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A CONVERGENT BOUNDARY INTEGRAL METHOD
FOR THREE-DIMENSIONAL WATER WAVES

J. THOMAS BEALE

Abstract. We design a boundary integral method for time-dependent, three-
dimensional, doubly periodic water waves and prove that it converges with
O(h3) accuracy, without restriction on amplitude. The moving surface is rep-
resented by grid points which are transported according to a computed velocity.
An integral equation arising from potential theory is solved for the normal ve-
locity. A new method is developed for the integration of singular integrals, in
which the Green’s function is regularized and an efficient local correction to
the trapezoidal rule is computed. The sums replacing the singular integrals
are treated as discrete versions of pseudodifferential operators and are shown
to have mapping properties like the exact operators. The scheme is designed
so that the error is governed by evolution equations which mimic the structure
of the original problem, and in this way stability can be assured. The wave-
like character of the exact equations of motion depends on the positivity of
the operator which assigns to a function on the surface the normal derivative
of its harmonic extension; similarly, the stability of the scheme depends on
maintaining this property for the discrete operator. With n grid points, the
scheme can be implemented with essentially O(n) operations per time step.

1. Introduction

In this paper we design a semidiscrete numerical method of boundary inte-
gral type for computing time-dependent, doubly periodic, three-dimensional water
waves. We prove that this method converges as long as the actual motion remains
smooth, without restriction on its amplitude. While the full equations are difficult
to work with analytically, boundary integral methods seem naturally suited to wa-
ter wave motion. The surface is represented in Lagrangian coordinates, and grid
points are moved according to a computed velocity. Because the flow is assumed
irrotational, the motion is determined by quantities on the surface alone. How-
ever, the normal velocity must be found in terms of singular boundary integrals,
using potential theory. The evolution has the character of nonlinear, nonlocal wave
motion without dissipation. For this reason it seems that the stability of the nu-
merical method depends critically on its design. In the present work we develop
a new, efficient approach for calculating the singular integrals, using the limited
information computed on the moving surface. We analyze discrete versions of inte-
gral operators such as single and double layer potentials by adapting the viewpoint
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978 J. THOMAS BEALE

of pseudodifferential operators, as well as potential theory, to the discrete setting.
We find the most important terms in the evolution equations for the errors, and
ensure by design of the scheme that the errors grow at a bounded rate.

Boundary integral methods have been widely used in ocean engineering and
applied mathematics, starting with the work of Longuet-Higgins and Cokelet [21]
and Vinje and Brevig [33]. Two-dimensional applications have been extensive; see
the recent surveys [27, 32] or the references in [5, 6]. Computations in 3-D include
[4, 27, 28, 9, 32, 17]. In [6], T. Hou, J. Lowengrub, and the author proved the
convergence of a version of the method in 2-D. Calculations illustrate the advantage
of this method in capturing small scale features. It seems that convergence in 3-D is
more difficult, largely because quadrature for singular integrals on surfaces is more
involved than on curves, and because the choice of quadrature affects the stability
of the time-dependent solution. One approach is presented in [19].

We assume as usual that the flow of the water is incompressible, inviscid, and
irrotational. For simplicity we assume the fluid is infinitely deep and the motion is
periodic in both horizontal directions, with period 2π. (The formulation can easily
be modified to account for a horizontal bottom; for more general lower boundaries,
see [3].) The motion of the fluid is governed by Euler’s equations and boundary
conditions at the surface. Since the flow is irrotational and incompressible, the
velocity is the gradient of a potential φ which is harmonic below the surface:

∆φ = 0 .(1.1)

At the surface the fluid pressure matches the atmospheric pressure, which we assume
constant. (We neglect surface tension.) Bernoulli’s equation, together with the
boundary condition for the pressure, provides us with an evolution equation for φ
at the surface. With the position x and velocity potential φ at the surface treated
as functions of Lagrangian coordinates α = (α1, α2) and time t, the evolution
equations are

xt = v , φt = 1
2 |v|

2 − gx3,(1.2)

where v is the fluid velocity, g is the acceleration of gravity, x3 is the vertical
component of x, and φ is adjusted by a spatial constant at each t. The first equation
says that a particle on the surface with fixed α moves with the fluid velocity. The
velocity v = ∇φ is determined by φ on the surface and the condition (1.1), with
the requirement that ∇φ is square integrable as x3 → −∞.

In the boundary integral approach, the main effort in solving these equations
is in finding the velocity v at the surface using potential theory. There is some
choice in how this is done. The tangential part of the velocity can be found from
differentiating φ along the surface. For the normal component we use a Fredholm
integral equation of the second kind which determines the normal velocity φn =
∂φ/∂n directly from φ on the surface,

(1.3) 1
2φn(x) +

∫
∂Gπ(x− y)
∂n(x)

φn(y) dS(y)

= n(x) ·
∫
∇Gπ(x − y)×

(
(n(y)×∇Tφ(y)

)
dS(y).

Here Gπ is the Green’s function, periodic in the horizontal variables, obtained from
a sum of images of the standard Green’s function G(x) = −1/4π|x| with ∆G = δ; n
is the unit normal pointing out of the fluid. We assume φ is periodic and has square
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A BOUNDARY INTEGRAL METHOD FOR 3-D WATER WAVES 979

integrable gradient below the surface. The first integral is absolutely convergent,
but the second is of principal type. The right side is the normal derivative of the
double layer potential due to φ. This integral equation has been used in electro-
magnetics. It can be derived by writing φ below the surface in terms of boundary
integrals in φ and φn, and then taking the normal derivative at the surface (e.g., see
[10], §3.9 and Theorem 2.23, or [20]). Its use for three-dimensional water waves has
been suggested in [28]. An alternative approach is to write the velocity potential
in terms of a dipole source on the boundary; this was done in [3, 4, 17, 5, 6].

To design a specific scheme, we have choices to make in writing the integrals,
finding derivatives, and especially in the numerical integration of the singular inte-
grals. Analytical considerations in the present work and in [6] indicate that these
choices can determine whether or not the scheme is stable. There are well developed
methods for quadrature of singular integrals in several dimensions which depend
on special coordinates near the singularity; see Lyness [24] for a survey. In the
present context the surface and integrand are known only from computed values
at the Lagrangian grid points. Here we develop a general approach in which we
replace the Green’s function G by a smooth version Gh regularized on the scale
of the grid size h. We discretize the new integral by the trapezoidal rule. Then,
using an asymptotic expansion of the quadrature error like that found by Lyness
[23] and Goodman et al. [12] for unregularized singular integrals, we identify the
largest error term. Because of the regularization, we can compute this first error
and correct for it; it is expressed through the Poisson summation formula in terms
of the Fourier transform Ĝh of Gh. In our case the correction improves an O(h)
error to O(h3). (We have avoided using extrapolation as in [23] for the sake of a
positivity requirement explained below.)

As in [6] we are guided in designing the scheme by the linearization of the
exact equations about an arbitrary solution. By preserving the same structure at
the discrete level we can ensure that the numerical scheme is stable. Without such
considerations we could have a mismatch of terms which destroys the well-posedness
of the linearization and therefore the numerical stability. Briefly, this linearization
reduces to an equation for a variable u related to the disturbance in the velocity
potential on the surface,

utt + cΛu ≈ 0 ,(1.4)

where we have dropped less important terms, and Λ is the principal part of the
Dirichlet-to-Neumann operator on the current surface, i.e., the operator that de-
termines φn from φ. It is important that Λ and c are positive, as discussed further
below. The equation describes nonlocal wave motion; in the special case of small
disturbances at equilibrium, it reduces to the usual equation for linearized water
waves. The linearization about an arbitrary motion was found in the boundary
integral setting in 2-D in [5], and in 3-D with orthogonal coordinates in [18]. It was
derived earlier for bounded domains in a different way in [2].

A primary concern is that the discrete version of the operator Λ should be posi-
tive, or almost so. Violation of this requirement in high wavenumbers would lead to
rapid growth of disturbances, as can be seen from (1.4). For the exact operator Λ,
the positivity is related to the fact that the Green’s function has transform Ĝ < 0.
This property may not be preserved by the discrete analogue. In the present ap-
proach, we choose Gh so that Ĝh < 0. The discrete transform is a lattice sum of
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980 J. THOMAS BEALE

values of Ĝh, which converges because Gh is regularized. In this way we can ensure
the necessary positivity.

We now describe the method in more detail. We first rewrite the integrals in
(1.3) to reduce the order of singularity, taking advantage of the two identities∫

∂Gπ(x− y)
∂n(y)

dS(y) = 0 ,
∫
∇Gπ(x− y)× n(y) dS(y) = 0,(1.5)

where the integral is over one period of the surface. (Cf. [4], §3 or [10], Theorem
2.1. The use of these identities to reduce the singularity was suggested in [4].) On
the right side of (1.3) we use vector identities to convert the integrand,

(1.6) ∇Gπ×
(
n×∇Tφ

)
=
(
∇Gπ · ∇Tφ

)
n − (∇Gπ · n)∇Tφ

= (∇Gπ× n)×∇Tφ − (∇Gπ · n)∇Tφ .
Then using (1.5) we can write the integral on the right in (1.3) as

(1.7)
∫

(∇Gπ× n(y))×
(
∇Tφ(y)−∇Tφ(x)

)
dS(y)

−
∫
∇Gπ · n(y)

(
∇Tφ(y)−∇Tφ(x)

)
dS(y) .

The first integral is absolutely convergent because of the subtraction. We can
replace ∇Gπ by ∇TGπ , the part of the gradient tangential at y, and write (cf. [10],
p. 35), with y = y(α′) and X1, X2 the tangent vectors Xj = ∂y/∂α′j,

∇Gπ(x− y)×N(y) = (Dα′1
Gπ)X2 − (Dα′2

Gπ)X1.(1.8)

Here N = X1 × X2; we assume N points outward, so that n = N/|N |. For the
integral on the left in (1.3), we resolve ∇Gπ into parts normal and tangential at y
and use (1.5) again, so that the integral becomes

∫
∇Gπ · n(y) [n(y) · n(x)φn(y)− φn(x)] dS(y) +

∫
∇TGπ · n(x)φn(y) dS(y) .

(1.9)

The second integrand is absolutely integrable, since ∇TGπ ⊥ n(x) at y = x.
We work with grid functions on a grid of size h representing equally spaced values

of the Lagrangian variable, αj = jh, where j = (j1, j2) ∈ Z2. We assume h = 2π/N
with N even. For the discrete values in a fundamental period we take

I = {j ∈ Z2 : −N/2 ≤ jν ≤ N/2− 1, ν = 1, 2} .(1.10)

A grid function f has a discrete Fourier transform which we denote by f̈ , a function
of k ∈ Z2 with period 2π/h in k1, k2,

f̈(k) = (2π)−2
∑
j∈I

f(jh)e−ikjh h2 , f(jh) =
∑
k∈I

f̈(k)eikjh .(1.11)

For properties of this transform see e.g., [15, 31]. We measure grid functions on Ih
in the discrete L2

h norm, given by

|f |2L2
h

=
∑
j∈I
|f(jh)|2 h2 = (2π)2

∑
k∈I
|f̈(k)|2 .(1.12)

Of the exact solution, we assume that the surface function x(α, t) and the velocity
potential φ(α, t) are smooth up to some time T , and x(α1, α2, t) − (α1, α2, 0) and
φ(α1, α2, t) are 2π-periodic in each of α1, α2. (If the velocity is periodic but φ is
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A BOUNDARY INTEGRAL METHOD FOR 3-D WATER WAVES 981

not, we can choose a frame of reference so that φ becomes periodic. The scheme
can easily be adapted to the more general case.) We also assume that the Jacobian
∂x/∂α is nondegenerate and x(α, t) 6= x(α′, t) when α 6= α′. This implies that

|x(α, t) − x(α′, t)| ≥ c |α− α′| , 0 ≤ t ≤ T .(1.13)

Next we discuss the discrete derivative operator. It can be a difference operator,
but to be general we discuss its Fourier representation. For a function f of αj ∈ Ih,
we assume the discrete partial derivative Dh,ν in αν , ν = 1, 2, has the form

(Dh,νf )̈ (k) = h−1σ(kνh)f̈(k) , σ(ξ + 2π) = σ(ξ),(1.14)

where σ : R→ C. We also assume

σ is C1 on [−π, π] , σ(−π) = σ(π) , C1|ξ| ≤ |σ(ξ)| ≤ C2|ξ| on [−π, π] ,(1.15)

σ(ξ) = iξ +O(ξ4) as ξ → 0 , σ(−ξ) = σ̄(ξ),(1.16)

where σ̄ is the complex conjugate. The latter says that Dh,ν is accurate to O(h3)
and preserves real-valued functions. Because of (1.15), Dh,ν has a product rule: for
f ∈ L2

h and u a smooth periodic function,

Dh,ν(uf) = uDh,νf +B(f),(1.17)

where B is an operator depending on u, bounded on L2
h uniformly in h (see [6],

Lemma 1). This will be useful later. The requirement σ(ξ) 6= 0 for ξ 6= 0 rules
out, e.g., the symmetric fourth order difference operator. A simple example meet-
ing these conditions is the third order difference operator coming from Lagrange
interpolation,

Dh,ν = (6h)−1
(
−2S−1

ν − 3I + 6Sν − S2
ν

)
,(1.18)

where Sν is the shift operator, S1f(j1h, j2h) = f((j1 + 1)h, j2h)). Alternatively, we
could define σ directly, e.g., by setting σ = iξρ+ (1 − ρ) for |ξ| ≤ π, where ρ(ξ) is
some even, real-valued function with ρ ≡ 1 near ξ = 0 and ρ ≡ 0 near ξ = ±π. We
shall refer to the adjoint operator D∗h,ν , given by

(D∗h,νf )̈ (k) = h−1σ̄(kνh)f̈(k) .(1.19)

Of course, for (1.18), D∗h,ν is found by replacing Sν with S−1
ν . For f smooth,

Dh,νf = ∂f/∂αν +O(h3) while D∗h,ν = −∂f/∂αν +O(h3).
Various geometric quantities must be computed from the grid points on the

surface. From x(αj), j ∈ I, we can use Dh,ν to compute approximate tangent
vectors Xνj = (Dh,νx)j , ν = 1, 2. (We apply Dh,ν to x(α)− (α, 0).) From these we
compute the metric tensor gµν = Xµ ·Xν and the inverse gµν , as functions of αj .
We then find the normal vectors N = X1 ×X2 and n = N/|N |, and also the dual
tangent vectors at αj ,

X∗µ =
∑
ν

gµνXν , X∗µ ·Xν = δµν .(1.20)

Given the surface x and the velocity potential φ at the surface at one time for
the grid points αj , j ∈ I, we can advance to the next time using (1.2) once we have
computed the velocity v at each αj . To do this we write the computed velocity as

v = ∇Thφ + wn,(1.21)
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982 J. THOMAS BEALE

where w is an approximation to φn. We can compute the tangential gradient as
(e.g., cf. [10], p. 33)

∇Thφ =
∑
ν=1,2

(Dh,νφ)X∗ν .(1.22)

We will obtain w from a discrete version of (1.3), rewriting the two integrals as in
(1.7)–(1.9). We use the regularized Green’s function Gπh; for the normal derivatives
we use the analytic gradient of Gπh , while for ∇TGπh(x − x(α′)), the part of the
gradient tangential at x(α′), we use the discrete α′-derivative,

∇ThGπh(x − x(α′)) = −
∑
ν=1,2

(Dh,νG
π
h(x− x(α′)))X∗ν .(1.23)

This expression is used to match (1.22); both appear in the discrete operator Λ
mentioned above, and this symmetry gives it the proper structure.

The regularized Green’s function Gπh is constructed in §2 from a free space version
in the form Gh(x) = −(4π|x|)−1s(|x|/h) for x ∈ R3, where s is a function chosen
with certain conditions (2.2), (2.3), (2.9) which ensure that Gh is smooth and
differs from G itself as an integral operator by O(h3). As above, we also assume
that Ĝh(k) < 0. A specific choice (2.19) for s is described in §2, based on the
Gaussian function, for which the requirements are satisfied and necessary quantities
can be computed explicitly. Since the regularization has length scale h, Gh differs
appreciably from G only within distance O(h) of the origin. If, for example, x(α) =
(α1, α2, 0) and we approximate the single layer potential due to a function f by
applying the trapezoidal rule with Gh in place of G, we have (with a limiting value
at ` = j) ∑

`∈Z2

G((jh− `h, 0))s(j − `)f(`h)h2,(1.24)

and the s factor amounts to a set of quadrature weights. The quadrature error is
O(h); however, it can be improved to O(h3) by a correction proportional to f(jh),
as explained in §3. Such corrections appear in the discrete integrals below.

The discrete integral equation is obtained by substituting (1.7), (1.9) into (1.3)
for the two integrals, replacing Gπ with Gπh , applying the trapezoidal rule, and
adding the needed quadrature correction. It has the form

1
2wj + (Khw)j = fj = Fj · nj ,(1.25)

(Khw)j =
∑
`

∇Gπh ·N` [(n` · nj)w` − wj ]h2 +
∑
`

∇ThGπh · nj w`|N`|h2 + hκjwj

(1.26)

Fj =
∑
`

[DhG
π
h, X ]`×(∇Thφ` −∇Thφj)h2 + hχj −

∑
`

∇Gπh ·N`(∇Thφ` −∇Thφj)h2

(1.27)

Here ∇Thφ is found from (1.22) and ∇ThGπh from (1.23); ∇Gπh etc. are evaluated at
xj − x`; and in view of (1.8) we have introduced

[DhG
π
h, X ]` = Dh,1G

π
h(xj − x`)X2` − Dh,2G

π
h(xj − x`)X1`,(1.28)
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A BOUNDARY INTEGRAL METHOD FOR 3-D WATER WAVES 983

where Dh is with respect to `. The correction terms are given by

κj = γj [Ph(D∗h,1X
∗
1 +D∗h,2X

∗
2 )]j ·Nj ,(1.29)

χj = γj
(
X1j × [PhD∗h,2(∇Thφ)]j −X2j × [PhD∗h,1(∇Thφ)]j

)
,(1.30)

where

γj = 2π(det gµν(αj))1/2
∑

06=n∈Z2

Γ
(

2π
√
gµν(αj)nµnν

)
(1.31)

and Γ is a function related to Gh; see (2.14), (2.24). The sum in (1.31) is infinite,
but we can choose Gh so that Γ decreases rapidly and only a few terms are needed
(cf. (2.24)). The derivation of these corrections is explained in §3. A linear operator
Ph is inserted in (1.29), (1.30) to smooth out the second derivatives. We assume it
has the form

(Phf )̈ (k) = ρ(k
√
h)f̈(k)(1.32)

with ρ chosen so that

ρ(ξ) = 1 +O(|ξ|4) as ξ → 0 , ρ(ξ) = 0 for |ξ| > c0 , c0 > 0 .(1.33)

As part of the convergence argument, we prove that the integral equation can be
solved by simple iteration, i.e.,

1
2w

(n+1) +Khw(n) = f , w(0) = f .(1.34)

The following theorem gives the convergence result for this scheme.

Main Theorem. Suppose an initial state is prescribed, such that the exact equa-
tions of motion (1.1), (1.2) have a smooth solution for 0 ≤ t ≤ T meeting the
conditions above (1.13). Let the numerical scheme be as presented, with the dis-
crete derivative Dh,ν chosen according to (1.14)–(1.16) and the operator Ph as in
(1.32), (1.33). Let Gh be a regularized Green’s function satisfying (2.1)–(2.3), (2.9)
and Ĝh < 0. Then for h sufficiently small, the scheme has a solution with the pre-
scribed initial state for 0 ≤ t ≤ T , and in particular the discrete integral equation
(1.25) can be solved. For each time t ≤ T , the surface computed at the grid points
αj differs from the exact surface by O(h3) in L2

h. The computed velocity potential
at the surface has error O(h3) in L2

h, and the computed velocity at the surface has
error O(h2) in L2

h.

