the simplest possible proof, the main body

of this paper only focuses on depth-L feedforward fully-

connected neural networks with an ℓ2-regression task.

Therefore, each y∗i ∈ R
d is a target vector for the regression

task. We explain how to extend it to more general settings

in Section 5 and the Appendix. For notational simplicity,

we assume all the hidden layers have the same number of

neurons, and our results trivially generalize to each layer

having different number of neurons. Specifically, we focus

on the following network

gi,0 = Axi hi,0 = φ(Axi) for i ∈ [n]

gi,ℓ = Wℓhi,ℓ−1 hi,ℓ = φ(Wℓhi,ℓ−1) for i ∈ [n], ℓ ∈ [L]

yi = Bhi,L for i ∈ [n]

where A ∈ R
m×d is the weight matrix for the input layer,

Wℓ ∈ R
m×m is the weight matrix for the ℓ-th hidden layer,

and B ∈ R
d×m is the weight matrix for the output layer.

For notational convenience in the proofs, we may also use

hi,−1 to denote xi and W0 to denote A.

Definition 2.2 (diagonal sign matrix). For each i ∈ [n]
and ℓ ∈ {0, 1, . . . , L}, we denote by Di,ℓ the diagonal sign

matrix where (Di,ℓ)k,k = 1(Wℓhi,ℓ−1)k≥0 for each k ∈
[m].

As a result, we have hi,ℓ = Di,ℓWℓhi,ℓ−1 = Di,ℓgi,ℓ and

(Di,ℓ)k,k = 1(gi,ℓ)k≥0.

3Without loss of generality, one can re-scale and assume

‖xi‖ ≤ 1/
√
2 for every i ∈ [n]. Again, without loss of gen-

erality, one can pad each xi by an additional coordinate to ensure

‖xi‖ = 1/
√
2. Finally, without loss of generality, one can pad

each xi by an additional coordinate 1
√

2
to ensure ‖xi‖ = 1. This

last coordinate 1
√

2
is equivalent to introducing a (random) bias

term, because A(y
√

2
, 1
√

2
) = A

√

2
(y, 0)+b where b ∼ N (0, 1

m
I).

In our proofs, the specific constant 1
√

2
does not matter.

We make the following standard choices of random initial-

ization:

Definition 2.3. We say that
−→
W = (W1, . . . ,WL), A and

B are at random initialization if

• [Wℓ]i,j ∼ N (0, 2
m) for every i, j ∈ [m] and ℓ ∈ [L];

• Ai,j ∼ N (0, 2
m) for every (i, j) ∈ [m]× [d]; and

• Bi,j ∼ N (0, 1
d) for every (i, j) ∈ [d]× [m].

Assumption 2.4. Throughout this paper we assume m ≥
Ω
(
poly(n, L, δ−1) · d

)
for some sufficiently large polyno-

mial. To present the simplest proof, we did not try to im-

prove such polynomial factors.

2.1 Objective and Gradient

Our regression objective is

F (
−→
W) :=

n∑

i=1

Fi(
−→
W) where

Fi(
−→
W) :=

1

2
‖Bhi,L − y∗i ‖2 for each i ∈ [n]

We also denote by lossi := Bhi,L − y∗i the loss vector for

sample i. For simplicity, we only focus on training
−→
W in

this paper and thus leave A and B at random initialization.

Our techniques can be extended to the case when A, B and−→
W are jointly trained.

Definition 2.5. For each ℓ ∈ {1, 2, · · · , L}, we define

Backi,ℓ := BDi,LWL · · ·Di,ℓWℓ ∈ R
d×m and for ℓ =

L+ 1, we define Backi,ℓ = B ∈ R
d×m.

Using this notation, one can calculate the gradient of

F (
−→
W) as follows.

Fact 2.6. The gradient with respect to the k-th row of

Wℓ ∈ R
m×m is

∇[Wℓ]kF (
−→
W)

=

n∑

i=1

(Back⊤i,ℓ+1lossi)k · hi,ℓ−1 · 1〈[Wℓ]k,hi,ℓ−1〉≥0

The gradient with respect to Wℓ is

∇Wℓ
F (

−→
W) =

∑n
i=1 Di,ℓ(Back

⊤
i,ℓ+1lossi)h

⊤
i,ℓ−1

We denote by

∇F (
−→
W) =

(
∇W1

F (
−→
W), . . . ,∇WL

F (
−→
W)

)
.

