
20 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com

interview

A Conversation with
Alan Kay

Big talk with THE

CREATOR OF SMALLTALK—

AND MUCH MORE.W
hen you want to gain a historical perspective on
personal computing and programming languages,
why not turn to one of the industry’s preeminent

pioneers? That would be Alan Kay, winner of last year’s
Turing Award for leading the team that invented Small-
talk, as well as for his fundamental contributions to
personal computing.

Kay was one of the founders of the Xerox Palo Alto
Research Center (PARC), where he led one of several
groups that together developed modern workstations
(and the forerunners of the Macintosh), Smalltalk, the
overlapping window interface, desktop publishing, the
Ethernet, laser printing, and network client-servers.

Prior to his work at PARC, Kay earned a Ph.D. in 1969
from the University of Utah, where he designed a graphi-
cal object-oriented personal computer and was a member

of the research team that
developed pioneering
3-D graphics work for the
Advanced Research Projects
Agency (ARPA). Kay was

also a “slight participant” in the original design of the
ARPANet, which later became the Internet. He holds
undergraduate degrees in mathematics and molecular
biology from the University of Colorado. After leaving
Xerox PARC, Kay went on to become chief scientist of
Atari, a Fellow of Apple Computer, and vice president of
research and development at The Walt Disney Company.

Today he is Senior Fellow at Hewlett-Packard Labs and
president of Viewpoints Research Institute, a nonprofit
organization whose goal is to change how children are
educated by creating a sample curriculum with support-

PH
O

TO
G

R
A

PH
Y

 B
Y

 G
IL

LE
S

M
IN

G
A

SS
O

N

22 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 23 more queue: www.acmqueue.com

interview

22 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 23 more queue: www.acmqueue.com

ing media for teaching math and science. This curriculum
will use Squeak as its media, and will be highly interac-
tive and constructive. Kay’s deep interests in children and
education have been the catalysts for many of his ideas
over the years.

In addition to winning the Turing Award, Kay recently
received the Draper Prize from the National Academy of
Engineering and the Kyoto Prize in Advanced Technol-
ogy, awarded every four years by the Inamori Foundation.

Guiding our tour through personal computing history
with Kay is Stuart Feldman of IBM Research, where he is
vice president and on-demand business transformation
area strategist. Since joining IBM in 1995, Feldman has
also served as vice president for Internet technology and
was head of computer science in the research division.

Feldman also spent 11 years at Bellcore, where he
held several research management positions in software
engineering and computing systems, and 10 years at Bell
Labs, where he was a computer science researcher. Feld-
man was a member of the original Unix team and is best
known as the creator of the Make configuration manage-
ment system and as the author of the first Fortran-77
compiler. He has a Ph.D. in applied mathematics from the
Massachusetts Institute of Technology. He is a member of
the Queue Advisory Board.

STUART FELDMAN One of the topics that some of the
younger people on our Queue editorial board keep ask-
ing about is the history of programming languages. The
Queue board has a bimodal generation distribution, and
those members who are in their 20s or 30s seem genu-
inely confused about where programming languages
might actually come from. It’s my observation that we
have one big language and one smaller language every
decade—that appears to be all the field can afford. Small-
talk is one of those five- or 10-year events.
ALAN KAY In the late 1960s, Jean Sammet was able to
track down and chronicle about 3,000 programming lan-
guages that were extant then. When things were simpler
in a sense—but theoretically harder because the machines
were slower, smaller, didn’t have hard drives most of
the time, and had bad tools—people nonetheless rolled
their own operating systems and programming languages
whenever they felt like it. So there are zillions of them
around.

For a Scientific American article 20 years ago, I came up
with a facetious sunspot theory, just noting that there’s a
major language or two every 101⁄2 years, and in between
those periods are what you might call hybrid languages.
These could be looked at as either an improvement on

the old thing or almost a new thing. I chronicled Fortran
as an improvement on an old thing or almost a new
thing, and Algol and Lisp were the new thing.

Then there was Simula, which the designers thought
of as an extension of Algol. It was basically a preprocessor
to Algol the way C++ was a preprocessor for C. It was a
great concept and I was lucky enough to see it as almost
a new thing. Smalltalk and Prolog happened in the early
1970s. The predecessor of Prolog was a wonderful thing
that Carl Hewitt did in the late 1960s called Planner.