This scheme is semidiscrete, i.e., discrete in space but not time. We expect
the time integration to be done using an ODE solver such as the Runge-Kutta or
Adams-Bashforth methods. Higher order versions of this scheme are possible but
would require more complicated correction terms. We do not deal in detail here
with the efficient computation of the discrete integrals; it is important to note,
however, that with n = N2 points to be tracked, the computation can be done in
essentially O(n) operations per time step. The four integrals can be put in matrix-
vector form, where the matrix comes from either Gπh or its gradient. There are two
ways to proceed, based on the fast multipole method of Greengard and Rokhlin
[14] or Ewald summation. Both have been used for doubly periodic water wave
computations [4, 17]. We can choose the regularization of the Green’s function,
e.g., (2.19), so that it is significant only at distance O(h) from the singularity.
Then fast summation can be used except for O(1) terms per integral, or O(n)
terms in total. An alternative is to adapt the fast version of Ewald summation of
Strain [29].
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As usual, the theorem asserts the convergence of the scheme as long as a smooth
solution exists. Recently Sijue Wu has proved that a smooth solution of the initial
value problem for water waves exists for a time depending on the initial state, in
a three-dimensional fluid of infinite extent, tending to equilibrium at infinity [35].
(Earlier results were two-dimensional or assumed analytic data.) It is reasonable
to expect that a result similar to Wu’s holds for the present case of doubly periodic
motion. Wu shows in her case that the pressure gradient at the surface is bounded
away from zero,

c = −∇p · n ≥ c0 > 0,(1.35)

where n is the normal outward from the fluid region. Such a result was proved
for a bounded domain in [2]. The same condition holds in the present case; this
can be seen as in §4 of [35]. The essential reason is that −p is subharmonic and
therefore obeys the strict maximum principle. The coefficient (1.35) appears in
(1.4). The positivity is important for the well-posedness of the exact equations and
consequently also for the numerical stability of the scheme under consideration, as
seen in §6. It means that the motion is well-posed even after a wave overturns. (Of
course the model ceases to apply once the wave crashes.) Further discussion of the
significance of (1.35) can be found in [5].

In analyzing the stability of the scheme we need to understand the mapping
properties of the discrete integral operators applied to error terms. It is natural to
view them as discrete versions of pseudodifferential operators; the important parts
can be regarded as convolutions and estimated in the Fourier transform. This
point of view is especially helpful in establishing the positivity of the operator Λ
using the assumption Ĝh < 0. In §4 we develop some basic properties of discrete
pseudodifferential operators under mild conditions, including a version of G̊arding’s
inequality. In [25] general results for such operators were derived assuming a high
wavenumber cut-off. Here we avoid this assumption and derive more limited results.
In §5 we show that various discrete operators related to Gπh are bounded, or gain
derivatives, as linear operators on L2

h. These are discrete versions of standard
properties of single and double layer potentials. In the stability estimates of §6
we use these mapping properties to identify the principal error terms and simplify
them, without treating less important terms in detail. The singularity subtraction
helps to prevent spurious terms from appearing in the stability analysis. In fact, a
scheme in 2-D like that of [6] can be shown to converge if singularity subtraction is
used, without smoothing the points xj inside the integrals, as was done in [6].

We briefly outline the contents of the remaining sections. In §2 we describe the
regularized Green’s function Gh and derive needed formulas, construct the periodic
versionGπh, and prove that the error from replacingGπ with Gπh in a single or double
layer potential is O(h3). In §3 we analyze the quadrature error for the trapezoidal
rule applied to singular integrals with regularization, and derive a formula to remove
the largest error by local correction. We apply these results to the discrete integrals
of (1.26), (1.27). In §4 we prove basic properties of discrete pseudodifferential
operators, and in §5 the boundedness properties of discrete integral operators. The
convergence of the scheme is proved in §6: stability estimates are obtained for the
computed velocity, using the results of §§4 and 5; a simplified equation is found
for the growth of the error; and estimates are found for the rate of growth. Some
arguments needed for the proof are deferred to §7.
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The operator Λ is essentially a convolution with ∇TG, following a derivative;
see Lemma 6.8 and (6.31) for the discrete version. The positivity of the discrete Λ
depends on the choice of quadrature for the singular integral, as well as the choice
of the two derivatives. It appears difficult to maintain this condition in discretizing
the integral without regularizing G; the sign condition on Ĝh and the matching
of the two derivatives ensure the positivity here. In the stability argument of §6,
the positivity of Λ is needed because it enters the energy estimates; see (6.55). We
also need the discrete Λ to dominate the discrete first derivative, i.e., the derivative
can be written as a bounded operator times Λ (see (6.49)–(6.50)). It is for this
latter reason that we require the derivative in (1.14) to have nonzero symbol σ for
k 6= 0; if σ decays in the high wavenumbers, then the symbol of Λ decays faster,
since Λ has two derivatives. In the 2-D convergence argument of [6], the analogue
of ∇TG was the Hilbert transform H ; the discrete H given by alternate quadrature
had symbol with modulus one, and the two needed properties of Λ = HD followed
directly.

2. The regularized Green’s function

In this section we describe the class of regularized Green’s functions and find the
Fourier transform of the restriction to a plane in terms of the 3-D transform. We
need to compute this transform explicitly for the correction terms in the integral
equation (1.25). We find a specific Gh, based on the Gaussian function, which has
all the needed properties. We construct the periodic Green’s function as a sum of
images, adjusted by constants. Finally, we prove (Theorems 2.2 and 2.3) that the
error in a single or double layer potential due to the regularization is O(h3).

The regularized Green’s function Gh will have the form

Gh(x) = −(4πr)−1s(r/h) , r = |x|,(2.1)

with s chosen so that s(r)→ 1 rapidly as r →∞ and Gh is smooth. A convenient
assumption for the decay of s− 1 is

|Dk
r (s(r) − 1) | ≤ Cr−4−k , r ≥ 1 .(2.2)

For Gh to be smooth, we need s(|x|)/|x| to be smooth as a function of x, and thus
as a function of |x|2; i.e., we assume

s(r)/r is a smooth function of r2, 0 ≤ r <∞ .(2.3)

Then for h > 0, Gh(x) = h−1G1(x/h). For later use we note that (cf. [1])

|Dk
xGh(x)| ≤

{
C|x|−|k|−1 , |x| ≥ h ,
Ch−|k|−1 , |x| ≤ h .

(2.4)

Letting ψ = ∆G1, we find that

ψ(x) = ∆G1(x) = −(4πr)−1s′′(r) , r = |x|,(2.5)

and correspondingly

∆Gh(x) = ψh(x) ≡ h−3ψ(|x|/h) ,(2.6)

which approximates the delta function as h→ 0.
For accuracy we need a further condition on s. It is well-known (e.g., [16]) that

the error from replacing G by Gh in an integral is determined by moments of s− 1
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or ψ. Here we are interested in integrals on a surface, and so we consider, for a
homogeneous polynomial pn(x) of degree n, the integral∫

R2
(Gh(x)−G(x)) pn(x) dx = − 1

4π

∫
R2

(s(|x|/h)− 1) |x|−1pn(x) dx,(2.7)

which becomes in polar coordinates

Cn

∫ ∞
0

(s(r/h)− 1) rn dr = Cnh
n+1

∫ ∞
0

(s(ρ)− 1) ρn dρ .(2.8)

The largest error is O(h) with n = 0. For this reason we require of s that∫ ∞
0

(s(r)− 1) dr = 0 .(2.9)

For odd n, the error terms above are zero since the integrand is odd. Thus with
condition (2.9) we expect the error from the regularization to be O(h3). This is
verified for single layer potentials in Theorem 2.2. Given an arbitrary s(1) satisfying
(2.2), (2.3), we can easily produce a related function satisfying (2.9), as well as (2.2),
(2.3), by setting

s(3)(r) = s(1)(r) + r ∂rs(1)(r) .(2.10)

Condition (2.9) can be verified for s(3) by an integration by parts. The corre-
sponding relationship for the ψ’s is ψ(3) = 4ψ(1) + r∂rψ(1). (A similar strategy for
satisfying moment conditions was used in [8].)

When Gh has the form (2.1), we have a similar expression for ∇Gh,

∇Gh(x) =
x

4πr3
s̃(r/h) , s̃(r) = s(r) − r ∂rs(r) .(2.11)

Here s̃ has the same properties (2.2), (2.3) as s. If s satisfies the moment condition
(2.9), then the same holds for s̃; this can be seen by an integration by parts.

We need explicit formulas for Ĝh, the Fourier transform of Gh in R3, and for
the transform of Gh on planes, since we work with integrals on surfaces. We will
write the Fourier transform of a function f on Rd as

f̂(k) = (2π)−d/2
∫
f(x)e−ikx dx , f(k) = (2π)−d/2

∫
f̂(k)eikx dk .(2.12)

The hypotheses imply that Ĝh(k) is smooth for k 6= 0 and decays rapidly for
large k. More particularly, it will be important to require that Ĝh(k) < 0. Since
−|k|2Ĝ(k) = ψ̂(k), this is equivalent to requiring that ψ̂(k) > 0. To find the trans-
form of the restriction to a plane, we first identify (x1, x2) ∈ R2 with (x1, x2, 0) ∈
R3. Then the Fourier transform of the function on R2 given by x→ Gh(x, 0) is

G1(·, 0)̂ (k1, k2) = (2π)−1/2

∫ ∞
−∞

Ĝ1(k1, k2, k3) dk3 .(2.13)

Since Ĝ1 is radial, this depends only on |(k1, k2)|, and we write G1(·, 0)̂ (k1, k2) =
Γ(|(k1, k2)|), with Γ defined by

Γ(ρ) = (2π)−1/2

∫ ∞
−∞

Ĝ1(ρ, 0, `) d` .(2.14)

More generally we will use the transform of G1◦J : R2 → R, given by α→ G1(Jα),
where J : R2 → R3 is a 3 × 2 matrix. In our applications J will be the Jacobian
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matrix of a coordinate mapping. Since G1 is radial, G1(Jα) is a function of |Jα|2 =
|J∗Jα · α|2 = |Bα|2, where B = (J∗J)1/2. Thus G1 ◦ J(α) = G1(Bα, 0), and

(G1 ◦ J )̂ (k) = (detB)−1 G1(·, 0)̂ (B−1k) , k ∈ R2 − {0} .(2.15)

We can now combine this with (2.13), using |B−1(k)| = |(J∗)−1k|, to obtain

(G1 ◦ J )̂ (k) = (det J∗J)−1/2 Γ
(
|(J∗)−1k|

)
, k ∈ R2 − {0} .(2.16)

If the two columns of J are vectors X1, X2 ∈ R3, then (J∗J)µν = Xµ ·Xν = gµν , the
usual metric induced in the coordinate plane. Also |(J∗)−1k|2 = gµνkµkν , summed
over µ, ν, where (gµν) = (gµν)−1. Thus the formula above becomes

(G1 ◦ J )̂ (k) = (det gµν)−1/2 Γ
(√

gµνkµkν

)
, k ∈ R2 − {0} .(2.17)

Of course (G1 ◦ J )̂ (k) < 0 since Ĝ1 < 0; this will be important later.
We now describe a specific choice of Gh which meets all our requirements. We

start with the error function

erf(r) =
2√
π

∫ r

0

e−s
2
ds .(2.18)

It fulfills conditions (2.2), (2.3). Using (2.10), we define s(r) = erf(r) + r erf ′(r) or

s(r) = erf(r) + 2π−1/2re−r
2

(2.19)

so that s satisfies the moment condition (2.9). For this s we find

s̃(r) = erf(r) + 2π−1/2(2r3 − r)e−r2
,(2.20)

ψ(r) = π−3/2(4− 2r2)e−r
2
.(2.21)

As for the transform, we have

Ĝ1(k) = −(2π)−3/2

(
1
2

+ |k|−2

)
e−|k|

2/4 , k ∈ R3 .(2.22)

Then, from the above,

Γ(ρ) = −(2π)−2

∫ ∞
−∞

(
1
2

+
1

ρ2 + `2

)
e−(ρ2+`2)/4 d` .(2.23)

Using [13], formula 3.466, we have

Γ(ρ) = −(2π)−2

(√
πe−ρ

2/4 +
π

ρ
erfc(ρ/2)

)
,(2.24)

where erfc = 1 − erf. We could decide to use s(|x|/ah) instead of s(|x|/h) in the
definition of Gh, where a > 0 is some constant. The effect would be to replace Gh
by Gah. Then (G1 ◦ J) would be replaced by (Ga ◦ J), and (2.17) by

(Ga ◦ J )̂ (k) = a(det gµν)−1/2 Γ(aρ) , ρ =
√
gµνkµkν .(2.25)

The condition Ĝh < 0 is evident in (2.22) for the specific choice of Gh given by
(2.19). The condition would hold for a variety of other choices as well. Suppose
we first choose a smooth delta function as in (2.6) by taking ψ(1) to be a smooth,
rapidly decreasing, radial function, with integral one, such that ψ̂(1)(k) > 0 and
ψ̂(1) decreases with |k|. If we define s(1) by (2.5), s(3) by (2.10), and Gh by (2.1)
using s(3), it follows that the needed conditions hold, including Ĝh < 0.
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We next discuss the periodic versions of the Green’s function and its regulariza-
tion. Because of the slow decay at infinity, we write the sum with a reflection and
with a constant subtracted from each term. We define

Gπ(x) =
1
2

∑′

n∈Z2

(
G(x− 2π(n, 0)) +G(x+ 2π(n, 0)) +

1
2π|n|

)
,(2.26)

where the prime on the sum means that 1/|n| is omitted at n = 0. The gradient is

∇Gπ(x) =
1
2

∑
n∈Z2

(∇G(x − 2π(n, 0)) +∇G(x + 2π(n, 0))) ,(2.27)

and we define Gπh, ∇Gπh similarly.

Lemma 2.1. The sums for Gπh(x) and ∇Gπh(x) converge uniformly on bounded
sets for fixed h, and those for Gπ(x) and ∇Gπ(x) converge in L1 on bounded sets.
Gπ(x) and Gπh(x) are periodic and satisfy

∆Gπ(x) =
∑
n

δ(x+ 2π(n, 0)) , ∆Gπh(x) =
∑
n

ψh(x + 2π(n, 0)) .(2.28)

Proof. For fixed x and large y, we have

G(x+ y) = − 1
4π

(
1
|y| −

y · x
|y|3 +O(|y|−3

)
as y →∞ .(2.29)

If we add G(x± y), the second term above is canceled, and so with y = ±2π(n, 0),
we see that the nth term in (2.26) is O(|n|−3). Thus the sum for Gπ(x) converges
pointwise away from the singularity, and since the singularity is integrable, the sum
also converges in L1 on a bounded set. For the regularized version Gh, we note
that

|Gh(x± 2π(n, 0))−G(x± 2π(n, 0))| = O(|n|−5) as n→∞(2.30)

because of (2.2). Thus the sum for Gπh converges similarly to Gπ, but Gπh is bounded
for fixed h, so that the convergence is uniform on bounded sets. It is correct to
apply ∆ termwise in the distributional sense, so that both equations (2.28) hold as
distributions. However, since ∆Gπh is smooth, the second case is true in the classical
sense as well. Similar considerations apply to the gradients.

It remains to verify that Gπ and Gπh are actually periodic. Specifically, let x
be a point which is not a periodic image of 0; we verify that Gπ(x + (2π, 0, 0)) =
Gπ(x). We will use the notation r(n) = |n|−1 if n 6= 0, r(0) = 0, and also n+ =
(n1 + 1, n2, 0), n− = (n1− 1, n2, 0). Let BM = {(n1, n2) ∈ R2 : |nj | ≤M, j = 1, 2}.
Then

−8πGπ(x+ (2π, 0, 0)) = lim
M→∞

∑
BM

(
|x+ 2πn+|−1 + |x− 2πn−|−1 − 2r(n)

)
.

(2.31)

We will show below that we can replace 2r(n) above by r(n+) + r(n−). If we do
this, the sum over BM can be rewritten as∑

BM

(
|x+ 2πn+|−1 − r(n+)

)
+
∑
BM

(
|x− 2πn−|−1 − r(n−)

)
.(2.32)

In the first sum we can shift the n+ back to n, ranging over BM , except for O(M)
terms, each of size O(M−2). Since BM is symmetric, n→ −n, this sum converges
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to −4πGπ(x) as M → ∞. The same argument applies to the n− term, and the
desired equality is verified. The same argument works for Gπh .

We still must show that the replacement above did not change (2.31); i.e., we
must show that the absolutely convergent sum

∑
(r(n+) + r(n−)− 2r(n)) is zero.

It is the limit as M →∞ of∑
BM

(
r(n+)− r(n)

)
+
∑
BM

(
r(n−)− r(n)

)
.(2.33)

We can shift the index in the second sum and write it as the sum of r(n) − r(n+)
over a set which is BM , except for O(M) terms each of size O(M−2). Within
BM , the terms cancel exactly, and therefore the expression above approaches 0 as
M →∞.

Finally we estimate the error introduced by the regularization of the Green’s
function for single or double layer potentials on a doubly periodic surface.

Theorem 2.2. Let α→ x be a smooth mapping from R2 to R3 so that x(α)−(α, 0)
is doubly periodic with period 2π and (1.13) is satisfied. Let f be a smooth periodic
function of α, Gπ the periodic Green’s function, and Gπh the regularized version.
Then for any α0∣∣∣∣∫ Gπh(x(α0)− x(α))f(α) dα −

∫
Gπ(x(α0)− x(α))f(α) dα

∣∣∣∣ ≤ Ch3,(2.34)

where the integral is over a period square in α.

Proof. We can take the domain of integration to be

B0 = {α = (α1, α2) ∈ R2 : |αν − (α0)ν | < π , ν = 1, 2} .(2.35)

To separate out the singularity, we introduce a cut-off function ζ on R2 so that
ζ(α) = 1 near α = 0 and ζ(α) = 0 for |α| > π/2. Now define, for all α,

Gπh0(α) =
∑
n∈Z2

Gh(x(α0)− x(α) − 2π(n, 0))ζ(α0 − α− 2πn) .(2.36)

Then Gπh0 is periodic in α, since adding a period to α only shifts the sum; only
one term can be nonzero. Similarly we define Gπ0 from Gπ using the same ζ. Let
Gπh∞ = Gπh −Gπh0 and Gπ∞ = Gπ −Gπ0 , as functions of α. Now Gπh∞ and Gπ∞ are
smooth and periodic. We first argue that their difference contributes little to the
integral. From (2.2), we have

|Gh(x(α0)− x(α)) −G(x(α0)− x(α))| ≤ Ch4|x(α0)− x(α)|−5(2.37)

provided |x(α0) − x(α)| is bounded away from zero. By (1.13), the latter is true
if |α0 − α| is bounded away from zero, as it is on the support of 1− ζ. The same
is true with α replaced by α+ 2πn. Consequently Gπh∞ −Gπ∞ is O(h4), uniformly
in α; the nth term decays like |n|−5, so that the sum of estimates converges. Thus
the integral corresponding to the difference Gπh∞ −Gπ∞ is also O(h4). We are now
reduced to the case where Gπh and Gπ are replaced by Gπh0 and Gπ0 . We note that
for α ∈ B0 we have |α0−α±2πn| > π for n 6= 0, so that ζ = 0 there. Consequently
Gπh0(α) = Gh(x(α0)− x(α))ζ(α0 − α) for α ∈ B0, and similarly for Gπ.

It remains to obtain a local estimate near the singularity at α0. For convenience
we assume from now on that α0 = 0 and x(α0) = 0. We also may as well assume
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that f(α) has support near α = 0, because of the ζ factor. The proof now amounts
to showing that ∣∣∣∣∫

R2
(Gh(x(α)) −G(x(α))) f(α) dα

∣∣∣∣ ≤ Ch3 .(2.38)

The integral is

−
∫

R2
(s(r/h)− 1))

(
1

4πr

)
f(α) dα , r = |x(α)| .(2.39)

Let (ρ, θ) be polar coordinates for α; the integral becomes

−(4π)−1

∫ 2π

0

∫ ∞
0

(s(r/h)− 1))
ρ

r
f(α) dρ dθ .(2.40)

We will change variables in the inner integral from ρ to r. First we write the Taylor
formula for x(α) as x(α) = Jα + q(α) + O(α3), where J = (∂x/∂α)(0) and q is
bilinear. As a consequence we can write

r/ρ = |x(α)|/|α| = a(θ) + b(θ)ρ+ γ(ρ, θ)ρ2 ,(2.41)

where γ is smooth in (ρ, θ), regarded as independent variables. Here

a(θ) = |Jα|/|α| , b(θ) = Jα · q(α)/|α|2|Jα| .(2.42)

For later use we note that a is even and b is odd in α, i.e., a(θ + π) = a(θ),
b(θ+ π) = −b(θ). Assuming the support of the cut-off function ζ was chosen small
enough, we can invert (2.41) to obtain

ρ/r = ã(θ) + b̃(θ)r + γ̃(r, θ)r2 ,(2.43)

where ã = 1/a, b̃ = −b/a3, so that ã, b̃ have the same parity as a, b, and γ̃(r, θ) is
smooth. We now convert the ρ-integral above to∫ ∞

0

(s(r/h)− 1))
ρ

r

∂ρ

∂r
f(α) dr .(2.44)

Only the low powers of r will matter, and we use Taylor expansions. We have
ρ/r = ã + b̃r + O(r2) and ∂ρ/∂r = ã + 2b̃r + O(r2). We can write the expression
for f(α) as f = f0 + f1(θ)ρ + O(ρ2), with f1(θ) odd. Converting from ρ to r, we
have f = f0 + ãf1r +O(r2). Multiplication of these expressions gives

(ρ/r)(∂ρ/∂r)f(α) = ã2f0 + (3ãb̃f0 + ã3f1)r + f̃(r, θ)r2(2.45)

with f̃ smooth in r, θ. When we substitute this into the integral, the constant term
contributes zero because of the moment condition (2.9). The term linear in r has a
coefficient which is odd, so that it also contributes zero after integration in θ. The
remaining part of the r-integral is now∫ ∞

0

(s(r/h)− 1)) f̃(r, θ)r2 dr = h3

∫ ∞
0

(s(r/h)− 1)) f̃(r, θ)(r/h)2 d(r/h) .(2.46)

The last integral is bounded uniformly in h, since f̃ is bounded and s− 1 decreases
rapidly. The total error has been reduced to the last expression and is therefore
O(h3), as claimed.

