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SUMMARY

A high resolution scheme with improved iterative convergence properties was devised by incorporating
total-variation diminishing constraints, appropriate for unsteady problems, into an implicit time-marching
method used for steady �ow problems. The new scheme, referred to as Convergent and Universally
Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA), has similar accuracy to the
well-known SMART scheme, both being formally third-order accurate on uniform meshes for smooth
�ows. Three demonstration problems are considered: (1) advection of three scalar pro�les, a step, a
sine-squared, and a semi-ellipse; (2) Newtonian �ow over a backward-facing step; and (3) viscoelastic
�ow through a planar contraction and around a cylinder. For the case of the viscoelastic �ows, in which
the high resolution schemes are also used to represent the advective terms in the constitutive equation, it
is shown that only the new scheme is able to provide a converged solution to the prescribed tolerance.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One key issue in the numerical simulation of �uid �ow problems is the representation of the
�rst-derivative advection terms, which are invariably present in the governing equations. The
question is not only how to devise a scheme with su�cient accuracy but, equally important,
how to ensure that numerical stability is not diminished at the expense of increased accuracy. It
is now well established [1] that the �rst-order upwind di�erencing scheme (UDS) and related
schemes, like the HYBRID [2] and POWER-LAW [3], although highly stable are inadequate
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in that excessive numerical di�usion is generated in practical problems. Di�erencing schemes
of order higher than unity are therefore required. Second-order accuracy can be achieved by
linear extrapolation from two upstream values, yielding the so-called linear upwind scheme
(LUDS), also known as second-order upwind, e.g. Reference [4]. Third-order is achieved by
passing a quadratic line through those two upstream points and one downstream, the QUICK
scheme of Leonard [5]. These schemes have been widely used [4–6] and generally o�er more
accurate results than upwind but, because they are not bounded, may give rise to oscillations
in the solution in regions where there are strong gradients of the variable being solved.
Imposition of the boundedness property leads to the so-called high resolution schemes

(HRS) [7, 8] which allow for good resolution of shocks or steep gradients without introduc-
ing oscillations in the solution. In the total-variation-diminishing approach for constructing
HRS (TVD [7]), �ux limiter functions were introduced to guarantee that values of a con-
served property remain within the bounds imposed by neighbouring values; examples are the
MINMOD limiter of Roe or Harten (e.g. Reference [7]) and the Van Leer harmonic limiter
[9]. An important clarifying tool was later introduced by Gaskell and Lau [10] and Leonard
[11] for steady �ows, and extended to unsteady �ows by Leonard [12] (see also the more
recent overview, Reference [13]), under the form of the normalized variable diagram NVD
and the convection boundedness criterion CBC. A number of previously proposed TVD �ux
limiters can be re-interpreted in the NVD, as shown by Leonard [12], allowing for an easier
understanding of their characteristics. Of special interest here is the high resolution SMART
scheme proposed by Gaskell and Lau [10] for steady-state implicit calculations, which is a
limited (bounded) version of QUICK devised in the NVD, and will be the base for the present
proposal.
Extension of HRS to non-uniform mesh spacing has led to the normalized variable and

space formulation (NVSF [14]), which has been employed in References [15, 16] for the
simulation of viscoelastic �uid �ow. The problem with viscoelastic �ow simulations lies on
the representation of the advective terms in the di�erential transport-like equations for the
stress tensor. Although the problem of excessive numerical di�usion could be solved with
the HRSs, another problem resulted: iterative convergence was impaired when the equations
were solved implicitly for a steady-state solution. Convergence di�culties with HRS have
been experienced earlier; Gaskell and Lau [10] recommended the use of under-relaxation
for the cell face �uxes obtained with their SMART scheme in order to dampen oscillatory
iteration behaviour, and similar �ndings are reported by others [17–19]. Most of the HRS are
constructed as composite functions in the NVD and switching instabilities may arise leading to
lack of iterative convergence. For example, Zhu [17] and Jasak et al. [20] have developed their
schemes either by using curved lines in the NVD or by devising smooth transitions between
the patched lines representing each separate scheme. We found that a smooth characteristic
of a given scheme in the NVD does not always guarantee iterative convergence and a second
condition, related to TVD constraints, needs to be ful�lled.
The focus of the present paper is to devise an HRS, in the NVD, with better iterative

convergence properties than the existing schemes, but with as good accuracy as the SMART
scheme (i.e. formally third-order on uniform meshes). In order to accomplish this, we have
incorporated into the formulation of the scheme the TVD constraints, which are known [13]
to be required for explicit transient calculations. The proposed scheme is demonstrated with
three problems: the classical accuracy tests of pure advection of a step, sine-square and semi-
ellipse pro�les at 30 and 45 degrees to a uniform mesh; the laminar Newtonian �ow over a
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two-dimensional backward-facing step; and a viscoelastic �uid �ow through a planar contrac-
tion and around a cylinder.

2. GOVERNING EQUATIONS

In any incompressible �uid �ow problem the basic equations to be solved are those expressing
conservation of mass and linear momentum:
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where standard tensor notation with summation of repeated indices is employed, � is the
�uid density and ui the velocity component along the Cartesian co-ordinate xi. The dependent
variables are the velocity components, pressure p and the extra stress components �ij, which
need to be speci�ed by means of a rheological constitutive equation. In this work two types
of constitutive equations are considered. The �rst is the Newtonian model expressed by a
linear and explicit stress–strain rate relationship,
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where � is the constant viscosity of the �uid. As a second type of constitutive equation
we take one appropriate for modelling viscoelastic �ow behaviour, known as the upper con-
vected Maxwell (UCM) model [21], and expressed by the following di�erential transport-like
equation for �ij:
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where � is the relaxation time of the �uid. Although Equation (4) is one of the simplest
models to represent viscoelastic �uid behaviour, it is also one of the most challenging from
the numerical point of view [22] because it induces very high stresses near corners and other
singular points in a �ow con�guration. Furthermore, due to its hyperbolic nature (notice the
absence of any stress di�usion term in Equation (4)) this constitutive equation serves well
our purpose as a suitable model for assessing the HRS here developed. In fact, it is known
[22] that standard upwind schemes simply lead to exaggerated numerical di�usion and are not
adequate for equations like Equation (4).

