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Abstract In this work we consider nonlinear minimization problems with a single
linear equality constraint and box constraints. In particular we are interested in solv-
ing problems where the number of variables is so huge that traditional optimization
methods cannot be directly applied. Many interesting real world problems lead to
the solution of large scale constrained problems with this structure. For example, the
special subclass of problems with convex quadratic objective function plays a fun-
damental role in the training of Support Vector Machine, which is a technique for
machine learning problems. For this particular subclass of convex quadratic prob-
lem, some convergent decomposition methods, based on the solution of a sequence
of smaller subproblems, have been proposed. In this paper we define a new glob-
ally convergent decomposition algorithm that differs from the previous methods in
the rule for the choice of the subproblem variables and in the presence of a prox-
imal point modification in the objective function of the subproblems. In particular,
the new rule for sequentially selecting the subproblems appears to be suited to tackle
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large scale problems, while the introduction of the proximal point term allows us to
ensure the global convergence of the algorithm for the general case of nonconvex
objective function. Furthermore, we report some preliminary numerical results on
support vector classification problems with up to 100 thousands variables.

Keywords Large scale optimization · Decomposition methods · Proximal point
modification · Support vector machine

1 Introduction

Let us consider the problem

min f (x)

a′x = b, l ≤ x ≤ u,
(1)

where x ∈ R
n, f : R

n → R is a continuously differentiable function and a, l, u ∈ R
n,

with l < u, b ∈ R. We allow the possibility that some of the variables are unbounded
by permitting both li = −∞ and ui = ∞ for some i ∈ {1, . . . , n}. Moreover, we as-
sume, without loss of generality that ai �= 0 for all i = 1, . . . , n, thought our approach
can be extended with minor modifications to include the case where ai = 0 for some i.

Problems with structure (1) arise directly or as subproblems in several applica-
tions. Among these, there are portfolio selection problems, optimal control, image
processing, optimal allocation, maximum-likelihood estimation, knapsack problems
( see e.g. [2, 9, 14, 16, 17, 24, 26, 27, 33] and references therein). Moreover, a contin-
uous formulation of a classical problem in graph theory, namely the maximum clique
problem [6, 25], leads to a problem of the form (1) with indefinite quadratic function.
Recently there has been a growing interest in Support Vector Machine (SVM) [32]
which is a promising technique for solving a variety of machine learning and function
estimation problems. The SVM technique leads to solve a large dimensional problem
of the form (1) with the distinguish features:

• f is a convex quadratic function with dense Hessian matrix;
• ai ∈ {−1,1}, b = 0;
• −∞ < li < ui < ∞.

Several approaches are developed in the literature for SVM that is typically a huge
application (see e.g. [11, 15, 22, 23, 29] and references therein).

In the sequel we do not assume any convexity or any special structure of the objec-
tive function, hence we are interested in finding stationary points of problem (1). The
main difficulty in computing a stationary point of the problem (1) (whose feasible set
has a very simple structure) is mainly related to the dimension n of the problem. In
particular, when n is extremely large and the problem is not sparse, traditional opti-
mization methods cannot be directly employed. Then, we focus the attention on large
dimensional problems and we are interested in studying convergent block decompo-
sition methods, which involve the solution of subproblems of smaller dimension in
place of the original problem.

The most popular convergent decomposition methods, such as the Successive
Overrelaxation algorithm, the Jacobi and the Gauss–Seidel algorithms are applica-
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ble only when the feasible set is the Cartesian product of subsets defined in smaller
subspaces [5]. Since the feasible set of problem (1) contains an equality constraint,
such decomposition methods cannot be employed. Moreover, in [30] a set of coun-
terexamples concerning unconstrained problems has been reported, where the Gauss–
Seidel method may not even converge towards stationary points. This evidences the
difficulty of ensuring convergence properties of decomposition methods, even in the
simplest case of unconstrained optimization problems.

In a general decomposition framework, at each iteration k, the vector of vari-
ables x is partitioned into two subvectors (xW ,xW ), where W ⊂ {1, . . . , n} identi-
fies the variables of the subproblem to be solved and it is called working set, and
W = {1, . . . , n} \ W (for notational convenience the dependence of W and W on k is
omitted). Then, starting from the current feasible vector xk = (xk

W ,xk

W
), the subvec-

tor xk+1
W is computed as the solution of the following subproblem

min
xW

f
(
xW ,xk

W

)

a′
WxW = b − a′

W
xk

W
, lW ≤ xW ≤ uW .

The subvector xk+1
W

is unchanged, i.e., xk+1
W

= xk

W
, and the new iterate is given by

xk+1 = (xk+1
W ,xk+1

W
). In general, the cardinality q of the working set W , i.e. the

dimension of the subproblem to be solved at each iteration, is chosen according to the
available computational capability or to the problem structure. The rule of selection
of the indices in the working set W at each iteration plays a crucial role in proving the
convergence properties of the sequence {xk} generated by the decomposition method.