Next we have the analogue of Theorem 2.2 for double layer potentials.
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Theorem 2.3. Let α → x be the mapping of Theorem 2.2, and let F (α) be a
smooth vector-valued function of α. Assume that for some α0 the vector F (α0) is
parallel to n0, the normal to the surface at x(α0). Then

∣∣∣∣∫ ∇Gπh(x(α0)− x(α)) · F (α) dα −
∫
∇Gπ(x(α0)− x(α)) · F (α) dα

∣∣∣∣ ≤ Ch3,

(2.47)

where the integral is over a period square in α.

Proof. As in Theorem 2.2, we can reduce the estimate to the case where α0 = 0,
x(α0) = 0, and F is supported in a small neighborhood of α = 0. We then need to
show that ∣∣∣∣∫

R2
(∇Gh(x(α)) −∇G(x(α))) · F (α) dα

∣∣∣∣ ≤ Ch3 .(2.48)

The integral is proportional to∫
R2

(s̃(r/h)− 1)) r−3x(α) · F (α) d2α , r = |x(α)| .(2.49)

Proceeding as before, we obtain the r-integral∫ ∞
0

(s̃(r/h)− 1))x(α) · F (α)r−3ρ
∂ρ

∂r
dr .(2.50)

Expanding x as x(α) = Jα + q(α) + O(ρ3) and F (α) = F0 + F1ρ + O(ρ2), and
noting that Jα · F0 = 0, we have

x · F (α) = c2(θ)ρ2 + c3(θ)ρ3 +O(ρ4)(2.51)

with c2 even and c3 odd. Now using ρ = ãr + b̃r2 +O(r3), we get

x · F = c2ã
2r2 + (c3ã3 + 2ãb̃)r3 +O(r4) .(2.52)

Multiplying out, we find that

(x · F )r−3ρ(∂ρ/∂r) = ã4c2 + (ã5c3 + 2ã3b̃c2 + 3ã3b̃c2)r +O(r2) .(2.53)

The coefficient of r is odd, and the argument proceeds just as before.

3. Quadrature of singular integrals

In this section we develop a general approach to quadrature for singular integrals
with regularization. We find an expansion in powers of h for the error in the
trapezoidal rule, similar to that of Lyness [23] and Goodman et al. [12] without
regularization, adapting the approach of [12]. We show that the largest error can
be identified in terms of the Fourier transform of the regularized kernel using the
Poisson summation formula. A correction can then be found to improve the order of
accuracy. The application to single and double layer potentials is given in Theorem
3.7. We derive the correction terms in (1.26), (1.27) and prove that the quadrature
errors in these equations areO(h3). For unregularized singular integrals, corrections
are more difficult to find, but methods have been developed in [22], [17].

For later reference, we state the Poisson summation formula for a smooth, rapidly
decreasing function f on Rd:

(2π)−d/2
∑
j∈Zd

f(jh)e−ikjh hd =
∑
n∈Zd

f̂(k + 2πn/h)(3.1)
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We will need a general estimate for quadrature of mildly regular functions. The
following statement was proved in [11], [1] for F independent of h. The proof of
Lemma 2.2 in [1] is direct from the Poisson formula.

Lemma 3.1. Let F (x) be a function of x in Rd such that Dβ
xF is in L1(Rd) for

multi-indices β with |β| = `, where ` ≥ d+ 1. Then, with a universal constant C`,∣∣∣∣∣∣
∑
n∈Zd

F (nh)hd −
∫

Rd

F (x) dx

∣∣∣∣∣∣ ≤ C`h
`
∑
|β|=`

|Dβ
xF |L1 .(3.2)

We begin with a treatment of quadrature errors for singular integrals, regularized
on the scale of the grid size. We start with a singular kernel K(x), defined for
nonzero x in d-space Rd, which is homogeneous of degree m for integer m, i.e.,

K(ax) = amK(x) , a > 0 , x 6= 0 .(3.3)

We also work with modified kernels of the form Kh(x) = K(x)s(x/h), where s
approaches 1 for large argument, and s is chosen so that Kh is smooth up to x = 0.
Note that Kh(x) = hmK1(x/h). The following two lemmas will be fundamental.
They are adapted from the proof of Lemma 1 in [12].

Lemma 3.2. Let K and s be smooth functions on Rd −{0} such that K is homo-
geneous of degree m, in the sense of (3.3), and

|Dks(x)| ≤ C|x|−|k| , |x| ≥ 1 .(3.4)

For h > 0, let Kh(x) = K(x)s(x/h), and assume Kh continues as a smooth function
to x = 0, so that Kh(0) = hmK1(0). Finally, let ζ(x) be a smooth cut-off function
with ζ(x) ≡ 1 for x in a neighborhood of 0 and ζ = 0 outside a bounded set. Now
approximate the integral

I =
∫

Rd

Kh(x)ζ(x) dx =
∫

Rd

K(x)s(x/h)ζ(x) dx(3.5)

by the sum of values at nh, where n is a multi-integer:

S =
∑
n∈Zd

Kh(nh)ζ(nh)hd =
∑
n∈Zd

K(nh)s(n)ζ(nh)hd .(3.6)

Then as h→ 0,

S − I = c0 h
d+m +O(h`) ,(3.7)

where ` is large depending on the smoothness of K(x) and s(x) for |x| ≥ 1.

For example, if m = 1 − d, we have a first order error with a much smaller
remainder. In some cases we can identify the constant c0, as explained below. In
the second expression for the sum S, the proper limiting value should be used for
the n = 0 term, namely K1(0)hd+m. The proof of the lemma below also shows that
the quadrature error for the unmodified K, omitting the n = 0 term, has the same
behavior in case m ≥ 1− d, as shown in [12]:∑

n6=0

K(nh)ζ(nh)hd −
∫

Rd

K(x)ζ(x) dx = c′0 h
d+m +O(h`) .(3.8)

In the regularized case, the n = 0 term is O(hd+m), so that the conclusion is valid
whether or not the n = 0 term is included in the quadrature.
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Proof. We use a simplified version of the argument in [12], modified for the smooth-
ing of the kernel. We can rewrite the integral I using the substitution y = x/h and
the homogeneity of K as

I = hd+mI , I ≡
∫

Rd

K(y)s(y)ζ(yh) dy .(3.9)

Similarly we can write the sum as

S = hd+mS , S ≡
∑

n
K(n)s(n)ζ(nh) .(3.10)

Now h appears inside I and S only in ζ. As in [12] we differentiate in h and compare
the resulting sum and integral. We find that

I ′(h) =
∫

Rd

K(y)s(y) y · ∇ζ(yh) dy = h−(d+m+1)

∫
Rd

K(x)s(x/h)x · ∇ζ(x) dx

and

S ′(h) =
∑
n

K(n)s(n)n · ∇ζ(nh) = h−(d+m+1)
∑
n

K(nh)s(n) (nh) · ∇ζ(nh) · hd.

The integrand and summand are nonzero only on the support of ∇ζ. We take this
support to be {x : r1 ≤ |x| ≤ r2} for some r2 > r1 > 0. We can regard the last
sum as a trapezoidal rule approximation to the integral above. To estimate the
error using Lemma 3.1 we need to estimate the derivatives of the integrand. Since
|x| ≥ r1, derivatives of K are uniformly bounded. Moreover, from 3.4 we have

|Dk
x(s(x/h))| ≤ C|x|−|k| , |x| ≥ h .(3.11)

Thus the L1 norm of each derivative of the integrand is bounded uniformly in h,
up to some order limited by the smoothness of K and s. Then, by Lemma 3.1,

|S′(h)− I′(h)| ≤ C`h`−d−m−1 , h > 0 ,(3.12)

for large `. Now S(h)−I(h) is smooth for h > 0 and has a limit at h = 0 provided
` is large enough. Then

(S − I)(h) = (S − I)(0) +
∫ h

0

(S′ − I′) = c0 + O(h`−d−m)(3.13)

for some constant c0, so that S(h)− I(h) = c0 h
d+m +O(h`), as claimed.

Lemma 3.3. Let K, s, Kh, m, ζ be as in the previous lemma, and let f(x) be
a smooth function on Rd such that f and its derivatives are rapidly decreasing.
Assume that K, s and ζ are even in x. Then the integral

I =
∫

Rd

Kh(x)f(x) dx =
∫

Rd

K(x)s(x/h)f(x) dx(3.14)

is approximated by the sum

S =
∑
n∈Zd

Kh(nh)f(nh)hd =
∑
n∈Zd

K(nh)s(n)f(nh)hd .(3.15)

with error

S − I = hd+m
(
c0f(0) + C2h

2 + · · ·+ C2`h
2` +O(h2`+2)

)
,(3.16)

where c0 is as in (3.7) and C2 etc. depend on g. If K is odd and s is even, we
have a similar expansion but with hd+m replaced by hd+m+1, and the leading error
is proportional to ∇f(0).
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Proof. The error from (1 − ζ)f is easily seen to be high order. For ζf we use a
second order Taylor expansion for f , multiplied by ζ,

ζ(x)f(x) = f(0)ζ(x) + (∇f(0) · x)ζ(x) + f̃(x) ,(3.17)

where f̃ is a remainder of compact support. The constant term in f leads to an
integral whose quadrature error is the first term above plus a higher order part,
according to the preceding lemma. The linear term in f leads to an integrand which
is odd in x, provided K and s are even; thus the integral for this term is zero, and
the same is true for the sum, since the grid respects the symmetry.

Next we estimate the quadrature error coming from f̃(x). The remainder f̃
consists of a sum of terms, each of the form γ(x)b(x), where b is bilinear and γ is
smooth. The integrand arising from such a term is

F (x;h) = K(x)s(x/h)b(x)γ(x) = hm+2g(x/h)γ(x),(3.18)

where g is the smooth function Ksb = K1b. In order to apply Lemma 3.1, we esti-
mate x-derivatives of F . Now from the assumption (3.4) on s and the homogeneity
of K we have |Dk

xg(x)| ≤ |x|m+2−k, so that

|Dk
xF (x;h))| ≤ C|x|m+2−k , |x| ≥ h , k ≥ 0 .(3.19)

On the other hand, for |x| ≤ h, we can use the smoothness of K1 to estimate

|Dk
xF (x;h)| ≤ Chm+2−k , |x| ≤ h , k ≥ 0 .(3.20)

Combining these two pointwise estimates and integrating, we get

|Dk
xF |L1 ≤ Chm+2+d−k .(3.21)

Lemma 3.1 now implies that the quadrature error is O(hm+2+d), and we have
proved (3.16) with ` = 0.

The expansion can be carried further in the same way, as allowed by the smooth-
ness, with zero contribution from the odd order terms in the Taylor series for f by
symmetry. If K is odd rather than even, the sum and integral from the even terms
in the Taylor series drop out, beginning with the constant f(0).

Lemma 3.4. With K and Kh as in Lemmas 3.2 and 3.3, the constant c0 in (3.7),
(3.16) is given by

c0 = (2π)d/2
∑
n6=0

K̂1(2πn)(3.22)

Proof. The hypothesis on Kh implies that DjK1 is in L1(Rd) for j large; conse-
quently K̂1(k) and its derivatives decrease rapidly for k 6= 0. We use Lemma 3.3
with a convenient choice of f . Suppose f(0) = 1. Then, from (3.16) and (3.3),

c0 = lim
h→0

h−(m+d)(S − I) = lim
h→0

(∑
K1(n)f(nh)−

∫
K1(y)f(yh) dy

)
.(3.23)

We choose f so that f̂(k) is smooth everywhere and zero outside |k| ≤ 1. Now let
Fh(x) = K1(x)f(xh). Then Fh is smooth and rapidly decreasing, and we can apply
the Poisson summation formula (with k = 0, h = 1 in (3.1)) to obtain

c0 = lim
h→0

(2π)d/2
∑
n6=0

F̂h(2πn) .(3.24)
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We need to justify passage to the limit to obtain (3.22). Since Fh is a product, F̂h
is the convolution of K̂1 with (2π)−d/2h−df̂(k/h), an approximate delta function.
We can write F̂h(k)−K̂1(k) as an integral and show by a standard argument, using
the compact support of f̂ and the decay of DK̂1, that |F̂h(k)−K̂1(k)| ≤ Ch|k|−d−1

for k ≥ 1. Thus the sum in (3.24) tends to the sum with K̂1 in place of F̂h.

We now apply the above lemmas to determine quadrature errors for single or
double layer potentials on a doubly periodic surface, using the regularized Green’s
function of (2.1). We first deal with the neighborhood of the singularity. For
convenience we place the singularity at zero in both α and x coordinates. Recall
that Gh(x) is a smooth function of x the form r−1s(r/h), r = |x|, and Gh(x) =
h−1G1(x/h).

Lemma 3.5. Let α → x be a smooth mapping from a neighborhood U of 0 in
R2 into R3, with 0 → 0. Let J be the Jacobian matrix (∂x/∂α)(0), so that x =
Jα+ O(α2). Assume that J has full rank and U is small enough so that

|Jα|/2 ≤ |x| ≤ 2|Jα| , α ∈ U .(3.25)

Let Gh be a regularized Green’s function obeying (2.1)–(2.3), and let f(α) be a
smooth function with support in U . Then as h→ 0∑

n∈Z2

Gh(x(nh))f(nh)h2 −
∫
U

Gh(x(α))f(α) dα = c0f(0)h+O(h3) ,(3.26)

where

c0 = 2π
∑
n6=0

(G1 ◦ J )̂ (2πn),(3.27)

or, with Γ as in (2.14), gµν = (J∗J)µν , and gµν the inverse,

c0 = 2π(det gµν)−1/2
∑
n6=0

Γ
(
2π
√
gµνnµnν

)
.(3.28)

Proof. Since G1 is a smooth function of x, it is a smooth function of |x|2, i.e., we can
writeG1(x) = g(|x|2) for a smooth function g of one variable, and thereforeGh(x) =
h−1g(ρ2), where ρ = |x|/h. For later use we note that the decay assumption (2.2)
for s implies that

|Dkg(σ)| ≤ C|σ|−(k+1/2) , |σ| ≥ 1 .(3.29)

We want to relate the composition Gh(x(α)) to the simpler case where x(α) is
replaced by Jα, a case to which the earlier lemmas apply. To this end we use a
Taylor expansion for g as a function of ρ2 about ρ2

1, and then set ρ = |x(α)|/h and
ρ1 = |Jα|/h:

g(ρ2) = g(ρ2
1) + g′(ρ2

1)(ρ2 − ρ2
1) + g̃(ρ1, ρ)(ρ2 − ρ2

1)2 ,(3.30)

with some smooth g̃. Further, we can write x(α) in a Taylor expansion about α = 0,
beginning with Jα, to obtain

ρ2 − ρ2
1 = h−2 (p3(α) + y(α)) ,(3.31)

where p3 is trilinear in α and the remainder y has degree 4 or higher. Combining
these, we have an expansion of Gh in terms with successively higher homogeneity
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in α and h together; we write Gh = G
(−1)
h +G

(0)
h +G

(1)
h , as a function of α, where

G
(−1)
h = h−1g(ρ2

1) = Gh(Jα) = −(4π|Jα|)−1s(|Jα|/h) ,(3.32)

G
(0)
h = h−3g′(ρ2

1)p3(α) ,(3.33)

with nonhomogeneous remainder

G
(1)
h = h−3g′(ρ2

1)y + h−1g̃(ρ1, ρ)(ρ2 − ρ2
1)2 .(3.34)

We multiply the expanded integrand by a cut-off function ζ(α) which is even
and equals 1 on the support of f , and assess the quadrature errors from the various
terms. For the leading term G

(−1)
h , we have the integrandGh(Jα)f(α)ζ(α). Lemma

3.3 applies with m = −1 and x, Kh replaced by α, Gh ◦ J . Recalling (2.17), we
obtain the first order error term as stated. For the next term we note that p3 is
odd in α and ρ2

1 is even, so that G(0)
h (α) is odd, and the contribution from f(0)

drops out. Using Lemma 3.3, we see that the error from G
(0)
h (α)f(α)ζ(α) is O(h3).

Finally we verify that the quadrature error resulting fromG
(1)
h is O(h3), consider-

ing the two terms separately. The remainder y in (3.31) is a sum of terms of the form
ỹ(α)p4(α), where p4 is homogeneous of degree 4 and ỹ is smooth. Thus by Lemma
3.3 the integrand h−3g′(ρ2

1)ỹ(α)p4(α) has quadrature error O(h−3+4+2) = O(h3).
For the last term we need to estimate directly. The remainder g̃ in g is

g̃(ρ1, ρ) =
∫ 1

0

tg′′(tρ2
1 + (1 − t)ρ2) dt .(3.35)

Using (3.29) and (3.25), we can conclude that

|Dk
αg̃(ρ1, ρ)| ≤ Ch5|α|−(5+k) , |α| ≥ c1h,(3.36)

with c1 a constant large enough so that |α| ≥ c1h implies |x| ≥ h. We can write
ρ2− ρ2

1 as a sum of terms of the form h−2q3(α)r(α), where q3 is trilinear. Thus the
last term in (3.34) leads to the integrand F (α) = h−5g̃(ρ1, ρ)q3(α)2r(α)2ζ(α). We
estimate the quadrature error using Lemma 3.1. Using (3.36), we find that

|DkF (α)| ≤ C|α|1−k , |α| ≥ c1h .(3.37)

On the other hand, for |α| ≤ c1h, we have |Dk
αg̃| = O(h−k), and consequently

|DkF (α)| ≤ Ch1−k , |α| ≤ c1h .(3.38)

Combining these two pointwise estimates, we have |DkF |L1 ≤ Ch3−k, and by
Lemma 3.1 the quadrature error is O(h3).

The next lemma concerns the double layer potential near the singularity. We
recall that the gradient of the regularized Green’s function, ∇Gh, has the form
r−3xs̃(|x|/h). We assume it is multiplied by a vector-valued function F (α) which
is normal at the singular point, so that the product is integrable.

Lemma 3.6. Assume the mapping α → x, the set U , and the function Gh are as
in Lemma 3.5. Let F (α) be a smooth vector-valued function with support in U such
that F (0) is parallel to n0, the unit normal to the surface x(α) at x(0) = 0. Then∑

n∈Z2

∇Gh(x(nh)) · F (nh)h2 −
∫
U

∇Gh(x(α)) · F (α) dα = C0h+O(h3) ,(3.39)
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for some C0 depending on F . In particular, C0 = 0 and the error is O(h3) under
the stronger assumption

F (α) · n0 = O(α) and FT (α) = O(α2) as α→ 0,(3.40)

where FT (α) is the projection of F (α) orthogonal to n0.

Proof. We use an argument like the proof of Lemma 3.5. The function s̃ in ∇Gh
(cf. (2.11)) has the form s̃(ρ) = ρ3g(ρ2), where g is a smooth function, so that

∇Gh(x) = h−3g(ρ2)x , ρ = |x|/h .(3.41)

Let x(α) = x1(α) + x2(α) + . . . be the Taylor expansion for x(α) about α = 0,
with x1 = Jα linear, x2 bilinear, etc. As in (3.30) we expand g(ρ2) about ρ2

1, with
ρ1 = |x1|/h, and substitute for ρ2−ρ2

1 in terms of the x’s. We collect terms according
to degree in α, h together. In this way we write ∇Gh = K−2 +K−1 +K0 +K1 + ...
as functions of α. The first two are

K−2 = h−3g(ρ2
1)x1 ,(3.42)

K−1 = h−3g(ρ2
1)x2 + 2h−5g′(ρ2

1)(x1 · x2)x1 .(3.43)

We consider first the quadrature of K−2(α) · F (α). (As usual we multiply by a
cut-off covering the support of F .) The term K−2(α) · F (0) is zero, since x1(α)
is tangent and F (0) is normal by hypothesis. Then Lemma 3.3 implies that the
quadrature error has the form C0h + O(h3), with C0 determined by the scalar
product of x1(α) with the linear term in the expansion of F . Under the hypothesis
(3.40), this linear term is parallel to n0, so that the O(h) error vanishes. For K−1,
we again have an error of the form Ch+O(h3), according to Lemma 3.3. The O(h)
term comes from the constant F (0), and it vanishes under hypothesis (3.40). It can
be seen that K0 is odd in α, so that by Lemma 3.3 it contributes an error O(h3).
Similar considerations show that higher order terms beyond K0 lead to errors O(h3)
or smaller. To obtain terms up to K0, we need to expand g to the second order, x to
the third order, and ρ2−ρ2

1 to the fourth degree terms, all with remainders. Finally,
we can estimate the quadrature errors due to the remainders, in a manner similar
to Lemma 3.5, and show that they are O(h3). The remainder in g(ρ2) has the form
g̃(ρ, ρ1)(ρ2 − ρ2

1)3, where g̃ is an average of g′′′. In this case g(ρ2) decays like ρ−3,
and the assumptions on the decay of s̃ imply that |Dk

αg̃(ρ, ρ1)| ≤ C|α|−(9+k) for
|α| ≥ c1h. Otherwise the treatment of this term proceeds as before.