Perhaps it was commercialization in the 1980s that
killed off the next expected new thing. Our plan and our
hope was that the next generation of kids would come
along and do something better than Smalltalk around
1984 or so. We all thought that the next level of program-
ming language would be much more strategic and even
policy-oriented and would have much more knowledge
about what it was trying to do. But a variety of differ-
ent things conspired together, and that next generation
actually didn’t show up. One could actually argue—as I
sometimes do—that the success of commercial personal
computing and operating systems has actually led to a
considerable retrogression in many, many respects.

You could think of it as putting a low-pass filter on
some of the good ideas from the ’60s and ’70s, as comput-
ing spread out much, much faster than educating unso-
phisticated people can happen. In the last 25 years or so,
we actually got something like a pop culture, similar to
what happened when television came on the scene and
some of its inventors thought it would be a way of getting
Shakespeare to the masses. But they forgot that you have
to be more sophisticated and have more perspective to
understand Shakespeare. What television was able to do
was to capture people as they were.

So I think the lack of a real computer science today,
and the lack of real software engineering today, is partly
due to this pop culture.
SF So Smalltalk is to Shakespeare as Excel is to car crashes
in the TV culture?
AK No, if you look at it really historically, Smalltalk
counts as a minor Greek play that was miles ahead of
what most other cultures were doing, but nowhere near
what Shakespeare was able to do.

If you look at software today, through the lens of the
history of engineering, it’s certainly engineering of a
sort—but it’s the kind of engineering that people without
the concept of the arch did. Most software today is very
much like an Egyptian pyramid with millions of bricks
piled on top of each other, with no structural integrity,
but just done by brute force and thousands of slaves.

24 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 25 more queue: www.acmqueue.com

interview

SF The analogy is even better because there are the hid-
den chambers that nobody can understand.
AK I would compare the Smalltalk stuff that we did in
the ’70s with something like a Gothic cathedral. We had
two ideas, really. One of them we got from Lisp: late
binding. The other one was the idea of objects. Those
gave us something a little bit like the arch, so we were
able to make complex, seemingly large structures out of
very little material, but I wouldn’t put us much past the
engineering of 1,000 years ago.

If you look at [Doug] Engelbart’s demo [a live online
hypermedia demonstration of the pioneering work that
Engelbart’s group had been doing at Stanford Research
Institute, presented at the 1968 Fall Joint Computer
Conference], then you see many more ideas about how to
boost the collective IQ of groups and help them to work
together than you see in the commercial systems today. I
think there’s this very long lag between what you might
call the best practice in computing research over the years
and what is able to leak out and be adapted in the much
more expedient and deadline-conscious outside world.

It’s not that people are completely stupid, but if there’s
a big idea and you have deadlines and you have expedi-
ence and you have competitors, very likely what you’ll
do is take a low-pass filter on that idea and implement
one part of it and miss what has to be done next. This
happens over and over again. If you’re using early-bind-
ing languages as most people do, rather than late-binding
languages, then you really start getting locked in to stuff
that you’ve already done. You can’t reformulate things
that easily.

Let’s say the adoption of programming languages has
very often been somewhat accidental, and the emphasis
has very often been on how easy it is to implement the
programming language rather than on its actual mer-
its and features. For instance, Basic would never have
surfaced because there was always a language better than
Basic for that purpose. That language was Joss, which pre-
dated Basic and was beautiful. But Basic happened to be
on a GE timesharing system that was done by Dartmouth,
and when GE decided to franchise that, it started spread-
ing Basic around just because it was there, not because it
had any intrinsic merits whatsoever.