Up to our knowledge, decomposition methods with theoretical convergence prop-
erties have been proposed with reference to problem (1) in the special case of SVM’s
learning problem (see [18–20]), namely in the case of minimization of a convex
quadratic function on a bounded convex set. In this context, the most popular al-
gorithm is the SVMlight algorithm [15], whose selection rule of the working sets
requires, at each iteration, the application of a specific ordering procedure of a vector
of dimension n connected to the violation of the Karush–Kuhn–Tucker conditions.
For any even size q of the working set, the asymptotic convergence of the SVMlight

algorithm has been proved under the assumption that the quadratic objective function
satisfies some strict block convexity assumption [18]. In the special case of q = 2, the
convergence of the decomposition algorithm (SMO [29]) is guaranteed only requiring
that the quadratic function is convex [19].

The convergence analysis of SVMlight algorithm, developed in [18], highlights that
the strict block convexity hypothesis on the objective function permits to ensure that
the distance between successive points of the generated sequence tends to zero, i.e.
that

lim
k→∞‖xk+1 − xk‖ = 0. (2)

As pointed out in [12, 13], this property is an important requirement in the context of a
decomposition strategy, and proximal point techniques can be employed to attain (2)
even in the case of nonconvex objective function (see also [11] for a different use of
a proximal-point modification within an interior-point method for SVM).
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In this paper, we define a decomposition algorithm model (DAM) for problem of
type (1), which differs from the existing methods in the rule for the choice of the
working sets and in the introduction of a proximal point modification in the objective
function of the subproblems. In particular, we introduce a general condition to be
satisfied by the sequence of working sets, and we show that it is possible to satisfy
it by using a prefixed number of working sets in a cyclic order. The main benefit of
this choice stays in the fact that the selection of the variables in the working set does
not require to apply any specific ordering procedure, that means that no additional
computational effort is required to identify the subproblem to be solved. On the other
hand, the proximal point modification introduced in the objective functions of the
subproblems allows us to ensure property (2) without further assumptions. Thus, we
prove the asymptotic convergence of the decomposition algorithm DAM without re-
quiring the convexity of the objective function, and assuming only the existence of
limit points of the generated sequence.

It is worthwhile to remark that, since the selection condition on the working set
does not require on-line computation, it could also be possible to define a parallel
version of the decomposition algorithm DAM. Parallelism may further speed up the
computation and this is particularly desirable in the case of large and dense problems
(see e.g. [5, 10, 28] for parallel decomposition approaches). However, the definition
of a parallel version of DAM will be object of further study.

The paper is organized as follows. In Sect. 2, we introduce some basic notation
and preliminary technical results. In Sect. 3, we define the decomposition algorithm
model DAM and we present the convergence analysis. In Sect. 4 we report the results
of the computational experiments performed on support vector classification prob-
lems with up to 100 thousands variables.

2 Notation and preliminary results

In this section we state some results that will be used in the convergence analysis of
the decomposition algorithm defined in the next section.

First we introduce some basic notation and definitions (see e.g. [3]). Throughout
the paper, we denote by F the feasible set of problem (1), namely

F = {x ∈ R
n: a′x = b, l ≤ x ≤ u}.

For every feasible point x, we denote the sets of indices of active (lower and upper)
bounds as follows:

L(x) = {i: xi = li}, U(x) = {i: xi = ui}.
Further, at a feasible point x, the set of the feasible directions is the cone

D(x) = {
d ∈ R

n: a′d = 0, di ≥ 0, ∀i ∈ L(x), and di ≤ 0, ∀i ∈ U(x)
}
.

Since the feasible set of problem (1) is convex, if a point x∗ ∈F is a minimum point
of f over F then it satisfies the following necessary optimality condition:

∇f (x∗)′d ≥ 0 for every d ∈ D(x∗). (3)
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A point x∗ ∈ F satisfying condition (3) is said to be a critical (or stationary) point
of problem (1). Since the constraints defining the feasible set F are linear, condi-
tion (3) is equivalent to the Karush–Kuhn–Tucker (KKT) conditions that, by simple
manipulation, state the existence of a scalar λ∗ such that

(∇f (x∗))i + λ∗ai

⎧
⎪⎨

⎪⎩

≥ 0 if i ∈ L(x∗),
≤ 0 if i ∈ U(x∗),
= 0 if i /∈ L(x∗) ∪ U(x∗).

The sets L and U can be split in L+, L−, and U+, U− respectively, where

L−(x) = {i ∈ L(x): ai < 0}, L+(x) = {i ∈ L(x): ai > 0},
U−(x) = {i ∈ U(x): ai < 0}, U+(x) = {i ∈ U(x): ai > 0},

and we can immediately state the following proposition on the equivalence between
critical points and KKT points.

Proposition 1 KKT conditions A feasible point x∗ is a critical point of problem (1)
if and only if there exists a scalar λ∗ such that

λ∗ ≥ − (∇f (x∗))i
ai

∀i ∈ L+(x∗) ∪ U−(x∗),

λ∗ ≤ − (∇f (x∗))i
ai

∀i ∈ L−(x∗) ∪ U+(x∗),

λ∗ = − (∇f (x∗))i
ai

∀i /∈ L(x∗) ∪ U(x∗).

(4)

Exploiting the particular structure of F we can give equivalent versions of the
KKT conditions that are useful in the definition of decompositions algorithms. In
particular, at a feasible point x, we introduce the following index sets:

R(x) = L+(x) ∪ U−(x) ∪ {i: li < xi < ui},
S(x) = L−(x) ∪ U+(x) ∪ {i: li < xi < ui}.