Now that we have treated the quadrature of the single or double layer potential
near the singularity, we can obtain similar results for the integral over the doubly
periodic surface.

Theorem 3.7. Let α→ x be a smooth mapping from R2 to R3 such that x(α) −
(α, 0) is doubly 2π-periodic and (1.13) holds. Let f be a smooth periodic function
of α, and Gπh a regularized periodic Green’s function as in (2.1)–(2.3), (2.26). Let
αj = jh for j ∈ Z2, and xj = x(αj). Then, for each j ∈ Z2,

∑
`∈I

Gπh(xj − x`)f(α`)h2 −
∫
Gπh(xj − x(α′))f(α′) dα′ = γjf(αj)h+O(h3),

(3.44)
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where I is the index set (1.10) and the integral is over one period square. Here

γj = 2π(det gµν(αj))1/2
∑

06=n∈Z2

Γ
(

2π
√
gµν(αj)nµnν

)
,(3.45)

with Γ as in (2.14) and gµν the inverse metric tensor.
Similarly, let f̃(α, α′) be smooth and periodic in α, α′, and let n(α′) be the unit

normal vector at x(α′). Then the quadrature error for the integral∫
∇Gπh(xj − x(α′)) · n(α′)f̃(αj , α′) dα′ .(3.46)

is O(h). If f̃(α, α′) = 0 for α = α′, the error improves to O(h3).

Proof. We need to reduce the general case to the local estimates of Lemmas 3.5 and
3.6. As in the proof of Theorem 2.2, we can introduce a cut-off function ζ(α) with
support near zero and write Gπh(xj−x(α′)) as a sum Gπh0(α′)+Gπh∞(α′), depending
on j, where the singularity is localized in Gπh0(α′), and Gπh∞(α′) is smooth, with
derivatives bounded uniformly in h. We take the domain of integration to be the
period square Sj centered at αj . We can now split the single layer integral into
two parts. The integral with Gπh∞(α′) has smooth periodic integrand, and its
quadrature is high order accurate. The remaining part of the quadrature error
comes from the integral with Gπh0. As in the proof of Theorem 2.2, Gπ0 (α′) =
Gh(xj − x(α′))ζ(αj − α′) for α′ ∈ Sj . Thus the single-layer integral is reduced to
the case of Lemma 3.5; we need to choose the support of ζ so that (3.25) holds,
depending on the mapping x(α). For the double layer integral we use a similar
argument to reduce to the case of Lemma 3.6; the hypothesis (3.40) holds when
f̃ = 0 for α = α′.

We can apply this theorem to the discretization error for the four sums repre-
senting integrals in the discrete integral equation (1.25)–(1.27). This error results
not only from the quadrature but also from the replacement of the derivative by
the discrete operator Dh, and we begin with the latter. If f is a smooth, doubly
periodic function of α, we can regard the values of Dhf on the grid as restrictions
of a smooth function Dhf , defined for all α using the Fourier series for f . Then
Dhf = Df + h3r, where r is a smooth function of α, depending on h, with a high
norm bounded uniformly in h. Thus X(h)

k , the tangent vector computed using Dh,
differs from the exact tangent vector Xk by a smooth function of order h3, and
similarly for N , n, X∗k . In the same way, −D∗h differs from D to O(h3).

We first compare the integral

I ≡
∫
∇TGπh(xj − x(α′)) · n(αj)φn(α′)|N(α′)| dα′(3.47)

as in (1.26) with the sum

S ≡
∑
`

∇ThGπh(xj − x`) · n(h)
j (φn)`|N (h)

` |h2(3.48)

and derive a correction so that the remaining error is O(h3). (Upper (h) indicates
the use of Dh. We have Gh in the integral since we have already treated the error
in regularizing G in §2.) We start by writing out ∇T in the integral and integrating
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by parts to obtain (with sum over k = 1, 2 and Dk the derivative in α′k)

I =
∫
Gπh(xj − x(α′))Dk {X∗k (α′) · n(αj)φn(α′)|N(α′)|} dα′ .(3.49)

Using the remarks above, we can replace X∗k (α′) by X∗(h)
k (α′) etc., with pointwise

error O(h3). We also replace Dk outside with −D∗h,k. Since Gπh is integrable, the
error in the integral is O(h3). We now have

I = −
∫
Gπh(xj − x(α′))D∗h,k

{
X
∗(h)
k (α′) · n(h)

j φn(α′)|N (h)(α′)|
}
dα′ +O(h3) .

(3.50)

Similarly we write out ∇Th in the sum and use summation by parts, obtaining

S = −
∑
`

Gπh(xj − x`)D∗h,k
{
X
∗(h)
k` · n(h)

j (φn)`|N (h)
` |
}
h2,(3.51)

where D∗h,k acts on the ` variable. With the integral and sum in this form, the above
theorem applies directly; up to O(h3), the error is the O(h) term with coefficient
f(αj) given by

rj = −D∗h,k
{
X
∗(h)
k` · n(h)

j (φn)`|N (h)
` |
}∣∣∣
`=j

.(3.52)

To simplify this, we can replace −D∗h by D, use the fact that X∗(h)
kj · n(h)

j = 0, and
then replace D with −D∗h, committing O(h3) errors, to rewrite (3.52) as

rj = −(D∗h,kX
∗(h)
k )j ·N (h)

j (φn)j .(3.53)

In summary, the integral (3.47) and the sum (3.48) differ by

S − I = γjrjh+O(h3) .(3.54)

It is this correction term that appears in (1.26), (1.29) except for the operator
Ph. The smoothing by ρ(k

√
h) contributes an error of order h · h2 = h3, provided

ρ(ξ)− 1 = O(ξ4) as in (1.33).
The first sum in (1.27) can be treated analogously. The correction simplifies

since the last factor vanishes at ` = j, and we obtain (1.30). We can use a similar
argument to show that the two sums in (1.26), (1.27) with normal derivative of
Gπh differ from the corresponding integrals by O(h3). After replacing D with Dh

again, we have a sum minus an integral with kernel ∇Gπh ·N
(h)
` . We cannot apply

the second part of Theorem 3.7 directly, since N (h)
` is not exactly normal at x(α`).

However, we can write it as the exact N(α`) plus a smooth remainder of order
h3. The theorem applies to the main part, since the integrand has a factor which
vanishes on the diagonal. For the remainder, an argument like Lemmas 3.5 and 3.6
shows that the quadrature for ∇Gπh has O(1) error, and this is multiplied by O(h3)
in our remainder term. The total quadrature error is thus O(h3).

4. Discrete pseudodifferential operators

In this section we define a class of discrete pseudodifferential operators and derive
basic properties such as boundedness on L2

h. We use a symbol class which allows us
to compose operators by multiplying symbols, in some cases, with bounded remain-
der. We prove a discrete version of G̊arding’s inequality and related facts which will
be applied to the operator Λ in §6. We interpret discrete integral operators in this

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1000 J. THOMAS BEALE

context and express the symbol in terms of the Fourier transform. This connection
will be used in §5. For the usual theory of pseudodifferential operators, see e.g.,
[30]. For an extensive theory of discrete operators with high wavenumber cut-off,
see [25].

We will work with operators acting on functions defined on the grid Ih, with I
as in (1.10). The general form of a discrete pseudodifferential operator A is

Af(jh) = (2π)−2
∑
k∈I

∑
`∈I

a(jh, `h, k;h)eik(j−`)hf(`h)h2(4.1)

or

Af(x) = (2π)−2
∑
k∈I

∑
y∈Ih

a(x, y, k;h)eik(x−y)f(y)h2, x ∈ Ih .(4.1′)

We generally assume a(jh, `h, k;h) is extended periodically to all integer j, `, k. We
will often omit the h-dependence in writing a, although it will be important that
our estimates have constants independent of h.

In the special case where a is independent of the second variable `h or y, we can
rewrite the operator (4.1) as

Af(jh) =
∑
k

a(jh, k;h)eikjh f̈(k),(4.2)

where f̈ is the discrete Fourier transform (1.11). This is the discrete analogue of
the standard form of a pseudodifferential operator. On the other hand, if a is
independent of the first variable jh or x, we have from (4.1)

(Af) ¨ (k) = (2π)−2
∑
`

a(`h, k;h)e−ik`hf(`h)h2 .(4.3)

As usual we refer to a as the symbol of the operator A. The following lemma is a
direct consequence of the definitions.

Lemma 4.1. Suppose A is an operator of type (4.2) with symbol a(jh, k) and B is
an operator of type (4.3) with symbol b(`h, k). Then the composition AB is of type
(4.1) with symbol a(jh, k)b(`h, k). The adjoint of A is an operator A∗ of type (4.3)
with symbol ā(`h, k).

Often we will want to assume that the symbol a(jh, `h, k;h) is smooth in jh, `h
with order m in k, at least in the sense that

|Ds
+a(jh, `h, k;h)| ≤ C(|k|+ 1)m(4.4)

with C independent of jh, `h ∈ Ih, k ∈ I, as well as h. Here s is a multi-index,
arbitrary up to some large order, and D+ is a forward divided difference in jh or
`h. The next lemma gives the L2

h boundedness of an operator with such a symbol
with order m = 0.

Lemma 4.2. Assume (4.4) holds with m = 0 and with s large. Then
(i) The discrete transform ä(ξ, η, k;h) of a with respect to (x, y) satisfies

|ä(ξ, η, k;h)| ≤ C(1 + |ξ|2 + |η|2)−ν/2(4.5)

with ν large depending on s.
(ii) The operator A defined by (4.1) is bounded in norm on L2

h uniformly in h.
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Proof. For (i), we note that the five-point Laplacian of a in jh is bounded by
hypothesis, and therefore its transform −4h−2(sin2(ξ1h/2) + sin2(ξ2h/2))ä(ξ, η, k)
is also. This is at least (2/π)2|ξ|2|ä| in magnitude. Similarly, using powers of the
discrete Laplacian in jh or `h, we obtain the estimate (4.5).

Part (ii) can be proved by adapting a standard argument, e.g., [30], Prop. II.6.1.
With x, y ∈ Ih we can write

a(x, y, k) =
∑
ξ,η∈I

ä(ξ, η, k)eiξxeiηy , A =
∑
ξ,η∈I

Aξη ,(4.6)

Aξηf(x) = (2π)−2
∑
k

∑
`

ä(ξ, η, k)eiξxeiη`heik(x−`h)f(`h)h2 .(4.7)

Now

Aξηf(x) =
∑
k∈I

ei(k+ξ)xä(ξ, η, k)f̈(k − η) .(4.8)

Each factor is periodic in k, and we can shift k to rewrite this as

Aξηf(x) =
∑
k∈I

ei(k+ξ+η)xä(ξ, η, k + η)f̈(k) .(4.9)

Thus Aξηf(x) is ei(ξ+η)x times a function whose transform is ä(ξ, η, k + η)f̈(k).
It follows from (i) that |Aξηf |L2 ≤ C((1 + |ξ|2 + |η|2)−ν/2|f |L2 . Then |Af |L2 is
bounded by the sum of such estimates; we obtain the result provided ν is large
enough so that the sum over ξ, η has an upper bound independent of h.

For further results we need an assumption that the undivided difference in k,
written as ∆+(k), reduces the order of the symbol by 1. For this reason we define a
symbol class somewhat like that of the continuous case. We will say that a(x, y, k;h)
is a symbol of class Sm, for real m, if a(x, y, k;h) is defined for all x, y ∈ R2 and
integer k, is periodic in each variable, and satisfies the estimate

|∆n
+(k)D

sa(x, k;h)| ≤ C(1 + |k|)m−|n| , k ∈ I , |n| = 0 or 1,(4.10)

where n and s are multi-indices and Ds is an (x, y)-derivative, with s up to large
degree. Note that (4.10) is required to hold even at the border points of I. We are
primarily interested in the special case of a symbol for an operator of type (4.2) or
(4.3). The following lemma shows that the composition of two operators of type
(4.2) and (4.3) with total order ≤ 1 can be written as an operator of type (4.2) plus
a bounded remainder.

Lemma 4.3. Let a(x, k;h), b(y, k;h) be symbols of class Sm1 , Sm2 , m1 +m2 ≤ 1.
Let A,B be the operators of type (4.2), (4.3) corresponding to a(jh, k;h), b(`h, k;h).
Also let M be the operator of type (4.2) with symbol a(jh, k;h)b(jh, k;h). Then
M −AB is bounded as an operator on L2

h, uniformly in h.

Proof. The operator M −AB has type (4.1) with symbol a(x, k) (b(x, k)− b(y, k)).
We want to perform a summation by parts using

∆+νe
ik(x−y) =

(
ei(xν−yν) − 1

)
eik(x−y) ,(4.11)

where ∆+ν is the forward difference in kν . We can write

b(x, k)− b(y, k) =
∑
ν=1,2

qν(x, y, k)
(
ei(xν−yν) − 1

)
(4.12)
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with

q1 =
b(x1, x2, k)− b(y1, x2, k)

ei(x1−y1) − 1
, q2 =

b(y1, x2, k)− b(y1, y2, k)
ei(x2−y2) − 1

.(4.13)

The denominator in qν vanishes only where xν = yν modulo 2π, and qν can be
extended there so that qν is smooth and periodic in x, y. It can be checked that qν
satisfies the same estimates as b. We now have

(M −AB)f(x) = (2π)−2
∑
ν,k,y

a(x, k)qν(x, y, k)∆+νe
ik(x−y)f(y)h2,(4.14)

or, with a summation by parts,

(M −AB)f(x) = −(2π)−2
∑
ν,k,y

∆−ν (a(x, k)qν(x, y, k)) eik(x−y)f(y)h2 ,(4.15)

using the periodicity in k. The estimates for a, b, qν imply that ∆−νDs
x,y(aqν) is

uniformly bounded for large s, independent of k, h, and the same holds if the (x, y)-
derivatives are replaced by differences. Finally we can conclude from Lemma 4.2
that the operator M −AB is L2

h-bounded, independent of h.

The next three results use this lemma. It is convenient to use an operator E on
grid functions representing an absolute first derivative, defined as

(Ef )̈ (k) = (1 + |k|2)1/2f̈(k), k ∈ I .(4.16)

More generally, we define Er as multiplication by (1 + |k|2)r/2 in the transform for
real r. It is important to us that this factor is itself in class Sr, i.e., first differences
in k of the periodic extension reduce the order in k.

Lemma 4.4. Let A be an operator of type (4.2) with symbol a(x, k;h) in the class
S1. Then there are operators B1, B2, B3, bounded on L2

h uniformly in h, so that

A = B1E , A = EB2 , A = E1/2B3E
1/2 .(4.17)

Proof. Let b(x, k;h) = a(x, k;h)η(k)−1 for k ∈ I, where η(k) = (1 + |k|2)1/2, and
extend periodically in k. Then b is a symbol of class S0. Let B1 be the operator
of type (4.2) with symbol b(x, k;h). Then B1 is bounded uniformly in h, according
to Lemma 4.2, and A = B1E. This gives the first equation. For the second,
we start with B0 ≡ B∗1 , a bounded operator of type (4.3) with symbol b(y, k;h).
We apply Lemma 4.3 with E,B0 in place of A,B, and m1 = 1, m2 = 0. We
conclude that EB0 differs by a bounded operator from the type (4.2) operator with
symbol η(k)b(x, k;h), namely A. Thus we have A = EB0 + B2 for some B2, or
A = E(B0 + E−1B2), which is the second equation except for notation.

The third equation is proved similarly. Let R be the operator of type (4.2)
with symbol r(x, k;h) = a(x, k;h)η(k)−1/2 for k ∈ I, so that r is of class S1/2,
A = RE1/2, and r = η(k)1/2b. We apply Lemma 4.3 to the operators E1/2, B0,
with B0 as above, and conclude that R = E1/2B0 +B4 for some bounded B4. Then
A = (E1/2B0 +B4)E1/2 = E1/2(B0 + E−1/2B4)E1/2.

Next we derive a result like G̊arding’s inequality, relating the positivity of a
symbol of class S1 to the positivity of the operator. The resulting estimate is
crucial for the numerical stability estimates of §6.
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Lemma 4.5. Let a(x, k;h) be a symbol of class S1. Assume that a(x, k;h) ≥ c0|k|
for k ∈ I and all x, with constant c0 > 0. Let A be the operator of type (4.2) with
symbol a(x, k;h). Then A∗ − A is L2

h-bounded, uniformly in h, and for all grid
functions f and some C ≥ 0,

Re(Af, f)L2
h
≥ c0

2

∑
k∈I
|k||f̈(k)|2 − C|f |2L2

h
.(4.18)

Proof. We mimic the standard proof (e.g., [30], Lemma II.6.2), using Lemma 4.3.
We may assume that a(x, k;h) ≥ c0η(k) for k ∈ I, where η(k) = (1 + |k|2)1/2,
by adding a constant to a without affecting the conclusion. We set b(x, k;h) =
a(x, k;h)/η(k) for k ∈ I and extend periodically in k. Then b is a symbol of class
S0. Let a1(x, k;h) = a(x, k;h) − (c0/2)η(k) for k ∈ I, and let A = A0 + A1,
where A0 has symbol (c0/2)η(k) and A1 has symbol a1(x, k;h), k ∈ I. Then
a1(x, k;h) = η(k)(b(x, k;h) − c0/2) for k ∈ I; note the last factor is at least c0/2.
We want to approximate A1 by an operator of the form RR∗, which is necessarily
positive. Let r(x, k) = η(k)1/2 [b(x, k;h)− c0/2]1/2. We check that r is a symbol of
class S1/2: The bound for Ds

xr follows from the one for Ds
xb. As for the k-difference,

the estimate for ∆+(k)D
s
xb implies that |∆+(k)D

s
x[b(x, k;h) − c0/2]1/2| ≤ Cη(k)−1

and therefore |∆+(k)D
s
xr(x, k;h)| ≤ Cη(k)−1/2. Thus Lemma 4.3 applies to the

operator R with symbol r(x, k;h) and the adjoint R∗ with symbol r(y, k;h). We
conclude that A1 = RR∗ +B with B bounded. Since RR∗ and A0 are self-adjoint,
A∗ − A = B∗ −B, and the first statement is proved. Further, we have

(Af, f)L2
h

= (A0f, f)L2
h

+ |R∗f |2L2
h

+ (Bf, f)L2
h
,(4.19)

and the second statement follows.

The next lemma expresses the absolute derivative E in terms of the operator A
of Lemma 4.5; this is needed in §6.

Lemma 4.6. Let A be as in Lemma 4.5. Then for each h there are operators
B4, B5, bounded on L2

h uniformly in h, so that E = B4A+B5.

Proof. Let Q be the operator of type (4.3) with symbol b−1, where b = a/η for
k ∈ I. Lemma 4.3 applies with A,Q in place of A,B, and m1 = 1, m2 = 0. We
conclude that AQ differs by a bounded operator from the operator of type (4.2)
with symbol ab−1 = η; That is, AQ = E + B1 for some bounded B1. Now Q is
bounded, according to Lemma 4.2. Taking adjoints, we get Q∗A∗ = E+B∗1 . Then,
since A∗ − A ≡ B3 is a bounded operator, we have B4A = E + B∗1 − B4B3, with
B4 = Q∗, or E = B4A+B5.

In dealing with discrete potentials, we will apply the above to discrete integral
operators of the form

Af(jh) =
∑
`∈I

Kπ(jh, jh− `h)f(`h)h2,(4.20)

where Kπ(x, z) is periodic in both x and z, and Kπ has the form

Kπ(x, z) =
∑
n∈Z2

K(x, z + 2πn)(4.21)

for a function K(x, z) which is smooth in x and z, periodic in x, and rapidly
decreasing in z. For each j, we can regard the sum (4.20) as a discrete convolution
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of Kπ(jh, ·) with f , evaluated at jh. Then Af is the inverse discrete transform of
a product,

Af(jh) = (2π)2
∑
k∈I

K̈π(jh, k)eikjhf̈(k) ,(4.22)

an operator of type (4.2). Furthermore, since Kπ has the form (4.21), its transform
as a discrete periodic function can be written as a discrete transform of K itself,

K̈π(jh, k) = (2π)−2
∑
m∈Z2

K(jh,mh)e−ikmh h2 .(4.23)

The latter can be related to the usual Fourier transform of K, as a function of z,
using the Poisson summation formula (3.1):

K̈π(jh, k) = (2π)−1
∑
n∈Z2

K̂(jh, k + 2πn/h) .(4.24)

This relation will allow us to study operators related to Gπh by estimating their
transforms, and to derive an important positivity property using Lemma 4.5.