This happens over and over again. The languages of
Niklaus Wirth have spread wildly and widely because he
has been one of the most conscientious documenters of
languages and one of the earlier ones to do algorithmic
languages using p-codes (pseudocodes)—the same kinds
of things that we use. The idea of using those things has
a common origin in the hardware of a machine called

the Burroughs B5000 from the early 1960s, which the
establishment hated.
SF Partly because there wasn’t any public information on
most of it.
AK Let me beg to differ. I was there, and Burroughs
actually hired college graduates to explain that machine
to data-processing managers. There was an immense
amount of information available. The problem was
that the DP managers didn’t want to learn new ways of
computing, or even how to compute. IBM realized that
and Burroughs didn’t.
SF If memory serves, I was fascinated by that machine at
the time, but I was unable to get the detail that made me
understand it.
AK In fact, the original machine had two CPUs, and it
was described quite adequately in a 1961 paper by Bob
Barton, who was the main designer. One of the great
documents was called “The Descriptor” and laid it out in
detail. The problem was that almost everything in this
machine was quite different and what it was trying to
achieve was quite different.

The reason that line lived on—even though the
establishment didn’t like it—was precisely because it was
almost impossible to crash it, and so the banking industry
kept on buying this line of machines, starting with the
B5000. Barton was one of my professors in college, and
I had adapted some of the ideas on the first desktop
machine that I did. Then we did a much better job of
adapting the ideas at Xerox PARC (Palo Alto Research
Center).

Neither Intel nor Motorola nor any other chip com-
pany understands the first thing about why that architec-
ture was a good idea.

Just as an aside, to give you an interesting bench-
mark—on roughly the same system, roughly optimized
the same way, a benchmark from 1979 at Xerox PARC
runs only 50 times faster today. Moore’s law has given us
somewhere between 40,000 and 60,000 times improve-
ment in that time. So there’s approximately a factor of
1,000 in efficiency that has been lost by bad CPU archi-
tectures.

The myth that it doesn’t matter what your processor
architecture is—that Moore’s law will take care of you—is
totally false.
SF It also has something to do with why some languages
succeed at certain times.
AK Yes, actually both Lisp and Smalltalk were done in
by the eight-bit microprocessor—it’s not because they’re
eight-bit micros, it’s because the processor architectures
were bad, and they just killed the dynamic languages.

24 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 25 more queue: www.acmqueue.com

Today these languages run reasonably because even
though the architectures are still bad, the level 2 caches
are so large that some fraction of the things that need
to work, work reasonably well inside the caches; so both
Lisp and Smalltalk can do their things and are viable
today. But both of them are quite obsolete, of course.

The stuff that is in vogue today is only about “one-
half” of those languages. Sun Microsystems had the right
people to make Java into a first-class language, and I
believe it was the Sun marketing people who rushed the
thing out before it should have gotten out. They made it
impossible for the Sun software people to do what needed
to be done.

SF What should Java have had in it to be a first-quality
language, not just a commercial success?
AK Like I said, it’s a pop culture. A commercial hit record

for teenagers doesn’t have to have any particular musical
merits. I think a lot of the success of various program-
ming languages is expeditious gap-filling. Perl is another
example of filling a tiny, short-term need, and then being
a real problem in the longer term. Basically, a lot of the
problems that computing has had in the last 25 years
comes from systems where the designers were trying to
fix some short-term thing and didn’t think about whether
the idea would scale if it were adopted. There should be a
half-life on software so old software just melts away over
10 or 15 years.

It was a different culture in the ’60s and ’70s; the ARPA
(Advanced Research Projects Agency) and PARC culture
was basically a mathematical/scientific kind of culture
and was interested in scaling, and of course, the Internet
was an exercise in scaling. There are just two different
worlds, and I don’t think it’s even that helpful for people
from one world to complain about the other world—like

26 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 27 more queue: www.acmqueue.com

interview

people from a literary culture complaining about the
majority of the world that doesn’t read for ideas. It’s
futile.

I don’t spend time complaining about this stuff,
because what happened in the last 20 years is quite
normal, even though it was unfortunate. Once you have
something that grows faster than education grows, you’re
always going to get a pop culture. It’s well known that
I tried to kill Smalltalk in the later ’70s. There were a
few years when it was the most wonderful thing in the
world. It answered needs in a more compact and beautiful
way than anything that had been done before. But time
moves on. As we learned more and got more ambitious
about what we wanted to do, we realized that there are
all kinds of things in Smalltalk that don’t scale the way
they should—for instance, the reflection stuff that we had
in there. It was one of the first languages to really be able
to see itself, but now it is known how to do all levels of
reflection much better—so we should implement that.