3 Our Results and Techniques

To present our result in the simplest possible way, we

choose to mainly focus on fully-connected L-layer neural

networks with the ℓ2 regression loss. We shall extend it to

more general settings (such as convolutional and residual

networks and other losses) in Section 5. Our main results

can be stated as follows:

Theorem 1 (gradient descent). Suppose m ≥
Ω̃
(
poly(n, L, δ−1) · d

)
. Starting from random initializa-

A Convergence Theory for Deep Learning via Over-Parameterization

tion, with probability at least 1− e−Ω(log2 m), gradient de-

scent with learning rate η = Θ
(

dδ
poly(n,L)·m

)
finds a point

F (
−→
W) ≤ ε in

T = Θ
(poly(n, L)

δ2
· log ε−1

)

iterations.

This is known as the linear convergence rate because ε
drops exponentially fast in T . We have not tried to im-

prove the polynomial factors in m and T , and are aware of

several ways to improve these factors (but at the expense

of complicating the proof). We note that d is the data input

dimension and our result is independent of d.

Remark. In our version 1, for simplicity, we also put a

log2(1/ε) factor in the amount of over-parameterization m
in Theorem 1. Since some readers have raised concerns re-

garding this Du et al. (2018a), we have now removed it at

the expense of changing half a line of the proof.

Theorem 2 (SGD). Suppose b ∈ [n] and m ≥
Ω̃
(
poly(n,L,δ−1)·d

b

)
. Starting from random initialization,

with probability at least 1 − e−Ω(log2 m), SGD with learn-

ing rate η = Θ(bδd
poly(n,L)m log2 m

) and mini-batch size b

finds F (
−→
W) ≤ ε in

T = Θ
(poly(n, L) · log2 m

δ2b
· log ε−1

)

iterations.

This is again a linear convergence rate because T ∝ log 1
ε .

The reason for the additional log2 m factor comparing to

Theorem 1 is because we have a 1− e−Ω(log2 m) high con-

fidence bound.

Remark. For experts in optimization theory, one may im-

mediately question the accuracy of Theorem 2, because

SGD is known to converge at a slower rate T ∝ 1
poly(ε)

even for convex functions. There is no contradiction here.

Imaging a strongly convex function f(x) =
∑n

i=1 fi(x)
that has a common minimizer x∗ ∈ argminx{fi(x)} for

every i ∈ [n], then SGD is known to converge in a linear

convergence rate.

3.1 Technical Theorems

The main difficulty of this paper is to prove the following

two technical theorems. The first one is about the gradient

bounds for points that are sufficiently close to the random

initialization:

Theorem 3 (no critical point). With probability ≥ 1 −
e−Ω(m/poly(n,L,δ−1)) over randomness

−→
W

(0),A,B, it sat-

isfies for every ℓ ∈ [L], every i ∈ [n], and every
−→
W with

‖−→W −−→
W

(0)‖2 ≤ 1
poly(n,L,δ−1) ,

‖∇F (
−→
W)‖2F ≤ O

(
F (

−→
W)× Lnm

d

)

‖∇F (
−→
W)‖2F ≥ Ω

(
F (

−→
W)× δm

dn2

)
.

Most notably, the second property of Theorem 3 says that

as long as the objective is large, the gradient norm is also

large. (See also Figure 1.) This means, when we are suffi-

ciently close to the random initialization, there is no saddle

point or critical point of any order. This gives us hope to

find global minima of the objective F (
−→
W).

Unfortunately, Theorem 3 itself is enough. Even if we fol-

low the negative gradient direction of F (
−→
W), how can we

guarantee that the objective truly decreases? Classically

in optimization theory, one relies on the smoothness prop-

erty (e.g. Lipscthiz smoothness (Nesterov, 2004)) to derive

such objective-decrease guarantee. Unfortunately, smooth-

ness property at least requires the objective to be twice dif-

ferentiable, but ReLU activation is not.

To deal with this issue, we prove the following “semi-

smoothness” property of the objective.

Theorem 4 (semi-smoothness). With probability at

least 1 − e−Ω(m/poly(L,logm)) over the randomness of−→
W

(0),A,B, we have :

for every
−̆→
W ∈ (Rm×m)L with

‖−̆→W −−→
W

(0)‖2 ≤ 1

poly(L, logm)
,

and for every
−→
W

′ ∈ (Rm×m)L with

‖−→W′‖2 ≤ 1

poly(L, logm)
,

the following inequality holds

F (
−̆→
W +

−→
W

′) ≤ F (
−̆→
W) + 〈∇F (

−̆→
W),

−→
W

′〉

+ O
(nL2m

d

)
‖−→W′‖22

+
poly(L)

√
nm logm√
d

· ‖−→W′‖2
(
F (

−̆→
W)

)1/2

Quite different from classical smoothness, we still have a

first-order term ‖−→W′‖2 on the right hand side, but classi-

cal smoothness only has a second-order term ‖−→W′‖22. As

one can see in our final proofs, as m goes larger (so when

we over-parameterize), the effect of the first-order term be-

comes smaller and smaller comparing to the second-order

term. This brings Theorem 4 closer and closer, but still not

identical, to the classical Lipschitz smoothness.