(5)

Then we can state the following results whose proofs are reported in the Appendix.

Proposition 2 A feasible point x∗ is a KKT point of problem (1) if and only if there
exists no pair of indices i and j , with i ∈ R(x∗) and j ∈ S(x∗), such that

− (∇f (x∗))i
ai

> − (∇f (x∗))j
aj

. (6)

Proposition 3 Let x̂ be a feasible point.

(i) If x̂ is not a KKT point, then the following strict inequality holds

max
h∈R(x̂)

− (∇f (x̂))h

ah

> min
h∈S(x̂)

− (∇f (x̂))h

ah

; (7)
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(ii) For each pair i ∈ R(x̂) and j ∈ S(x̂), the direction di,j ∈ R
n such that

d
i,j
i = 1

ai

, d
i,j
j = − 1

aj

, d
i,j
h = 0 for h �= i, j (8)

is a feasible direction at x̂. Furthermore, if the pair i ∈ R(x̂) and j ∈ S(x̂) satis-
fies

− (∇f (x̂))i

ai

> − (∇f (x̂))j

aj

, (9)

then di,j is also a descent direction at x̂, that is

di,j ∈ D(x̂) and ∇f (x̂)′di,j < 0.

The first part of the next proposition essentially establishes that, given any conver-
gent sequence of feasible points {xk}, the set of feasible directions at the limit point
x̄ ∈F is contained in the sets of the feasible directions at points xk sufficiently close
to x̄. This result can be deduced by [21, Proposition 1]; however, for sake of com-
pleteness, we have reported in Appendix the proof adapted to the specific problem.

Proposition 4 Let {xk} be a sequence of feasible points converging to a point x̄ ∈ F .
Then, for sufficiently large values of k we have:

(i) D(x̄) ⊆ D(xk);
(ii) R(x̄) ⊆ R(xk) and S(x̄) ⊆ S(xk).

3 A decomposition algorithm model (DAM)

The basic strategy of a decomposition method is to perform, at each iteration, the
minimization of the objective function on the feasible set with respect only to a subset
of variables, holding fixed the remaining ones.

In order to describe a decomposition framework, given a vector x ∈ R
n, and an

index set W ⊆ {1, . . . , n}, we adopt the (already introduced) notation xW ∈ R
|W | to

indicate the subvector of x made up of the component xi with i ∈ W . More in par-
ticular, at each iteration k, given the working set W ⊂ {1, . . . , n} and starting from
the current feasible vector xk = (xk

W ,xk

W
), the new iterate xk+1 = (xk+1

W ,xk+1
W

) is ob-

tained by computing xk+1
W as a stationary point such that f (xk+1

W ,xk

W
) ≤ f (xk

W ,xk

W
)

of the following problem:

min
xW

f
(
xW ,xk

W

)

a′
WxW = b − a′

W
xk

W
, lW ≤ xW ≤ uW ,

(10)

and by setting xk+1
W

= xk

W
, being W = {1, . . . , n} \ W (for notational convenience we

have omitted here and in some cases later the dependence of W and W on the iteration
counter k). We note that by construction the new iterate xk+1 is feasible and it results
f (xk+1) ≤ f (xk).
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An important issue in the design of a convergent decomposition method is the rule
to select the indices in working set W at each iteration. Next we discuss this issue and
we state a general condition on the working set selection. Later we present and moti-
vate a proximal point modification of the objective function of the subproblem (10).

Working set selection condition First of all we observe that, due to the presence of
the linear equality constraint, any feasible direction at a feasible point must have at
least two nonzero components. Hence the smallest number of variables that can be
changed at each iteration is two, so that the cardinality q of the working set must be
at least two.

As said in the introduction, decomposition methods have been proposed for prob-
lem of type (1) arising in the field of Support Vector Machine, where the objective
function f (x) is a quadratic convex function. Among them, the most popular one is
the SVMlight algorithm [15] which uses a selection rule for the working set related to
the violation of the KKT conditions. To be more precise, given an even integer q ≥ 2,
q/2 indices {i1, . . . , iq/2} are sequentially selected in R(xk) so that

−∇f (xk)i1

ai1
≥ −∇f (xk)i2

ai2
≥ · · · ≥ −∇f (xk)iq/2

aiq/2
,

and q/2 indices {j1, . . . , jq/2} are sequentially selected in S(xk) so that

−∇f (xk)j1

aj1
≤ −∇f (xk)j2

aj2
≤ · · · ≤ −∇f (xk)jq/2

ajq/2
;

the working set is defined by letting Wk = {i1, . . . , iq/2, j1, . . . , jq/2}. Hence, in the
case of SVMlight algorithm, the definition of the working set Wk requires, at each
iteration, the evaluation of the whole (scaled) gradient and its partial ordering. This
may be computationally disadvantageous when the dimension n is large, and we want
to avoid it. To this aim, we propose a different approach for the selection of the
working set Wk by introducing a general condition to be met by the sequence of
index sets {Wk}. This condition takes inspiration from an earlier convergence proof
[18]. Actually the proof is by contradiction on the existence of a limit point x̄ such
that

∇f (x̄)T di,j < 0, for some pair (i, j) ∈ R(x̄) × S(x̄).