We saw after a couple of years that this could be done
much better. The object model we saw after a couple of
years could be done much better, etc. So the problem
is—I’ve said this about both Smalltalk and Lisp—they
tend to eat their young. What I mean is that both Lisp
and Smalltalk are really fabulous vehicles, because they
have a meta-system. They have so many ways of dealing
with problems that the early-binding languages don’t
have, that it’s very, very difficult for people who like Lisp
or Smalltalk to imagine anything else.

Now just to mention a couple of things about Java: it
really doesn’t have a full meta-system. It has always had
the problem—for a variety of reasons—of having two
regimes, not one regime. It has things that aren’t objects,
and it has things that it calls objects. It has real difficulty
in being dynamic. It has a garbage collector. So what?
Those have been around for a long time. But it’s not that
great at adding to itself.

For many years, the development kits for Java were
done in C++. That is a telling thing.

We looked at Java very closely in 1995 when we were
starting on a major set of implementations, just because
it’s a lot of work to do a viable language kernel. The thing
we liked least about Java was the way it was implemented.
It had this old idea, which has never worked, of hav-
ing a set of paper specs, having to implement the VM
(virtual machine) to the paper specs, and then having
benchmarks that try to validate what you’ve just imple-
mented—and that has never resulted in a completely
compatible system.

The technique that we had for Smalltalk was to write

the VM in itself, so there’s a Smalltalk simulator of the
VM that was essentially the only specification of the
VM. You could debug and you could answer any ques-
tion about what the VM would do by submitting stuff to
it, and you made every change that you were going to
make to the VM by changing the simulator. After you had
gotten everything debugged the way you wanted, you
pushed the button and it would generate, without human
hands touching it, a mathematically correct version of C
that would go on whatever platform you were trying to
get onto.

The result is that this system today, called Squeak, runs
identically on more than two dozen platforms. Java does
not do that. If you think about what the Internet means,
it means you have to run identically on everything that
is hooked to the Internet. So Java, to me, has always vio-
lated one of the prime things about software engineering
in the world of the Internet.

Once we realized that Java was likely not to be com-
patible from platform to platform, we basically said we’ll
generate our own system that is absolutely compatible
from platform to platform, and that’s what we did.

Anybody can do that. If the pros at Sun had had a
chance to fix Java, the world would be a much more
pleasant place. This is not secret knowledge. It’s just secret
to this pop culture.

SF If nothing else, Lisp was carefully defined in terms of
Lisp.
AK Yes, that was the big revelation to me when I was
in graduate school—when I finally understood that the
half page of code on the bottom of page 13 of the Lisp
1.5 manual was Lisp in itself. These were “Maxwell’s
Equations of Software!” This is the whole world of pro-
gramming in a few lines that I can put my hand over.

I realized that anytime I want to know what I’m doing,
I can just write down the kernel of this thing in a half
page and it’s not going to lose any power. In fact, it’s
going to gain power by being able to reenter itself much
more readily than most systems done the other way can
possibly do.

All of these ideas could be part of both software
engineering and computer science, but I fear—as far as I
can tell—that most undergraduate degrees in computer
science these days are basically Java vocational training.
I’ve heard complaints from even mighty Stanford Univer-
sity with its illustrious faculty that basically the under-
graduate computer science program is little more than
Java certification.

26 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 27 more queue: www.acmqueue.com

SF Well, I must admit I was surprised recently when I
discovered in a group of very good developers I managed,
almost none of them knew C well enough to write expert
low-level stuff. All of them were really good Java jocks.
AK In the 1960s Ted Steele spent several years promot-
ing an idea called UNCOL (universal computer-oriented
language), and, to me, by a weird and interesting pro-
cess—mainly because it’s easy to implement—C turned
out to be UNCOL. I don’t think any human being should
write in it, but it’s a great
target for anybody who
wants to do multiplatform
things—especially if you
pick the right subset.

The problem with the
Cs, as you probably know
if you’ve fooled around in
detail with them, is that
they’re not quite kosher
as far as their arithmetic
is concerned. They are
supposed to be, but they’re
not quite up to the IEEE
standards. You have to pick
a subset of C and you have
to have some side informa-
tion to get to a mathemati-
cally perfect transform of
your VM.