The derivation of our main Theorem 1 and 2 from technical

Theorem 3 and 4 is quite straightforward, and can be found

in Section F and G.

Remark. In our proofs, we show that GD and SGD can

converge fast enough and thus the weights stay close to

random initialization by spectral norm bound 1
poly(n,L,δ−1) .

(This ensures Theorem 3 and 4 both apply.) This bound

seems extremely small, but in fact, is large enough to to-

A Convergence Theory for Deep Learning via Over-Parameterization

1 21 41 61 81 101 121 141 161

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161

G
R

A
D

IE
N

T
 N

O
R

M

O
B

JE
C

T
IV

E
 V

A
LU

E

OF EPOCHS

ObjValue

GradNorm

CIFAR-10 dataset,

vgg19bn architecture

Figure 1: Landscapes of the CIFAR10 image-classification training objective F (W) near points W = Wt on the SGD training trajectory. The x and y axes represent the

gradient direction ∇F (Wt) and the most negatively curved direction of the Hessian after smoothing (approximately found by Oja’s method (Allen-Zhu & Li, 2017;

2018)). The z axis represents the objective value.

Observation. As far as minimizing objective is concerned, the (negative) gradient direction sufficiently decreases the training objective. This is consistent with our

main findings Theorem 3 and 4. Using second-order information gives little help.

Remark 1. Gradient norm does not tend to zero because cross-entropy loss is not strongly convex (see Section 5).

Remark 2. The task is CIFAR10 (for CIFAR100 or CIFAR10 with noisy label, see Figure 2 through 7 in appendix).

Remark 3. Architecture is ResNet with 32 layers (for VGG19 or ResNet-110, see Figure 2 through 7 in appendix).

Remark 4. The six plots correspond to epoch 5, 40, 90, 120, 130 and 160. We start with learning rate 0.1, and decrease it to 0.01 at epoch 81, and to 0.001 at epoch

122. SGD with momentum 0.9 is used. The training code is unchanged from (Yang, 2018) and we only write new code for plotting such landscapes.

tally change the outputs and fit the training data, because

weights are randomly initialized (per entry) at around 1√
m

for m being large.

In practice, we acknowledge that one often goes beyond

this theory-predicted spectral-norm boundary. However,

quite interestingly, we still observe Theorem 3 and 4 hap-

pen in practice at least for image classification tasks. In

Figure 1, we show the typical landscape near a point
−→
W

on the SGD training trajectory. The gradient is sufficiently

large and going in its direction can indeed decrease the ob-

jective; in contrast, though the objective is non-convex, the

negative curvature of its “Hessian” is not significant com-

paring to gradient. From Figure 1 we also see that the ob-

jective function is sufficiently smooth (at least in the two

interested dimensions that we plot).

4 Main Techniques

Proof to Theorem 3 and 4 consist of the following steps.

Step 1: properties at random initialization. Let
−→
W =−→

W
(0) be at random initialization and hi,ℓ and Di,ℓ be de-

fined with respect to
−→
W. We first show that forward propa-

gation neither explode or vanish. That is,

‖hi,ℓ‖ ≈ 1 for all i ∈ [n] and ℓ ∈ [L].

This is basically because for a fixed y, we have ‖Wy‖2
is around 2, and if its signs are sufficiently random, then

ReLU activation kills half of the norm, that is ‖φ(Wy)‖ ≈
1. Then applying induction finishes the proof.

Analyzing forward propagation is not enough. We also

need spectral norm bounds on the backward matrix

‖BDi,LWL · · ·Di,aWa‖2 ≤ O(
√

m/d) ,

and on the intermediate matrix

‖Di,aWa · · ·Di,bWb‖2 ≤ O(
√
L)

for every a, b ∈ [L]. Note that if one naively bounds the

spectral norm by induction, then ‖Di,aWa‖2 ≈ 2 and it

will exponentially blow up! Our careful analysis ensures

that even when L layers are stacked together, there is no

exponential blow up in L.

The final lemma in this step proves that, as long as ‖xi −

A Convergence Theory for Deep Learning via Over-Parameterization

xj‖ ≥ δ, then

‖hi,ℓ − hj,ℓ‖ ≥ Ω(δ) for each layer ℓ ∈ [L].

This can be proved by a careful induction. Details are in

Section A.

