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A Convergent Gambling Estimate of 
the Entropy of English 

THOMAS M. COVER, FELLOW, IEEE, AND ROGER c. KING, STUDENT MEMBER, IEEE 

Abstmct-In his original paper on the subject, Shannon found upper 
and lower bounds for the entropy of printed English based on the number 
of trials required for a subject to guess subsequent symbols in a given text. 
The guessing approach precludes asymptotic consistency of either the 
upper or lower bounds except for degenerate ergodic processes. Shannon’s 
technique of guessing the next symbol is altered by having the subject 
place sequential bets on the next symbol of text. lf S,, denotes the 
subject’s capital after n bets at 27 for 1 odds, and lf it is assumed that 
the subject hnows the underlying prpbabillty distribution for the process 
X, then the entropy estimate ls H,(X) =(l -(l/n) log,, S,) log, 27 
bits/symbol. If the subject does npt hnow the true probabllty distribution 
for the stochastic process, then Z&(X! ls an asymptotic upper bound for 
the true entropy. ff X is stationary, EH,,(X)+H(X), H(X) bell the true 
entropy of the process. Moreovzr, lf X is ergodic, then by the SLOW 
McMilhm-Brebnan theorem H,,(X)+H(X) with probability one. Pre- 
liminary indications are that English text has au entropy of approximately 
1.3 bits/symbol, which agrees well with Shannon’s estimate. 

I. INTR~DuOT~~N 

T HE GOAL of this paper is to develop an accurate 
estimate of the entropy of printed English. For a 

discrete random variable Y, the entropy associated with Y 
is H(Y)= - Zip(ui) log, p(yi) where Y takes the value yi 
with probability p(yj). Let printed English be represented 
by the symbol X and consist of strings of the form 
(. . . ,x-1,X(),X1,’ * *). If we assume English to be a 
stationary random process, as we shall in this paper, then 
we define the entropy H(X) of the process X to be 

Alternative characterizations of H(X) are 

H(X)=Jimm H(X,lX-,;--,X-,) 

= H(X,IX- *,x-z, * * - ) 
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which follow using the boundedness and continuity of 
h(p) = -p logp - (1 -p) log (1 -p). In addition, if English 
is an ergodic process, then the Shamron-McMillan-Brei- 
man theorem states 

-i log,,p(X,; . . ,X&H(X) a.e. (3) 

If printed English is indeed an ergodic process, then for 
sufficiently large n a good estimate of H(X) can be 
obtained from knowledge of p(e) on a randomly drawn 
string (X,, . . * ,X,). 

An additional comment is in order concerning the 
meaning of the phrase “the entropy of English.” It should 
be realized that English is generated by many sources, and 
each source has its own characteristic entropy. The opera- 
tional meaning of entropy is clear. It is the minimum 
expected number of bits/symbol necessary for the char- 
acterization of the text. A gambling approach will yield an 
estimate of the entropy that is consistent with the above 
operational meaning whether or not the assumption of 
ergodicity for the stochastic process of English text is 
satisfied. 

Just as the entropy rates associated with various authors 
differ, so there are different entropy estimates associated 
with different gamblers. The difference in the entropy 
estimates is associated with the amount of money that 
each of the gamblers can make on the sequence and is 
profoundly affected by the gambler’s ability to accurately 
quantify his previous empirical experience with English. 
Thus an intelligent well-educated gambler will do better 
than a gambler untrained in quantitative thinking who is 
relatively unfamiliar with the language. Nonetheless, it 
will be true that there is an upper bound on how well a 
gambler can do. If there were no such bound, then the 
true entropy of the creative process of the writer would be 
zero and his writing totally predictable. This upper bound 
yields the entropy estimate we seek. 

An extensive bibliography of papers relating directly to 
Shannon’s paper [l] on the entropy of English is included. 
A brief discussion of these papers follows. 