3. BASIC NUMERICAL METHODOLOGY

The �nite-volume numerical method utilized in this work is only brie�y outlined below as it
has been previously described in some detail [23]. The focus here is on the description of the
new high resolution scheme and an overview of the NVD and other HRSs is given �rst.
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3.1. General discretization

A collocated variable arrangement is employed in which all variables (�≡ ui; �ij) are stored
at the centre of the control-volumes (cells) composing the computational mesh. Discretization
of the momentum (Equation (2)) and constitutive equations (Equations (3) or (4)) over a
general cell P leads to a linearized algebraic equation of the form:

aP�P =
6∑
F
aF�F + S� (5)

where �P and �F represent the variable in cell P and neighbour cells F, aF and aP are
coe�cients, and S� is the source term. The time dependent terms in Equations (2) and (4)
are discretized with the �rst-order backward Euler scheme and are included in aP and S�
where they act as inertial under-relaxation (see e.g. Reference [2]). The �’s in Equation (5)
are assumed to pertain to a new time level and so Equation (5) is fully implicit in �, thus
requiring a linear-equation solver in order to update the � �eld—we have used conjugate-
gradient methods (see Reference [23]). All terms in the governing equations are discretized
in space by means of central di�erences (CDS) and linear interpolation, except the advective
terms which are discretized with the HRS and implemented through the deferred correction
approach of Khosla and Rubin [24]. This implies that the coe�cients aF and aP are based on
UDS (thus ensuring positive coe�cients) and the di�erence between the HRS �uxes and the
UDS �uxes are evaluated at the previous time level and included in the source term.
The main advantages of deferred correction are stability, simplicity and computer-memory

saving. The latter results from the fact that the same coe�cients aP and aF are employed for
the three velocity components, when solving the momentum equations, and for the six stress
equations, when solving the constitutive equations. In general the deferred correction approach
tends to promote numerical stability, as it ensures that the coe�cient matrix is (more) diagonal
dominant. The convergence rate, measured by the number of time steps required to attain a
steady solution, may be worst than that achieved with a speci�c implementation of each
HRS (cf. the curvature-factor method of Reference [10] for the SMART scheme; see also
Reference [25]). This, however, would be too involved in terms of coding and, in any case,
with deferred correction the iterative performance of each HRS is comparable on an equal
basis. It is noted that the deferred correction may lead to unbounded �elds during the time-
marching advancement procedure, before the steady-state solution is reached. This issue is
more important for pure advection, without physical sources, a situation somewhat removed
from our main motivation (both the momentum and constitutive equations for viscoelastic
�ows have sources); but, again, it is fair to assume that all schemes will be equally a�ected
by this problem.

3.2. Generalities on high resolution schemes and the NVD

We follow the NVD approach introduced by Gaskell and Lau [10] and Leonard [11, 12]. In
this formulation the advected variable � is normalized as

�
˙
=
�− �U
�D − �U (6)

where the subscripts U and D refer to the upstream and downstream cells to cell P which
is, itself, upstream of the cell face f under consideration, as shown in Figure 1. Note that
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Figure 1. De�nition of local variables and co-ordinate system.

this labelling of the nodes depends on the �ux direction. In general, any di�erencing scheme
(of third-order or less) that evaluates a cell face value �f as a function of the neighbour cell
values (U, P and D) can be written under a simpli�ed functional form, �

˙
f =f(�

˙
P), where

the normalization de�ned by Equation (6) is employed. For the general case of non-uniform
meshes [14] the normalized cell face value of any variable becomes a function of both its
closest normalized upwind neighbour value and the corresponding normalized locations, as

�
˙
f =f(�

˙
P;
˙
�P;

˙
�f ) (7)

where the normalized co-ordinates (see Figure 1) are:

˙
�P =

�P − �U
�D − �U and

˙
�f =

�f − �U
�D − �U (8)

Occurrence of unphysical oscillations in a solution for � can be avoided if the cell face
value �f lies within the bounds imposed by neighbouring nodal values, �P and �D, following
the Convection Boundedness Criterion (CBC) of Gaskell and Lau [10], valid for implicit
steady-state �ow calculations. The CBC is illustrated in the NVD (see Figure 2) by the
shadowed area together with the line with slope one outside that area. The various straight
lines in Figure 2 represent the basic schemes: �rst-order upwind (UDS); second-order upwind
(LUDS); third-order upwind (QUICK); second-order central (CDS). Clearly, UDS is the only
basic di�erencing scheme that satis�es the CBC and only a non-linear function in the NVD
can represent a bounded scheme of order higher than unity.
Once the required conditions for boundedness are known, construction of a high resolution

scheme in the NVD is straightforward (see Reference [12]). Several composite schemes have
been reported in the literature and some of the most popular of these non-linear schemes are
plotted in Figure 3 and presented in Table I using either the NVD, valid for uniform meshes,
or more generally the NVSF, valid for arbitrary non-uniform meshes. Various high-resolution
schemes, known by the acronyms MINMOD [7], SMART [10] and WACEB [19], were
constructed combining, in a piecewise way, straight lines in the NVD. Schemes composed by
curved lines in the NVD have also been proposed, like the harmonic or CLAM (‘curved-line
advection method’) scheme of van Leer [9] (also known as HPLA, proposed independently by
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Figure 2. Normalized variable diagram (NVD) for di�erent interpolation schemes showing the con-
vective boundedness criterion (CBC). (Di�erencing schemes: UDS ≡ upwind, LUDS ≡ linear upwind,

QUICK ≡ quadratic upwind, CDS ≡ central).
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Figure 3. NVD plots of the high-resolution schemes used in this work for (------) uniform mesh, (------)
non-uniform mesh with a constant expansion ratio of 2 and (- - - -) non-uniform mesh with a constant
compression ratio of 0.5. The full circles represent the smooth �ow point for each situation, and

correspond to the co-ordinates (
˙
�P;

˙
�f ).

Zhu [17]) and the more recent GAMMA scheme of Jasak et al. [20]. The schemes in Table I
are formally second-order accurate, with exception of the SMART and WACEB schemes
which may achieve third-order accuracy on uniform meshes.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:47–75



CUBISTA—HIGH RESOLUTION SCHEME FOR ADVECTION 53

T
ab
le
I.
Fu
nc
tio
na
l
re
la
tio
ns
hi
p
of
so
m
e
hi
gh
-r
es
ol
ut
io
n
sc
he
m
es
ac
co
rd
in
g
to
th
e
N
V
D
(u
ni
fo
rm

m
es
he
s)

an
d
th
e
N
V
SF

(n
on
-u
ni
fo
rm

m
es
he
s)
.