Step 2: stability after adversarial perturbation. We

show that for every
−→
W that is “close” to initialization,

meaning ‖Wℓ − W
(0)
ℓ ‖2 ≤ ω for every ℓ and for some

ω ≤ 1
poly(L) , then

(a) the number of sign changes ‖Di,ℓ −D
(0)
i,ℓ ‖0 is at most

O(mω2/3L), and

(b) the perturbation amount ‖hi,ℓ − h
(0)
i,ℓ ‖ ≤ O(ωL5/2).

We call this “forward stability”, and it is the most technical

proof of this paper.

Remark. Intuitively, both “(a) implies (b)” and “(b) implies

(a)” are not hard to prove. If the number of sign changes

is bounded in all layers, then hi,ℓ and h
(0)
i,ℓ cannot be too

far away by applying matrix concentration; and reversely,

if hi,ℓ is not far from h
(0)
i,ℓ in all layers, then the number of

sign changes per layer must be small. Unfortunately, one

cannot apply such derivation with induction, because con-

stants will blow up exponentially in the number of layers.

Remark. In the final proof,
−→
W is a point obtained by

GD/SGD starting from
−→
W

(0), and thus
−→
W may depend on

the randomness of
−→
W

(0). Since we cannot control how

such randomness correlates, we argue for the above two

properties against all possible
−→
W.

Another main result in this step is to show that the back-

ward matrix BDi,LWL · · ·Di,aWa does not change by

more than O(ω1/3L2
√
m/d) in spectral norm. Recall that

in the Step 1 we shown that this matrix is of spectral norm

O(
√
m/d); thus as long as ω1/3L2 ≪ 1, this change is

somewhat negligible. Details are in Section B.

Step 3: gradient bound. The hard part of Theorem 3

is to show gradient lower bound. For this purpose, re-

call from Fact 2.6 that each sample i ∈ [n] contributes

to the full gradient matrix by Di,ℓ(Back
⊤
i,ℓ+1lossi)h

⊤
i,ℓ−1,

where the backward matrix is applied to a loss vector

lossi. To show this is large, intuitively, one wishes to show

(Back⊤i,ℓ+1lossi) and hi,ℓ−1 are both vectors with large Eu-

clidean norm.

Thanks to Step 1 and 2, this is not hard for a single sam-

ple i ∈ [n]. For instance, ‖h(0)
i,ℓ−1‖ ≈ 1 by Step 1 and

we know ‖hi,ℓ−1 − h
(0)
i,ℓ−1‖ ≤ o(1) from Step 2. One can

also argue for Back⊤i,ℓ+1lossi but this is a bit harder. In-

deed, when moving from random initialization
−→
W

(0) to
−→
W,

the loss vector lossi can change completely. Fortunately,

lossi ∈ R
d is a low-dimensional vector, so one can calcu-

late ‖Back⊤i,ℓ+1u‖ for every fixed u and then apply ε-net.

Finally, how to combine the above argument with mul-

tiple samples i ∈ [n]? These matrices are clearly not

independent and may (in principle) sum up to zero. To

deal with this, we use ‖hi,ℓ − hj,ℓ‖ ≥ Ω(δ) from

Step 1. In other words, even if the contribution matrix

Di,ℓ(Back
⊤
i,ℓ+1lossi)h

⊤
i,ℓ−1 with respect to one sample i is

fixed, the contribution matrix with respect to other sam-

ples j ∈ [n] \ {i} are still sufficiently random. Thus, the

final gradient matrix will still be large. This idea comes

from the prior work (Li & Liang, 2018), and helps us prove

Theorem 3. Details in Appendix C and D.

Step 4: smoothness. In order to prove Theorem 4, one

needs to argue, if we are currently at
−̆→
W and perturb it by−→

W
′, then how much does the objective change in second

and higher order terms. This is different from our sta-

bility theory in Step 2, because Step 2 is regarding hav-

ing a perturbation on
−→
W

(0); in contrast, in Theorem 4 we

need a (small) perturbation
−→
W

′ on top of
−̆→
W, which may

already be a point perturbed from
−→
W

(0). Nevertheless,

we still manage to show that, if h̆i,ℓ is calculated on
−̆→
W

and hi,ℓ is calculated on
−̆→
W +

−→
W

′, then ‖hi,ℓ − h̆i,ℓ‖ ≤
O(L1.5)‖W′‖2. This, along with other properties to prove,

ensures semi-smoothness. This explains Theorem 4 and

details are in Section E.

Remark. In other words, the amount of changes to each

hidden layer (i.e., hi,ℓ − h̆i,ℓ) is proportional to the amount

of perturbation ‖W′‖2. This may sound familiar to some

readers: a ReLU function is Lipschitz continuous |φ(a) −
φ(b)| ≤ |a − b|, and composing Lipschitz functions still

yield Lipschitz functions. What is perhaps surprising here

is that this “composition” does not create exponential blow-

up in the Lipschitz continuity parameter, as long as the

amount of over-parameterization is sufficient and
−̆→
W is

close to initialization.