Several papers provide important theoretical material. 
Maixner [2] helps to clarify the details behind the deriva- 
tion of Shannon’s lower bound to Nth-order entropy 
approximations. Savchuk [3] gives necessary and sufficient 
conditions on the source distribution for Shannon’s 
bounds to hold with equality. Background on entropy 
estimate limitations can be found in [4]-[8]. Important 
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factors involved in eliciting probability assessments from 
experimental subjects can be found in Savage [9]. Con- 
sistent objective estimates of the entropy of finite alphabet 
ergodic processes with unknown distribution appear in 
Bailey [lo]. Chomsky [I 11, Mandelbrot [12], Berry [ 131, 
Bell [14], and Yngve [15] all give important insight into 
the structure of language from the viewpoint of informa- 
tion theory. 

A different estimation technique can be found in New- 
man and Gerstman [16]. This paper has been quoted 
extensively in psychology literature, but the theory does 
not include a proof of the consistency of its entropy 
estimate.’ 

Several papers entend or comment on Shannon’s empiri- 
cal results for English text. Grignetti [ 171 recalculates 
Shannon’s estimate of the average entropy of words in 
English text. Burton and Licklider [ 181 use longer passages 
of text for Shannon’s estimate. Paisley [ 191 studies entropy 
variations due to authorship, topic, structure, and time of 
composition. Treisman [20] comments on contextual con- 
straints in language, and Miller and Coleman [21] provide 
more data on the entropy of English using Newman and 
Gerstman’s technique. 

Kolmogorov (as characterized in [64, p. 2571 and [98, p. 

1601) argues that the following strategy will consistently 
estimate conditional probabilities and hence the entropy. 
(See also Savage [93.) Suppose that the subject knows the 
conditional probability pi of the event that the next sym- 
bol in the text is the ith letter of the alphabet. In each 
experiment the subject has to name these probabilities. 
Proceeding through the text, one calculates the running 
average of the logarithms -log pk, where k denotes the 
actual outcome of the experiment. If the p are correct, 
then this average converges to H(X). We shall find that 
this analysis arises as a natural by-product of the gam- 
bling estimate treated here, thus providing an operational 
motivation for this estimate. Moreover, it will be shown 
that an incorrect assessment of the conditional pi leads to 
an overestimate of H(X). 

Many other papers [22]-[31] apply varied techniques to 
estimating the entropy of different languages. Tzannes et 
al. [32] and Parks [33] both measure the entropy of dig- 
itized images. 

Shannon’s or related estimates are used in many wide- 
ranging applications in [34]-[63]. The psychology litera- 
ture is particularly rich in entropy estimates. 

An important reference work on the subject is the book 
by Yaglom and Yaglom [64], which contains an extensive 
bibliography. Translations are ,given of the entries 
[65]-1971 in this bibliography that bear directly on the 
problem at hand and may be of interest to future workers 
in the area. Another thorough reference work, also with 
an extensive bibliography, is the book by Weltner [98]. 

‘Moreover, the authors make frequent use of the quantity D(n) = l- 
(H(X,,IX,)/H(X,)) = Z(X,;X,)/H(X,) together with an assertion based 
on empirical evidence that D(n) = 1 /n*. However, for aperiodic Markov 
chains of arbitrary order, it is easily proved that D(n)= cp”, where p < 1. 

The references in [98] require no translation. Additional 
references [99]-[loll were suggested by the referees. The 
reader is advised that some references in the psychology 
literature and many references in [64], [98] have not been 
included. 

II. SHANNON’S ESTIMATE 

Shannon [l] found an upper bound to the entropy of 
printed English and a lower bound to the Nth order 
approximation of English by eliciting knowledge of p(e) 
from a subject through the use of a guessing scheme. A 
subject is shown N - 1 consecutive symbols of unfamiliar 
text. He is then instructed to guess the next letter in the 
passage. Guesses are made in decreasing order of condi- 
tional probability until a correct guess occurs. Defining 
gi” to be the relative frequency of times the subject 
required i guesses to discover the correct letter given the 
N - 1 previous letters, we can express Shannon’s upper 
bound as 