N
V
SF

N
V
D

M
IN
M
O
D
[7
]

�˙
f
=

                  ˙ � f ˙ � P
�˙

P
0¡
�˙

P
¡

˙ � P

1−
˙ � f

1−
˙ � P
�˙

P
+

˙ � f
−

˙ � P

1−
˙ � P

˙ � P
6
�˙

P
¡
1

�˙

P
el
se
w
he
re

�˙
f
=

            3 2
�˙

P
0¡
�˙

P
¡

1 2

1 2
�˙

P
+

1 2
1 2
6
�˙

P
¡
1

�˙

P
el
se
w
he
re

SM
A
R
T
[1
0]

�˙
f
=

                              ˙ � f
(1

−
3
˙ � P
+
2
˙ � f
)

˙ � P
(1
−

˙ � P
)

�˙

P
0¡
�˙

P
¡

˙ � P 3
˙ � f
(1
−

˙ � f
)

˙ � P
(1
−

˙ � P
)
�˙

P
+

˙ � f
(˙ � f

−
˙ � P
)

1−
˙ � P

˙ � P 3
6
�˙

P
6

˙ � P ˙ � f
(1
+

˙ � f
−

˙ � P
)

1

˙ � P ˙ � f
(1
+

˙ � f
−

˙ � P
)¡
�˙

P
¡
1

�˙

P
el
se
w
he
re

�˙
f
=

                3�
˙

P
0¡
�˙

P
¡

1 6

3 4
�˙

P
+

3 8
1 6
6
�˙

P
6

5 6

1
5 6
¡
�˙

P
¡
1

�˙

P
el
se
w
he
re

C
L
A
M
[9
]

�˙
f
=

          

˙ � f
−

˙ �2 P
˙ � P
(1
−

˙ � P
)�˙

P
−

˙ � f
−

˙ � P
˙ � P
(1
−

˙ � P
)�˙

2 P
0¡
�˙

P
¡
1

�˙

P
el
se
w
he
re

�˙
f
=

    �˙

P
(2

−
�˙

P
)
0¡
�˙

P
¡
1

�˙

P
el
se
w
he
re

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:47–75



54 M. A. ALVES ET AL.

T
ab
le
I.
(C
on
tin
ue
d)
.

N
V
SF

N
V
D

W
A
C
E
B
[1
9]

�˙
f
=

                                            2�
˙

P
0¡
�˙

P
¡

˙ � P
˙ � f
(˙ � f

−
˙ � P
)

2
˙ � P
(1
−

˙ � P
)−

˙ � f
(1
−

˙ � f
)

˙ � f
(1
−

˙ � f
)

˙ � P
(1
−

˙ � P
)�˙

P
+

˙ � f
(˙ � f

−
˙ � P
)

1−
˙ � P

˙ � P
˙ � f
(˙ � f

−
˙ � P
)

2
˙ � P
(1
−

˙ � P
)−

˙ � f
(1
−

˙ � f
)

6
�˙

P
6

˙ � P ˙ � f
(1
+

˙ � f
−

˙ � P
)

1

˙ � P ˙ � f
(1
+

˙ � f
−

˙ � P
)¡
�˙

P
¡
1

�˙

P
el
se
w
he
re

�˙
f
=

              2�
˙

P
0¡
�˙

P
¡

3 10

3 4
�˙

P
+

3 8
3 10
6
�˙

P
6

5 6

1
5 6
¡
�˙

P
¡
1

�˙

P
el
se
w
he
re

G
A
M
M
A
[2
0]

∗
�˙
f
=

                        �˙

P

  1+
1 � m

˙ � f
−

˙ � P

1−
˙ � P
(1

−
�˙

P
) 

0¡
�˙

P
¡
� m

1−
˙ � f

1−
˙ � P
�˙

P
+

˙ � f
−

˙ � P

1−
˙ � P

� m
6
�˙

P
¡
1

�˙

P
el
se
w
he
re

�˙
f
=

                �˙

P

[ 1
+

1 2�
m
(1

−
�˙

P
)]

0¡
�˙

P
¡
� m

1 2
�˙

P
+
1 2

� m
6
�˙

P
¡
1

�˙

P
el
se
w
he
re

∗ N
V
D
fr
om

or
ig
in
al
pa
pe
r;
N
V
SF

he
re
de
ri
ve
d.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:47–75



CUBISTA—HIGH RESOLUTION SCHEME FOR ADVECTION 55

C 1

1

1

1

 s =1/C
 s =2-C

s =C

�P

)

�P

)

�f

)

�f

)

(a) (b)

Figure 4. (a) Universal limiter and; (b) TVD constraints for explicit unsteady calculations.

4. PROPOSED HRS

As alluded to in the Introduction, an important issue arising in relation to all those composite
HRS is linked to their convergence properties. We are not as much concerned with accuracy,
since second or even third-order accuracy in truncation error can easily be accomplished by
increasing the complexity of the interpolation of the basic scheme, but with the important
point of ensuring that the algebraic equations resulting from the implicit discretization can be
converged to a prescribed tolerance. It is known [10, 17–20] that due to their composite nature,
these HRS are prone to numerical instabilities, for example whenever a given nodal value is
in such a situation that the schemes jump from one of the composing schemes to another.
One aspect, that is often overseen and which is the main motivation for the present study, is
that the CBC by itself does not guarantee a bounded scheme to always produce a converged
solution. Less general conditions than the CBC are required to guarantee convergence of
iterative schemes.
Leonard [12] has introduced the notion of the Universal Limiter (ULTIMATE) valid for

explicit transient calculations (Figure 4(a)), which reduces to the CBC for steady �ows when
the Courant number tends to zero, C→ 0. For small values of C, the ULTIMATE di�ers from
the CBC in the region of positive values of �

˙
P close to the origin, as seen in Figure 4(a),

where a Courant number condition must be observed

�
˙
P6�

˙
f6

1
C
�
˙
P for 06�

˙
P6C (9)

On the other hand, the conditions for an explicit time-dependent method to be TVD [8],
namely:

�
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P6�
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1
2 )
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P6�
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f61− C(1− �
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(10)

are even more restrictive than the universal limiter of Leonard, and the allowable area on a �
˙
f

versus �
˙
P plot is further reduced, as shown in Figure 4(b) (see also Reference [13, p. 45]).