5 Notable Extensions

Our Step 1 through Step 4 in Section 4 in fact give rise to

a general plan for proving the training convergence of any

neural network (at least with respect to the ReLU activa-

tion). Thus, it is expected that it can be generalized to many

other settings. Not only we can have different number of

neurons each layer, our theorems can be extended at least

in the following three major directions.4

Different loss functions. There is absolutely no need to

restrict only to ℓ2 regression loss. We prove in Appendix H

4In principle, each such proof may require a careful rewriting
of the main body of this paper. We choose to sketch only the
proof difference (in the appendix) in order to keep this paper short.
If there is sufficient interest from the readers, we can consider
adding the full proofs in the future revision of this paper.

A Convergence Theory for Deep Learning via Over-Parameterization

that, for any Lipschitz-smooth loss function f :

Theorem 5 (arbitrary loss). From random initialization,

with probability at least 1 − e−Ω(log2 m), gradient descent

with appropriate learning rate satisfy the following.

• If f is nonconvex but σ-gradient dominant (a.k.a.

Polyak-Łojasiewicz), GD finds ε-error minimizer in5

T = Õ
(
poly(n,L)

σδ2 · log 1
ε

)
iterations

as long as m ≥ Ω̃
(
poly(n, L, δ−1) · dσ−2

)
.

• If f is convex, then GD finds ε-error minimizer in

T = Õ
(
poly(n,L)

δ2 · 1
ε

)
iterations

as long as m ≥ Ω̃
(
poly(n, L, δ−1) · d log ε−1

)
.

• If f is non-convex, then SGD finds a point with ‖∇f‖ ≤
ε in at most6

T = Õ
(
poly(n,L)

δ2 · 1
ε2

)
iterations

as long as m ≥ Ω̃
(
poly(n, L, δ−1) · dε−1

)
.

• If f is cross-entropy for multi-label classification, then

GD attains 100% training accuracy in at most7.

T = Õ
(
poly(n,L)

δ2

)
iterations

as long as m ≥ Ω̃
(
poly(n, L, δ−1) · d

)
.

We remark here that the ℓ2 loss is 1-gradient dominant so it

falls into the above general Theorem 5. One can also derive

similar bounds for (mini-batch) SGD so we do not repeat

the statements here.

Convolutional neural networks (CNN). There are lots

of different ways to design CNN and each of them may

require somewhat different proofs. In Appendix I, we study

the case when A,W1, . . . ,WL−1 are convolutional while

WL and B are fully connected. We assume for notational

simplicity that each hidden layer has d points each with m
channels. (In vision tasks, a point is a pixel). In the most

general setting, these values d and m can vary across layers.

We prove the following theorem:

Theorem 6 (CNN). As long as m ≥ Ω̃
(
poly(n, L, d, δ−1)·

d
)
, with high probability, GD and SGD find an ε-error so-

lution for ℓ2 regression in

T = Õ
(poly(n, L, d)

δ2
· log ε−1

)

5Note that the loss function when combined with the neural
network together f(Bhi,L) is not gradient dominant. Therefore,
one cannot apply classical theory on gradient dominant functions
to derive our same result.

6Again, this cannot be derived from classical theory of find-
ing approximate saddle points for non-convex functions, because

weights
−→
W with small ‖∇f(Bhi,L)‖ is a very different (usually

much harder) task comparing to having small gradient with re-

spect to
−→
W for the entire composite function f(Bhi,L).

7This is because attaining constant objective error ε = 1/4 for
the cross-entropy loss suffices to imply perfect training accuracy.

iterations for CNN.

Of course, one can replace ℓ2 loss with other loss functions

in Theorem 5 to get different types of convergence rates.

We do not repeat them here.

Residual neural networks (ResNet). There are lots of

different ways to design ResNet and each of them may

require somewhat different proofs. In symbols, between

two layers, one may study hℓ = φ(hℓ−1 + Whℓ−1),
hℓ = φ(hℓ−1 +W2φ(W1hℓ−1)), or even hℓ = φ(hℓ−1 +
W3φ(W2φ(W1hℓ−1))). Since the main purpose here is

to illustrate the generality of our techniques but not to at-

tack each specific setting, in Appendix J, we choose to con-

sider the simplest residual setting hℓ = φ(hℓ−1 +Whℓ−1)
(that was also studied for instance by theoretical work

(Hardt & Ma, 2017)). With appropriately chosen random

initialization, we prove the following theorem:

Theorem 7 (ResNet). As long as m ≥ Ω̃
(
poly(n, L, δ−1)·

d
)
, with high probability, GD and SGD find an ε-error so-

lution for ℓ2 regression in

T = Õ
(poly(n, L)

δ2
· log ε−1

)

iterations for ResNet.