H(X) ( - iiI 4jN loI32 GiN (4) 

where n samples have been taken to establish iiN and 
blanks are included to give an alphabet of 27 symbols. We 
note that the upper bound is loose for three reasons: 1) N 
is finite, 2) (ii” is determined by a mixture of QiN condi- 
tioned on the past, 3) the sample size n is finite, and thus 
JiN is a random variable that has not yet converged to its 
mean. The first two reasons cause the upper bound to be 
strictly greater than H(X), and the third implies that the 
expectation of the upper bound will be strictly greater 
than the upper bound of the expectation. Shannon’s 
bounds are derived for a subject who knows the true 
conditional probabilities p(X,jX,- ,, * * - ,X,-,+ J. For 
such a subject, Shannon defines qiN to be equal to the 
probability that the subject requires i guesses to discover 
the correct letter following a sequence of N - 1 symbols. 
The basis for Shannon’s empirical estimates are the 
following bounds: 

i) $ i(qjN-q4iN+*)logi<H(X,IX,_,,‘.‘,X,_N+,) 
i=I 

21 

< - x qjN log 4i” 

i=l 

ii)H(X) < H(X,IX,-1; ’ * ,X,-N+,> < - 5, 4iN log 4kN* 

(5) 

Thus we see that the lower bound (the first inequality in 
(5i)) is really a lower bound to an upper bound (the first 
inequality in (5ii)) and is therefore of limited meaning. 

Define a map r#~~ :X-S,, where S, is a new process 
taking values in { 1,2,. * * ,27}. The map is determined by 

cPN(Xn,Xn--,...,Xn-N++)=j, if X,, is thejth most 
likely symbol, given 

X,,-,l,~~~,X,pN+,~ 
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Assuming X is an ergodic process, it is shown in Shannon Definition: Associated with every gambling system is a 
[l] and Maixner [2] that capital function defined recursively by 

H(X,~X,-,,“‘,Xn-N+,)=H(S,~S,-,,“’,~n-N+,). 
(6) 

S,(h) = 1 (where A is the null string) 

The second bound above follows immediately, since sn+,bl,- - + ,~~+,)=27b(~~+ri~,,~~~ ,.4snhqe + 4, 

H(X) ( H(X,IX,-,,’ ’ * pX,pN+,) n=1,2;.. . (11) 

=H(S,IS,-,,“‘,S,-,+,) Thus if sequential bets are placed on a sequence x E Xm 

< H( sn) = - iil qi” log 4iN* 

and at time k a proportion b(xk+ iIxk,. . . ,x1) of the cur- 

(7) 
rent capital is bet on the outcome xk+r, with fair odds 
being paid, the resultant capital is S,, ,(x1, * * * ,xk+ i). 

The distribution over which the entropy is calculated to Definition: S: X*43 is achievable if there exists a 
find the upper bound is a very rough approximation to the sequential gambling scheme with initial capital S(A) = 1 
distribution including past information. The point is that achieving S(x) for all x E X*. 
no guessing game of this type can in general estimate 
H(X) accurately if H(S,IS,-,,a . . ,S,-,+,)< H(S,J. A Theorem 1: The capital function S:X*+R is achiev- 

derivation of Shannon’s lower bound, the first bound able by a sequential gambling scheme if and only if for all 

above, can be found in Shannon [I], Maimer [2], and n and for all X EX*p UXI~* ’ * ,%)27-“=P(Xl,’ ’ * 7%) are 

Savchuk [3]. The upper and lower bounds are generally marginal distributions for some stochastic process 

not equal, and the true entropy H(X) generally falls (xi]z 1’ 
strictly below the upper bound. The proof is given in Cover [104]. 

III. GAMBLING APPROACH 

The essence of the gambling estimate lies in an optimal 
gambling scheme. Instead of guessing symbols and count- 
ing the number of guesses until correct as in Shannon’s 
technique, the subject wagers a percentage of his current 
capital in proportion to the conditional probability of the 
next symbol in the alphabet conditioned on the past. This 
process is repeated on subsequent symbols of text with the 
subject accumulating S,, dollars after n wagers. If we have 
an ideal subject and he divides his capital on each bet 
according to the true probability distribution on the next 
symbol, we shall show in this section that, with probability 
one, 

Theorem 2: For any sequential gambling scheme b’, 
(n - E log2, Sn(xl; . + ,x,J) log, 27 > H(X,; . * ,X,J for all 
n, with equality if and only if b’= b*, where 

b*(x/c+,lxk,. . - ,x1) =P(%+ 1Ix// * - J1), k=1,2,3;. . . 