The contradiction is obtained by showing that the pair (i, j) is eventually selected. On
this basis, we define the following condition on the working sets {Wk} ⊆ {1, . . . , n}.
Working set selection (WSS) condition The sequence of index sets {Wk} ⊆
{1, . . . , n} is such that, for all k ≥ 0 and for each pair of indices i, j ∈ {1, . . . , n}
such that

i ∈ R(xk), j ∈ S(xk) and − (∇f (xk))i

ai

> − (∇f (xk))j

aj

,

there exists an integer mi,j (k), with k ≤ mi,j (k) ≤ M + k and M ≥ 0, satisfying

(i, j) ∈ Wmi,j (k).
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WSS condition above essentially requires that, starting from the current iteration k,
each pair of indices (i, j), that identifies, according to (ii) of Proposition 3, a feasible
and descent direction at xk , is inserted in the working set within a maximum number
M of successive iterations.

We observe that a possible simple way to satisfy the WSS condition on the working
sets consists in using prefixed index sets in cyclic order as working sets. In particular,
given the index sets V 0, . . . , V M ⊂ {1, . . . , n} of cardinality q0, . . . , qM and such that
each pair i, j ∈ {1, . . . , n} is contained (at least) in a set V l , the working set Wk can
be defined as:

Wk = V k modM for k = 0,1, . . .

where k modM denotes the remainder of k modulo M . As an example, for n = 6
and letting q = 3 for all the sets, we get that the sets

V 0 =
⎛

⎝
1
2
3

⎞

⎠ , V 1 =
⎛

⎝
1
4
5

⎞

⎠ , V 2 =
⎛

⎝
1
5
6

⎞

⎠ ,

V 3 =
⎛

⎝
2
4
6

⎞

⎠ , V 4 =
⎛

⎝
2
3
5

⎞

⎠ , V 5 =
⎛

⎝
3
4
6

⎞

⎠

present the above property with M = 5. The use of prefixed index sets as working sets
permits to select the subproblems variables without applying any specific procedure.
In this way, it is not required a computational effort to individuate the subproblem
variables at any iteration; moreover, since it does not require any on-line computation,
it appears well-suited for the definition of a parallel decomposition algorithm.

Proximal point modification The need of introducing a proximal point modifica-
tion in the objective function of subproblem (10) has been briefly discussed in the
introduction. Actually, adopting a decomposition strategy, optimality conditions with
respect to the variables associated to the selected working sets are satisfied in different
successive points, that are solutions of the corresponding subproblems. Therefore, in
order to ensure convergence of the produced sequence, it may be necessary to enforce
that the distance between successive points tends to zero, i.e.,

lim
k→∞‖xk+1 − xk‖ = 0. (11)

In general, without suitable convexity assumptions on the objective function, the
above property could not be guaranteed. Indeed, the asymptotic convergence of
SVMlight algorithm has been established in [18], under the assumption that the
quadratic objective function is strictly convex with respect to any block component
of cardinality less or equal than q .

In order to ensure property (11), at each iteration k, we consider the following
modified subproblem

min
xW

f
(
xW ,xk

W

) + τ
∥∥xW − xk

W

∥∥2

a′
WxW = b − a′

W
xk

W
, lW ≤ xW ≤ uW ,

(12)



A convergent decomposition algorithm for support vector 225

where the objective function contains the additional proximal point term
τ‖xW − xk

W‖2, being τ > 0 (see e.g. [1, 4, 13, 31]). Then, the subvector xk+1
W is

determined by computing any stationary point (not necessarily a global minimum) of
problem (12) such that f (xk+1

W ,xk

W
) + τ‖xk+1

W − xk
W‖2 ≤ f (xk

W ,xk

W
) (which is im-

mediately attained by using some descent method for the solution of problem (12)).
The subvector xk+1

W
is not modified, i.e., xk+1

W
= xk

W
. We note that in the case of

quadratic objective function, as in SVM classification problems, the introduction of
the proximal point term preserves the quadratic structure of the objective function.
Moreover, if the quadratic function is convex, the quadratic subproblems become
strictly convex.

We are now ready to introduce the decomposition algorithm model DAM. The
convergence results of DAM will be stated under the assumption that the generated
sequence admits limit points.

Decomposition Algorithm Model (DAM)
Data. A feasible point x0, τ > 0.
Initialization. Set k = 0.
While (stopping criterion not satisfied)

1. Select the working set Wk;
2. Set W = Wk . Find a stationary point x∗

W of problem (12) s.t.

f
(
x∗
W,xk

W

) + τ
∥∥x∗

W − xk
W

∥∥2 ≤ f
(
xk
W ,xk

W

);
3. Set

xk+1
i =

{
x∗
i if i ∈ W

xk
i otherwise;

4. Set k = k + 1.
end while
Return x∗ = xk

Let us introduce the notation DWk for the set of directions d ∈ R
n such that di �= 0

only if i ∈ Wk , namely

DWk = {
d ∈ R

n: di �= 0 �⇒ i ∈ Wk
}
.

In the next lemma we show that the point xk+1 produced at the kth iteration satis-
fies the optimality condition with respect to the variables associated to the working
set Wk .