SF To what do you attribute
the long-term love of Small-
talk? There is a certain set
of languages that I would
assert people seem to love,
not just use. I know many people who love C. I know
very few who love C++, even though they may make
their living on it.
AK You have to be a different kind of person to love C++.
It is a really interesting example of how a well-meant
idea went wrong, because [C++ creator] Bjarne Stroustrup
was not trying to do what he has been criticized for. His
idea was that first, it might be useful if you did to C what
Simula did to Algol, which is basically act as a prepro-
cessor for a different kind of architectural template for
programming. It was basically for super-good program-
mers who are supposed to subclass everything, including
the storage allocator, before they did anything serious.
The result, of course, was that most programmers did not

subclass much. So the people I know who like C++ and
have done good things in C++ have been serious iron-
men who have basically taken it for what it is, which is a
kind of macroprocessor. I grew up with macro systems in
the early ’60s, and you have to do a lot of work to make
them work for you—otherwise, they kill you.
SF Well, C++, after all, was programmed as a macro pro-
cessor, in essence.
AK Yes, exactly. But so was Simula.

SF I put Smalltalk in this
category of languages that
have true devotees—people
who genuinely like it or
love it, not simply appreci-
ate and use it.
AK In a history of Small-
talk I wrote for ACM, I
characterized one way of
looking at languages in
this way: a lot of them are
either the agglutination of
features or they’re a crystal-
lization of style. Languages
such as APL, Lisp, and
Smalltalk are what you
might call style languages,
where there’s a real center
and imputed style to how
you’re supposed to do
everything. Other lan-
guages such as PL/I and,
indeed, languages that try
to be additive without con-
solidation have often been
more successful. I think
the style languages appeal

to people who have a certain mathematical laziness to
them. Laziness actually pays off later on, because if you
wind up spending a little extra time seeing that “oh, yes,
this language is going to allow me to do this really, really
nicely, and in a more general way than I could do it over
here,” usually that comes back to help you when you’ve
had a new idea a year down the road. The agglutinative
languages, on the other hand, tend to produce agglutina-
tions and they are very, very difficult to untangle when
you’ve had that new idea.

Also, I think the style languages tend to be late-bind-
ing languages. The agglutinative languages are usually
early-binding. That makes a huge difference in the whole
approach. The kinds of bugs you have to deal with, and

28 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 29 more queue: www.acmqueue.com

when you have to deal with them, is completely different.
Some people are completely religious about type

systems and as a mathematician I love the idea of type
systems, but nobody has ever come up with one that has
enough scope. If you combine Simula and Lisp—Lisp
didn’t have data structures, it had instances of objects—
you would have a dynamic type system that would give
you the range of expression you need.

It would allow you to think the kinds of thoughts you
need to think without worrying about what type some-
thing is, because you have a much, much wider range of
things. What you’re paying for is some of the checks that
can be done at runtime, and, especially in the old days,
you paid for it in some efficiencies. Now we get around
the efficiency stuff the same way Barton did on the
B5000: by just saying, “Screw it, we’re going to execute
this important stuff as directly as we possibly can.” We’re
not going to worry about whether we can compile it
into a von Neumann computer or not, and we will make
the microcode do whatever we need to get around these
inefficiencies because a lot of the inefficiencies are just
putting stuff on obsolete hardware architectures.

I just think that’s a two-culture divide. I’ve seen many
meetings where people are unable to communicate just
because of the stylistic differences in approaches.

SF I would characterize style languages as those with a
very rigorous kernel that describes them intellectually. As
Smalltalk went through a number of revolutions, to what
extent did those change the core kernel, as opposed to
improving the range of usefulness?
AK We’ll never know the exact answer to your question
because during the development of the system, from
when Xerox put it out to this day, all the changes hap-
pened in a single thread of development at Xerox PARC.
To the outside world, Smalltalk has changed almost not at
all. Basically, it’s just built on bigger and bigger libraries of
different kinds.

But the good thing about the changes in Smalltalk
was that it never got diluted, and the scope of the practi-
cal things you could think about doing in Smalltalk
expanded dramatically during the period at Xerox PARC.