(12) 

The proof is given in Cover [104]. See Kelly [102] for 
the same result for i.i.d. processes. 

Thus we have the intuitively satisfying result that to 
gamble optimally we simply place bets according to the 
conditional probability of possible outcomes given the 
past. Such a scheme is often called “proportional gam- 
bling.” 

1 -i log,, S,, log, 27+H(X) bits. a.e. 
1 

(8) Theorem 3: Let {X,}F= i be an ergodic process with 
distribution p. 

This is .an extension of the work of Kelly [ 1021 and i) If the b*-scheme is used, then 
Breiman [IO31 on gambling on favorable independent 
trials to gambling on ergodic processes [ 1041. If the subject (I- (l/n) log,, S,) log, 27+H(X) a.e. 

bets according to a distribution other than that of the 
process, then with probability one 

ii) For any other scheme b, 
- 

. Pr {(1- lim (l/n)log,,S,)log,27>H(X)}=l. 

1 - lim L log,, S,, 
n- n 

log, 27 > H(X). (9) Proof of i): 

Let the English alphabet, augmented by blanks, be 
represented by X and denote the set of all finite strings of 

1-i log*,s~)log,27=(1-f log,,27~(X,,...,X,)) 

symbols from X by X*. *log, 27+H(X) a.e. (13) 

Definition: Let b(. I *) : X X X* +R be called a sequential 
gambling system if the following conditions are satisfied: 

by the SMB theorem. 

Proof of ii): The proof uses the AEP. See [104]. 
9 b(+)>O 

Using (2) we can easily extend the b*-scheme to a 

ii) & b(Xk+llXk9* * * A= 1. (10) dependence on the past. The proof of the following theo- 
rem is straightforward given our previous statements. 
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Theorem 4: If X is an ergodic process and a gambling 
scheme b defined by 

6(x,1x,-,; * * ,x-k)=P(xnlxn-I,“‘,x-k) (14) 

is used, then the induced capital function S,, obeys 

( 
1 - i log,, S,, log, 27+H(X) 

1 
a.e. (15) 

The b gambling scheme provides the tool with which to 
find an asymptotically correct estimate of the entropy of 
printed English. The subject inspects the text thoroughly 
up to a point x0. Starting with S(A) = 1 unit at time zero, 
the subject places bets according to the 6 scheme on the 
next outcome xi. Fair odds are paid (27 for l), and the 
process continues to symbol x,, of the text at which time 
the subject has S, dollars where 

Sn=Sn(x~;~~,x,)=6(x~;~~,x,~x0;~~,x~~)27”. (16) 

By Theorem 4, 

( 
1 - i log,, S, log, 27-H(X) 

1 
bits/symbol a.e. 

(17) 

We use the K-scheme, because letting the subject inspect 
as much past text as he wishes allows him to formulate the 
best subjective opinion he can of the true statistical dis- 
tribution of the given text. Roughly speaking, convergence 
to the entropy of the process should take place faster than 
if the past were limited. 

IV. EDUCATION OF THE GAMBLER 

How is it that asking a subject to gamble will elicit an 
accurate entropy estimate? We have already argued that 
there is no way to gamble in such a manner that the 
expected log capital E log S,, exceeds n - H(X,, . - . ,X,), 
but how can we be assured that ordinary human gamblers 
will choose to achieve this limit? 

First let us observe that each gambler has the vague 
motivation to increase his capital to a large amount with 
high probability. We present the gambler with three argu- 
ments for the proportional gambling scheme. 

1) Maximizing the expected logarithm of the return is 
achieved by proportional gambling. Thus if the gambler’s 
utility function is logarithmic in money, betting in propor- 
tion to the probabilities is optimal. Of course, we do not 
believe that a given gambler’s utility function is precisely 
logarithmic in money, so this point is not emphasized. 