Lemma 1 Let {xk} be the sequence generated by Algorithm DAM. Then we have:

∇f (xk+1)′d + 2τ(xk+1 − xk)′d ≥ 0 ∀d ∈ DWk ∩ D(xk+1) (13)

where D(xk+1) is the set of feasible directions at xk+1.

Proof For simplicity let W = Wk , and consider any d ∈ DW ∩ D(xk+1). Let d =
(dW ,dW )′ be the partition of the direction d corresponding to index sets W and W .
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Namely, dW is the subvector of d with elements in W and, since d ∈ DW , we have
that dW = 0. Recalling that xk+1

W = x∗
W and xk+1

W
= xk

W
, it is immediate to verify

that the subvector dW is a feasible direction for the subproblem (12) at x∗
W . Since

the feasible set of problem (12) is convex, the necessary optimality condition can be
written as:

∇Wf
(
x∗
W,xk

W

)′
dW + 2τ

(
x∗
W − xk

W

)′
dW ≥ 0

where ∇Wf denotes the subvector of ∇f with components in W . Recalling again
that xk+1

W = x∗
W , xk+1

W
= xk

W
and dW = 0, we get

∇f (xk+1)′d + 2τ(xk+1 − xk)′d = ∇Wf
(
x∗
W,xk

W

)′
dW + 2τ

(
x∗
W − xk

W

)′
dW ≥ 0,

and hence the result. �

Before stating the main convergence result, we show that, thanks to the proximal
point modification, (11) holds for DAM. In particular the following proposition holds.

Proposition 5 Assume that DAM does not terminate and let {xk} be the sequence
generated by it. If {xk} admits limit points, then we have

lim
k→∞‖xk+1 − xk‖ = 0.

Proof Let x̄ be any limit point of {xk}, i.e., there exists a subsequence {xk}K such
that limk→∞,k∈K xk = x̄. From the instructions of the algorithm, we have for all k

f (xk+1) + τ‖xk+1 − xk‖2 ≤ f (xk), (14)

so that the sequence {f (xk)} is decreasing. Since {xk}K converges to x̄ and f is
continuous, we have that {f (xk)}K converges to f (x̄), and this implies that the entire
sequence {f (xk)} converges to f (x̄). Then, the convergence of the sequence {f (xk)}
to a finite value and (14) imply that ‖xk+1 − xk‖ → 0. �

Remark 1 It is worthwhile to remark that the same result of proposition above can
be proved also with τ = 0 under some convexity assumption on f . In particular, if
the function f is strictly convex with respect to any subset I ⊆ {1, . . . , n} such that
|I | ≤ q , the same assertion of the proposition can be proved by similar reasonings
used in the proof of [5, Proposition 3.9].

The asymptotic convergence of the decomposition algorithm DAM is proved in
the following proposition.

Proposition 6 Assume that DAM does not terminate and that the sequence of work-
ing sets {Wk} satisfies the WSS condition. Let {xk} be the sequence generated by
DAM. Then, every limit point of {xk} is a KKT point of problem (1).

Proof Let x̄ be any limit point of a subsequence of {xk}, i.e., there exists an infinite
subset K ⊆ {0,1, . . .} such that xk → x̄ for k ∈ K , k → ∞. Since the feasible set F
is closed and xk ∈F for all k, the point x̄ is feasible.
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By contradiction, let us assume that x̄ is not a KKT point of problem (1). By
Proposition 3 there exists at least a pair (i, j) ∈ R(x̄) × S(x̄), and a direction
di,j ∈ D(x̄) defined as in (8) such that:

∇f (x̄)′di,j < 0. (15)

By Proposition 4, we have that i ∈ R(xk) and j ∈ S(xk) for k sufficiently large. Fur-
thermore, from (15), using the definition of di,j and recalling the continuity of the

gradient, we have that − (∇f (xk))i
ai

> − (∇f (xk))j
aj

. Then, the WSS condition on the
working sets implies that for k ∈ K sufficiently large, there exists an index mi,j (k),
with mi,j (k) − k ≤ M , such that the pair (i, j) is inserted in the working set at itera-
tion mi,j (k), i.e.

(i, j) ∈ Wmi,j (k). (16)

We can write
∥∥xmi,j (k)+1 − xk

∥∥ ≤ ∥∥xmi,j (k)+1 − xmi,j (k)
∥∥ + ∥∥xmi,j (k) − xmi,j (k)−1

∥∥

+ · · · + ∥∥xk+1 − xk
∥∥. (17)

Since xk → x̄, by Proposition 5 we have

lim
k→∞

∥∥xk+1 − xk
∥∥ = 0. (18)

Then, recalling that mi,j (k) − k ≤ M , from (17) and (18) we get

lim
k→∞,k∈K

xmi,j (k)+1 = x̄. (19)

As xmi,j (k)+1 → x̄, by Proposition 4 we get that, for k ∈ K sufficiently large, the
set D(x̄) of feasible directions at x̄ is contained in the set D(xmi,j (k)+1) of feasible
directions at xmi,j (k)+1. In particular, since di,j ∈ D(x̄), we have that

di,j ∈ D(xmi,j (k)+1) for k ∈ K, and k sufficiently large. (20)

By (16) and (20) we know in particular that

di,j ∈ D
W

mi,j (k) ∩ D(xmi,j (k)+1) for k ∈ K, and k sufficiently large.