5. Estimates for integral operators

In this section we derive boundedness properties on L2
h of discrete integral oper-

ators with kernels related to the regularized Green’s function. We expand Gh near
the singularity into terms where derivatives of Gh are composed with the linearized
coordinate mapping. The Fourier transforms of such terms are estimated. It is
then shown, using the results of §4, that various operators are bounded, with gain
of derivatives as for the original integrals.

We consider operators of the form

Af(αj) =
∑
`∈I

K(αj , α`)f(α`)h2(5.1)

acting on grid functions f . The kernel K will be related to

Gπh(xj − x`) = Gπh(x(αj)− x(α`)).

In order to say that certain operators gain derivatives in L2
h, we use the operator

E defined in (4.16), representing an absolute derivative in a discrete sense. Thus
if A is an operator of type (4.2) such that |a(x, k;h)| ≤ C(1 + |k|2)−n/2 for some
n ≥ 0, with the same estimate for x-derivatives of a, then AEn is bounded on L2

h,
uniformly in h, according to Lemma 4.2, i.e., A gains n derivatives. When AEn is
bounded in this sense for n ≥ 0, we will say that A is of order −n as an operator on
L2
h. The following theorem summarizes properties of discrete operators associated

with Gh which will be needed for the stability estimates for the scheme.

Theorem 5.1. Suppose that the regularized Green’s function Gh satisfies the as-
sumptions (2.1)–(2.3) and Ĝh(k) < 0. Let A be the operator

Af(αj) =
∑
`∈I

Gπh(xj − x`)f(α`)h2.(5.2)

Then A is of order −1, i.e., AE is bounded on L2
h uniformly in h. Specifically, A

has the form A = −A(1) − A(2), where A(1) has order −1, A(2) has order −2, and
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A(1) is an operator of type (4.2) whose symbol a1(α, k;h) is of class S−1, in the
sense of (4.10), and also satisfies, for some c1 > 0,

a1(α, k;h) ≥ c1(1 + |k|2)−1/2 .(5.3)

More generally, suppose x̃j approximates xj = x(αj), with |x̃j − xj | ≤ c0h
for each j, and x̃j − xj is periodic. Let µ(α, α′) be an arbitrary smooth, peri-
odic function, and let Am be the operator of the form (5.1) which has the kernel
µ(αj , α`)Dm

x G
π
h(x̃j − x̃`), where Dm

x is a derivative of order |m| for multi-index m.
Then Am is of order −1 for m = 0 and order 0 for |m| = 1. For |m| = 2, the
operator hAm is of order 0. In the special case that µ = 0 on the diagonal α = α′,
the operator Am has order |m|−2 for 0 ≤ |m| ≤ 2. Also for arbitrary µ the operator
with kernel µ∂Gπh(xj−x`)/∂n is of order −1, where n denotes either normal vector
n(xj) or n(x`).

We also need a more special result concerning the discrete derivative of Gh,
showing an extra gain of a derivative due to a smooth factor µ which vanishes on
the diagonal.

Theorem 5.2. With Gh as above, let Dh be a first order derivative operator as in
(1.14)–(1.16), and let µ(α, α′) be smooth and periodic, with µ = 0 when α = α′.
Then the following two operators are bounded on L2

h uniformly in h, where both Dh

and E act with respect to α`:

B1f(αj) =
∑
`∈I

DhG
π
h(xj − x`)µ(αj , α`)Ef(α`)h2,(5.4)

B2f(αj) =
∑
`∈I

E2Gπh(xj − x`)µ(αj , α`)f(α`)h2(5.5)

To begin deriving these facts, we first split the Green’s function into a far-field
part and a local part, in order to focus attention on the latter. We wish to restrict
the local analysis to a small neighborhood of the singularity in which the coordinate
mapping is well approximated by its linearization. Let J(α) be the Jacobian matrix
∂x/∂α at α. Because of (1.13) and the smoothness of x(α), there is some δ0 small
enough so that δ0 < π/2 and

|J(α)(α − α′)|/2 ≤ |x(α) − x(α′)| ≤ 2|J(α)(α− α′)| , |α− α′| ≤ δ0 .(5.6)

Also from (1.13) there exists r0 > 0 with r0 < π/2 so that |x(α)−x(α′)| ≤ r0 implies
|α − α′| ≤ δ0. We can also assume that |J(α)(α − α′)| ≤ r0 implies |α − α′| ≤ δ0.
We now choose a cut-off function ζ : R3 → R so that ζ(x) = 1 for x near 0 and
ζ(x) = 0 for |x| > r0. Thus (5.6) holds whenever x(α)−x(α′) is within the support
of ζ. We write the regularized Green’s function as Gh = ζGh + (1 − ζ)Gh. The
periodic version is then split as Gπh = Gπh0 +Gπh∞, as in Theorem 2.2. The far-field
part Gπh∞ is smooth and periodic. Consequently a discrete integral operator with
kernel DmGπh∞(xj − x`) is L2

h-bounded, uniformly in h, for Dm an x-derivative of
any order m. The local term Gπh0 when evaluated on the surface is

Gπh0(x(α) − x(α′)) = Gh(x(α) − x(α′)) ζ(x(α) − x(α′))(5.7)

when |α′ν − αν | ≤ π; the remaining terms in the sum are zero because of the small
support of ζ. Thus the boundedness properties of a discrete operator with kernel
DmGπh(xj − x`) reduce to consideration of Dm(Gh0)(xj − x`), where Gh0(x) =
Gh(x)ζ(x).
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We now consider the boundedness properties of the operator (5.2). Because of
the above remarks, we replace Gπh by Gπh0. We will make a Taylor expansion of
the kernel, which will enable us to use the representation (4.20) for the resulting
terms. We treat xj − x` as a perturbation of its linearization yj` = Jj(αj − α`),
where Jj = J(αj). Thus we can write Gπh0(xj − x`) as an expansion in terms
Dm
x G

π
h0(yj`)(zj`)m, summed overm with remainder, where zj` = x(αj)−x(α`)−yj`,

and m is a multi-index. We can further expand zj` in powers of αj −α`, quadratic
or higher. We then have a linear combination of terms, a typical one being, for
|α`ν − αjν | < π,

Dm
x G

π
h0(yj`)(αj − α`)p = Dm

x G
π
h0(Jj(αj − α`))(αj − α`)p .(5.8)

Here p is another multi-index, with |p| ≥ 2|m|. The discrete integral operator with
(5.8) as kernel, extended periodically, has the form (4.20), and therefore (4.22),
with symbol given by (4.24). Thus we can derive boundedness properties of this
operator by estimating the Fourier transform of the kernel αpDm

x Gh0(Jjα) with
respect to α. The relevant estimates are stated in the following lemma. The rapid
decay for kh large is needed for the convergence of the sum (4.24). These estimates
and the previous remarks show that the operator with kernel (5.8) gains |p|+1−|m|
derivatives, i.e., it is of order |m| − |p| − 1 on L2

h in the sense defined above.

Lemma 5.3. Let Kmp(α) = αpDm
x Gh0(Jα), where J is the Jacobian matrix at

some fixed α0. Assume that |p| + 1 ≥ |m|. Then the Fourier transform K̂mp

satisfies the following estimates uniformly in h:

|K̂mp(k)| ≤


C , |k| ≤ 1 ,
C|k||m|−|p|−1 , 1 ≤ |k| ≤ C0/h ,

Ch−|m|+|p|+1|kh|−n , |k| ≥ 1/h,
(5.9)

with n large. Similar estimates hold for the derivatives of K̂mp with respect to α0.
The same estimates hold for |k| ≥ 1 if Gh0 is replaced by Gh. For p = 0 and
|m| = 2, we have the same estimate for |k| > 1/h, and |K̂mp(k)| ≤ Ch−1 for
|k| ≤ C0/h.

In the rest of this section we present the proof of the Lemma 5.3, then the proofs
of Theorems 5.1 and 5.2, and one final lemma.

Proof of Lemma 5.3. In estimating this transform it is helpful to note that the x-
derivatives on Gh can be replaced by α-derivatives, as we now explain. First we
extend the Jacobian J : R2 → R3 at α0 to a nonsingular operator J̃ : R3 → R3 by
defining

J̃(α1, α2, α3) = J(α1, α2) + α3N ,(5.10)

where N = X1 × X2 and X1, X2 are the tangent vectors at αj , as before. Now
since Gh is radial, (∇Gh)(Jα) has the direction of Jα for α ∈ R2, and thus is
perpendicular to N , so that (∇Gh)(Jα) = (Gh ◦ J)α1X

∗
1 + (Gh ◦ J)α2X

∗
2 . Thus

DxGh can be replaced with Dα(Gh ◦ J). Next we note that the matrices of second
derivatives are related by D2

α(Gh ◦ J̃) = J̃∗(D2
xGh)J̃ . This shows that D2

xGh can
be expressed in α-derivatives of Gh ◦ J̃ for α ∈ R3. However, for α3 = 0 we
have ∂(Gh ◦ J̃)/∂α3 = 0, and the same is true for the second partials in α3, α1

or α3, α2. Also the second partial in α3, α3 can be rewritten in α1, α2-derivatives
plus a multiple of ψh ◦ J̃ , since ∆Gh = ψh. Thus we have reduced the second
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x-derivatives to α1, α2-derivatives plus the ψh term. For higher derivatives, we can
convert Dm

x Gh(J̃α) to Dm
α (Gh ◦ J̃) for α ∈ R3, and then repeat the above process,

converting to α1, α2-derivatives, until a term with ψh appears. In summary, a term
of the form Dm

x Gh(Jα) with α ∈ R2 can be replaced by a sum of terms of the form
Dm
α (Gh ◦ J), with α1, α2-derivatives only, and Dm−2

x ψh(Jα).
We first estimate the transform of Fmp(α) = αpDm

α (Gh(Jα)). (We ignore the
cut-off ζ for now and account for its effect later.) First, since ∆Gh = ψh, we have
Ĝh(k) = −ψ̂h(k)/|k|2 = −ψ̂(kh)/|k|2 for the 3-D transforms. Now, as in §2, we
obtain the two-dimensional transform of Gh ◦ J from

(Gh ◦ J )̂ (k) = C

∫ ∞
−∞

Ĝh(M(k, `)) d` = C

∫ ∞
−∞
|M(k, `)|−2ψ̂(M(k, `)h) d`,

(5.11)

where k ∈ R2 and M = (J̃∗)−1, with J̃ as above. To obtain the transform of
αpDm

α (Gh(Jα)), we need to multiply this by (ik)m and then apply (i∂k)p. We
obtain various terms where e.g., q derivatives apply to ψ̂ and the remaining |p| − q
apply to km|M(k, `)|−2. It is important that |M(k, `)|2 depends on ` only through
an `2 term; this follows from the definition of J̃ . Thus ∂k|M(k, `)|2 in linear in k,
without ` dependence. The resulting term has the form

C

∫ ∞
−∞

kshq|M(k, `)|−n(∂qψ̂)(M(k, `)h) d`(5.12)

with n ≥ 2, and the total degree in k has been lowered by |p| − q, i.e., s − n =
|m| − 2 − |p| + q. If we let κ = |kh| and ξ = `h, and convert the integral to ξ, we
see that the integral is dominated by

C|k|shq+n−1

∫ ∞
−∞

(κ2 + ξ2)−n/2(1 + κ2 + ξ2)−N/2 dξ(5.13)

for some largeN ; we have used the smoothness of ψ. We first estimate this assuming
k 6= 0 and |kh| ≤ C0. In this case we drop the last factor in the integral (the
resulting integral exists since n ≥ 2) and convert the integral to ξ/κ. We find that
the integral is of order κ−n+1, and consequently the entire term above is bounded
by C|k|shq+n−1κ−n+1 = |k||m|−|p|−1(|kh|q), and in summary

|F̂mp(k)| ≤ C|k||m|−|p|−1 , |kh| ≤ C0 , k 6= 0 .(5.14)

On the other hand, for |kh| ≥ 1, we return to (5.13), drop the 1 in the second factor,
and find that the integral is of order |κ|−(n+N−1). The expression (5.13) is then
bounded by C|κ|s−(n+N−1)hq+n−1−s = C|κ|s−(n+N−1)h−|m|+|p|+1. The power of
κ = |kh| can be made large negative by taking N large, and we obtain

|F̂mp(k)| ≤ Ch−|m|+|p|+1|kh|−n , |kh| ≥ 1 .(5.15)

We need a similar estimate for the transform of Pmp(α) = αp(Dm−2
x ψh)(Jα).

Omitting the αp factor for the moment, we have(
(Dm−2

x ψh) ◦ J
)

(̂k) = C

∫ ∞
−∞
|M(k, `)|m−2ψ̂(M(k, `)h) d` .(5.16)
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To obtain the transform of Pmp, we apply ∂pk to the above. If q derivatives apply
to the ψ̂ factor and |p| − q apply to the first factor, we obtain an expression∫ ∞

−∞
Φ(k, `)hq(∂qψ̂)(M(k, `)h) d`,(5.17)

where Φ is homogeneous of degree s = |m| − 2− |p|+ q. We now rewrite this with
κ = |kh|, ξ = `h and estimate by

hq−s−1

∫ ∞
−∞

(κ2 + ξ2)s/2(1 + κ2 + ξ2)−N/2 dξ(5.18)

for large N . For k 6= 0 and κ = |kh| ≤ C0 we replace the integrand in (5.18) by
(1 + κ2 + ξ2)−(N−s)/2. The integral is O(1), and the term is of order hq−s−1 =
h−|m|+|p|+1; that is,

|P̂mp(k)| ≤ Ch−|m|+|p|+1 , |kh| ≤ C0 , k 6= 0 .(5.19)

If the exponent of h is ≥ 0, we can majorize by C|k||m|−|p|−1, as in the estimate
(5.14) for F̂mp. On the other hand, for |kh| ≥ 1, we drop the 1 in the second factor
in (5.18), and find that the integral is of order κ−n for large n, so that

|P̂mp(k)| ≤ Ch−|m|+|p|+1|kh|−n , |kh| ≥ 1 .(5.20)

Next we consider the cut-off function ζ. We first show that the difference in the
transform due to ζ is negligible for |k| ≥ 1, i.e., we show that the transform of

Qmp(α) = αpDm
x Gh(Jα) · (1− ζ(Jα))(5.21)

is rapidly decreasing for large k. If we apply Ds
α to Qmp with s of large degree,

we can estimate using the chain rule and the fact that |D`
xGh(x)| ≤ C|x|−`−1 for

|x| ≥ h. We find that |Ds
αQmp(α)| ≤ C|α||p|−|m|−1−|s|, and of course Qmp(α) = 0

for α near 0 and for α large. Thus Ds
αQmp is bounded in L1 independent of h for

|s| large. This implies that |Q̂mp(k)| ≤ C|k|−N for |k| ≥ 1 with N large. This
estimate is small enough that it will not affect the estimates already obtained for
|k| ≥ 1 when Fmp, Pmp are multipled by ζ(Jα). There are additional terms where
ζ is differentiated, but these terms vanish near 0; consequently their derivatives are
bounded independent of h, and the transform is again rapidly decreasing.

It remains to estimate the transforms of Fmp(α)ζ(Jα) and Pmp(α)ζ(Jα) for
|k| ≤ 1. In the first case the transform is

(2π)−1

∫
αpDm

α (Gh(Jα))e−ikαζ(Jα) d2α .(5.22)

We can integrate by parts so that the m derivatives apply to αpe−ikαζ(Jα). The
result is an integrand bounded by |Gh(Jα)|, for |k| ≤ 1, over the support of ζ.
Since |Gh(x)| ≤ h−1 and |Gh(x)| ≤ |x|−1 for |x| ≥ h, we can easily show that this
last integral is independent of h. For the case of Pmpζ we cannot integrate by parts
because we have x-derivatives; however, we can use the scaling of ψh in h to show
that the transform is bounded by Ch−|m|+|p|+1.

Finally, combining the estimates (5.14), (5.15), (5.19), (5.20) and the last two
paragraphs, we obtain the estimates stated for K̂mp. It can be checked that deriva-
tives in α0 do not seriously affect the estimates, so that the same bounds can be
obtained in this case; the dependence on α0 is through J = J(α0) in Kmp and
therefore through M in the transform.
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Proof of Theorem 5.1. We first consider the operator (5.2). As explained before,
we reduce consideration to Gπh0 and form the Taylor expansion in terms (5.8). The
operator with kernel (5.8) has the form (4.20), (4.22), with symbol given by (4.24),
and it follows from the estimates of Lemma 5.3 and from Lemma 4.2 that this
operator is bounded of order |m| − |p| − 1. The first term, with m = p = 0, is
of order −1 and the others −2 or less, since |p| ≥ 2|m|. It remains to show that
the remainder is of order −2. Suppose we carry the expansion for Gπh0 to terms
with |m| < N and the one for zj` to terms of degree ≤ N in α. Then we have two
kinds of remainders: One has the form FN (αj , α`)(zj`)N , where FN is an average
of DN

x G
π
h0 over the line from yj` to xj − x`. The other type of remainder, from

expanding zj`, is Dm
x G

π
h0(yj`)(αj−α`)pg(αj−α`), where g is some smooth function

and |p| ≥ N + 2|m| − 1. It is routine to check that derivatives up to order N − 1 of
either remainder with respect to α`, treated as a continuous variable, are uniformly
bounded. We can use this fact to estimate the remainders crudely. We need to show
that RE2 is bounded as an operator on L2, where R is the operator corresponding
to a remainder term. If R has kernel R(αj , α`), we can regard (RE2f)(αj) as the
inner product of R(αj , ·) with E2f . Since E2 is self-adjoint, this will be uniformly
bounded by |f |L2 providedE2R(αj , ·) is bounded uniformly in αj , α`, where E2 acts
on the α` variable. It can be shown that the spectral derivative E2R is bounded
by derivatives Dm

α R for |m| ≤ 5 (cf. [31], pp. 250-4), and thus the operator RE2 is
bounded provided N ≥ 6.

The decomposition A = −A(1)−A(2) essentially follows from separating out the
leading term in the expansion, namely Gπh0(J(αj)(αj −α`)). This term contributes
to A an operator of the form (4.22) whose symbol is given by (4.24) with K replaced
by Gh0◦J . Since Ĝh(k) < 0, and since (Gh0 ◦J )̂ (k)−(Gh ◦J )̂ (k) decreases rapidly
for large k, as seen below (5.21), we will take A(1) to be a similar operator with
kernel K whose transform agrees with (−Gh ◦ J )̂ (k) for large k. Let χ : [0,∞)→
[0, 1] be a smooth function with χ(r) = 1 for r ≤ 1 and χ(r) = 0 for r ≥ 2. We define
the kernel K by K̂(k) = χ(|k|) + (1−χ(|k|))(−Gh ◦J )̂ (k). Then A(2) = −A−A(1)

has order −2. We proceed to verify the properties of the symbol a1 of A(1), which
is the sum (4.24). The estimates of Lemma 5.3 show that the sum converges; the
sum is positive since the terms are. To show that a1 is bounded below by |k|−1 it
is enough to show that −(Gh ◦ J )̂ (k) ≥ c1|k|−1 for 1 ≤ |k| ≤ C0/h. This can be
seen by rewriting (5.11) with (k.`) = |k|(θ, ξ) as

−(Gh ◦ J )̂ (|k|θ) = C|k|−1

∫ ∞
−∞
|M(θ, ξ)|−2ψ̂(M(θ, ξ)|k|h) dξ(5.23)

and recalling that ψ̂ is positive and smooth. The estimate for Ds
αa1 follows from

the lemma. With regard to the k-difference in (4.10), we note that i∂(Gh ◦J )̂ /∂kν
is the transform of ανGh ◦ J . This transform decays like |k|−2, according to the
lemma. The estimate for ∆(k)D

s
αa1 follows, bounding k-differences by derivatives

for |k| ≥ 2.
Next we consider the other operators, first ignoring the smooth factor µ and

assuming x̃j = xj . For the operator with kernel DxG
π
h(xj − x`) the argument

above applies for the boundedness, except that the first term in the expansion now
has m = 1, p = 0, so that the leading operator has order 0. A similar remark applies
to D2

xG
π
h . If the factor µ(αj , α`) is included, we expand it in the second variable in

powers of αj −α` and incorporate this into the previous expansion, so that there is
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no qualitative change. For ∂Gπh/∂n(α`) = −n(α`)·∇Gπh , we use a similar expansion
for n(α`) in powers of αj −α`. The leading term is −n(αj) · ∇Gh(J(αj)(αj −α`)),
and this is zero since Gh is radial and the range of J(αj) is tangent at αj ; the
remaining operator is of order −1. In case µ = 0 on the diagonal, the leading term
in the expansion of µ is zero. The other terms have at least one factor of (αj −α`),
effectively raising the index p by 1 in each term, and the order of the operator is
changed as stated.