2) The results of Kelly [ 1021 and Breiman [ 1031 indicate 
for independent gambles that maximizing the expected 
logarithm of the return on each gamble (which is achieved 
by proportional gambling) will cause one’s money to grow 
to infinity at the highest possible rate on the condition 
that one does not go broke. We then argue (as shown in 
Cover [104]) that if the stochastic process is ergodic then 
conditional proportional gambling will cause S,, to grow 
to infinity at the highest possible rate, with probability 
one. Moreover, we show that even if one is willing to go 
broke with probability X > 0, conditional proportional 
gambling is still optimal and the growth rate of capital is 

unchanged, i.e., independent of X for 0 < X < 1. The proof 
is similar to the strengthening of Shannon’s weak converse 
to Wolfowitz’s strong converse. 

3) We can show that proportional gambling is also 
competitively best. This is exciting because it is consistent 
with the motivation of many gamblers approached for this 
project, in the sense that they were interested in achieving 
more money on the given sequence than any of the other 
participants. Let b(x) be any gambling scheme on the 
random variable X, P(X = x) =p(x), x E X. Thus Z b(x) = 
1, b(x)> 0. Let O(x) be the odds offered given that 
alternative x is the outcome of the drawing of the random 
variable X. Thus the gambling scheme b induces the 
capital S(x) = O(x)b(x), with probability p(x). Consider 
the proportional gambling scheme b*(x)=p(x), with in- 
duced capital S*(x) = O(x)p(x) with probability p(x). 
Then we have the result [104]. 

Theorem 5: 

P {S(X) >ts*(x)} < l/t, for t>O. (18) 

Proof 

P{S(X)>tS*(X)}=p{b(X)O(X)>tp(X)O(X)} 

=P {AXW(X)/t) 

= *.p(x)I& 
x 
)p) a w/t 

= l/t. (19) 

Corollary : Let {X,}? , be a stochastic process. Let 

b*(x,c+h,. . . ~xk)=P(xk+ll-%* * - , xk) and let b( -) be any 

other sequential gambling scheme. Then 

P 
( 

; log, S(X,; * * ,X,) 2 log, s*(xI; * * ,x,)+f 
a- ) 

<2-‘, for all t. (20) 

Summarizing, we see that proportional gambling is best 
for logarithmic utility functions, is competitively best, and 
causes one’s capital to grow at the highest possible interest 
rate. Thus it behooves a gambler motivated by any of 
these three considerations to gamble in a proportional 
manner, alloting his next bet independently of the odds 
but according to the conditional probability distribution 
of the next symbol given the available past. 

V. OPERATIONAL MEANING OF GAMBLING ESTIMATE: 

COMPRESSION AND DECOMPRESSION 
, 

USING IDENTICAL TWINS 

It has been asserted that the gambling approach elicits 
both an estimate of the true probability of the text 
sequence as well as an estimate of the entropy of the 
ensemble of English from which the sequence was drawn. 
In this section we investigate the operational significance 
of gambling in terms of data compression. Specifically, we 
shall argue that if the text in question results in capital S,, 
then log, S,, bits can be saved in a naturally associated 
deterministic data compression scheme. We shall further 
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assert that if the gambling is optimal, then the data 
compression achieves the Shannon limit. 

We shall make the assumption that there is an identical 
twin to the gambler who will be receiving some encoding 
of the text. This identical twin is assumed to have pre- 
cisely the same thought processes as the encoder. (See also 
the Shannon twin [l].) 

The scheme we shall describe is essentially the Elias 
coding scheme for stochastic processes with respect to the 

distributionp(x(n)) A 2-“S(x(n)), where we have set x(n) 
=(x,,xz; * - ,x,). (See Elias’s unpublished manuscript and 
Jelinek’s discussion of Elias’s scheme [105].) 