It follows that an infinite subset K1 ⊆ K exists such that di,j satisfies the assumption
of Lemma 1 and hence we can write, for every k ∈ K1, the optimality condition

∇f
(
xmi,j (k)+1)′di,j + 2τ

(
xmi,j (k)+1 − xmi,j (k)

)′
di,j ≥ 0 for all k ∈ K1.

Taking limits for k → ∞, k ∈ K1, recalling (18,19), and the continuity of ∇f , we
obtain

∇f (x̄)′di,j ≥ 0,

and this contradicts (15). �
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4 Computational experiments on support vector classification problems

Given a training set of input-target pairs (ui, yi), i = 1, . . . , n, with ui ∈ R
m, and

yi ∈ {−1,1}, the SVM classification technique requires the solution of the following
convex quadratic programming problem

minf (x) = 1
2xTQx − eTx

s.t. yTx = 0, 0 ≤ x ≤ Ce,
(21)

where x ∈ R
n, Q is a n × n positive definite matrix, e ∈ R

n is the vector of all ones,
y ∈ {−1,1}n and C is a positive scalar. The generic element qij of the matrix Q is
given by yiyjK(ui, uj ), where K(u, z) = φ(u)′φ(z) is the kernel function related
to the nonlinear function φ that maps the data from the input space into the feature
space. The most widely used kernels are the following:

• linear: K(u, z) = u′z;
• polynomial: K(u, z) = (γ u′z + r)d , with γ > 0;
• Gaussian: K(u, z) = exp(−γ ‖u2 − z2‖), with γ > 0;

where γ , r , d are kernel parameters.
We present an easily implementable version of Algorithm DAM for the quadratic

programming programs (21), where we set the dimension q of the working set equal
to two. We observe that in this case, similar to [19], the convergence of Algorithm
DAM holds with τ = 0. Thus, in correspondence to a given working set W , the sub-
problem (12) takes the form

min
xW

f
(
xW ,xk

W

) = 1
2x′

WQWWxW − (
e − QWWxk

W

)′
xW ,

y′
WxW = −y′

W
xk

W
, 0 ≤ xW ≤ CeW .

(22)

Moreover, as we set the dimension q of the working set equal to two, the exact solu-
tion of subproblem (22) can be determined analytically (see, e.g., [8]). As regards the
definition of the sequence of working sets satisfying the WSS condition, we consider
in a cyclic order the pairs

(1,2), (1,3), . . . , (1, n), (2,3), . . . , (2, n), . . . , (n − 1, n), (23)

and we select as working set the first pair (i, j) ∈ R(xk) × S(xk) such that

− (∇f (xk))i

ai

> − (∇f (xk))j

aj

.

The performance of this cyclic version of DAM has been compared with that of LIB-
SVM [7], which is a widely used decomposition algorithm for SVM classification
(and regression) implementing an efficient version of SVMlight algorithm [15]. In
particular the working set selection used in LIBSVM is the same of SVMlight (see the
subparagraph of Sect. 3) with dimension q of the working set equal to two.

In order to make some fair computational comparison between LIBSVM and this
version of algorithm DAM, this latter has been implemented using the available code
(written in C++) of LIBSVM, where the choice of the working set has been modified.
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The stopping criterion adopted is based on a test on the decrease of the objective
function value obtained in the last P iterations, and on a test on the number of iter-
ations performed. More specifically, both LIBSVM and DAM are stopped whenever
either

max
0≤t≤P

�fk−t ≤ 10−9,

where �fk−t = f (xk−t−1) − f (xk−t ) with P = 30, or the number of iterations per-
formed is equal to 20000.

For experimentation, three test problems described below were used.

Problem P1 (Mushroom problem) [www.ics.uci.edu/mlearn/MLRepository.html].
The task is that of distinguishing edible and poisonous mushrooms. The data set used
consists of 8000 pairs, the dimension of the input space is m = 125.

Problem P2 (Random problem [11]) Starting from two linearly separable sets of
points, a nonseparable data set was constructed by changing the classification of a
certain number (equal to 1% of the overall points) of randomly chosen observations.
The data set consists of 10000 pairs, the dimension of the input space is m = 10.

Problem P3 (kddcup problem) [kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html]. The task is to build a network intrusion detector, which must distinguish be-
tween “bad” connections and “good” normal connections. The data set used consists
of 100000 pairs, the dimension of the input space is m = 39.

The experiments were performed setting in (21), the parameter C equal to 100, and
using both the polynomial (with γ = 1, r = 1 and d = 1,2,3,4) and the Gaussian
(with γ = 1) kernels. The algorithms ran on a 1.84 GHz AMD Athlon with 256
megabytes of RAM.

The results are shown in Tables 1–3, where we report the number of iterations (ni ),
the attained function value (f �), the training set accuracy (%), the required cpu time
(cpu) and the cpu time devoted to the working set selection (cpuw), both expressed
in seconds. The results concerning the polynomial kernel correspond to the values
of the parameter d for which the best training set accuracy provided by one of the
two algorithms was highest, that is d = 4 for Problem P1, d = 1 for Problem P2, and
d = 2 for Problem P3.