Of course, one can replace ℓ2 loss with other loss functions

in Theorem 5 to get different types of convergence rates.

We do not repeat them here.

6 Conclusion

In this paper we demonstrate for state-of-the-art network

architectures such as fully-connected neural networks, con-

volutional networks (CNN), or residual networks (ResNet),

assuming there are n training samples without duplication,

as long as the number of parameters is polynomial in n and

L, first-order methods such as GD/SGD can find global op-

tima of the training objective efficiently, that is, with run-

ning time only polynomially dependent on the total number

of parameters of the network.

Figure 1 illustrates our main technical contribution. With

the help of over-parameterization, near the GD/SGD train-

ing trajectory, there is no local minima and the objective

is semi-smooth. The former means as long as the train-

ing objective is large, the objective gradient is also large.

The latter means simply following the (opposite) gradi-

ent direction can sufficiently decrease the objective. They

two together means GD/SGD finds global minima on over-

parameterized feedforward neural networks.

There are plenty of open directions following our work, es-

pecially how to extend our result to other types of deep

learning tasks and/or proving generalization. There is al-

ready generalization theory (Allen-Zhu et al., 2018a) for

over-parameterized three-layer neural networks, so can we

go any deeper?

A Convergence Theory for Deep Learning via Over-Parameterization

References

Alaeddini, A., Alemzadeh, S., Mesbahi, A., and Mesbahi,

M. Linear model regression on time-series data: Non-

asymptotic error bounds and applications. arXiv preprint

arXiv:1807.06611, 2018.

Allen-Zhu, Z. and Li, Y. Follow the Compressed Leader:

Faster Online Learning of Eigenvectors and Faster

MMWU. In ICML, 2017. Full version available at

http://arxiv.org/abs/1701.01722.

Allen-Zhu, Z. and Li, Y. Neon2: Finding Local Minima

via First-Order Oracles. In NeurIPS, 2018. Full ver-

sion available at http://arxiv.org/abs/1711.

06673.

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and Gener-

alization in Overparameterized Neural Networks, Going

Beyond Two Layers. arXiv preprint arXiv:1811.04918,

November 2018a.

Allen-Zhu, Z., Li, Y., and Song, Z. On the convergence

rate of training recurrent neural networks. arXiv preprint

arXiv:1810.12065, October 2018b.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,

Battenberg, E., Case, C., Casper, J., Catanzaro, B.,

Cheng, Q., Chen, G., et al. Deep speech 2: End-to-end

speech recognition in English and Mandarin. In Inter-

national Conference on Machine Learning (ICML), pp.

173–182, 2016.

Arora, S., Cohen, N., Golowich, N., and Hu, W. A conver-

gence analysis of gradient descent for deep linear neural

networks. arXiv preprint arXiv:1810.02281, 2018a.

Arora, S., Hazan, E., Lee, H., Singh, K., Zhang, C., and

Zhang, Y. Towards provable control for unknown linear

dynamical systems. 2018b.

Bartlett, P., Helmbold, D., and Long, P. Gradient descent

with identity initialization efficiently learns positive def-

inite linear transformations. In International Conference

on Machine Learning (ICML), pp. 520–529, 2018.

Blum, A. L. and Rivest, R. L. Training a 3-node neural net-

work is np-complete. In Machine learning: From theory

to applications (A preliminary version of this paper was

appeared in NIPS 1989), pp. 9–28. Springer, 1993.

Brutzkus, A. and Globerson, A. Globally optimal gradi-

ent descent for a convnet with gaussian inputs. In In-

ternational Conference on Machine Learning (ICML).

http://arxiv.org/abs/1702.07966, 2017.

Burke, J. V., Lewis, A. S., and Overton, M. L. A robust gra-

dient sampling algorithm for nonsmooth, nonconvex op-

timization. SIAM Journal on Optimization, 15(3):751–

779, 2005.

Daniely, A. Complexity theoretic limitations on learning

halfspaces. In Proceedings of the forty-eighth annual

ACM symposium on Theory of Computing (STOC), pp.

105–117. ACM, 2016.

Daniely, A. SGD learns the conjugate kernel class of the

network. In Advances in Neural Information Processing

Systems (NeurIPS), pp. 2422–2430, 2017.