Consider the following data compression algorithm that 
maps the text x,, x2,. . . ,x, into a code sequence cl, c2,. - . , 
ck, where ci~{O,l}, xi~{O,l}, i=1,2;-. . (We have 
assumed the text to be binary, without loss of generality, 
to obviate certain notational problems concerning bases 
of logarithms, etc.) Both the compressor and the decom- 
pressor know n. Let the 2” text sequences be arranged in 
lexicographical order. Thus for example 0100101 < 
0101101. The encoder observes the sequence x(n) = 

( X1,$,’ * * 7 x,). He then inspects his mental processes to 
calculate what his capital &(x’(n)) would have been on all 
sequences x’(n) < x(n) and calculates F(x(n)) = 
x .,(,,,,(,,2-“S,(x’(n)). Clearly F(x(n)) E [0, 11. Let 
k= [n-log &(x(n))] 9 1 -logp(x(n))]. Now express 
F(x(n)) as a binary decimal to k place accuracy: 

p(w)] =c1c2-* . c,. The sequence c(k)=(c,,c2;. . ,ck) 
is transmitted to the decoder. 

The decoder twin can calculate the precise S(x’(n)) 
associated with each of the 2” sequences x(n). He thus 
knows the cumulative sum of 2-“S(x’(n)) up through any 
sequence x(n). He tediously calculates this sum until it 
first exceeds .c(k). The first sequence x(n) such that the 
cumulative sum falls in the interval [.cl * * * c,, .c, * * * c, + 
(1/2)‘7 is uniquely defined, and the size of S(x(n))/T 
guarantees that this sequence will be precisely the en- 
coded x(n). Thus the twin has uniquely recovered x(n). 
The number of bits required is k = [ n -log S(x(n)) 1. The 
number of bits saved is n - k = Llog S(x( n)) 1. For pro- 
portional gambling, S(x(n)) = 29(x(n)); thus Ek = 
Xp(x(n))[ -logp(x(n))] <H(X,; - - ,X,)+ 1. (An encod- 
ing-decoding algorithm for optimal data compression 
using these ideas and requiring only two operations per 
bit has been developed by Pasco [106].) 

We see that if the betting operation is deterministic and 
is known both to the encoder and the decoder, then the 
number of bits necessary to encode x,, . . . ,x,, is ap- 
proximately n -log S,, and that the expected value of this 
quantity is H(X,, - . . ,X,). Thus for the text used in this 
experiment we argue that the gambling results correspond 
precisely to the data compression that would have been 
achieved by the given human encoder-decoder indentical 
twin pair. 

In Section VII on the evaluation of experimental re- 
sults, we see that the possibility of the identical twin 
encoding-decoding scheme applies in Section VII to 1) the 
average capital scheme where now we need an identical 

TABLE I 

EXPEIUMBNTAL RESULTS ON ESTIMATING ENTROPY OF ENGLISH 
USING SEQUENCE OF 75 SYMBOLS FROM 

Jefferson the Virginian 

Supject Capital Achieved Resultant Entropy Estimate 

1 1.50 x 10'8 1.29 bitslsym 

2 1.46 x lO76 1.38 

3 3.36 x 10'5 1.41 

4 2.37 x lO73 1.51 

5 6.45 x 10" 1.57 

6 3.22 x 10" 1.59 

7 2.30 x 10" 1.64 

8 4.00 x 10'0 1.67 

9 2.21 x 1069 1.68 

10 9.63 x 1O68 1.70 

11 3.88 x 106' 1.76 

12 3.60 x lo64 1.90 

Average capital achieved: 1.28 X 1077. 
Average capital estimate: 1.34. 

twin committee on the other end; 2) the best subject 
estimate scheme where now we need an extra log m bits of 
information to specify which of the gamblers is used for 
decoding; and 3) the committee gambling scheme where 
we have an identical committee on the other end. Thus 
the computed entropy estimates correspond to the actual 
compressions that are achieved. 

VI. EXPERIMENTAL RESULTS 

The above gambling procedure was carried out using 
twelve subjects and a sample of text from the same source 
Shannon used, Jefferson the Virginian, by Dumas 
Malone.2 The sample of text used is given in the Appen- 
dix. Table I shows the resulting entropy estimates. 

One disadvantage of this type of entropy estimate lies in 
the time necessary to perform the experiment. Each sam- 
ple point in Table I was found by having each subject 
work interactively at a computer terminal for a period of 
approximately five hours. Each subject was allowed to 
augment his knowledge of English with digram and tri- 
gram statistics. We found, however, that the best estimates 
came from subjects who did not use the tables as a crutch. 
Subjects were also allowed to read as much of the book as 
they wished up to the sample in question in order to 
familiarize themselves with the author’s style. Although 
each subject was tested separately, there was a definite air 
of competition. 