By comparing the two algorithms in terms of obtained solutions (namely the val-
ues of f � and %) it appears that the behaviour of LIBSVM is better than the one
of DAM in the case of Gaussian kernel, while, in the case of polynomial kernel,
DAM clearly outperforms LIBSVM on Problems P2 and P3 and it is comparable
with LIBSVM on Problem P1. We note that on Problem P2 with the polynomial ker-
nel, the two algorithms provide close objective function values, but quite different
training accuracy. Further experiments were performed on Problem P2 by increasing
the number of iterations up to 50000, but the difference in terms of training accuracy
remains relevant (for instance, by running 50000 iterations we obtained an accuracy
of 63.59% for LIBSVM and of 90.97% for DAM).

As regards the comparison in terms of cpu time, we can observe that the behaviour
of DAM is better than that of LIBSVM in all the problems with the polynomial kernel.
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Table 1 Comparisons on Problem P1

Algorithm Polynomial Gaussian

ni f � % cpu cpuw ni f � % cpu cpuw

LIBSVM 14769 −0.00013 100 47 1.5 20000 −1070.14 100 1133 2.6

DAM 20000 −0.00012 100 37 0.1 20000 −1015.92 100 583 0.1

Table 2 Comparisons on Problem P2

Algorithm Polynomial Gaussian

ni f � % cpu cpuw ni f � % cpu cpuw

LIBSVM 20000 −483.6 63.64 34 2.8 20000 −4889.25 100 196 2.8

DAM 20000 −482.2 95.12 29 0.1 20000 −3982.84 99.19 89 0.1

Table 3 Comparisons on Problem P3

Algorithm Polynomial Gaussian

ni f � % cpu cpuw ni f � % cpu cpuw

LIBSVM 20000 −0.3 75.75 267 36 20000 −980.28 99.99 2683 38.7

DAM 20000 −6.17 95.82 229 4 20000 −172.29 97.18 2818 0.3

In Problems P1 and P2 with Gaussian kernel, DAM clearly outperforms LIBSVM,
while the behaviour of this latter is better than the one of DAM in Problem P3. In
all the experiments the computational effort of DAM to select the working sets is
quite lower than that of LIBSVM. We remark that both the algorithms implement the
same technique to avoid kernel evaluations as much as possible. In particular, they
dynamically cache only the most recently used columns of the matrix Q (the cache
memory size was set to the default value of 40 MB). Thus, although in principle the
computational cost per iteration of the two algorithms is different only for the effort
in the working set selection, a very high difference in terms of cpu time may occur as
consequence of the caching technique. For instance, the difference in the solution of
Problem P1 with Gaussian kernel (where the algorithms perform the same number of
iterations) is mainly due to the fact that, as result of the caching technique, LIBSVM
performs 39989 kernel columns evaluations, versus 20989 performed by DAM. We
observe that the caching effect is relevant for the cyclic selection (23), since the first
column of Q is naturally cached, while LIBSVM may select quite different pairs in
the beginning. This becomes an advantage for the proposed method when the runs
are stopped quite early.

According to the very limited experimentation, it would seem that the simple ver-
sion of Algorithm DAM (where the dimension q of the working set has been set
equal to two) could represent a valid alternative to LIBSVM. Moreover, the poten-
tial computational advantages of the approach characterizing Algorithm DAM could
be exploited much more with larger dimensions of the working sets. Indeed, as q

increases, the computational saving in the selection of the working set may become
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more and more relevant. However, values of q greater than two imply the adoption
of an iterative algorithm for computing the solutions of the generated subproblems.
Therefore, the study of efficient iterative solvers for convex quadratic programs de-
serves particular attention and will be the object of future work.

5 Conclusion

The contribution of the paper is the definition of a decomposition algorithm (DAM),
whose global convergence can be proved under mild assumptions. Algorithm DAM
is based on a general condition on the working sets that can be satisfied, in particular,
by using prefixed index sets in cyclic order. In this case, no on-line computation is
required to select the subproblem variables to be optimized, so that a parallel version
of the algorithm could be naturally designed. This will be object of further study. It
is also worth to mention that in this paper it is assumed that a stationary point of
the subproblem (12) is determined exactly, which can be done efficiently in the case
of quadratic programming problems of dimension q = 2. Therefore, an important
point to be investigated is the definition of convergent decomposition methods based
on larger working sets and on the computation of inexact solutions of the subprob-
lem (12).

Appendix

Proof of Proposition 2 First we assume that the feasible point x∗ is a KKT point
of problem (1). If one of the sets R(x∗), S(x∗) is empty, then the assertion of the
proposition is obviously true. If both the sets R(x∗) and S(x∗) are not empty, then
Proposition 1 implies the existence of a multiplier λ∗ such that the pair (x∗, λ∗) sat-
isfies conditions (4) which can be written as follows:

max
i∈L+(x∗)∪U−(x∗)

{
− (∇f (x∗))i

ai

}
≤ λ∗ ≤ min

i∈L−(x∗)∪U+(x∗)

{
− (∇f (x∗))i

ai

}
,

λ∗ = − (∇f (x∗))i
ai

∀i /∈ L(x∗) ∪ U(x∗).

Then recalling the definition of the sets R(x∗) and S(x∗), we can write:

max
h∈R(x∗)

− (∇f (x∗))h
ah

≤ min
h∈S(x∗)

− (∇f (x∗))h
ah

,

which implies that there exists no pair of indices i and j , with i ∈ R(x∗) and j ∈
S(x∗), satisfying (6).