Finally we consider the effect of perturbing xj to x̃j . First, using the pointwise
estimates (2.4) for derivatives of Gh, we can show that

∑
`∈I
|Dm

x G
π
h(x̃j − x̃`)|h2 ≤


C , |m| = 0 ,
C| log h| , |m| = 1 ,
Ch−|m|+1 , |m| = 2,

(5.24)

for |x̃j − xj | ≤ c0h, and the same for the sum over j; see e.g., Lemma 5 of [16]
or Lemma 3.2 of [7]. It follows from Young’s inequality that the discrete integral
operator with kernel Dm

x G
π
h(x̃j − x̃`), regarded an operator from L2

h to itself, has
norm bounded by the right side of (5.24) (e.g., cf. [7], pp. 13-14). The same is true
if the kernel is multiplied by a uniformly bounded factor such as µ.

Now suppose the operator with kernel DxG
π
h(xj − x`) is perturbed by replac-

ing xj , x` by x̃j , x̃`. The difference of the two kernels can be written as an av-
erage of D2

xG
π
h, evaluated along the line from xj − x` to x̃j − x̃`, multiplied by

(x̃j − xj)− (x̃` − x`). If we assume that max |x̃j − xj | ≤ C0h, then we find, using
the above with |m| = 2, that the operator on L2

h corresponding to this difference
is bounded in norm by Ch−1 · h = C. A similar argument works for the kernel
µDxG

π
h(x̃j − x̃`), and this verifies the statement in the theorem regarding this op-

erator. It also improves the statement made above for bounds on L2
h operators in

the case |m| = 1, replacing O(| log h|) by O(1). That is, the norm of the operator
on L2 with kernel µDm

x G
π
h(xj − x`) is O(1) if |m| = 0, 1, and O(h−|m|+1) if m ≥ 2.

We can now use this improved statement with |m| = 1 to verify the assertion that
µGπh(x̃j − x̃`) gains one derivative: the error due to the change in the x’s is found
to be O(h) as an operator on L2, and hE is a bounded operator on L2. We can
treat the operator hµD2

xG
π
h similarly.

In the special case with µ = 0 on the diagonal, the pointwise estimates for the
kernel are better, and we can show that the operator µD2

xG
π
h(x̃j − x̃`) is bounded

on L2 by an argument very similar to that above. We can then use that fact to
show that µDxG

π
h(x̃j − x̃`) gains one derivative. In turn, this last fact can be used

to show that µGπh(x̃j − x̃`) gains two derivatives.

Proof of Theorem 5.2. We prove that B1 is bounded and then remark onB2. Let us
say that Dh acts in the r-direction, so that e.g., Dhg has transform h−1σ(krh)g̈(k)
for k ∈ I. We will write η(k) = (1 + |k|)1/2 for the symbol of E. Regarding the
sum as an inner product, we can rewrite the operator as

B1f(αj) =
∑
`∈I

Gπh(xj − x`)D∗h,r (µ(αj , α`)Ef(α`)) h2 .(5.25)

We will compare this with

B0f(αj) =
∑
`∈I

Gπh(xj − x`)µ(αj , α`)D∗h,rEf(α`)h2 .(5.26)
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The previous theorem tells us that Gπhµ gains two derivatives, since µ = 0 on the
diagonal, and it follows that B0 is bounded on L2, independent of h. (We think of
D∗h,r as E times a bounded operator.) Thus we need only treat the difference of
the two operators.

To express (B1 −B0)f , we write f and µ in Fourier sums:

f(α`) =
∑
k∈I

f̈(k)eik`h , µ(αj , α`) =
∑
ν∈I

µ̈(αj , ν)eiν`h .(5.27)

Since µ is assumed smooth, µ̈(αj , ν) decays rapidly in ν. Then

(B1 −B0)f(αj) =
∑
ν,`

µ̈(αj , ν)|ν|eiν`hGπh(xj − x`)
∑
k

b(ν, k)η(k)f̈(k)eik`hh2,

(5.28)

where we have set h−1 (σ̄((νr + kr)h)− σ̄(krh)) = |ν|b(ν, k). Since we assume σ is
continuous with bounded derivative, we have |σ̄((νr + kr)h)− σ̄(krh)| ≤ Ch|νr|, so
that b(ν, k) is uniformly bounded. We think of the k-sum as an operator on f and
write this as

(B1 −B0)f(αj) =
∑
ν,`

µ̈(αj , ν)|ν|eiν`hGπh(xj − x`)(EΦνf)(`h)h2,(5.29)

where Φν is defined by (Φνf )̈ (k) = b(ν, k)f̈(k). The operator Φν is bounded on
L2 uniformly in ν as well as h. Finally, we can think of the above as a sum over
ν of operators applied to EΦνf , with kernel µ̈(αj , ν)|ν|eiν`hGπh(xj − x`). Each
such operator gains one derivative according to Theorem 5.1, i.e., when composed
with E, it gives a bounded operator on L2 for each ν, with norm depending on
the smoothness in (αj , α`) of the factor µ̈(αj , ν)|ν|eiνα` . To sum over ν, we need
a bound for some high norm of the factor eiνα` , and this bound grows with ν.
However, assuming µ is smooth enough, µ̈(αj , ν) decays so rapidly in ν that the
sum is bounded, and we can conclude that B1 −B0 is bounded on L2 independent
of h.

It suffices to prove the second statement with E2 replaced by Dh,r, r = 1, 2,
since E2 can be written in terms of these. For this we compare (5.5) with∑

`∈I
DhG

π
h(xj − x`)µ(αj , α`)D∗hf(α`)h2 .(5.30)

The latter is bounded according to (5.4), and the difference can be treated as in
the above argument.

Finally we need one more fact about sums with DmGπh:

Lemma 5.4. Suppose µ(α, α′) is a smooth, periodic function. Let x̃ be a grid
function approximating the coordinate mapping x so that |x̃(αj)− x(αj)| ≤ c0h for
each j. Then the sum ∑

`∈I
DmGπh(x̃j − x̃`)µ(αj , α`)h2(5.31)

is bounded uniformly in j and h, where m is a multi-index with |m| = 1, i.e., Dm

denotes any first derivative in x. If µ = 0 when α = α′, then the sum is also
uniformly bounded for any m with |m| = 2.
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Proof. The essential point is that, since Gh is radial, DGh is odd in x and D2Gh
is even. The proofs of the two cases are similar; we prove the second. Only a
small neighborhood of the diagonal matters; we assume µ is supported on such a
neighborhood and replace Gπh with Gh. At first we assume x̃ is identical with x.
For simplicity we take j = 0 and assume x0 = x(α0) = 0. Since µ(0, α) = 0 at
α = 0, we can write µ(0, α) = µ1(α) +µ2(α), where µ1 is odd in α and µ2 = O(α2)
as α→ 0. Thus, if we replace µ by µ1 in the sum and average with the sum where
` is changed to −`, we get

1
2

∑
`∈I

[D2Gh(x(α`))−D2Gh(x(−α`))]µ1(α`)h2 .(5.32)

Since x is smooth, x(−α) = −x(α) +O(α2), and D2Gh(x(−α`)) = D2Gh(−x(α`))
+R3, where the remainder R3 is O(α2

` ) times an average of D3Gh at points near
x(−α`). When we substitute this in the last sum, the D2Gh terms cancel because
of the evenness property. We are left with the sum of R3 µ1. This is of order |α`|−1

for ` 6= 0, since D3Gh is of order |α`|−4 and µ1 is of order |α`|. This corresponds
to an integrable singularity in 2-D, and the sum is bounded independent of h. For
the sum with µ2, we arrive more directly at a similar estimate, using µ2 = O(|α|2)
and D2Gh = O(|α|−3).

To complete the proof, we estimate the change in the sum when x is perturbed
to x̃. Again with j = 0, x(0) = 0, the change in D2Gh is O(h) times an average
of D3Gh at points near x(−α`). For some C1, |x̃(α`)| > h and |x(α`)| > h when
|α`| > C1h. Then for such ` we again use D3Gh = O(|α`|−4) to bound the resulting
sum by

h ·
∑
` 6=0

|α`|−4|α`|h2 = h3
∑
` 6=0

|`h|−3 = C .(5.33)

The remaining `’s are O(1) in number, and it can be checked that their contribution
to the sum is O(1).

6. The convergence proof

We now prove that the numerical solution converges to the presumed smooth
solution with errorO(h3). As usual we separate consistency and stability, beginning
with the former. Assuming an exact solution given, we first compare the velocity
v, as computed by the scheme at one time from x(αj , t), φ(αj , t), with the exact
velocity. First X1, X2 are found at αj using the discrete operator Dh, and then
N,n,X∗1 , X

∗
2 . The tangential part of v is

∇Thφ =
∑
k=1,2

(Dh,kφ)X∗k .(6.1)

The full computed velocity is

v = ∇Thφ+ wn,(6.2)

where w is found from the discrete integral equation (1.25), with the operator Kh
defined by (1.26) and fj by (1.27). The following lemma, proved in §7, concerns
the solvability of (1.25).

Lemma 6.1. Given x(α, t) smooth for 0 ≤ t ≤ T , the operator I+2Kh is invertible
for h sufficiently small, and the norm of (I+2Kh)−1 as an operator on L2

h is bounded
uniformly in h and t.
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It is evident that ∇Thφ and n differ by O(h3) from the exact values. To compare
w with φn, determined by the harmonic extension of φ, we note that φn satisfies
the exact integral equation (1.3). The quadrature results in §3 show that φn has
truncation error O(h3) in the discrete version (1.25). Then Lemma 6.1 implies that
w−φn = O(h3) at least in L2

h. Thus v of (6.2) also differs by O(h3) from the actual
velocity. A similar statement follows for Bernoulli’s equation, and in summary the
exact solution satisfies the following with p = 3:

xt = v +O(hp) , φt = 1
2 |v|

2 − gx3 +O(hp) in L2
h .(6.3)

It seems that O(h3) accuracy is not quite enough for simple treatment of the
nonlinear terms in the stability estimates. For this reason we use a version of
Strang’s method (see [26], §5.6). That is, we construct a modification of the exact
solution which matches the scheme to higher order, and then compare the computed
solution with this modification. The following lemma (proved in §7) asserts that
this is possible.

Lemma 6.2. Suppose x(0)(α, t), φ(0)(α, t) is a smooth, exact solution of the water
wave equations (1.1), (1.2). Then there exist smooth functions x(1)(α, t), φ(1)(α, t)
differing from x(0)(α, t), φ(0)(α, t) by O(h3), so that if v(1) is found from x(1), φ(1)

according to (6.1), (6.2), (1.25)–(1.30), then (6.3) holds for x(1), φ(1), v(1) for any
p < 4. Also w(1) is within O(h3) of φ(1)

n in L2
h.

For the rest of this section we compare quantities such as v(1), found by the
scheme from x(1), φ(1) at each time, with the corresponding quantities in the com-
puted solution. For simplicity we will drop the superscript (1) for the former. In
contrast, we use tildes for the computed solution, determined by

x̃t = ṽ , φ̃t = 1
2 |ṽ|

2 − gx̃3(6.4)

with ṽ found from x̃, φ̃ as in (6.1), (6.2), (1.25)–(1.30). We write δx for x̃− x, and
similarly for other differences. Thus, e.g., X1 = Dh,1x, X̃1 = Dh,1x̃, δX1 = X̃1−X1.
Then δv = ṽ − v is the error in the computed velocity due to δx, δφ. Comparing
(6.3) and (6.4), we have

(δx)t = δv +O(hp) , (δφ)t = 1
2δ|v|

2 − gδx3 +O(hp) in L2
h , p < 4 .

(6.5)

We will show that δx, δφ = O(hp−1/2) in L2
h. With p near 4, it will then follow

from the triangle inequality that x̃, φ̃ differ from the original exact solution in L2
h

by O(h3), thereby completing the proof that the scheme converges.
Our main task now is to express the error δv in computed velocity in terms of

δx, δφ. To do this we need to find the errors in such quantities as n, ∇Thφ, and w.
For the latter we vary the integral equation which determines w.

Because we are proving that δx, δφ are almost O(h7/2) in L2
h, we will assume a

lower order bound on the errors,

|δx|L2
h
≤ h3 , |δφ|L2

h
≤ h3 , |δw|L2

h
≤ h2 , 0 ≤ t ≤ T .(6.6)

It follows that

|δx|L∞h ≤ h
2 , |δφ|L∞h ≤ h

2 , |δw|L∞h ≤ h , 0 ≤ t ≤ T .(6.7)

as well as |δDhx|L∞h ≤ C0h, etc. This assumption is helpful in estimating nonlinear
terms in the δ’s. It will be removed at the end of the argument.
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In order to make use of the gain of derivatives in certain operators related to
Gπh, seen in §5, we will use the discrete Sobolev space H−1

h of grid functions with
norm

|f |2
H−1
h

=
∑
k∈I

(1 + |k|2)−1|f̈(k)|2h2 .(6.8)

We can write f = E ·E−1f , so that |E−1f |L2
h

= |f |H−1
h

, with E as in (4.16). Thus
if an operator A is of order −1 on L2

h, in the language of §5, then A is bounded
from H−1

h to L2
h, independent of h. In the next lemma we note some facts which

will be used.

Lemma 6.3. We have |f |H−1
h
≤ |f |L2

h
and |f |L2

h
≤ Ch−1|f |H−1

h
for any f . The

operators Dh,`, D∗h,` are bounded from L2
h to H−1

h , uniformly in h. If ψ is a grid
function which either is the restriction of a smooth function or satisfies |ψ|L∞h ≤ Ch,
then |ψf |H−1

h
≤ C0|f |H−1

h
, where C0 depends on ψ but not on h.

Proof. The first two statements follow from definitions. For the last, we represent
elements of H−1

h as differences. Let D+
h,` be the first-order forward difference in

direction `, ` = 1, 2. Since the Fourier symbol of D+
h,` is bounded above and

below by |k`| for k ∈ I, we can write any f ∈ H−1
h as f = f0 + D+

h,1f1 + D+
h,2f2,

where f0, f1, f2 are bounded in L2
h by the H−1

h norm of f . Then, e.g., ψD+
h,1f1 =

D+
h,1(ψf1)− (D+

h,1ψ)f ]1 , where f ]1 is f1 with a coordinate shift. The factor D+
h,1ψ is

uniformly bounded under either hypothesis on ψ, and it follows that ψD+
h,1f1 has

the appropriate bound in H−1
h , and in turn the same holds for ψf .

Lemma 6.4. Assume (6.6). Then for the tangent vectors X`, X̃`, ` = 1, 2, we have
|X̃`−X`|H−1

h
≤ C|x̃−x|L2

h
. The same is true for the errors in N , |N |, n, and X∗` .

Proof. The statement for X` is apparent from the definition of the norm. For the
other quantities we use the following general fact: Suppose u is a smooth function of
α on the periodic square, possibly vector valued, and suppose ũj is an approximation
to u(αj) such that |ũ− u|H−1

h
≤ C|x̃− x|L2

h
. Assume (6.6), and let F be a smooth

function on an open set covering the range of u. Then

|F (ũ)− F (u)|H−1
h
≤ C′ |x̃− x|L2

h
.(6.9)

The lemma follows from this fact, since the various quantities are functions of
X1, X2.

To verify this claim, we first note that, for each αj ,

|ũj − u(αj)| ≤ Ch−1|δu|L2
h
≤ Ch−2|δu|H−1

h
≤ Ch−2 · h3 = O(h)(6.10)

by hypothesis, so that ũ is uniformly close to u. Next, with u = u(αj), we write
F (ũ) − F (u) = DF (u)(δu) + R(ũ, u)(δu)2, where R is an average of the second
derivative of F between u and ũ. The first term is bounded in H−1

h by C|δu|H−1
h

according to Lemma 6.3, since DF (u) is a smooth factor. For the second term we
estimate in L2

h. The first factor is uniformly bounded, and for the rest we have

|(δu)2|L2
h
≤ C|δu|L∞h |δu|L2

h
≤ Ch|δu|L2

h
≤ Ch · h−1|δu|H−1

h
(6.11)

where we have used (6.10). Thus both terms are bounded by |δu|H−1
h
≤ C|δx|L2

h
,

and (6.9) is proved.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A BOUNDARY INTEGRAL METHOD FOR 3-D WATER WAVES 1015

In order to simplify the expressions for errors, we will not be specific about terms
contributing to δv which are bounded in L2

h by |δx|L2
h
, |δφ|L2

h
, since they do not

affect the numerical stability of the scheme. For this reason we use the generic
notation B(f) for a grid function which is bounded in L2

h, uniformly in h, by |f |L2
h
.

Thus we write remainders such as B(δx), B(δφ).
In the next lemma we find the error in the unit normal, δn = ñ − n, due to

δx = x̃ − x, and also the error in the tangential gradient of an arbitrary function
µ, defined as in (6.1). Here and below we use the product rule (1.17) for Dh.

Lemma 6.5. Assuming (6.6), the error in n due to δx is

δn = −∇Th (n · δx) +B(δx) .(6.12)

Similarly, if µ is a smooth function of α and µ̃ is an approximation on the grid,
then

δ
(
∇Thµ

)
= ∇Th (δµ)−∇Th (δx · ∇Thµ)−

(
δn · ∇Thµ

)
n+B(δx) + B(δµ),(6.13)

= ∇Th (δµ)−∇Th (δx · ∇Thµ) +
(
∇Th (n · δx) · ∇Thµ

)
n+B(δx) +B(δµ) .(6.14)

Proof. Thinking of n = X1 ×X2 as a pointwise function of Xk = Dh,kx, k = 1, 2,
we introduce the infinitesimal change

ṅ =
∑
k=1,2

(∂n/∂Xk) · δXk,(6.15)

where of course δXk = X̃k −Xk. Then

δn(αj) = ṅ(αj) +O(|δXk(αj)|2) .(6.16)

Differentiating n · n = 1 shows ṅ · n = 0, i.e., ṅ(αj) is tangential at x(αj), and
similarly ṅ ·Xk = −n · δXk. Then

ṅ =
∑
k=1,2

(ṅ ·Xk)X∗k = −
∑
k=1,2

(n · δXk)X∗k .(6.17)

Now since δXk = Dh,k(δx), we can write n · δXk = Dh,k(δx · n) +B(δx), Then the
above becomes ṅ = −∇Th (δx · n) + B(δx). We combine this with (6.16) to obtain
the result (6.12); the remainder in (6.16) can be estimated in L2

h using (6.6) by

|Dh(δx)|L∞h |Dh(δx)|L2
h
≤ Ch−1|Dh(δx)|2L2

h
≤ Ch−3|δx|2L2

h
≤ C|δx|L2

h
.(6.18)

Next we find a similar expression for δX∗k = X̃∗k −X∗k . As before, let Ẋ∗k be the
infinitesimal change in X∗k due to δx. Again δX∗k − Ẋ∗k is quadratic in Dh(δx), and
it can be estimated as in (6.18). We have Ẋ∗k ·X` = −X∗k ·δX` and Ẋ∗k ·n = −X∗k · ṅ.
Then

Ẋ∗k =
∑
`=1,2

(Ẋ∗k ·X`)X∗` + (Ẋ∗k · n)n = −
∑
`=1,2

(X∗k · δX`)X∗` − (X∗k · ṅ)n,(6.19)

and, after moving the `-derivative and replacing ṅ,

δX∗k = −∇Th (δx ·X∗k) +
(
∇Th (n · δx) ·X∗k

)
n+B(δx)(6.20)

Finally,

δ
(
∇Thµ

)
=
∑
k=1,2

Dh,k(δµ)X∗k + (Dh,kµ)δX∗k +Dh,k(δµ) δX∗k .(6.21)

The last term can be estimated by C|δµ|L2
h

using (6.6). Combining (6.20), (6.21)
we then obtain (6.14), and (6.13) follows.
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In the next lemma we find an expression for δv in terms of δw.