Under the assumption that a more current piece of 
literature relating more directly to the subjects involved in 
the experiment might give a better estimate, Contact: The 
First Four Minutes, by Leonard and Natalie Zunin, was 
chosen as a second text source. The passage used appears 
in the Appendix. The results from two subjects are given 
in Table II. 

2Awarded Pulitzer Prize in 1974 for his five volume series, Jefferson 
and His Time. 
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TABLE II 
EXPERIMENTALRESULTSONESTIWTTNGENTROPYOFENGLISH 

U~~NGSEQ~ENCE~F~~OSY~~BOL~FR~M Contact 

Subject Capital Achieved 

1 5.62 x 10z3' 

2 6.01 x 102** 

Resultant Entropy Estimate 

1.26 bitstsym 

1.30 

VII. EVALUATION OF EXPERIMENTAL RESULTS 

If only one experimental subject is available, the fi= 
(1 -(l/n) log,, S,) log, 27 is the natural estimate of the 
entropy, as argued previously. Now we consider natural 
methods of combining the performance of m experimental 
subjects in order to obtain a better estimate of H(X). 
Assume m remains fixed. There are two sources of error. 

1) Bias-a subject may use an “incorrect”p(x(n)). 
2) Statistical error-the sequence x(n) may not be typi- 

cal of the process; i.e., -(l/n> log2 p(xO9) may 
differ significantly from H(X). 

The first source of error is handled by convexity, and the 
second by the asymptotic equipartition property. 

Let subject i, i= 1,2;*+ ,m, use gambling scheme 
bi(x(n)), thus accumulating capital Sn(i)= bi(x(n))2T. Con- 
sider the following four natural _estimates for S,, and 
H(X). In the first three of these, H=(l -(l/n) log,, S,) 
log, 27. 

a) Average Capital: 
. m 

This is equivalent to a gambling scheme 

b,&(n)) = izl ibi(x(n)); (21) 

i.e., each gambler begins with (l/m)th unit initial capital. 
b) Best Subject Estimate: 

s, = max s,Ci) 
i~(l,2;..,rn] * 

c) Committee Gambling: 

b(x/cIx(k- l))=izl aV’bi(XklX(k- 1)) (23) 

where Zy=,@=l, al~[O,l], i=l;..,m, and S,,= 
27”II”k=,b(x,Ix(k- 1). 

d) Average Entropy Estimate: 

ii = ; .$ 
r-l 

1 - $ log,, S,“’ log, 27 = St; ,$ ri @). 
I-1 

(24) 

We reject d) immediately because it is too sensitive to 
poor gambling schemes on the part of one or more of the 
subjects. Suppose for example that b, bets all of his capital 
on, one symbol at time 1 and loses. Then S,(‘)zO, n = 

u,*; * 3 and (1 /n) log,, Sn(‘) = - co, for all n, thus yield- 
ing H = + m. This is an absurd use of the data. 

Suppose that subject i achieves a limit H@, i.e., 

[ 
1 - ; log,, Sri(i) 1 log, 27+ H ci). (25) 

Thus H(‘) is his asymptotic estimate of the entropy. 
We now show that a) and b) both yield H = mini H’” as 

the asymptotic estimate of H. Without loss of generality 
let 

H(l)<H(‘) for all i. (26) 

Note that in a) 

1 - $ log,, s, log, 27 

= 1-i log,, ; ,zl S,“’ log2 27 
( I 1 

= 1-i log,, (s!l,)-; log,, 1 
( 

m g1 (s!i)/w) 
I 

*log, 27-H(‘) (27) 

since the last term +O, by (25) and (26). Thus a) and b) 
have the same limit for a fixed number of subjects m and 
for n+c0. 