Assume now that there exists no pair of indices i and j , with i ∈ R(x∗) and j ∈
S(x∗), satisfying (6). First we consider the case that one of the sets R(x∗), S(x∗)
is empty. Suppose, without loss of generality, that R(x∗) = ∅ which implies that
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{i: li < x∗
i < ui} = ∅. Hence we have that S(x∗) = L−(x∗) ∪ U+(x∗) = {1, . . . , n}.

Therefore conditions (4) are satisfied by choosing any λ∗ such that

λ∗ ≤ min
1≤i≤n

− (∇f (x∗))i
ai

.

In case that both the sets R(x∗) and S(x∗) are not empty, by assumption we have that

max
h∈R(x∗)

− (∇f (x∗))h
ah

≤ min
h∈S(x∗)

− (∇f (x∗))h
ah

.

Therefore we can define a multiplier λ∗ such that

max
h∈R(x∗)

− (∇f (x∗))h
ah

≤ λ∗ ≤ min
h∈S(x∗)

− (∇f (x∗))h
ah

, (24)

so that the first and second sets of inequalities of (4) are satisfied. Then the definition
of the sets R(x∗), S(x∗) and the choice of the multiplier λ∗ (given by (24)) imply that

max{i: li<xi<ui }
− (∇f (x∗))i

ai

≤ λ∗ ≤ min{i: li<xi<ui }
− (∇f (x∗))i

ai

,

so that the set of equalities of (4) is verified. �

Proof of Proposition 3 If x̂ is not a KKT point then Proposition 2 implies that both
R(x̂) and S(x̂) are not empty and ensures that for at least one pair i ∈ R(x̂) and
j ∈ S(x̂) we have that

− (∇f (x̂))i

ai

> − (∇f (x̂))j

aj

.

Hence we get easily

max
h∈R(x̂)

− (∇f (x̂))h

ah

≥ − (∇f (x̂))i

ai

> − (∇f (x̂))j

aj

≥ min
h∈S(x̂)

− (∇f (x̂))h

ah

and this proves point (i) of the proposition.
Let us prove point (ii). We show that the defined direction di,j ∈ D(x̂), namely

that

a′di,j = 0 and d
i,j
i ≥ 0 ∀i ∈ L(x̂), and d

i,j
j ≤ 0 ∀j ∈ U(x̂).

Indeed, the definition of di,j yields that a′di,j = aid
i,j
i + ajd

i,j
j = 0. Moreover, we

have i ∈ R(x̂), so that, if i ∈ L(x), then, by (5), we must have i ∈ L+(x̂), and hence
d

i,j
i = 1/ai > 0. Analogously, since j ∈ S(x̂), if j ∈ U(x̂) then j ∈ U+(x̂) and hence

d
i,j
j = −1/aj < 0. The same conclusion can be drawn for the other two cases.

Furthermore, if a pair i ∈ R(x̂) and j ∈ S(x̂) exists such that (9) holds, then we
can write

∇f (x̂)′di,j = (∇f (x̂))i

ai

− (∇f (x̂))j

aj

< 0. �
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Proof of Proposition 4 For each feasible x, the set of the feasible directions at x is
the cone D(x) = N ∩ T (x) where N = {d ∈ Rn: a′d = 0} and

T (x) = {
d ∈ Rn: di ≥ 0, ∀i ∈ L(x), and di ≤ 0, ∀i ∈ U(x)

}
.

In order to prove assertion (i), it is sufficient to show that T (x̄) ⊆ T (xk) for suffi-
ciently large values of k. Hence, we prove that, for sufficiently large values of k,

L(xk) ⊆ L(x̄), U(xk) ⊆ U(x̄). (25)

Assume by contradiction that (25) does not hold and without loss of generality as-
sume that L(xk) �⊆ L(x̄). Hence for each k belonging to an infinite subset K ⊆
{0,1, . . .} an integer jk exists, such that jk ∈ L(xk) and jk /∈ L(x̄). Since jk belongs
to a finite set, we can extract a subset K1 ⊆ K such that jk = j̄ for each k ∈ K1. Then
we have

xk

j̄
= lj̄ for all k ∈ K1. (26)

Taking limits in (26) for k → ∞, k ∈ K1, we obtain that x̄j̄ = lj̄ and this contradicts

the fact that j̄ /∈ L(x̄).
Now let us prove assertion (ii). The proof is by contradiction. Assume that an

integer j̄ exists, such that j̄ ∈ R(x̄) and j̄ /∈ R(xk) for each k ≥ k̄. We note that the
index sets defined in (5) can be also rewritten in the form:

R(x) = {
i: (xi < ui and ai > 0) or (xi > li and ai < 0)

}
,

S(x) = {
i: (xi < ui and ai < 0) or (xi > li and ai > 0)

}
.

We can assume without loss of generality that aj̄ > 0 so that, by definition of R(x̄),

we get x̄j̄ < uj̄ . By assumption j̄ /∈ R(xk), that implies that xk

j̄
= uj̄ for k ≥ k̄. Since

xk → x̄ for k → ∞, this implies x̄j̄ = uj̄ which leads to a contradiction. �
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