Basically what happened is this vehicle became more
and more a programmer’s vehicle and less and less a
children’s vehicle—the version that got put out, Smalltalk
’80, I don’t think it was ever programmed by a child. I
don’t think it could have been programmed by a child
because it had lost some of its amenities, even as it gained
pragmatic power.

So the death of Smalltalk in a way came as soon as it
got recognized by real programmers as being something
useful; they made it into more of their own image, and it
started losing its nice end-user features.

But that’s OK. This project that we started in 1995 was
to make Squeak as an implementation vehicle for another
end-user system for children. That was done quite well
and is being used by many, many thousands of children
around the world. The other way of looking at this is to
realize that computers are made to be programmed by
human beings. Let’s just roll our own. Let’s not complain
about Java, or even about Smalltalk.

In fact, let’s not even worry about Java. Let’s not
complain about Microsoft. Let’s not worry about them
because we know how to program computers, too, and in
fact we know how to do it in a meta-way. We can set up
an alternative point of view, and we’re not the only ones
who do this, as you’re well aware.

There are numerous examples on the Internet of
people who have gone to one level or another by mak-

ing their own point of view. Squeak is the most com-
prehensive because it spans the whole field. It doesn’t
require any particular operating system to run because it’s
self-sufficient and has a full set of tools and applications
and so forth, but there are many interesting functional
languages, particularly in Europe, that are of interest.

One of my favorite old languages is one called Lucid
by Ed Ashcroft. It was a beautiful idea. He said, “Hey,
look, we can regard a variable as a stream, as some sort
of ordered thing of its values and time, and use Christo-
pher Strachey’s idea that everything is wonderful about
tail recursion and Lisp, except what it looks like.” When
he looked at Lisp, he had a great insight: which was that
tail-recursive loops and Lisp are so clean because you’re
generating the right-hand side of all the assignment state-
ments before you do any rebinding. So you’re automati-
cally forced to use only old values. You cannot rebind, so
there are no race conditions on anything.

interview

28 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 29 more queue: www.acmqueue.com

You just write down all of those things, and then
when you do the tail recursion, you rebind all of those
variables with these new values. Strachey said, “I can
write that down like a sequential program, as a bunch
of simultaneous assignment statements, and a loop that
makes it easier to think of.” That’s basically what Lucid
did—there is no reason that you have to think recursively
for things that are basically iteration, and you can make
these iterations as clean as a functional language if you
have a better theory about what values are.

This idea, by the way, was used in [Squeak contribu-
tor] Dave Reed’s fantastic thesis for coordinating object
siblings where you have one logical object but many
physical manifestations of the same object on different
machines, and you have to make them track each other
by transactions.

The way to get rid of these things (like Smalltalk) is
to make something that is much, much more powerful
as a computation model and much more expressive for
the core programmer who is trying to write programs.
In these late programming languages, you can disappear
the old guy and just leave the new guy behind. So we are
doing that at this moment.

SF What do you think a programming language should
achieve and for whom, and then what is the model that
goes with that idea?
AK Even if you’re designing for professional program-
mers, in the end your programming language is basically
a user-interface design. You will get much better results
regardless of what you’re trying to do if you think of it as
a user-interface design. PARC is incorrectly credited with
having invented the GUI. Of course, there were GUIs
in the ’60s. But I think we did do one good thing that
hadn’t been done before, and that was to realize the idea
of change being eternal.
SF You never walk in the same river, otherwise known as
Strachey streams.
AK The user interface, which is still the predominant
approach today, is a user interface as the access to func-
tion. If the area is interesting, you eventually wind up
with something that looks like the control panel of a
nuclear reactor. So this is the agglutination of features.
SF Yes, a button on every pixel.
AK Corporate buyers often buy in terms of feature sets.
But at PARC our idea was, since you never step in the
same river twice, the number-one thing you want to
make the user interface be is a learning environment—
something that’s explorable in various ways, something

that is going to change over the lifetime of the user using
this environment. New things are going to come on, and
what does it mean for those new things to happen?