This is not surprising because, mathematically, the TVD condition is more severe than the
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boundedness condition (or monotonicity-preserving condition, on which the ULTIMATE and
the CBC are based), but it is su�cient to guarantee the convergence of the numerical so-
lution of a conservative scheme to the weak solution of the underlying conservation law
[26, pp. 525–529]. And even if the TVD conditions are still not su�cient to assure satisfac-
tion of the entropy condition, experience has shown that TVD schemes tend to converge to
physically acceptable solutions [8].
In essential terms, the main contribution of the present paper is to recognise the importance

of satisfying the TVD constraints of Figure 4(b), that is Equations (10) together with the
CBC, and their connection with iterative convergence properties. A new HRS embodying those
notions was then devised, combining accuracy with better iterative convergence properties, and
its construction and the rationale behind it are described in the following points, in connection
to the NVD for uniform meshes (for convenience):

(i) The basic scheme and accuracy: The basic di�erencing scheme should be as accurate
as possible and so the formally third-order accurate QUICK scheme is selected for that role.
Leonard [12, 13] has amply demonstrated that in all his test cases QUICK gives better reso-
lution than second-order upwind, central di�erencing or Fromm’s di�erencing (a mixture of
LUDS and CDS). Furthermore, when the NVD approach is followed, the implementation of
QUICK does not add any signi�cant complexity compared to the implementation of those
second-order schemes.
(ii) The smooth region: Changes of slope of the scheme representation in the NVD should

be avoided in the smooth �ow region (i.e. 0:46�
˙
P60:6). Numerical experiments have shown

that when a scheme has an abrupt change of slope at �
˙
P =0:5, it tends to exhibit problems of

iterative convergence (see the Results section for the MINMOD scheme). As a consequence,
the line 3

8 +
3
4 �
˙
P representing the basic QUICK di�erencing scheme should be prolonged, as

far as possible, to the left and right of �
˙
P =0:5.

(iii) The TVD constraints: The scheme should respect the TVD restrictions of Equa-
tions (10) and Figure 4(b), with C taken as an empirical parameter to be found by numer-
ical experiments. If the less restrictive CBC (or ULTIMATE, with C=0) condition were
adopted, then we would end up with the SMART scheme, composed by the QUICK straight
line 3

8 +
3
4 �
˙
P, a portion of the downwind line (constant �

˙
f = 1) close to �

˙
P =1, and a straight

line with slope 3 connecting to �
˙
P =0. Similarly, for the TVD conditions valid for steady

state (C=0), we would end up with the WACEB scheme [19], whereby the only di�er-
ence with SMART is the line of slope 2, instead of 3, connecting the QUICK line to the
origin.
(iv) The choice of parameter C: Our interest is in steady-state solutions but since these

are reached by an implicit time-marching approach there will be ‘some’ similarity with truly
time-dependent calculations. The TVD constraints of Figure 4(b) were derived from explicit
time-advancement procedures which have to respect the CFL requirement (C61). We can
also de�ne a local Courant number (e.g. C=Max(u�t=�x; v�t=�y)) but it will be much higher
than unity (of order ≈ 10) due to the fully-implicit nature of the algorithm and the fact that
we are not interested in resolving the time evolution accurately. We cannot therefore take C
in the TVD as a true Courant number, but rather as a parameter. If C=0, our scheme reduces
to the recently proposed WACEB scheme; however, as will be seen in the Results section,
this scheme still has convergence problems for some �ow problems. Numerical experiments
showed that by increasing C to 0.1, iterative convergence could be attained for some cases, but
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Figure 5. Sketch of a situation leading to interpolation overshoot with QUICK (�
˙
P = 0:9).

would persist in the viscoelastic �ow case. A value of C=0:25 was found to give converged
results in all cases tested (not all are reported here). Of course C should be kept as low as
possible in order to avoid too much dissipation in the �ow regions where �

˙
P≈ 0 or �

˙
P≈ 1.

There is, therefore, a compromise between increasing C (restricting the allowable NVD area)
in order to promote convergence, and decreasing C to improve resolution of sharp gradients.
The value C=0:25 seems to be optimal in this respect.
(v) The problematic downwind line: Although the value of C=0:25 was initially selected

based on numerical experiments, as explained in the previous point, there is a more formal
argument for that choice. The most problematic region of all the HRS’s mentioned before-
hand is the downwind line close to the upper limit of the monotone range in the NVD
(�
˙
P→ 1). Pure downwind yields a single negative coe�cient in the discretized equations and

that is always troublesome for implicit solution methods (a speci�c treatment is required, e.g.
Reference [25]). Now, when �

˙
P increases from values typical of the smooth region, at a

certain stage the parabolic interpolation line representing the QUICK scheme (� is a local
coordinate: �P =�(0); �D =�(1); �U =�(−1)):

�(�)=�P +
�D − �U

2
�+

�D + �U − 2�P
2

�2 (11)

reaches the situation sketched in Figure 5. There is an overshoot of �
˙
and monotonic-

ity is not preserved; it is then that downwind is called for, and the problems mentioned
above start. The precise point leading to the overshoot situation can be determined from the
condition: [

@�
@�

]
�→1

60 ⇒ 3�D + �U − 4�P
2

60
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giving:

�
˙
P≡

�P − �U
�D − �U¿

3
4

(12)

So for values of �
˙
P higher than 0.75 (corresponding to (�

˙
f )QUICK =0:9375) it is unsafe to

pursue along the QUICK line, as that gives rise to interpolation overshoot, instead one should
safely follow the line connecting the point (0.75, 0.9375) to (1,1) in the NVD. That gives a
slope C=0:25, the same value obtained from the numerical experiments.
(vi) Symmetry conditions for the limiter: From the previous considerations, the proposed

scheme will have a piecewise linear representation in the monotonic range of the NVD
(06�

˙
P61) composed by three segments: TVD limiter on the left (�

˙
P≈ 0), i.e. straight

line with slope 2 − C passing through the origin; QUICK line ( 38 +
3
4�
˙
P) on the middle

region corresponding to the smooth �ow regime; and TVD limiter on the right (�
˙
P≈ 1),

i.e. straight line with slope +C passing through the point �
˙
P =1, �

˙
f = 1. Since C is a free

parameter, and not a real Courant number, we could have chosen di�erent values of C for
the left slope 2 − C (say C1) and the right slope +C (say C2) of the TVD limiter. This
would, however, violate the condition for a symmetric limiter [8] with the consequence that
given symmetric pro�les would tend to be distorted when advected. This is readily seen
by translating the proposed scheme from the NVD to Sweby’s diagram [8] (’(r) versus r)
giving:

’(r)=Max
{
0;Min

[
2r(1− C1); 34 +

r
4
; 2(1− C2)

]}
(13)

where ’ is the �ux limiter factor of Sweby, and r the ratio of consecutive gradients
(’=(�

˙
f −�

˙
P)=0:5(1−�

˙
P) and r≡ (�P−�U)=(�D−�P)=�

˙
P=(1−�

˙
P); see also Appendix B

in Reference [12]). The condition for a symmetric limiter is

’(r)
r
=’

(
1
r

)
(14)

giving:

’
(
1
r

)
=Max

{
0;Min

[
2
1
r
(1− C1); 34 +

1
4r
; 2(1− C2)

]}

=
1
r
Max

{
0;Min

[
2(1− C1); 34 r +

1
4
; 2(1− C2)r

]}
(15)

for our scheme. Comparing (15) with the previous expression for ’(r), Equation (13), we
see that (approximate) symmetry is achieved provided the same C (C1 =C2) is used at both
extremities of the limiter function (approximate because the middle QUICK line cannot, of
course, be strictly symmetric—this does not a�ect the symmetry of advected pro�les). For
this reason the same C=0:25 is adopted for both TVD slopes.
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The NVD description of the proposed scheme, coined CUBISTA (for Convergent and
Universally Bounded Interpolation Scheme for Treatment of Advection), is therefore given by

�
˙
f =




7
4�
˙
P 0¡�

˙
P¡

3
8

3
4�
˙
P +

3
8

3
86�

˙
P6

3
4

1
4�
˙
P +

3
4

3
4¡�

˙
P¡1

�
˙
P elsewhere

(16)

It is an easy matter to transform these relations for the case of non-uniform meshes, by
following the NVSF formulation of Reference [14]; the result is

�
˙
f =





1 +

˙
�f −

˙
�P

3(1− ˙
�P)


 ˙
�f
˙
�P
�
˙
P 0¡�

˙
P¡

3
4

˙
�P

˙
�f (1−

˙
�f )

˙
�P (1−

˙
�P)
�
˙
P +

˙
�f (

˙
�f −

˙
�P)

1− ˙
�P

3
4

˙
�P 6�

˙
P6
1 + 2(

˙
�f −

˙
�P)

2
˙
�f −

˙
�P

˙
�P

1− 1− ˙
�f

2(1− ˙
�P)
(1− �˙P)

1 + 2(
˙
�f −

˙
�P)

2
˙
�f −

˙
�P

˙
�P ¡�

˙
P¡1

�
˙
P elsewhere

(17)

The expressions are now more involved than (16), although still retaining the piecewise linear
characteristics in the NVD, but are easy to code and implement in a systematic way. Note that

the
˙
�P;

˙
�f are geometric quantities, which are calculated once for each cell in the computational

grid. The NVD plots of CUBISTA and the various other schemes used in this work are shown
in Figure 3 for uniform (NVD) and non-uniform (NVSF) meshes.

5. RESULTS FROM APPLICATION TO TYPICAL PROBLEMS

The new high resolution CUBISTA scheme just described was implemented in a computer
code and applied to three classes of problems. First, the classical test of pure advection of a
scalar quantity by a skewed velocity �eld is considered, with view to assess the accuracy of the
schemes. Then, two more complex �ow situations were considered, exhibiting simultaneously
advection–di�usion e�ects and recirculating regions, which are solved for both Newtonian and
viscoelastic �uids: backward-facing step, planar contraction with a 4:1 ratio and �ow around
circular cylinder. The purpose here was to assess the iterative convergence properties of the
high-resolution schemes presented in Table I, including the new scheme CUBISTA.

5.1. Pure advection of a passive scalar

In this �rst problem we consider the advective transport of a passive scalar by a given uniform
velocity �eld, oblique to the mesh (at an angle 	). Under a two-dimensional situation, in a
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square domain mapped with a Cartesian x; y mesh, the only conservation equation to be
solved is

@(u�)
@x

+
@(v�)
@y

=0 (18)

where � is the advected variable and u and v are the Cartesian components of the given
velocity vector. These are taken as either u= v=

√
2=2, which corresponds to a mesh-to-�ow

angle of 45◦, or u=
√
3=2; v=0:5 for an angle of 30◦.

Three inlet boundary conditions have been used in these test cases corresponding to di�erent
pro�le shapes (for simplicity, here de�ned for 	=45◦):

• Step pro�le
�(0; y)=1 for 06y61

�(x; 0)=0 for 0¡x61
(19)

• Sine-square pro�le

�(0; y) =

{
sin2( 103 
y) for 06y6 3

20

1 for 3
20¡y61

�(x; 0) = 0 for 0¡x61

(20)

• Semi-ellipse pro�le (with a semi-width of 1=6)

�(0; y) =
√
1− [(y=(1=6)]2 for |y|¡1=6

�(0; y) = 0 elsewhere

and

�(x; 0) =
√
1− [x=(1=6)]2 for |x|¡1=6

�(x; 0) = 0 elsewhere
(21)

Each of these pro�le shapes serves a certain purpose in terms of scheme assessment: the step
pro�le provides the stringent gradient variation, enabling assessment of the scheme’s ability
to resolve a sharp front, with minimum numerical di�usion and without oscillations. The sine-
square is a relatively smooth pro�le enabling an assessment of the scheme’s apparent order of
accuracy. The semi-ellipse, due to the combination of opposed gradient discontinuities at the
base with a region of slowly varying curvature without a sharp maximum, enables assessment
of the steepening=clipping characteristics of the scheme, and its lack of symmetry. See also
the discussion in Reference [12].
The resulting pro�les of � along the line x=0:5 obtained on a uniform mesh consisting of

59× 59 cells are given in Figures 6–8, for the three pro�le shapes, respectively, and for the
two angles and the various discretization schemes. Note the enlarged scale for the abscissas
in these �gures, to better show di�erences amongst the schemes. As expected, the third-order
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Figure 6. Results for the step pro�le along the line x=0:5 on mesh 59×59:
(a) angle of 30◦; (b) angle of 45◦.