Daniely, A. and Shalev-Shwartz, S. Complexity theoretic

limitations on learning dnfs. In Conference on Learning

Theory (COLT), pp. 815–830, 2016.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. On

the sample complexity of the linear quadratic regulator.

arXiv preprint arXiv:1710.01688, 2017.

Dean, S., Tu, S., Matni, N., and Recht, B. Safely learning to

control the constrained linear quadratic regulator. arXiv

preprint arXiv:1809.10121, 2018.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradi-

ent descent finds global minima of deep neural networks.

arXiv preprint arXiv:1811.03804, November 2018a.

Du, S. S., Lee, J. D., Tian, Y., Póczos, B., and Singh,

A. Gradient descent learns one-hidden-layer CNN:

don’t be afraid of spurious local minima. In In-

ternational Conference on Machine Learning (ICML).

http://arxiv.org/abs/1712.00779, 2018b.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient

Descent Provably Optimizes Over-parameterized Neural

Networks. ArXiv e-prints, 2018c.

Fung, V. An overview of resnet and its vari-

ants. https://towardsdatascience.com/an-overview-of-

resnet-and-its-variants-5281e2f56035, 2017.

Ge, R., Lee, J. D., and Ma, T. Learning one-hidden-layer

neural networks with landscape design. In ICLR, 2017.

URL http://arxiv.org/abs/1711.00501.

Goel, S., Kanade, V., Klivans, A., and Thaler, J. Reliably

learning the ReLU in polynomial time. In Conference on

Learning Theory (COLT), 2017.

Goel, S., Klivans, A., and Meka, R. Learning one con-

volutional layer with overlapping patches. In Interna-

tional Conference on Machine Learning (ICML). arXiv

preprint arXiv:1802.02547, 2018.

Goodfellow, I. J., Vinyals, O., and Saxe, A. M. Qualita-

tively characterizing neural network optimization prob-

lems. In ICLR, 2015.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recog-

nition with deep recurrent neural networks. In IEEE In-

ternational Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 6645–6649. IEEE, 2013.

http://arxiv.org/abs/1701.01722
http://arxiv.org/abs/1711.06673
http://arxiv.org/abs/1711.06673
http://arxiv.org/abs/1711.00501

A Convergence Theory for Deep Learning via Over-Parameterization

Hardt, M. and Ma, T. Identity matters in deep learning.

In ICLR, 2017. URL http://arxiv.org/abs/

1611.04231.

Hardt, M., Ma, T., and Recht, B. Gradient descent learns

linear dynamical systems. Journal of Machine Learning

Research (JMLR), 19(29):1–44, 2018.

Hazan, E., Singh, K., and Zhang, C. Learning linear dy-

namical systems via spectral filtering. In Advances in

Neural Information Processing Systems (NeurIPS), pp.

6702–6712, 2017.

Hazan, E., Lee, H., Singh, K., Zhang, C., and Zhang, Y.

Spectral filtering for general linear dynamical systems.

In Advances in Neural Information Processing Systems

(NINPS), 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

Kawaguchi, K. Deep learning without poor local minima.

In Advances in Neural Information Processing Systems,

pp. 586–594, 2016.

Klivans, A. R. and Sherstov, A. A. Cryptographic hard-

ness for learning intersections of halfspaces. Journal of

Computer and System Sciences, 75(1):2–12, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet

classification with deep convolutional neural networks.

In Advances in neural information processing systems,

pp. 1097–1105, 2012.

Li, Y. and Liang, Y. Learning overparameterized neural

networks via stochastic gradient descent on structured

data. In Advances in Neural Information Processing Sys-

tems (NeurIPS), 2018.

Li, Y. and Yuan, Y. Convergence analysis of two-layer

neural networks with ReLU activation. In Advances

in Neural Information Processing Systems (NeurIPS).

http://arxiv.org/abs/1705.09886, 2017.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,

T., Tassa, Y., Silver, D., and Wierstra, D. Continuous

control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

Livni, R., Shalev-Shwartz, S., and Shamir, O. On the

computational efficiency of training neural networks.

In Advances in Neural Information Processing Systems

(NeurIPS), pp. 855–863, 2014.

Manurangsi, P. and Reichman, D. The computa-

tional complexity of training ReLU(s). arXiv preprint

arXiv:1810.04207, 2018.

Marecek, J. and Tchrakian, T. Robust spectral filtering and

anomaly detection. arXiv preprint arXiv:1808.01181,

2018.

Nesterov, Y. Introductory Lectures on Convex Program-

ming Volume: A Basic course, volume I. Kluwer Aca-

demic Publishers, 2004. ISBN 1402075537.

Oymak, S. Learning compact neural networks with regu-

larization. arXiv preprint arXiv:1802.01223, 2018.