A similar argument can be formulated in the case of 
committee gambling for the special case of 

&) = af)(x(k- 1)) = msf’(x(k- ‘)) . 

i;l SkO”(x(k- 1)) 

This corresponds to a weighted average of several betting 
schemes where the weighting factor is the proportion of 
money won by the ith scheme at time k. From c) we see 

bc%+ 1 

= 5 bi(x(k)) bi(xk+Jx(k)) 

i=’ jgl b,MW 

i ,Sl bi(x(k+ 1)) I 

= kwgb(k + 1)) 
b,,,(x(k)) = b~“g(Xk+dX(k)) (28) 

where bavg is the gambling scheme resulting in an average 
capital estimate in (21). Thus a), b), and c) are all equiv- 
alent in the special case when the weighting factor cz$ is 
proportional to the current capital earned by the ith 
gambler. 

In general, any other linear combination is possible and 
may do better than a) or b). As an example consider 
&) = l/m. Using the data in Table I and the conditional 
pyobability distributions guessed at each point by each of 
the 12 participants we arrive at I?= 1.25, a lower estimate 
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TABLE III 

a) Average Capital Estimate: 

?75 
= ,.*a x 10" ; H = 1.34 

b) Best Subject Estimate: 

S75 
= 1.50 x 10 

78 
; Fi-1.29 

c) Committee Gambling Estimate: 

.Ai) = l/12 ; S'5 = 1.24 x 10'9 ; i = 1.25 

d) Average Entropy Estimate (a rejected method): 

i = 1.59 

than the best subject achieved. However, any choice of c@ 
yields an estimate the expectation of which is an upper 
bound to H(X). 

A summary of all of the above schemes as applied to 
the data used in calculating Table I is given in Table III. 

VIII. CONCLUSIONS 

Using the committee decision estimate as the estimate 
of the entropy of printed English, we discover a re- 
dundancy of at least 64 percent. The gambling winnings 
leading to this estimate have a ,direct data compression 
interpretation (Section V). Thus the ability of the ex@- 
mental subjects to quantify their predictions would enable 
them to describe the given text in 36 percent of the 
original length. 

The results of this paper also apply to the complexity of 
images, music, and computer programs. 

ACKNOWLEDGMENT 

The authors would like to thank the many students and 
faculty at Stanford who donated their time in helping the 
authors acquire experimental data for this paper. In par- 
ticular we would like to thank Prof. John T. Gill, III, who 
achieved the highest capital growth rate in our experi- 
ments. Finally, we wish to thank the referees for mention- 
ing Kolmogorov’s contribution and the reference texts 

F41, [981. 

x‘b'PENLMX 

Excerpt from Jefferson the F%gGG.zn, by Durnas Malone (test 
section given in footnote). 

The surviving descriptions of her are meager, and there is none 
contemporary with these events. In comparison with him, she 

, certainly was not tall; as an old slave put it, she was “low.” The 

.’ iradition is that her figure was slight, though well-formed, that she 
had large hazel eyes and luxuriant auburn hair. Within the family 
much was said afterwards about her beauty, and this can be 

accepted in essence though not in full detail.‘* Jefferson himself 
was straight and strong and his countenance was not unpleasing, 
but he was not a handsome man; beyond a doubt he prided 
himself on winning a pretty wife. There is considerable evidence .- 
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spirit offset the characteristic seriousness of her lover; in her 
presence he could unbend. Gentle and sympathetic people always 
attracted him most, and clearly she was that sort, though she may 
have had her fiery moments before childbearing wore her out. 

She was not only a “pretty lady” but an accomplished one in 
the customary ways, and her love for music was a special bond 
with him. She played on the harpsichord and the pianoforte, as he 
did on the violin and the cello. The tradition is that music 
provided the accompaniment for his successful suit: his r9vals are 
said to have departed in admitted defeat after hearing him play 
and sing with her.20 In later years he had the cheerful habit of 
singing and humming to himself as he went about his plantation. 

This is not proof in its3 

Excerpt from Contact, by Leonard and Natalie Zunin (test 
section given in footnote.) 

A handshake refused is so powerful a response that most 
people have never experienced it or tried it. Many of us may have 
had the discomfort of a hand offered and ignored because it was 
not noticed, or another’s hand was taken instead. In such an 
event, you quickly lower your hand or continue to raise it until 
you are scratching your head, making furtive glances to assure 
yourself that no one saw! When tti 
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