SMART scheme is the least di�usive of the tested schemes for these linear problems, with the
proposed CUBISTA scheme closely following the same results, while the UPWIND scheme
clearly shows unacceptable levels of numerical di�usion. These �gures also show that in
general numerical di�usion is more accentuated for the angle 45◦ and the MINMOD results
are still too di�usive.
Convergence with mesh re�nement was studied for the case of the imposed sine-square

pro�le, Equation (20). Figure 9 shows the absolute error, de�ned by the mean absolute dif-
ference between predicted and theoretical pro�les along the line x=0:5, for each di�erencing
scheme and for di�erent levels of re�nement (four computational meshes). The apparent or-
der of convergence of the di�erencing schemes is given by the slope of the lines shown in
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Figure 7. Results for the sine-square pro�le along the line x=0:5 on mesh
59× 59: (a) angle of 30◦; (b) angle of 45◦.

Figure 9. For the SMART scheme one obtains the theoretical third-order accuracy, while the
CUBISTA and WACEB schemes exhibit somewhat smaller order of accuracy (2.7 and 2.6,
respectively). This reduction in the order of accuracy results from the contribution of the two
�rst points at the extremities of the pro�le which have, respectively, a �

˙
P smaller than 0.375

and larger than 0.75, and so give a face value which deviates from the third-order QUICK
line. Strictly speaking, one should not evaluate the order of accuracy of a scheme in regions
away from the smooth �ow region (cf. Reference [11]). The CLAM, GAMMA and MIN-
MOD schemes are approximately second-order accurate, as expected (the observed order is
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Figure 8. Results for the semi-ellipse pro�le along the line x=0:5 on mesh
59× 59: (a) angle of 30◦; (b) angle of 45◦.

somewhat less than the theoretical by the same reasons given above), but note that the absolute
errors achieved with CLAM are signi�cantly smaller than with the two other schemes. The
upwind scheme is only �rst-order accurate, therefore leading to results which are generally too
inaccurate.
To demonstrate the e�ects that asymmetry in the design of the schemes may have on the

results, we show in Figure 10 several predictions for the semi-ellipse pro�le at an angle of
30◦, with a coarser mesh (29× 29). Both the SMART scheme and the GAMMA scheme with
a smaller scheme parameter (�m=0:1, instead of 0.5 as before), used to improve resolution,
show signs of asymmetrical resolution of the ellipse, due to a steepening=clipping e�ect dis-
cussed by Leonard [12]—the schemes are too compressive and transform smooth pro�les into
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Figure 10. E�ect of scheme’s asymmetry: results for the semi-ellipse
on mesh 29× 29 at an angle of 30◦.

sharp ones. The CUBISTA does not show that kind of behaviour and the ellipse is resolved
symmetrically.

5.2. Laminar �ow over a backward-facing step

The geometry of the plane backward-facing step is illustrated in Figure 11. This problem
has been extensively studied, both experimentally and numerically, to the point that it be-
came a typical benchmark problem for the numerical simulation of laminar �ows e.g. Refer-
ences [27, 28]. The �ow is characterized by two dimensionless parameters, the relative channel
step height, s=h, and the Reynolds number, de�ned as Re=2�Uinh=�, where Uin is the average
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Figure 11. Sketch of the laminar backward-facing step geometry.

inlet velocity and h is the inlet channel height. In the present study we restrict our calculations
to s=h = 1 and Re=800. Two types of inlet conditions were used in accordance with previous
numerical studies:

(i) Poiseuille �ow imposed far from the step (x=h=− 20)
(ii) Poiseuille �ow imposed right at the step (x=h=0).

Inlet type (ii) leads to longer main recirculating regions x1 but otherwise the resulting �ow
�elds are not signi�cantly di�erent. The outlet boundary is located at x=h=80, which is
su�cient for complete �ow redevelopment with a Poiseuille pro�le at the exit. Preliminary
simulations with shorter and longer downstream channels served to check that the results
were not a�ected by that choice. The calculations were performed on several consecutively
re�ned meshes in order to obtain very accurate grid-independent results, and also with view
to evaluate the order of accuracy with mesh re�nement of the various di�erencing schemes.
We deal �rst with convergence issues and then with accuracy issues.
Since the main purpose of our scheme is to achieve good accuracy without deterioration

in robustness, we compare in Figure 12 the evolution of the residuals of the u-momentum
equation as a function of dimensionless time, T = t=(2h=Uin), for the various di�erencing
schemes. This �gure essentially shows the iterative convergence behaviour of the schemes,
because the simulation time in the x-axis is proportional to the number of time steps. The
residuals are de�ned as the L1-norm of the algebraic equations to be solved and should tend
to zero as the steady-state solution is approached. A converged solution was assumed when
the normalized residuals of all equations fall below 10−5 and all cases in Figure 12 have
been computed with a time step of �T =0:25. Inspection of Figure 12 shows that the CLAM,
WACEB and the proposed CUBISTA schemes converge at the same rate, but the SMART
scheme is unable to converge to the prescribed tolerance. For the GAMMA scheme we used
a parameter of �m=0:5 (to enhance stability) and the iterative behaviour is similar to that of
the MINMOD, in line with the similarity between the NVD diagrams of these schemes.
We investigate next the e�ect of the time step on the convergence history for the problematic

scheme, SMART. These results are presented in Figure 13 which shows the decay of residuals
for a time step varying from 0.05 to 0.5, and the corresponding prediction of the extension
of the main recirculation zone (cf. Figure 11). A fully converged solution with the SMART
scheme requires smaller time increments, compared with the other schemes in Figure 12, and
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scheme. In�uence of the time step on the convergence history.

consequently its convergence rate is reduced (by a factor of 5, in relation to CUBISTA).
Figure 13 also shows, by looking simultaneously to the evolution of the residuals and of
the predicted recirculation length x1 for a time step of �T =0:5, that the solution �eld is still
varying when the residuals have already attained a certain stabilized lower level. It is true that
in this case, by pursuing the calculations for more time steps, a unique solution (represented
in Figure 13 by the same steady-state value of x1) is eventually achieved. In general, however,
it is not possible to ascertain whether lack of iterative convergence, indicated by a levelling
out in the decay of the residuals, will eventually lead to an adequate non-varying solution
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Table II. Primary-vortex dimension (x1=2h) under steady-state conditions (with inlet channel).