Oymak, S. and Ozay, N. Non-asymptotic identification

of LTI systems from a single trajectory. arXiv preprint

arXiv:1806.05722, 2018.

Panigrahy, R., Rahimi, A., Sachdeva, S., and Zhang, Q.

Convergence results for neural networks via electrody-

namics. In ITCS, 2018.

Safran, I. and Shamir, O. Spurious local minima are

common in two-layer ReLU neural networks. In In-

ternational Conference on Machine Learning (ICML).

http://arxiv.org/abs/1712.08968, 2018.

Shamir, O. A variant of azuma’s inequality for martingales

with subgaussian tails. ArXiv e-prints, abs/1110.2392,

10 2011.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,

Panneershelvam, V., Lanctot, M., et al. Mastering the

game of Go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,

Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,

Bolton, A., et al. Mastering the game of Go without

human knowledge. Nature, 550(7676):354, 2017.

Simchowitz, M., Mania, H., Tu, S., Jordan, M. I.,

and Recht, B. Learning without mixing: Towards a

sharp analysis of linear system identification. In Con-

ference on Learning Theory (COLT). arXiv preprint

arXiv:1802.08334, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Soltanolkotabi, M. Learning ReLUs via gradient descent.

CoRR, abs/1705.04591, 2017. URL http://arxiv.

org/abs/1705.04591.

Song, L., Vempala, S., Wilmes, J., and Xie, B. On the

complexity of learning neural networks. In Advances in

Neural Information Processing Systems (NeurIPS), pp.

5514–5522, 2017.

http://arxiv.org/abs/1611.04231
http://arxiv.org/abs/1611.04231
http://arxiv.org/abs/1705.04591
http://arxiv.org/abs/1705.04591

A Convergence Theory for Deep Learning via Over-Parameterization

Soudry, D. and Carmon, Y. No bad local minima: Data in-

dependent training error guarantees for multilayer neural

networks. arXiv preprint arXiv:1605.08361, 2016.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Training

very deep networks. In Advances in neural information

processing systems (NeurIPS), pp. 2377–2385, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-

novich, A. Going deeper with convolutions. In Pro-

ceedings of the IEEE conference on computer vision and

pattern recognition, pp. 1–9, 2015.

Tian, Y. An analytical formula of population gradi-

ent for two-layered ReLU network and its applica-

tions in convergence and critical point analysis. In In-

ternational Conference on Machine Learning (ICML).

http://arxiv.org/abs/1703.00560, 2017.

Yang, W. Classification on CIFAR-10/100 and Ima-

geNet with PyTorch, 2018. URL https://github.

com/bearpaw/pytorch-classification. Ac-

cessed: 2018-04.

Zagoruyko, S. and Komodakis, N. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,

O. Understanding deep learning requires rethinking gen-

eralization. In International Conference on Learning

Representations (ICLR), 2017.

Zhang, J., Lin, Y., Song, Z., and Dhillon, I. S. Learning

long term dependencies via Fourier recurrent units. In

International Conference on Machine Learning (ICML).

arXiv preprint arXiv:1803.06585, 2018.

Zhong, K., Song, Z., and Dhillon, I. S. Learning non-

overlapping convolutional neural networks with multiple

kernels. arXiv preprint arXiv:1711.03440, 2017a.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,

I. S. Recovery guarantees for one-hidden-layer neu-

ral networks. In International Conference on Machine

Learning (ICML). arXiv preprint arXiv:1706.03175,

2017b.

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification

	1 Introduction
	1.1 Our Result
	1.2 Other Related Works

	2 Preliminaries
	2.1 Objective and Gradient

	3 Our Results and Techniques
	3.1 Technical Theorems

	4 Main Techniques
	5 Notable Extensions
	6 Conclusion
	A Properties at Random Initialization
	A.1 Forward Propagation
	A.2 Intermediate Layers
	A.3 Backward Propagation
	A.4 -Separateness
	A.4.1 Auxiliary Claim

	B Stability against Adversarial Weight Perturbations
	B.1 Forward Perturbation
	B.1.1 Auxiliary Claim

	B.2 Intermediate Layers
	B.3 Backward

	C Gradient Bound at Random Initialization
	C.1 Proof of Lemma C.3: Upper Bound
	C.2 Proof of Lemma C.3: Lower Bound
	C.2.1 Proof of Claim C.4

	D Gradient Bound at After Perturbation
	E Objective Semi-Smoothness
	E.1 Proof of Claim E.2

	F Convergence Rate of GD
	G Convergence Rate of SGD
	H Extension to Other Loss Functions
	I Extension to Convolutional Neural Networks
	I.1 Changes in the Proofs

	J Extension to Residual Neural Networks
	J.1 Changes in the Proofs