Lemma 6.6. With v as in (6.2) and similarly for ṽ, we have, assuming (6.6),

δv = ∇Th (δφ− v · δx) + (δw)n −
(
δn · ∇Thφ

)
n+B(δx) +B(δφ) .(6.22)

Proof. Varying (6.2), we have

δv = δ
(
∇Thφ

)
+ δ(wn) = δ

(
∇Thφ

)
+ (δw)n + w(δn) + (δw)(δn) .(6.23)

From (6.13) we have

δ
(
∇Thφ

)
= ∇Th (δφ)−∇Th

(
∇Thφ · δx

)
−
(
δn · ∇Thφ

)
n+B(δx) +B(δφ),(6.24)

and from (6.12)

w(δn) = −w∇Th (n · δx) +B(δx) = −∇Th (wn · δx) +B(δx) .(6.25)

For the last term in (6.23) we can estimate, using (6.6) and Lemma 6.4,

|(δw)(δn)|L2
h
≤ C|δw|L∞h |δn|L2

h
≤ Ch · h−1|δn|H−1

h
≤ C|δx|L2

h
.(6.26)

Now we substitute (6.24)–(6.26) into (6.23). We can combine terms in (6.24), (6.25)
using (6.2) to obtain (6.22).

The calculation of δv is now reduced to that of δw. To find δw, we subtract the
discrete integral equation (1.25) for w from that for w̃, and obtain an expression with
variations in the discrete integrals entering the equation. We state the variations
below; they are derived in §7. In the sums, ∇Gπh = ∇Gπh(xj − x`), etc., while in
the integrals ∇Gπh = ∇Gπh(xj − x(α′)).

(6.27) δ
∑
`

∇Gπh ·N` [(n` · nj)w` − wj ]h2 =
∑
`

∇Gπh ·N` [(n` · nj)δw` − δwj ]h2

+ (δnj) ·
∫

(∇Gπh ·N(x(α′))n(x(α′))φn(α′) dα′ + hB(δw) + B(δx),

(6.28) δ
∑
`

∇ThGπh · nj w`|N`|h2 =
∑
`

∇ThGπh · nj (δw`)|N`|h2

+
∑
`

∇ThGπh · ∇Th(w`n` · δx`)|N`|h2

+ (δnj) ·
∫
∇TGπhφn(α′)|N(α′)|dα′ + hB(δw) + B(δx),

(6.29)

δ

[
nj ·
∑
`

[DhG
π
h, X ]`×(∇Thφ` −∇Thφj)h2 − nj ·

∑
`

∇Gπh ·N`(∇Thφ` −∇Thφj)h2

]
=
∑
`

∇ThGπh · ∇Th (δφ` −∇Thφ` · δx`)|N`|h2

+ (δnj) ·
∫
∇Gπh × (N(α′)×∇Tφ(α′))dα′ + B(δx) + B(δφ).

When we substitute these into the integral equation for δw, we can collect the
terms. The integrals in (6.27) and (6.28) can be combined, and the second sum
in (6.28) can be combined with the sum in (6.29) using (6.2). The first terms in
(6.27) and (6.28) have the form Kh(δw), with Kh defined by (1.26), except for
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the correction. It can be checked that the error in the correction terms is of type
hB(δw)+B(δx)+B(δφ); the operator hPhD∗h is bounded from H−1

h to L2
h because

of the high k cut-off. Consequently we get

(1
2I +Kh)(δw) = L(δφ− v · δx) + (δn) · S + hB(δw) +B(δx) +B(δφ),(6.30)

where the operator L and the function S are defined by

(Lf)j =
∑
`

∇ThGπh(xj − x`) · (∇Th f`)|N`|h2,(6.31)

Sj =
∫
∇Gπh × (N(α′)×∇Tφ(α′))dα′ −

∫
∇Gπhφn(α′)|N(α′)|dα′ .(6.32)

Lemma 6.1 assures us that (6.30) can be solved for δw; the solvability is not
affected by the small term hB(δw). The following related lemma guarantees that
w̃ can be found from its discrete integral equation.

Lemma 6.7. Under assumption (6.6) the operator I + 2K̃h, obtained by replacing
x with x̃ in (1.26), is invertible for h sufficiently small, and the operator norm of
the inverse is uniformly bounded. The discrete integral equation can be solved by
the simple iteration (1.34).

The principal part of the operator L is of central importance in estimating the
growth of numerical error. The following lemma identifies this principal part and
its properties.

Lemma 6.8. The operator L on L2
h defined by (6.31) has the form L = 1

2Λ +B0,
where B0 is bounded on L2

h, uniformly in h, and Λ is an operator with the following
properties:

(i) Λ is self-adjoint as an operator on L2
h, Λf is real-valued for real f , and

(Λf, f)L2
h
≥ c0|E1/2f |2L2

h
= c0

∑
k∈I

(1 + |k|2)1/2|f̈(k)|2 .(6.33)

(ii) There are operators B1, . . . , B5, bounded on L2
h, uniformly in h, so that

Λ = B1E , Λ = EB2 ,(6.34)

Λ = E1/2B3E
1/2 , E = B4Λ +B5 .(6.35)

Here E is the absolute derivative defined in (4.16).

Proof. The result depends on the assumptions (1.14)–(1.16) for Dh, as well as the
positivity of −Ĝh. If we write out ∇Th , we have

Lf(αj) = −
∑
`,µ,ν

Dh,µG
π
h(xj − x`)(Dh,νf`)(X∗µ` ·X∗ν`)|N`|h2(6.36)

with µ, ν = 1, 2, or, after summing by parts and setting bµν` = (X∗µ` · X∗ν`)|N`| =
(gµν)`|N`|,

Lf(αj) = −
∑
`,µ,ν

GπhD
∗
h,µ[bµν` Dh,νf`]h2 = −

∑
`,µ,ν

Gπhb
µν
` D∗h,µDh,νf` h

2 + (Bf)(αj) .

(6.37)

To see that the remainder is bounded, we use (1.17) for D∗h,µ and note that the
operator with kernel Gπh , times a smooth factor, is of order −1, according to The-
orem 5.1. Next we replace bµν` with bµνj ; the difference is an operator applied to
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D∗h,rDh,νf with the kernel Gπh times a function which vanishes at ` = j. This op-
erator has order −2, by Theorem 5.1, and so the error is again bounded in f . We
now have

Lf(αj) = −
∑
µ,ν

bµνj (AD∗h,µDh,νf)(αj) + (Bf)(αj),(6.38)

where A is the operator of Theorem 5.1, with kernel Gπh . There we wrote A as
A = −A(1)−A(2), where A(2) is of order −2, and thus contributes a bounded term
to L, while A(1) is an operator of type (4.2) whose symbol a1(α, k) is of class S−1

with a1(α, k) ≥ c1(1 + |k|2)−1/2 for k ∈ I. Thus L = Λ0 + B, where Λ0 is the
operator of type (4.2) with symbol λ0 of class S1,

λ0(α, k) = h−2a1(α, k)
∑
µ,ν

bµν(α)σ̄(kµh)σ(kνh) .(6.39)

We have λ0(−k) = λ̄0(k), which implies that Λ0 preserves real functions. Since the
matrix bµν is positive definite and symmetric, and h−1|σ(kµh)| ≥ C|kµ| for k ∈ I,
we have λ0(α, k) ≥ c2|k| for k ∈ I. Thus Lemma 4.5 applies to Λ0; the estimate
(4.18) holds for Λ0, and Λ∗0−Λ0 is bounded. Now we set Λ = Λ∗0 + Λ0 +C0, where
C0 is a large enough constant. Then Λ− 2Λ0 is bounded, and the properties of Λ
follow from Lemmas 4.4–4.6.

In view of this lemma, equation (6.30) reduces to

(I + 2Kh)(δw) = Λ(δφ− v · δx) + 2(δn) · S + hB(δw) +B(δx) +B(δφ) .(6.40)

We now show that the term Kh(δw) is negligible. The two main terms on the right
above can be written as Ef + B(δx) +B(δφ) for some f with |f |L2

h
≤ C(|δx|L2

h
+

|δφ|L2
h
); this follows from (6.12) and (6.34). Then δw is (I + 2Kh)−1Ef plus a

remainder, and the main term in Kh(δw) is (I + 2Kh)−1KhEf . By Lemma 6.1,
the last is bounded in L2

h norm by |KhEf |L2
h
. Theorems 5.1 and 5.2 imply that

the operator Kh is of order −1; for the second term in Kh we use the fact that
X∗k` · nj = 0 when ` = j. Thus |KhEf |L2

h
≤ C|f |L2

h
, and it follows that Kh(δw) =

hB(δw)+B(δx)+B(δφ). We can now absorb Kh(δw) into the remainder in (6.40),
and then invert (I + hB) acting on δw, simplifying (6.40) to

(δw) = Λ(δφ− v · δx) + 2(δn) · S +B(δx) +B(δφ) .(6.41)

Next we substitute (6.41) into (6.22) to find a definitive expression for δv. After
combining we have

δv = ∇Th (δφ− v · δx) + Λ(φ− v · δx)n+ δn ·
(
2S −∇Tφ

)
n+B(δx) +B(δφ) .

(6.42)

(We have replaced ∇Thφ with the exact ∇Tφ, at a cost of hB(δn) = B(δx).) How-
ever, the third term above is negligible, as a consequence of potential theory: If Φ
is a periodic harmonic function below the surface x(α), then

2
∫
∇T (x)Gπ×

(
n(y)×∇TΦ(y)

)
dS(y) − 2

∫
∇T (x)Gπ

∂Φ
∂n(y)

dS(y) − ∇TΦ(x) = 0,

(6.43)

where Gπ = Gπ(x−y) and ∇T (x) means the part of the gradient which is tangential
at x. This follows from the same argument as for the integral equation (1.3), except
that we take the limiting tangential derivative at the surface. If we replace Gπ by
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Gπh, Φ by φ, and ∂Φ/∂n by w, the above holds with error O(h), because of the
regularization of G and the modification in Lemma 6.2. The resulting expression
almost matches 2S −∇Tφ, except that the latter has ∇Gπ rather than ∇T (x)Gπ.
But δn is tangential except for a B(δx) term; see (6.12). Therefore δn · (2S−∇Tφ)
has the form hB(δn) +B(δx) and thus B(δx). In summary, we have

δv = ∇Th (δφ− v · δx) + Λ(δφ− v · δx)n+B(δx) +B(δφ) .(6.44)

We want to replace the discrete approximation v in (6.44) with xt, the actual
velocity of the modified exact solution. From (6.3) we see that xt − v is O(hp) in
L2
h and thus O(hp−1) in L∞h . The change in δv is then hp−2(B(δx) +B(δφ)). Since

p > 2, this can be absorbed into the remainder. Thus we introduce

u1 = δφ− xt · δx(6.45)

and rewrite (6.44) as

δv = ∇Thu1 + (Λu1)n+B(δx) +B(δφ) .(6.46)

We are now ready to estimate the growth in time of the errors in δx, δφ. Because
of the special structure of δv in (6.46), we can use an argument similar to that in
[5], [6]. We will replace δx, δφ by new state variables u1, u2, u3, where u1 is defined
by (6.45) and

u2 = δx · n,(6.47)

so that, recalling (6.5), we have in L2
h

(6.48) u2,t = (δx)t · n + B(δx) = δv · n + B(δx) + O(hp)

= Λu1 + B(δx) + B(δφ) + O(hp) .

We will choose u3 to account for (δx)T while taking advantage of the similarity of
the two main terms in (6.46). We will need to know that B4 of Lemma 6.8, and
later also B3, have bounded time derivatives. This follows from their construction
in §4 once we know that the t-derivative of the symbol a1(α, k;h) in Theorem 5.1
has bounds similar to those for a1 itself, i.e., as a symbol of class S−1. The essential
point is that Gh(Jα) depends on t only through the Jacobian J , and its transform
through the related matrix M (see (5.11)); differentiation in t does not change the
degree of homogeneity in α or k, and the estimates for Gπh apply to ∂Gπh/∂t as well.

To define u3, we first write ∇Th = B6Λ +B7, using (6.35), with B6, B7 bounded
uniformly in h, t, determined by B4, B5. We now define

u3 = (δx)T −B6(δx · n) .(6.49)

Applying ∂/∂t, using the boundedness of B6,t, and dropping less important terms,
we find that

(6.50) u3,t = (δv)T −B6(δv · n) +B(δx) +O(hp)

= ∇Thu1 −B6(Λu1) +B(δx) +O(hp) = B(δx) +B(δφ) +O(hp),

with no important terms remaining.
Next we derive the equation for u1,t. From (6.5) we obtain

δφt = 1
2δ(v · v)− gδx3 +O(hp) = v · δv + 1

2 |δv|
2 − gδx3 +O(hp) .(6.51)

For the other term in u1 we have

(xt · δx)t = xt · δv + xtt · δx+O(hp) .(6.52)
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When we subtract, we have a term (v − xt)δv. From (6.5), v − xt = O(hp−1)
in L∞h , and from (6.46) δv has the form h−1(B(δx) + B(δφ)). Then this term is
h(B(δx) +B(δφ)), since p > 3. Combining terms, we have

u1,t = −(xtt + ge3) · δx+ 1
2 |δv|

2 + hB(δx) + hB(δφ) + O(hp) .(6.53)

For an exact solution of the Euler equations, −(xtt + ge3) = ∇p, the pressure
gradient. At the water surface, this is a normal vector, since p = 0 there. Moreover,
we saw in (1.35) that −∇p · n ≥ c0 > 0 at the surface. We have modified the exact
solution by O(h3), and thus in our case we have

xtt + ge3 = −cn+O(h3) , c = c(α, t) ≥ c0 > 0 .(6.54)

The first term in (6.53) is thus −cδx ·n+ h3B(δx) = −cu2 + h3B(δx). We need an
estimate for the (δv)2 term in (6.53). From (6.46) and (6.6) we have |δv|L∞h = O(h),
and also |δv|L2

h
≤ C|Eu1|L2

h
≤ h−1/2|E1/2u1|L2

h
, and combining these two facts,

|(δv)2|L2
h
≤ h1/2|E1/2u1|L2

h
.

We can now estimate the growth of a norm of (u1, u2, u3). We define a norm so
that the two principal terms will cancel in the growth estimates,

U = 1
2{(Λu1, u1)L2

h
+ |c1/2u2|2L2

h
+ |c1/2u3|2L2

h
} ≡ U1 + U2 + U3 .(6.55)

We have

|δx|2L2
h

+ |δφ|2L2
h
≤ CU , |E1/2u1|2L2

h
≤ CU,(6.56)

and we can rewrite our equations as

u1,t = −cu2 + h1/2r1 + hpτ1 , u2,t = Λu1 + r2 + hpτ2 , u3,t = r3 + hpτ3,

(6.57)

where the r’s are bounded in L2
h by U1/2, and the τ ’s by a constant. Then

(6.58) U1,t = (u1,t,Λu1) + 1
2 (Λtu1, u1)

= −(cu2,Λu1) + h1/2(r1,Λu1) + 1
2 (B3,tE

1/2u1, E
1/2u1) + hp(τ1,Λu1).

The second term can be estimated by

Ch1/2|r1|L2
h
|Eu1|L2

h
≤ Ch1/2|r1|L2

h
h−1/2|E1/2u1|L2

h
≤ CU(6.59)

and the third term by C|E1/2u1|2L2
h
≤ CU . Recalling that Λ = B1E, we estimate

the last term by

Chp|Λu1|L2
h
≤ Chp|Eu1|L2

h
≤ Chp−1/2|E1/2u1|L2

h
≤ Chp−1/2U1/2,(6.60)

and in summary

U1,t = (u1,t,Λu1) +R1 , |R1| ≤ C(U + hp−1/2U1/2) .(6.61)

For U2 we have

U2,t = (cu2,t, u2) + 1
2 (ctu2, u2) = (cΛu1, u2) +R2(6.62)

with |R2| bounded by C(U + hpU1/2), and similarly U3,t = R3. When we add, the
two main terms in (6.61), (6.62) cancel, and we have Ut ≤ C1(U + h2p−1). Then
U(t) ≤ C2h

2p−1 for 0 ≤ t ≤ T , and from (6.56)

|δx|L2
h

+ |δφ|L2
h
≤ C3h

p−1/2 , 0 ≤ t ≤ T .(6.63)
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It follows from (6.46) and Lemma 6.6 that

|δv|L2
h
, |δw|L2

h
≤ C4h

p−3/2 , 0 ≤ t ≤ T .(6.64)

We can now remove the assumption (6.6) used to derive (6.63), (6.64). We can
take p near 4, so that p−1/2 is almost 7/2. For h small enough, (6.63), (6.64) imply
that the L2

h norms of δx, δφ, hδw remain below h3/2 as long as they are less than
h3, and therefore they never reach h3. Thus for small h (6.63), (6.64) hold without
qualification, and in view of Lemma 6.2 the computed solution stays within O(h3)
of the actual solution in L2

h.

7. Proofs of lemmas

Here we present the proofs of Lemma 6.1, Lemma 6.2, estimates (6.27)–(6.29),
and Lemma 6.7.

Proof of Lemma 6.1. The invertibility of I + 2Kh will follow from that of the op-
erator I + 2K of which it is an approximation, where K is the operator acting on
periodic functions of α,

Kf(α) =
∫
∇Gπ(x(α) − x(α′)) · n(x(α))f(α′)|N(α′)|dα′ .(7.1)

Thus Kf is the adjoint double layer potential due to f . With time t fixed for the
moment, the operator K is compact, as an operator on L2 of the periodic square,
so that its nonzero spectrum consists only of eigenvalues. Classical arguments show
that the operator 2K and its adjoint 2K∗ have spectral radius strictly less than 1;
that is, if λ is an eigenvalue of 2K, then |λ| ≤ ρ(2K) < 1. This fact depends on
the periodic geometry; for bounded domains there is an eigenvalue with |λ| = 1.
A proof that ρ(2K) = ρ(2K∗) < 1 was given in [3] for double layer potentials in
periodic regions in two dimensions; essentially the same proof applies to the present
case of 3-D regions with doubly periodic boundaries.

Now let K(t) be the operator at time t for 0 ≤ t ≤ T . We argue that for some
constants ε > 0 and C0 > 0, and for all complex λ with |λ| ≥ 1 − ε, and all t
with 0 ≤ t ≤ T , the operator λI − 2K(t) is invertible, and ‖(λI − 2K(t))−1‖ ≤ C0.
First, since ρ(2K(t)) < 1, then also ρ(2K(t) + A) < 1 if A is small enough in
norm as an operator on L2; this is shown in [10], Theorem 1.37. It can be checked
that K(t) depends continuously on t, as an operator on L2, using the smoothness
assumptions. Thus the above statement tells us that for each t0 there is a t-interval
near t0 such that ρ(2K(t)) is bounded away from 1 on the interval. Since [0, T ] is
a compact set, the same is true for this entire interval, i.e., there is some ε > 0 so
that ρ(2K(t)) < 1 − ε for each t ∈ [0, T ]. This shows that λI − 2K(t) is invertible
for each t and λ with |λ| ≥ 1 − ε. The inverse depends continuously on t, λ, and
so a uniform bound for the norm follows for λ in a bounded set by compactness.
Finally, we have a uniform bound for the norm of K(t), and from this we can easily
obtain a bound for the inverse for large λ. This verifies the assertion.

The above fact allows us to show that operators close to K(t) have similar prop-
erties. Suppose A is any operator on L2 with ‖A‖ < (2C0)−1, where C0 is as
above. Then for any t and any λ with |λ| ≥ 1 − ε, we have λI − (2K − A) =
(λI − 2K)[I + (λI − 2K)−1A]. By the statement above, each of the last two factors
is invertible, and the inverse has norm bounded by 2C0. Thus we have shown that
ρ(2K(t) − A) < 1 − ε, and in particular ‖(I + 2K(t) − A)−1‖ ≤ 2C0. To complete
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the proof of the lemma, it will be sufficient to show that Kh can be regarded as a
small perturbation of K when h is small.

We first treat the operator K0
h, which is Kh with the two terms with wj omitted.

To show that I + 2K0
h is invertible on L2

h, we identify it with an operator on
L2([−π, π)2); i.e.,, we extend from the discrete variable αj ∈ Ih to α ∈ [−π, π)2. We
partition the square by defining Bj = {α ∈ [−π, π)2 : 0 ≤ αν− (αj)ν < h, ν = 1, 2}
for j ∈ I. If we write K0

h in the form

K0
hf(αj) =

∑
`∈I

Kh(αj , α`)f(α`)h2,(7.2)

we can extend the kernel by defining Kh(α, α′) = Kh(αj , α`) for α ∈ Bj , α′ ∈ B`.
This kernel then gives an integral operator on L2([−π, π)2). Now if f is a function
on Ih, we can extend it to a piecewise constant function on [−π, π)2 by defining
f(α) = f(α`) for α ∈ B`. The integral operator applied to this extended f produces
a piecewise constant function with values given by (7.2). The L2 norms of the
extended f and its image match the L2

h norms of the discrete functions. (Cf. [6],
Lemma 5; [7], p. 16.) Thus if we show that the extended operator I + 2K0

h has
an inverse, bounded independent of h, then the same will be true for the discrete
operator.