Mesh∗ �xmin=2h† UDS MINMOD GAMMA CLAM WACEB SMART CUBISTA

51× 20 0.0500 4.1380 4.3516 4.1042
102× 40 0.0250 4.2156 5.3894 5.5546 5.6220 5.7188 5.7216 5.7125
153× 60 0.0167 4.3532 5.7400 5.7894 5.7998 5.8351 5.8356 5.8338
204× 80 0.0125 4.5948 5.8205 5.8457 5.8514 5.8701 5.8704 5.8697
306× 120 0.00833 4.9665 5.8723 5.8835 5.8861 5.8938 5.8938 5.8936
408× 160 0.00625 5.1968 5.8892 5.8955 5.8970 5.9012 5.9012 5.9012

x1;ref =2h 5.9086 5.9086 5.9092 5.9092 5.9092
n 1.0 2.1 2.2 2.2 2.3 2.3 2.3

∗Without the portion for the inlet channel.
†�xmin =�ymin.

�eld. In the interest of robustness it is desirable to have a scheme which yields a decaying
variation of residuals, whenever the time step is su�ciently small. Clearly, without further
checks, it was not possible to decide whether the results with the SMART scheme and a �T
of 0.1, 0.25 or 0.5 did correspond to the actual steady-state solution.
In Table II the predicted primary-vortex dimension under steady-state conditions (x1) is

presented for the various di�erencing schemes, on the di�erent meshes. A reference value for
the vortex dimension (x1; ref ), representative of the ‘true’ solution, and the observed order of
accuracy (n) were calculated by a Richardson extrapolation-like technique. It was based on
the following asymptotic relationship between the calculated primary-vortex length x1 and the
smallest cell size on a given mesh, �xmin:

x1 = x1; ref + a(�xmin)n (22)

With the results obtained on the �nest meshes given in Table II, a non-linear regression
allowed us to obtain the convergence-related parameters (x1; ref and n) shown at the bottom
of the table. Due to grid-nonuniformity and the e�ect of the other terms in the equations,
the order of accuracy of the CUBISTA scheme is somewhat above 2. Both the results in
Table II and the asymptotic error variation in Figure 14 show that, in terms of accuracy, the
CUBISTA, SMART and WACEB schemes are equivalent. In terms of robustness, as seen
beforehand, CUBISTA and WACEB are superior to SMART. The CLAM, GAMMA and
MINMOD schemes, in comparison, show only a slight reduction in the order of accuracy,
but the true errors are larger, especially for MINMOD. For example, on the second mesh
(102× 40), which represents a typical mesh to be used in practice, the recirculation length
predicted by MINMOD has an error of 8.8%, and CLAM 4.9%, compared to 3.3% of CU-
BISTA. It is interesting to notice, from Figure 12, that MINMOD takes longer to converge
than CUBISTA or WACEB. The GAMMA scheme, which was developed for unstructured
mesh applications and so relies on interpolation between only the two nodes straddling a
given cell face, shows very good results and is a good option for Newtonian �ow calculations
in complex geometries. The UDS is highly inaccurate, due to its �rst-order accuracy, and
therefore should be avoided.
As an additional accuracy check of the present scheme, we give in Table III the various

predicted recirculation lengths for the same problem but with inlet condition (ii), together
with results from other sources. There is excellent agreement with the benchmark solution
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Table III. Reattachment and separation positions for the benchmark
backward-facing step �ow (no inlet channel).

x1=2h x2=2h x3=2h x4=2h y4=2h

This work 6.095 4.852 10.481 0.0864 0.0829
Gresho et al. [27] 6.10 4.85 10.48 n.a.∗ n.a.∗

Barton [28] 6.02 4.82 10.48 n.a.∗ n.a.∗

∗Not available.
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H2

Figure 15. Geometry of the 4:1 planar contraction.

of Gresho et al. [27] based on a high-order �nite element method, thus con�rming the good
level of accuracy achieved with the CUBISTA scheme.

5.3. Simulation of viscoelastic �ows

We turn now to the �nal, but more complicated case of the �ow of a viscoelastic UCM
�uid, for which a clearer distinction among the schemes is going to emerge. We consider
two problems: the �rst is the popular benchmark problem of the �ow through a 4:1 planar
contraction sketched in Figure 15 where the co-ordinate system and some of the relevant
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dimensions are shown. The �ow domain was mapped with orthogonal but non-uniform com-
putational meshes, having increased concentration of cells near the re-entrant corner and along
the downstream channel wall, where the highest stress gradients are observed. In previous work
[15] it was found that a computational domain extending from x=− 20H2 to x=+50H2 is
su�ciently long to avoid end e�ects. This problem is characterized by a Reynolds number
Re≡�U2H2=�=0.01, representative of slow-moving polymer melts, and a Deborah number
De≡ �U2=H2≡ 3, representative of moderate to high viscoelastic �ow. The �uid can be better
characterized by an elasticity number de�ned as E=De=Re, giving E=300 in the present
situation and thus indicating a highly elastic �uid.
We have studied this problem in detail [15] using very re�ned meshes (up to 57 032 cells)

in conjunction with the MINMOD scheme, and fairly accurate solutions could be obtained for
Deborah numbers up to De=3. Those solutions have been recently used by others [29] as a
check of their results. In the present work the goal is to study the convergence and accuracy
properties of the proposed CUBISTA scheme and how it compares with other high-resolution
schemes. This problem provides a stringent test for the high-resolution schemes due both to the
hyperbolic nature of the stress equation (Equation (4)), and the singular-like re-entrant corner
of the contraction geometry which generates very high stress levels (theoretically tending to
in�nity). As a consequence the question of boundedness is of paramount importance; high-
order schemes without limiter functions, such as the basic QUICK scheme, simply result in
too many under=overshoots, often leading to divergence of the time-advancement procedure.
Calculations have been carried out on two meshes, one with 3 598 cells (denoted M1) and

the other with a doubled number of cells along each direction, giving 14 258 cells (denoted
M2). The minimum non-dimensional cell size for these meshes is 0.02 and 0.01, respectively,
for M1 and M2, and it corresponds to square cells adjacent to the re-entrant corner. The
convergence behaviour of the various di�erencing schemes on mesh M1 is illustrated in
Figure 16, where the time decay of the �xx residuals is plotted against the dimensionless time,
de�ned as T = tU2=H2, for a time step of �T =0:01. This �gure shows that the MINMOD,
GAMMA, WACEB and SMART schemes all exhibit convergence di�culties. In the case of
the GAMMA scheme, convergence can be achieved when the scheme’s parameter is raised
to �m=0:5, a value in the upper limit of the range that guarantees good accuracy [20].
For this mesh, the CLAM and CUBISTA schemes show similar residual decay (convergence
speed) and the UDS is, once again, a little faster in attaining full convergence in terms of
vanishing residuals (¡10−4). On the �ne mesh (M2), on the other hand, we found that only
the UDS and the CUBISTA schemes are able to achieve fully converged solutions, as shown
by Figure 17. On this mesh, even the CLAM scheme, which was designed as a curved smooth
line in the NVD in order to avoid the switching instability [17, 18], is unable to provide a
solution converged to the prescribed tolerance.
In terms of accuracy, we present in Figure 18 the contour plot of the dimensionless �rst-