This means improvements not only in the applications
but also in the user interface itself. Some of those ideas
were quite manifest in the original Macintosh, but are
much less manifest in the Macs of today—and of course
never really made it to Microsoft. That just wasn’t their
way of thinking about things, and I think a programming
language is the same way. Even if the user is an absolute
expert, able to remember almost everything, I’m always
interested in the difference between what you might call
stark meaning and adjustable meaning.

I did quite a bit of study on that over the years to
understand the influence of having something that you
can read. It’s known that our basic language mechanism
for both reading and hearing has a fast and a slow pro-
cess. The fast process has basically a surface phrasal-size
nature, and then there’s a slower one. This is why jokes
require pauses; the joke is actually a jump from one con-
text to another, and the slower guy, who is dealing with
the real meanings, has to catch up to it.

There have been many, many studies of this. This
argues that the surface form of a language, whatever it is,
has to be adjustable in some form.

SF As you probably know, recent research has looked at
how different parts of the brain recognize and react to
jokes. Physically, they are quite distinct.
AK Yes. All creativity is an extended form of a joke. Most
creativity is a transition from one context into another
where things are more surprising. There’s an element of
surprise, and especially in science, there is often laughter
that goes along with the “Aha.” Art also has this element.
Our job is to remind us that there are more contexts than
the one that we’re in—the one that we think is reality.

In the ’60s, one of the primary goals of the com-
puter science community was to arrive at an extensible
language. As far as I know, only three ever actually
worked, and the first Smalltalk was one of those three.
Another very interesting one was done by Ned Irons, who
invented the term syntax-directed compiler and did one of
the first ones in the ’60s. He did a wonderful extensible
language called Imp.

One of the things that people realized from these
extensible languages is that there is the unfortunate dif-
ficulty of making the meta-system easy to use. Smalltalk-
72 was actually used by children. You’re always extending
the language without realizing it when you are making

30 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com

ordinary classes. The result of this was that you didn’t
have to go into a more esoteric place like a compiler com-
piler—Yacc or something like that—to add some exten-
sion to the language.

But the flip side of the coin was that even good pro-
grammers and language designers tended to do terrible
extensions when they were in the heat of programming,
because design is something that is best done slowly and
carefully.
SF And late-night extensible programming is unsupport-
able.
AK Exactly. So Smalltalk actually went from something
that was completely extensible to one where we picked
a syntax that allowed for a variety of forms of what was
fixed, and concentrated on the extensibility of meaning
in it.

This is not completely satisfactory. One of the things
that I think should be done today is to have a fence that
you have to hop to forcibly remind you that you’re now
in a meta-area—that you are now tinkering with the
currency system itself, you are not just speculating. But
it should allow you to do it without any other overhead
once you’ve crossed this fence, because when you want to
do it, you want to do it.

I could go on and on. I feel like my answers are quite

trivial since nobody really knows how to design a good
language, including me.

SF What do you wish you had done differently in the
Smalltalk era?
AK I had the world’s greatest group, and I should have
made the world’s two greatest groups. I didn’t realize there
are benefits to having real implementers and real users,
and there are benefits to starting from scratch every few
months. I hired finishers because I’m a good starter and a
poor finisher, but it took me a long time to realize that I
was interfering with them by trying to improve things.

I believe that the only kind of science computing can
be is like the science of bridge building. Somebody has
to build the bridges and other people have to tear them
down and make better theories, and you have to keep on
building bridges.
SF And every so often, you have to watch one fall into
the drink. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

© 2004 ACM 1542-7730/04/1200 $5.00

interview

����� ���������

����������� �����

������ ��� ������������������
��� ��������������
���� ����������
��� ���������������������������

���������������������������

������������������� �����������������

���������������������������

������ �������������� �����������������

��������������� ��������
���� ���������������

������������������������������������

������ ���������������
����� �������������������

������������
����������������������������

����������������������������������� ������� ���������������������
���
������ ��������� ������������� ������������ ��������� �����������
��
��������� ��������� ���������������� ���������������� ���� ����������
��������������������������� ���
��
���
��
������������ ����������������

��� ������������ ��

�������� ����������

���� � �� � � �� � � �� � � � � � � � � � � � � � � � � � �

�������� ���� ��� ������� �������������
����� � �� � � ��� ���� � �� ������� ���
�����������

����

����

 mailto:Feedback@acmqueue.com