In view of the above remarks, it will be sufficient to show that the discrete
operator K0

h, when extended, is close to the corresponding continuous version. The
two terms of K0

h have the form

J1f(αj) =
∑
`∈I

N` · ∇Gπh(xj − x`)µ1(αj , α`)f(α`)h2,(7.3)

J2f(αj) =
∑
`∈I

DhG
π
h(xj − x`)µ2(αj , α`)f(α`)h2,(7.4)

where µ1, µ2 are smooth, µ2 is zero on the diagonal, Dh is the discrete derivative
with respect to α`, and N` is computed from x(α) using Dh. Thus, in the first case,
we compare J1 extended to L2 with∫

N(α′) · ∇Gπh(x(α) − x(α′))µ1(α, α′)f(α′) dα′ .(7.5)

(We have already seen in Theorem 2.3 that the change in the integral due to reg-
ularizing G to Gh is O(h3).) The error to be accounted for is that from replacing
x(α) by xj , x(α′) by x`, and N(α′) by N` in the kernel when α ∈ Bj , α′ ∈ B`. We
use an estimate for the first derivative of the kernel. We consider Gh instead of Gπh,
since the remainder is smooth. Since Gh is radial, we have

N(α′) · ∇Gh(x(α) − x(α′)) = |x(α) − x(α′)|−1 ∂Gh
∂r

[N(α′) · (x(α) − x(α′)] .(7.6)

The last factor is O(|α − α′|2) for α near α′, since x(α) − x(α′) is almost tan-
gent. From the estimates (2.4) for Gh, we have |(∂/∂r)mGh| ≤ C|α − α′|−m−1 for
|α−α′| ≥ h and O(h−m−1) otherwise, where m = 1 or 2. Combining these facts, we
find for the kernel K(α, α′) of (7.5) that |DK(α, α′)| ≤ C|α−α′|−2 for |α−α′| ≥ h
and O(h−2) otherwise; here D denotes a first derivative in α or α′. Thus the error
in discretizing the kernel is of order h · h−2 for α, α′ close, and order h · |α− α′|−2

when they are at least O(h) apart. We can estimate the norm of the operator
resulting from this error just as in the last part of the proof of Theorem 5.1; the
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norm is bounded by Ch| log h|. Replacing N(α`) with N` leads to a smaller error,
since they differ by O(h3).

We argue similarly for the second operator J2. We need to compare the kernel
µ2DG

π
h(x(α) − x(α′)) with discrete values of µ2DhG

π
h. (Again the change in the

integral from regularizing G to Gh is O(h3).) Assuming first that Dh is a difference
operator, the error in replacing DGπh(xj−x`) with DhG

π
h(xj−x`) can be estimated

by writing (Dh −D)Gπh as an integral of D2Gπh. This is controlled by a bound for
h ·D2Gπh on an O(h) neighborhood of xj − x`. Since µ2(αj , α`) = 0, we find that
the contribution to the error in the kernel is then of order h · |αj−α`|−2 when αj , α`
are apart, and of order h−1 when they are close. Just as before, this estimate leads
to an error in the operator with norm of order h| log h|. Next we assess the error in
discretizing µ2DG

π
h . The error in the kernel has terms of the form h · µ2D

2Gπh and
h · DGπh. For either of these we obtain the same estimates as before, using again
the fact that µ2 = 0 on the diagonal. This completes the treatment of J2 if Dh is
a difference operator. If not, we can reduce to the special case by comparing the
discrete µ2DhG

π
h with one where Dh is replaced by a difference operator. For this

we note that D(1)
h −D

(2)
h has the form hBE2 for some bounded B, and by Theorem

5.2 and (5.5), the two operators differ by O(h).
In summary, we have shown that the error in discretizing each operator J1, J2

is O(h| log h|), and thus K0
h−K is of the same order. Finally we consider Kh−K0

h.
Each of the two terms multiplies wj by a factor. For the correction term this factor
is O(h); for the other term it is a sum which is within O(h) of the first integral in
(1.5), which is zero. Thus Kh − K0

h is O(h), and therefore Kh − K is O(h| log h|),
as operators on L2

h.

Proof of Lemma 6.2. The exact equations for x, φ, as functions of α, t, have the
form xt = v , φt = |v|2/2 − gx3, with v determined by v = ∇Tφ + wn , and
with (1

2I + K(x))w = f(x, φ). We think of this system in the form zt = F (z),
where z = (x, φ) and F is a nonlocal mapping. Let Hs be the Sobolev space of
scalar-valued periodic functions of α with s derivatives in L2, Xs the space of such
vector-valued functions, and Zs the space of pairs x ∈ Xs, φ ∈ Y s. We choose
s0 > 1 and check that F is C2 from Zs1 to Zs0 when s1 is large enough relative
to s0. First, the single and double layer potentials define bounded operators from
Hs0 to Hs0+1, and they are at least C2 as functions of x ∈ Xs1 ; the x-derivatives
do not change the order of the singularity. Then f : Zs1 → Hs0 is C2. Since I+2K
is a Fredholm operator on Hs0 and is 1-1, it is invertible, and the inverse is a C2

function of x ∈ Xs1 . It now follows easily that F : Zs1 → Zs0 is C2.
We need to use DF (z0), the derivative of F at the exact, smooth solution z0.

We presume that z0 exists in Zs2 for some s2 larger than s1. Finding DF (z0)
amounts to linearizing the equations about z0, and this can be done as for the
discrete equations in §6 but more easily. Writing the infinitesimal variation in z in
the u variables of (6.45), we have DF (z0)u = (−cu2,Λu1, 0) + (0, B2u,B3u), where
Λ is a positive pseudodifferential operator of order 1 and B2, B3 are bounded in
Hs1 by u2, u3 ∈ Hs1 . For solutions of ut = DF (z0)u, we can estimate as in §6 but
in high norms. Let Um = (ΛDmu1, D

mu1)L2 + |Dm(c1/2u2)|2L2 + |Dm(c1/2u3)|2L2

where m is a multi-index for the α-derivative D, and let U = ΣUm, |m| ≤ s1. Then
Ut ≤ C1U , and thus U(t) ≤ C2U(0) for 0 ≤ t ≤ T . (Cf. [5], p. 1282.)

The discrete equations have a similar structure zh,t = Fh(zh), with vh determined
by wh satisfying (1

2I + Kh(xh))wh = fh(zh). The consistency argument shows
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that for any z = (x, φ) ∈ Zs1 we have (1
2I + Kh(x))φn = fh(z) + h3r31(z) +

r41(z, h), where r31(z) ∈ Hs0 , depending smoothly on z ∈ Zs1 , and r41 is uniformly
O(h4). To invert, we use the fact that (1

2I + Kh(x))−1 differs as an operator on
L2 from (1

2I +K(x))−1 by O(h| log h|), as shown in the proof of Lemma 6.1. Thus
we can write φn = (1

2I + Kh(x))−1fh(z) + h3r32(z) + r42(z, h), where r32(z) =
(1

2I + K(x))−1r31(z) depends smoothly in Hs0 on z as above, and r42 is bounded
in L2

h by Ch4| log h|. (The log h can be removed by a more careful argument.)
Similarly, for any z ∈ Zs1 , we get F (z) − Fh(z) = h3r3(z) + r4(z, h), where r3 :
Zs1 → Zs0 is smooth and r4(z, h) is O(h4| logh|) in L2

h. We can also assume that
r3(z0) ∈ Zs1 , since z0 ∈ Zs2 .

Now we can combine the above to modify z0. First, we can solve the linear
equation ηt = DF (z0)η − r3(z0), η = 0 at t = 0, with η ∈ Zs1 ; this can be done
in a standard way from the linear estimate above. Now set z1 = z0 + h3η in
Zs1 . Then F (z1) = F (z0) + h3DF (z0)η + O(h6) in Zs0 , since F is C2. We check
that z1 has the desired property. We have z1

t = F (z0) + h3DF (z0)η − h3r3(z0) =
F (z1)− h3r3(z0) +O(h6) = Fh(z1)− h3r3(z0) +O(h6) + h3r3(z1) + r4(z1, h). Now
since z1 − z0 = O(h3) in Zs1 , we have r3(z1) − r3(z0) = O(h3) in Zs0 . Thus the
O(h3) part cancels, and and we conclude that z1

t = Fh(z1) + O(h4| log h|) in L2
h.

The two components of this equation give (6.3) for p < 4. The last assertion follows
from combining this with (6.2).

Proof of (6.27). We need to assess the difference between∑
∇Gπh(x̃j − x̃`) · Ñ` [(ñ` · ñj)w̃` − w̃j ]h2(7.7)

and the same where the computed tilde quantities are replaced by the quantities
without tildes. To do this we will consider various separate differences by adding
and subtracting. (All sums are over ` ∈ I.) We note first that under the hypothesis
(6.6) we have, using Lemmas 6.3 and 6.4

|δn|L∞h ≤ Ch
−1|δn|L2

h
≤ Ch−2|δn|H−1

h
≤ Ch−2|δx|L2

h
≤ Ch−2h3 = Ch,(7.8)

and similarly for w, N .
We begin with the sum∑

∇Gπh(xj − x`) · Ñ` [(ñ` · ñj)w̃` − w̃j ]h2(7.9)

and consider several differences which, when added to the above, will result in the
corresponding sum with no tildes. The first such difference will be the replacement
of Ñ` by N`. We split this into two terms,∑

∇Gπh(xj − x`) · (δN`) [(n` · nj)w` − wj ]h2 ,(7.10) ∑
∇Gπh(xj − x`) · (δN`) [δ((n` · nj)w`)− δwj ]h2 .(7.11)

We view (7.10) as the action on δN of the kernel ∇Gπh times (n` · nj)w` −wj . The
latter factor is the restriction of a smooth function vanishing on the diagonal, except
for a small error, according to the last statement in Lemma 6.2. We ignore the error,
since it can be handled as below for (7.11). By Theorem 5.1 the resulting operator
has order −1 on L2

h, and according to the remark before Lemma 6.3 it is bounded
from H−1

h to L2
h. Thus the sum (7.10) is bounded in L2

h by C|δN |H−1
h
≤ C|δx|L2

h
.

Now for (7.11), the quantity in brackets is uniformly O(h), according to (7.8) and
the analogue for w. We can use the boundedness of∇Gπh on L2

h, again from Theorem
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5.1, to estimate this term by Ch|δN |L2
h
≤ C|δN |H−1

h
≤ C|δx|L2

h
. Next, to replace

ñ` by n`, we consider the difference∑
∇Gπh(xj − x`) ·N` [w̃`(δn`)] · ñj h2 .(7.12)

Now the operator ∇Gπh ·N(α`) is of order −1 by Theorem 5.1, where N(α`) is the
exact normal. Since N` − N(α`) = O(h3) and ∇Gπh has order 0, it follows that
∇Gπh · N` is also of order −1. Using this fact and Lemmas 6.3 and 6.4, we can
estimate (7.12) by C|w̃(δn)|H−1

h
≤ C|δn|H−1

h
≤ C|δx|L2

h
.

We have now replaced (7.9) with∑
∇Gπh(xj − x`) ·N` [(n` · ñj)w̃` − w̃j ]h2 .(7.13)

If we replace w̃`, w̃j with w`, wj , the resulting difference is the first term on the
right in (6.27) plus

(δnj) ·
∑
∇Gπh(xj − x`) ·N` n`(δw`)h2 .(7.14)

Since δnj is uniformly O(h), the last is bounded in L2
h by Ch|δw|L2

h
. Then if we

replace ñj by nj , the difference is

(δnj) ·
∑

w`n`∇Gπh(xj − x`) ·N` h2 .(7.15)

In the sum above, we can replace w` with φn(α`), etc., using Lemma 6.2 with
small error. The resulting sum is then within O(h) of the integral term in (6.27),
according to Theorem 3.7. The term from the quadrature error is bounded in L2

h by
Ch|δn|L2

h
≤ C|δx|L2

h
. We have now replaced the sum (7.9) with the corresponding

sum without tildes, and obtained the two principal terms in (6.27).
Next we consider the difference which results from replacing x̃j , x̃` with xj , x` in

the sum ∑
∇Gπh(x̃j − x̃`) ·N` [(n` · nj)w` − wj ]h2 .(7.16)

The difference is a similar sum with δ∇Gπh instead of ∇Gπh. We write δ∇Gπh =
R2(αj , α`) · (δxj − δx`), where R2 denotes an average of second derivatives of Gπh
along the line from xj − x` to x̃j − x̃`. Since the bracket term vanishes on the
diagonal, Theorem 5.1 tells us that the δx` part of the error is bounded in L2

h by
C|δx|L2

h
. For the second part, we factor δxj out of the sum; the remaining sum is

bounded, uniformly in j and h, according to Lemma 5.4. Thus the second part of
the error has the same bound as the first.

We are now left with the difference∑
δ∇Gπh · δ[N`((n` · nj)w` − wj)]h2 .(7.17)

By considering cases we can see that this is of type B(δx). From δ∇Gπh we have
R2 times a factor of δxj or δx`, and each term in the second factor has at least one
difference in either j or `. We discuss two specific terms. For the term∑

R2 · Ñ`(δxj)(δwj)h2 = (δxj)(δwj)
∑

R2 · Ñ`h2(7.18)

we note that |Ñ`| is uniformly bounded, and δwj is uniformly O(h). The last sum
is O(h−1), uniformly in j; this can be seen from the pointwise estimates (2.4) for
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DmGh. Thus the term has the form δxj times a uniformly bounded function of j.
Next we consider the term ∑

R2 · Ñ`(δxj)(δn`)w̃`h2 .(7.19)

We can estimate |(δn)w̃|L2
h

by Ch2. Then from Theorem 5.1, hR2 is a bounded
operator on L2

h, so that the sum omitting the δxj factor is O(h) in L2
h, and therefore

O(1) in L∞h . This is then multiplied by δxj , and the resulting term is B(δx). The
other terms can be treated by the same methods.

Proof of (6.28). We have to find the difference between the sum

−
∑

Dh,kG
π
h(x̃j − x̃`)X̃∗k` · ñj w̃`|Ñ`|h2(7.20)

and the corresponding sum without tildes. We have written out ∇ThGπh, recalling
(1.23), with a sum over k = 1, 2 implicit. We begin with the sum

−
∑

Dh,kG
π
h(xj − x`)X̃∗k` · (ñj − ñ`) w̃`|Ñ`|h2(7.21)

and add differences successively to remove the tildes. We have inserted −ñ`; this
does not affect the sum, since ñ` ⊥ X̃∗k`. We first replace ñj with nj , resulting in
the difference, after a summation by parts,

−(δnj) ·
∑

Gπh(xj − x`)D∗h,k[X∗k` w`|N`|]h2(7.22)

plus a remainder. The remainder has δ(X∗k` w`|N`|), which is O(h2) in L2
h, acted on

by Dh,kG
π
h. Since Gπh is an operator of order −1 on L2

h, by Theorem 5.1, Dh,kG
π
h is

bounded, so that the image is O(h2) in L2
h and thus O(h) in L∞h . This is multiplied

by δnj , which is bounded in L2
h by h−1|δx|L2

h
, so that remainder term is of type

B(δx). As for the main term (7.22), the sum on the right is close to the integral
in (6.28), after replacing w` by φn(α`) etc., with O(h) quadrature error. This last
error gives a term bounded by h|δn|L2

h
or |δx|L2

h
.

Next we replace ñ` by n`. The difference is∑
Dh,kG

π
h(xj − x`)X∗k` · (δn`)w`|N`|h2(7.23)

plus a remainder again with δ(X∗k` w`|N`|). As before, the remainder is B(δx). We
can substitute in (7.23) for δn from (6.12) and obtain the second term on the right
in (6.28), up to a remainder which is B(δx).

We now have reduced (7.20) to

−
∑

Dh,kG
π
h(xj − x`)X̃∗k` · (nj − n`) w̃`|Ñ`|h2 .(7.24)

Now since nj − n` vanishes at j = `, Theorem 5.2 tells us that the operator with
kernel (nj − n`)Dh,kG

π
h gains a derivative. Thus, to replace X̃∗k`|Ñ`|, we estimate

w̃δ(X∗k |N |) in H−1
h by |δx|L2

h
. The corresponding sum is then bounded by |δx|L2

h
.

To finish with (7.20), we replace w̃` with w`, obtaining as the difference the first
term on the right of (6.28).

Next we consider the difference

(7.25)
∑

δ [Dh,kG
π
h(xj − x`)]X∗k` · nj w`|N`|h2

=
∑

[δGπh(xj − x`)] · njD∗h,k [X∗k` w`|N`|]h2 .

We write δGπh as R1(αj , α`) · (δxj − δx`), where R1 is an average of DGπh from
xj − x` to x̃j − x̃`. For the δx` part, we conclude from the boundedness of DGπh on
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L2
h that the sum is bounded by |δx|L2

h
. For the second part, we bring δxj outside

the sum. The remaining sum is uniformly bounded according to Lemma 5.4, and
this term is B(δx). We are left with more nonlinear terms, which can be handled as
at the end of (6.27), after summing by parts to remove Dh,k from Gπh as above.

Proof of (6.29). The difference has the form

δ(n ·Σ) = (δn) ·Σ + n · δΣ + (δn) · (δΣ)(7.26)

Since δnj is uniformly O(h), by (6.6), it will be evident that the last term can be
neglected after we have treated the second term. The sums in the first term are
within O(h) of the corresponding integrals, according to Theorem 3.7. (We use
summation by parts.) The resulting error term is B(hδn) = B(δx). The integrals
can be converted to the integral in (6.29) by reversing the steps which led to (1.7).
Now our task is to evaluate the second term in (7.26).

We treat the first sum in (6.29). As before, we begin with

nj ·
∑

[DhG
π
h, X̃]` × (∇̃Th φ̃` − ∇̃Th φ̃j)h2,(7.27)

where Gπh = Gπh(xj − x`) and ∇̃Th f =
∑

k=1,2(Dh,kf)X̃∗k . We remove the tildes in
steps; we first replace ∇̃Th φ̃` with ∇Thφ`. The difference is

nj ·
∑

[DhG
π
h, X ]` × δ(∇Thφ`)h2(7.28)

plus a remainder with products of δ’s. This remainder is B(δx); to see this, we note
that DhG

π
h is a bounded operator on L2

h and products such as (δX1`)(Dh,2δφ`) are
bounded in L2

h by |δx|L2
h
, using (6.6). In (7.28) we can substitute for δ(∇Thφ`) from

(6.14), obtaining, up to a negligible remainder,

(7.29)
∑

nj · [DhG
π
h, X ]` ×∇Th (δφ` −∇Thφ` · δx`)h2

+
∑

([DhG
π
h, X ]` × n`) · nj

(
∇Th (n` · δx`) · ∇Thφ`

)
h2 .

In the first sum we substitute nj = n` + (nj −n`) and split the sum into two parts.
The n`-part can be converted to the first term on the right in (6.29) using a vector
identity as in (1.6). For the remaining part in the first sum of (7.29), we have a
smooth factor which vanishes at ` = j, and we can use Theorem 5.2 to show that
the sum is B(δx) +B(δφ). As for the second sum in (7.29), we note that the cross
product is tangential at x`, so that the scalar product with nj is zero when ` = j.
Thus we can use Theorem 5.2 again to bound this term by |δx|L2

h
.

Next we replace ∇̃Th φ̃j in (7.27) by ∇Thφj . The difference is

nj · δ(∇Thφj)×
∑

[DhG
π
h, X ]`h2,(7.30)

except for an error nonlinear in the δ’s which is again negligible. The sum in (7.30)
is within O(h) of an integral which is zero; see (1.5), (1.8), (1.28). The term with the
quadrature error is of order h|δ∇Thφ|L2

h
, which in view of (6.14) is B(δφ) +B(δx).

We have now reduced (7.27) to

nj ·
∑

[DhG
π
h, X̃]` × (∇Thφ` −∇Thφj)h2 .(7.31)

The last factor vanishes when ` = j, and we can therefore use Theorem 5.2 to
replace X̃` with X`, with a difference B(δx), thus completing the treatment of
(7.27).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The most important remaining term from the first sum on the left in (6.29) is

nj ·
∑

[δ(DhG
π
h), X ]` × (∇Thφ` −∇Thφj)h2 .(7.32)

This can be treated similarly to the corresponding term in (6.28). The other terms
are nonlinear and can be handled like earlier cases. The variation of the second
sum can be treated by techniques as for (6.27), but more simply. We need to use
the fact that ∇Thφj is multiplied by a discretization of an integral which is zero by
(1.5).

Proof of Lemma 6.7. The operator K̃h differs from Kh by an operator which is
O(h). This can be shown by estimates related to (6.27), (6.28) but simpler. By the
remarks in the proof of Lemma 6.1, 2K̃h then has spectral radius less than one, and
it follows that the discrete integral equation can be solved by simple iteration.
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