normal stress di�erence obtained using the proposed scheme. In the same �gure, contour plots
for the more accurate (SMART) and less accurate (UDS) schemes are shown for comparison.
Once more, it is di�cult to visually distinguish stress contours with CUBISTA and SMART.
Although the stress contours obtained with the upwind scheme do not seem too di�erent in this
�gure, a close inspection shows signi�cantly more di�used stresses especially in the region
close to the re-entrant corner. As a consequence the resulting streamline patterns with UDS
are grossly in error as shown in Figure 19, where they are compared with those of CUBISTA
on the same mesh (M1) and with reference (mesh-independent) streamlines obtained on a
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Figure 16. Decay of the norm of the �xx residuals for the various di�erencing schemes at
De=3. Results obtained on mesh M1.
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Figure 17. Decay of the norm of the �xx residuals for the UDS, GAMMA, CLAM and
CUBISTA schemes at De=3. Results obtained on mesh M2.

very �ne mesh (with 57,032 control volumes, cf. Reference [15]). Clearly the CUBISTA
streamlines on this rather coarse mesh M1 are close to the mesh-independent ones, while the
upwind results exhibit an arti�cially enhanced corner vortex activity.
The second viscoelastic problem deals with the �ow around a circular cylinder (radius R)

placed in a channel (semi-width h; blockage R=h=0:5), a relatively smooth �ow (there is
no singular point) but still di�cult numerically due to the presence of steep stress boundary
layers [16,30]. A sketch of the geometry is given in the inset of Figure 20, which shows the
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solution (Reference [15]: MINMOD on very �ne mesh M4).

convergence behaviour of the various schemes at a Deborah number De≡ �U=R=0:6, a value
on the mid-range for this problem (both References [16] and [30] present a limiting De≈ 1).
As in the previous problem, only upwind and the new scheme are capable of achieving
converged results, approximately at the same convergence rate; MINMOD, SMART, WACEB
and CLAM show a levelling out of the residuals decay, without iterative convergence. The
time step used in these calculations was �T =0:002 (normalized with R=U ) and the mesh
was that referred to as M30 in Reference [16], which is a relatively coarse mesh with 30
cells from the cylinder surface to the channel wall. A convenient solution functional for the
assessment of numerical accuracy is the drag coe�cient on the cylinder (Cd) which is given
in Figure 21 as a function of the Deborah number. The present results with the CUBISTA
and the upwind schemes on mesh M30 are compared with the Richardson-extrapolated mesh-
independent solution of Reference [16] and results of Reference [30] who used an highly
accurate h-p �nite element method. The CUBISTA predictions of Cd on the relatively coarse
mesh M30 follow the solution of both References [16] and [30] very well, up to De=0:9,
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while the inaccuracies introduced by upwind on the stress predictions start deviating Cd from
that solution for De¿0:5.
Some conclusive remarks regarding the above results are in order at this point. We see from

Figures 16 and 20 that with MINMOD, which is known to be more di�usive than the other
HRS’s (e.g. Reference [12]), we cannot obtain a converged solution. The explanation must
reside on the fact that the MINMOD characteristics in the NVD exhibit a change of slope at
�
˙
P =0:5, in the smooth �ow region, and therefore that scheme is more prone to the switching
instability. SMART violates the TVD restrictions on both sides of the monotone region in the
NVD, at �

˙
P≈ 0 and 1, and so it will be subjected to convergence trouble whenever there are

sharp up-gradients or down-gradients. This is why it requires some form of under-relaxation of
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Figure 22. E�ect of the parameter C on the convergence history for the problem of
viscoelastic �ow past a cylinder (De=0:6; mesh M30).

the face �uxes [10, 17]. WACEB follows the steady-state TVD restrictions precisely (C=0),
but the results show (Figures 16 and 20) that such conditions are not su�cient to guarantee
a converged solution: some safety margin is required, as in the CUBISTA scheme. This fact
is especially important for situations in which �

˙
P≈ 1, where the strict TVD constraints for

C=0 and the WACEB scheme follow the downwind scheme. Downwind di�erencing gives
rise to a single negative coe�cient in the linearized discrete equations, and that is highly
unstable in conjunction with implicit solution methods. An interesting plot illustrating these
remarks is provided by Figure 22 where the decay of �xx residuals with the elapsed time
(proportional to the number of time steps) is shown for the cylinder problem at De=0:6 for
various values of the parameter C in the proposed scheme. For C in the range 0.2–0.3 good
convergence is achieved, at approximately the same rate, thus con�rming the good choice of
the value C=0:25 used in the CUBISTA scheme. For higher values of C (C=0:35, 0.4 and
0.5) convergence cannot be achieved, in spite of the increased dissipation introduced. Note
that C=0:5 corresponds to the MINMOD scheme, and the switching instability in the smooth
�ow region must be the cause for lack of convergence seen in this range of C. For lower
values of C (C=0–0.15) convergence cannot again be achieved, this time because the TVD
constraints (with �nite C) are not satis�ed.

6. CONCLUSIONS

A new high resolution scheme for the treatment of advected transport (named CUBISTA) is
constructed in the context of the normalized variable and space formulation. It has similarly
good accuracy as the well-known SMART scheme, but better iterative convergence properties
when applied in an implicit solution method. This was achieved by incorporating total vari-
ation diminishing constraints into the design of the scheme. Assessment of the accuracy and
convergence characteristics of the new scheme was carried out with a number of linear and
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non-linear test cases involving both Newtonian and viscoelastic �uid �ow. For the problem
of Newtonian �ow through a backward-facing step, the new scheme converged equally well
as most of the other known high resolution schemes, with the exception of SMART which
required smaller time steps. However, for the viscoelastic �ow problems, which were the
main motivation of this work, the new scheme was the only one to converge, either on a �ne
mesh or at all, of all the tested high resolution schemes. The relevance of this �nding and of
the new scheme can be better appreciated from knowledge that in order to predict accurately
viscoelastic �ows, very �ne meshes are required [16].
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